Npn и pnp транзистор отличия
PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.
Конструкция прибора
Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.
Стрелка определяет эмиттер и общепринятое направление его тока («внутрь» для транзистора PNP).
PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Рассмотрим отличия PNP-типа на схеме включения с общей базой
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора I
Отличия PNP-типа на примере схемы включения с общим эмиттером
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.
PNP-транзистор: подключение источников напряжения
Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.
Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.
Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.
Работа PNP-транзисторного каскада
Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.
Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.
Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.
Характеристики транзистора
Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.
Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.
Транзисторные пары в усилительных каскадах
Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.
Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.
Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.
Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.
Транзисторные пары в схемах управления электродвигателями
Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.
H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.
Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.
Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.
Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.
Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.
Определение типа транзисторов
Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.
Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:
1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.
2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.
3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.
Значения сопротивлений переходов транзисторов обоих типов
Пара выводов транзистора | PNP | NPN | |
Коллектор | Эмиттер | RВЫСОКОЕ | RВЫСОКОЕ |
Коллектор | База | RНИЗКОЕ | RВЫСОКОЕ |
Эмиттер | Коллектор | RВЫСОКОЕ | RВЫСОКОЕ |
Эмиттер | База | RНИЗКОЕ | RВЫСОКОЕ |
База | Коллектор | RВЫСОКОЕ | RНИЗКОЕ |
База | Эмиттер | RВЫСОКОЕ | RНИЗКОЕ |
Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.
PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.
Конструкция прибора
Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.
Стрелка определяет эмиттер и общепринятое направление его тока («внутрь» для транзистора PNP).
PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Рассмотрим отличия PNP-типа на схеме включения с общей базой
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Отличия PNP-типа на примере схемы включения с общим эмиттером
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.
PNP-транзистор: подключение источников напряжения
Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.
Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.
Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.
Работа PNP-транзисторного каскада
Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.
Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.
Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.
Характеристики транзистора
Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.
Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.
Транзисторные пары в усилительных каскадах
Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.
Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.
Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.
Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.
Транзисторные пары в схемах управления электродвигателями
Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.
H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.
Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.
Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.
Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.
Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.
Определение типа транзисторов
Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.
Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:
1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.
2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.
3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.
Значения сопротивлений переходов транзисторов обоих типов
Пара выводов транзистора | PNP | NPN | |
Коллектор | Эмиттер | RВЫСОКОЕ | RВЫСОКОЕ |
Коллектор | База | RНИЗКОЕ | RВЫСОКОЕ |
Эмиттер | Коллектор | RВЫСОКОЕ | RВЫСОКОЕ |
Эмиттер | База | RНИЗКОЕ | RВЫСОКОЕ |
База | Коллектор | RВЫСОКОЕ | RНИЗКОЕ |
База | Эмиттер | RВЫСОКОЕ | RНИЗКОЕ |
Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.
Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.
В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.
Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:
Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.
Биполярные транзисторы
Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:
Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.
Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.
Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.
NPN и PNP
Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).
NPN более эффективны и распространены в промышленности.
PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.
Полевые транзисторы
Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.
Полевые транзисторы обладают тремя контактами:
N-Channel и P-Channel
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Подключение транзисторов для управления мощными компонентами
Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.
Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:
Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.
Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:
здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.
Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА
Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.
Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:
это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.
Рекомендуем к прочтению
Как работает транзистор npn, pnp
Нашу сильную зависимость от электроники в современном мире не описать. Если сказать, что без электроники мы не проживем. Это не сказать ничего. Она уже сродни самому неотъемлемому, самому нужному и востребованному. То количество мест и гаджетов, где мы с ней встречаемся, мы даже перечислять не будем, на это хватит фантазии и у вас. Мы же хотели рассказать об одном обязательной составляющей каждого электронного девайса, о транзисторе.
Именно на транзисторах строятся все аналоговые и цифровые схемы применяемые в современных устройствах. А значит, от его работы зависит то, как эти самые гаджеты будут работать и то, как впоследствии электроника будет работать на нас. Такая неоспоримая цепочка…
Какие бывают транзисторы
Мы не будем вводить вас в далекий экскурс с чего все начиналось, что электронные лампы были дедушками и бабушками современных транзисторов. Не будем рассказывать об электронной эмиссии. О том, что процесс в этих самых лампах схож с транзисторами. Не будем описывать и различия между ними. Мы сразу приступим к главному. Надеясь на то, что все мы пропустили хотя и останется темным пятном, но не станет обременяющим обстоятельством препятствующим пониманию того, как же все-таки работает транзистор.
Итак, транзисторы бывают биполярные и полевые. Суть работы тех и других одинакова, разве что их кристаллы, вернее то как сращены разные типы кристаллов, различны. В биполярных транзисторах это своеобразный гамбургер: p-n-p или n-p-n. То есть кристаллы с различной проводимостью напаяны последовательно друг за друга. Таким образуют они образуют своеобразный «бутерброд».
В полевых транзисторах есть также n кристалл и p кристалл, но они между спаяны не последовательно, а параллельно. При этом ток не проходит через разные типы проводимости кристаллов, а идет все время по одному типу. А запирается в этом случае проводимый кристалл с помощью электрического поля управляющего затвора. Отсюда и название полевой.
Еще транзисторы бывают низкочастотные, среднечастотные и высокочастотные. А также могут работать с различными токами, но это все нюансы…
Как работает транзистор (картинка с анимацией — видео)
Итак, теперь непосредственно о насущном. То есть о том, ради чего мы собственно и начали эту статью.
Самое сложное, что нам придется вам объяснить, так это то, что как раз и скрыто от глаз человека. Ведь движение тока в проводнике, в различного рода проводимости кристаллах, не посмотришь и не увидишь. Именно поэтому необходимо иметь большую фантазию и очень наглядное пособие, чтобы довести до вас принцип работы транзистора.
Есть и еще одно «но». Человек всегда привык строить какие-то эквивалентные системы, если непосредственно изучаемая система не дает ему полного представления, а самое главное наглядного примера о том, как же все-таки все устроено. Так и в нашем случае, взгляните на картинку…
Работа транзистора представлена в виде канала с управляемой средой, даже здесь два канала. В качестве каналов выступают контакты транзистора, а управляемой средой является ток. Управляя запорным клапаном на базе или затворе (маленький канал) мы тем самым открываем и большой канал, между эмиттером и коллектором или стоком и истоком. Именно этот большой канал и является нашей целью управления. Открывая маленький канал, мы открываем и большой! Вот главное правило работы транзистора. По-другому не бывает, по крайней мере, в нормальных режимах работы транзистора без пробоев. Управляющий клапан на базе, то есть малый канал открывается первым, тем самым провоцируя и открывание большого канала.
Не знаем, нужны ли вам другие описания почему именно так? Если кратко, то потому что есть зоны запирания, есть сопротивления этих зон и изменения сопротивления в зависимости от потенциала, подаваемого на них. Конечно это не описывает особенностей работы транзистора полностью и подробно, но об этом мы вам и не обещали рассказать. Самое главное было рассказать о принципе срабатывания и показать это на наглядной картинке, что собственно мы и выполнили. Принцип работы в этом случае действителен для всех видов транзисторов о которых, мы упоминали в нашем предыдущем абзаце. А также, для того чтобы закрепить ваше визуально- ассоциативное мышление с реальной невидимой действительностью необходимо взглянуть и на нижний правый угол картинки.
На нем видно как в зависимости от пропуска тока, через контакты транзистора будут происходить и коммутации вокруг его выводов.
Схема подключения транзистора (полевой транзистор)
Теперь о том же самом, но на примере подключения транзистора в схеме. На входе имеется сигнал достаточный для свечения лампы (светодиода) даже с учетом сопротивления транзистора. Но если подать на управляющий вывод (затвор) запирающий потенциал, то сопротивление увеличиться и лампа погаснет.
На самом деле это лишь один из примеров подключения транзистора. Вариаций его подключений великое множество. Здесь главное донести суть работы радиоэлемента, а не саму схему подключения.
Последнее о чем хотелось сказать в статье о принципах работы транзистора, так это о том, что база должна всегда оставаться чуть «зажата», то есть ограничена сопротивлением. Это видно из схемы.
Это позволяет разграничить управляющий малый ток и большой управляемый. Если же убрать сопротивление, то ток будет течь по наименьшему сопротивлению, то есть весь через базу, а в этом случае теряется весь смысл транзистора, так как он ни чем ни будет управлять, а будет просто пропускать через себя ток. При этом большой ток через базу может еще и вывести его из строя, что нам ну совсем не надо!
Правильное подключение npn и pnp транзисторов.
в случае с pnp плюс управляющего сигнала на эмиттер а минус на базу. у npn транзистора наоборот, минус на эмиттер плюс на базу.
УУУУ, тебе для школы или ты радиотехникой увлекся? Тебе нужен хороший наставник, чтобы он тебе все показал
Судя по вопросу, у вас нет никакой базы. Советую книжки для начинающих.
pnp транзистор для работы должен иметь минусы на базе и эмиттере, npn — плюсы. pnp и npn — своего рода антиподы, знаки всех напряжений на них противоположны. Принцип работы транзистора — заряды идут с эмиттера в базу, но из-за малой толщины базы и нависающего сверху большого коллектора в основном проскакивают в коллектор. Транзистор, так сказать, обманщик — заряды проходят якобы с целью пройти через базу к выводу от базы, но по пути к выводу из нее большая их часть удирает в коллектор.
<a rel=»nofollow» href=»http://otvet.mail.ru/question/50527712″ target=»_blank»>http://otvet.mail.ru/question/50527712</a>
Сделай два транзисторных ключа на тех же лампочках и сразу все увидишь.
А какая принципиальная разница между pnp и npn биполярными транзисторами? И какое практическое применение этой разницы?
Транзистор состоит из 2 p-n переходов (диодов) , которые соеденины катодами (-) в транзисторах p-n-p структры и анодами (+) в транзисторах n-p-n стрктуры. Транзистор открывается тогда, когда через эммитерный p-n переход течет ток. Проще будет объяснить на практике. Например транзистор p-n-p структуры можно заменить транзистором n-p-n структуры с похожими характеристиками, предварительно поменяв полярность питания. Значит они отличаются только направлением движения заряженных частиц
У них противоположная полярность. На паре таких транзисторов легко собрать «мост», выходной каскад.
Почему вопросы — ответы превращают в ликбез по той или иной отрасли? Ну вот тебе один из ответов: Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный) . В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два») . Схематическое устройство транзистора показано на втором рисунке. Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь.. .
Разница в дырочном переходе или электронном…
Усилительный каскад на тран-х p-n-p, питается от U ип минусом, а n-p-n, плюсом. На практике: удобно делать бестрансформаторные УНЧ и другие схемы. Смотрите принципиальные схемы.
схемы с двуполярными источниками питания, с нагрузкой на «0» (без развязки) даже при f=0 (операционные усилители).
Транзистор с типом проводимости pnp открывается подачей отрицательного потенциала на базу, а npn- положительным…
Что такое p-n-p и n-p-n переходы? Чем они отличаются?
Это типы транзистора (биполярного). Принцип работы транзистора в том, чтобы насытить базу (среднюю зону) неосновными для неё носителями, то есть для npn транзистора базу насыщают электронами, для pnp-дырками. Разница в том, какое напряжение надо для этого приложить к базе, так как дырки и электроны имеют разный по знаку заряд, например для открытия npn-транзистора к базе прикладывают положительный потенциал, к эмиттеру-отрицательный, для pnp-структуры — наоборот. В общем-то и вся разница… для некоторых материалов подвижность дырок отличается от подвижности электронов, поэтому кремниевые npn-транзисторы работают на более высоких частотах, чем pnp к примеру, потому что электроны в n-областях двигаются быстрее, чем дырки в p-областях, так что чем больше в транзисторе n-областей, тем он быстрее. Для большинства простых схем на pnp-транзисторах можно их легко заменить на npn (и наоборот), поменяв полярность источника питания, хотя каждый случай нужно рассматривать отдельно.
транзисторы с указанной тобой структурой отличаются -проводимостью. о переходах-cxem.net/beginner/beginner101.php
Ничем. Бывает только p-n переход. Остальное — их соединения.
Донорными или акцепторными примесями…
тут тебе никто быстро и понятно не объяснит.. Найди книгу * Транзисторы? Это очень просто* и читай..
Проще прочитать, тут толком не объяснишь.
Это две базовых проводимости биполярного транзистора.. В одном случае он открывается плюсом на базе (обратный-npn) , в другом минусом (прямой-pnp)..
Можно еще транзистор представить как два соединенных диода. Так будет легче понять проводимость. Упрощенная эквивалентная схема транзистора на рисунке, содержит диод и управляемый источник тока, что не в полной мере отражают свойства транзистора. Большая часть читателей проверяет транзисторы, с помощью омметра зная, что база-эмиттер и база-коллектор вызваниваются как диоды. Действительно, при определенных условиях, транзистор можно рассматривать как комбинацию двух диодов в соответствии с рисунком. Но, к сожалению, транзистор не может быть использован как два отдельных диода, например, что бы с помощью одного или двух транзисторов, сделать диодный мост ). Транзистор это больше чем два диода. Запомните это, и даже не пытайтесь проделать подобные трюки. <img src=»//otvet.imgsmail.ru/download/875a8375f91de049494d6073098e8a2f_2ec7b95a2f79ee5d3a14481776f9dd40.jpg» data-big=»1″ data-lsrc=»//otvet.imgsmail.ru/download/79767540_188938a785c9f035619d3f26226768da_120x120.jpg»>
<a rel=»nofollow» href=»https://mixdrop.ru/?ref=114611″ target=»_blank»>https://mixdrop.ru/?ref=114611</a> вот тут все подробно сказано