Site Loader

Содержание

Транзистор Дарлингтона: принцип работы, конфигурации, применение

В данной статье мы подробно поговорим про транзистор Дарлингтона и пару Шиклаи — Дарлингтона. Разберем принцип работы, доступные конфигурации, а также применение транзистора Дарлингтона.

Описание и принцип работы

Транзистор Дарлингтона, названный в честь его изобретателя Сиднея Дарлингтона, состоит из двух стандартных NPN- или PNP-биполярных транзисторов, соединенных между собой. Эмиттер одного транзистора соединен с базой другого, чтобы создать более чувствительный транзистор с большим коэффициентом усиления по току, полезный в приложениях, где требуется усиление или переключение тока.

Пары транзисторов Дарлингтона могут быть изготовлены из двух индивидуально подключенных биполярных транзисторов или из одного устройства, имеющегося в продаже в одной упаковке со стандартом: соединительные провода базы, эмиттера и коллектора. Элементы доступны в широком разнообразии стилей корпуса и разных номиналов напряжения (и тока) и доступны в версиях NPN и PNP.

Биполярный переходный транзистор может работать как выключатель в режиме «вкл.-выкл.», как показано на рисунке.

Когда база NPN-транзистора заземлена (0 вольт) и ток базы Ib отсутствует — не течет от эмиттера к коллектору, и поэтому транзистор переключается в положение «выкл.». Если база смещена в прямом направлении более чем на 0,7 В, ток будет течь от эмиттера к коллектору, и транзистор, как говорят, будет включен «вкл.». При работе в этих двух режимах транзистор работает как переключатель.

Проблема здесь заключается в том, что транзисторная база должна переключаться между нулем и некоторым большим положительным значением, чтобы транзистор насыщался, и в этот момент повышенный базовый ток Ib протекает в устройство, в результате чего ток коллектора Ic становится большим, а напряжение Vce маленьким. Тогда мы можем видеть, что небольшой ток на базе может контролировать намного больший ток, протекающий между коллектором и эмиттером.

Отношение тока коллектора к базовому току (β) известно как коэффициент усиления тока транзистора. Типичное значение β для стандартного биполярного транзистора может находиться в диапазоне от 50 до 200 и варьируется даже между транзисторами с одинаковым номером детали. В некоторых случаях, когда коэффициент усиления по току одного транзистора слишком мал для прямого управления нагрузкой, одним из способов увеличения коэффициента усиления является использование пары Дарлингтона.

Конфигурация транзистора Дарлингтона, также известная как «Дарлингтона пара» или «суперальфа»-цепь, состоит из двух NPN- или PNP-транзисторов, соединенных между собой таким образом, что ток эмиттера первого транзистора TR1 становится базовым током второго транзистора TR2. Затем транзистор TR1 подключается как повторитель эмиттера, а TR2 — общий усилитель эмиттера, как показано ниже.

Также обратите внимание, что в этой конфигурации пары Дарлингтона ток коллектора ведомого или управляющего транзистора, TR1 «синфазен» с током главного переключающего транзистора TR2.

Базовая конфигурация транзистора Дарлингтона

В паре NPN Дарлингтона в качестве примера коллекторы двух транзисторов соединены вместе, а эмиттер TR1 управляет основанием TR2. В этой конфигурации достигается умножение на β, потому что для базового тока i b ток коллектора равен β * i b, где коэффициент усиления по току больше единицы или равен единице, и это определяется как:

Но базовый ток I B2 равен току эмиттера транзистора TR1, I E1, поскольку эмиттер TR1 подключен к базе TR2. Следовательно:

Затем подставим в первое уравнение:

Где β 1 и β 2 — коэффициенты усиления тока отдельных транзисторов.

Это означает, что общее усиление тока β определяется коэффициентом усиления первого транзистора, умноженным на коэффициент усиления второго транзистора, когда коэффициенты усиления тока двух транзисторов умножаются. Другими словами, пара биполярных транзисторов, объединенных вместе для создания одной пары транзисторов Дарлингтона, может рассматриваться как один транзистор с очень высоким значением β и, следовательно, с высоким входным сопротивлением.

Пример транзистора Дарлингтона

Два NPN-транзистора соединены вместе в виде пары Дарлингтона для переключения галогенной лампы 12 В 75 Вт. Коэффициент усиления прямого тока первого транзистора равен 25, а коэффициент усиления прямого тока (бета) второго транзистора равен 80. Игнорируя любые падения напряжения на двух транзисторах, рассчитайте максимальный базовый ток, необходимый для полного включения лампы.

Сначала ток, потребляемый лампой, будет равен току коллектора второго транзистора, затем:

Используя приведенное выше уравнение, базовый ток определяют как:

Затем мы видим, что очень маленький базовый ток, всего 3,0 мА, такой как ток, подаваемый цифровым логическим вентилем или выходным портом микроконтроллера, может использоваться для включения и выключения лампы мощностью 75 Вт.

Если два одинаковых биполярных транзистора используются для создания одного устройства Дарлингтона, то β1 равно β2, и общее усиление тока будет иметь вид:

Обычно значение β2 намного больше, чем значение 2β, и в этом случае его можно игнорировать, чтобы немного упростить математику. Тогда окончательное уравнение для двух идентичных транзисторов, сконфигурированных как пара Дарлингтона, можно записать в виде:

Тогда мы можем видеть, что для двух одинаковых транзисторов β 2 используется вместо р, действующей как один большой транзистор с огромным количеством выгоды. Легко доступны пары транзисторов Дарлингтона с усилением тока более тысячи с максимальными токами коллектора в несколько ампер. Например: NPN TIP120 и его PNP эквивалентны TIP125.

Преимущество использования такого устройства, заключается в том, что переключающий транзистор гораздо более чувствителен, поскольку для переключения значительно большего тока нагрузки требуется только небольшой базовый ток, так как типичное усиление конфигурации Дарлингтона может превышать 1 000, тогда как обычно одиночная ступень транзистора дает усиление от 50 до 200.

Затем мы видим, что пара Дарлингтона с коэффициентом усиления 1 000 : 1 может переключать выходной ток 1 А в цепи коллектор — эмиттер с входным базовым током всего 1 мА. Тогда это делает транзисторы Дарлингтона идеальными для взаимодействия с реле, лампами и двигателями с микроконтроллером малой мощности, компьютером или логическими контроллерами, как показано на рисунке.

Применение транзисторов Дарлингтона

База транзистора Дарлингтона достаточно чувствительна, чтобы реагировать на любой небольшой входной ток от коммутатора или непосредственно от логического элемента КМОП TTL или 5 В. Максимальный ток коллектора Ic (max) для любой пары Дарлингтона такой же, как и для основного переключающего транзистора TR 2, поэтому его можно использовать для управления реле, двигателями постоянного тока, соленоидами и лампами и т. д.

Одним из основных недостатков пары транзисторов Дарлингтона является минимальное падение напряжения между базой и эмиттером при полном насыщении. В отличие от одного транзистора, у которого падение напряжения насыщения составляет от 0,3 до 0,7 В при полном включении, устройство Дарлингтона имеет удвоенное падение напряжения базового эмиттера (1,2 В вместо 0,6 В), поскольку падение напряжения базового эмиттера — это сумма падений диодов базового эмиттера двух отдельных транзисторов, которая может составлять от 0,6 до 1,5 В в зависимости от тока, текущего через транзистор.

Такое высокое падение напряжения на базе эмиттера означает, что для данного тока нагрузки транзистор Дарлингтона может нагреваться сильнее, чем обычный биполярный транзистор, и, следовательно, требует хорошего отвода тепла. Кроме того, транзисторы Дарлингтона имеют более медленное время отклика «вкл.-выкл.», поскольку ведомому транзистору TR1 требуется больше времени, чтобы главный транзистор TR2 полностью включился.

Чтобы преодолеть медленный отклик, повышенное падение напряжения и тепловые недостатки стандартного транзисторного устройства Дарлингтона, дополнительные транзисторы NPN и PNP могут использоваться в одной и той же каскадной схеме для создания транзистора Дарлингтона другого типа, называемого конфигурацией Шиклаи.

Транзисторная пара Шиклаи (Sziklai)

Соединение транзисторов по схеме Шиклаи, названной в честь изобретателя Джорджи Шиклаи, представляет собой особый транзистор Дарлингтона, состоящий из отдельных NPN и PNP комплементарных транзисторов, соединенных между собой, как показано ниже.

Эта каскадная комбинация транзисторов NPN и PNP имеет то преимущество, что пара Шиклаи выполняет основную функцию пары Дарлингтона, за исключением того, что для ее включения требуется только 0,6 В, и, как и в стандартной конфигурации Дарлингтона, коэффициент усиления по току равен β 2 для одинаково согласованных транзисторов или задается произведением двух коэффициентов усиления тока для несогласованных отдельных транзисторов.

Конфигурация транзистора Шиклаи — Дарлингтон

Мы можем видеть, что падение напряжения базы-эмиттера устройства Шиклаи равно падению диода одного транзистора в тракте сигнала. Тем не менее конфигурация Шиклаи не может насытить менее одного полного падения напряжения на диоде, то есть 0,7 В вместо обычных 0,2 В.

Кроме того, как и в случае пары Дарлингтона, пара Шиклаи имеет более медленное время отклика, чем один транзистор. Комплементарные парные транзисторы Шиклаи обычно используются в двухтактных выходных каскадах аудиоустройства класса AB, допускающих только одну полярность выходного транзистора. Обе пары транзисторов Дарлингтона и Шиклаи доступны как в конфигурации NPN, так и в конфигурации PNP.

Транзисторные ИС Дарлингтона

В большинстве электронных приложений управляющей цепи достаточно для непосредственного переключения выходного напряжения или постоянного тока «вкл.» или «выкл.», поскольку для некоторых выходных устройств, таких как светодиоды или дисплеи, требуется лишь несколько миллиампер для работы при низких напряжениях постоянного тока. Как следствие, они могут управляться непосредственно выходом стандартного логического элемента.

Однако, как мы видели выше, иногда для работы устройства вывода, такого как двигатель постоянного тока, требуется больше энергии, чем может быть обеспечено обычным логическим вентилем или микроконтроллером. Если цифровое логическое устройство не может подавать достаточный ток, то для управления устройством потребуются дополнительные схемы.

Одним из таких широко используемых транзисторных чипов Дарлингтона является массив ULN2003. Семейство массивов Дарлингтона состоит из ULN2002A, ULN2003A и ULN2004A, которые представляют собой высоковольтные и сильноточные массивы Дарлингтона, каждый из которых содержит семь пар Дарлингтона с открытым коллектором в одном пакете ИС.

Каждый канал массива рассчитан на 500 мА и может выдерживать пиковые токи до 600 мА, что делает его идеальным для управления небольшими двигателями, лампами или затворами и базами мощных полупроводников. Дополнительные диоды подавления включены для индуктивного управления нагрузкой, а входы прикреплены напротив выходов, чтобы упростить соединения и расположение платы.

ULN2003A Дарлингтонский транзисторный массив

ULN2003A является недорогим однополярным массивом транзисторов Дарлингтона с высокой эффективностью и низким потреблением энергии, что делает его полезным для приведения в движение широкого диапазона нагрузок, включая электромагниты, реле постоянного тока двигателя и светодиодные дисплеи или лампы накаливания. ULN2003A содержит семь пар транзисторов Дарлингтона, каждая с входным контактом слева и выходным контактом справа от него, как показано ниже.

ULN2003A Транзисторная матрица Дарлингтона

Драйвер Дарлингтона ULN2003A имеет чрезвычайно высокий входной импеданс и коэффициент усиления по току, который может управляться напрямую от логического элемента CMOS TTL или + 5V. Для логики CMOS + 15 В используйте ULN2004A, а для более высоких коммутирующих напряжений до 100 В лучше использовать массив Дарлингтона SN75468.

Когда вход (контакты 1–7) переходит в режим «высокий», соответствующий выход переключит «низкий» ток утечки. Аналогично, когда вход приводится в действие «низкий», соответствующий выход переключается в состояние высокого импеданса. Это состояние с высоким импедансом «выкл.» блокирует ток нагрузки и снижает ток утечки через устройство, повышая эффективность.

Контакт 8 (GND) подключен к заземлению нагрузки или 0 вольт, а контакт 9 (Vcc) подключен к источнику питания нагрузки. Затем любая нагрузка должна быть подключена между + Vcc и выходным контактом, контактами 10–16. Для индуктивных нагрузок, таких как двигатели, реле, соленоиды и т. д. контакт 9 всегда должен быть подключен к Vcc.

ULN2003A способен коммутировать 500 мА (0,5 А) на канал, но если требуется больше возможностей переключения тока, то и входы, и выходы пар Дарлингтона могут быть параллельны друг другу для более высокой способности тока. Например, входные контакты 1 и 2 соединены вместе, и выходные контакты 16 и 15 также объединены для переключения нагрузки.

Резюме транзистора Дарлингтона

Дарлингтона транзистор — это полупроводниковое устройство наивысшей мощности, показывающий силу тока и напряжение во много раз выше, чем обычные небольшие плоскостные транзисторы сигнала.

Значения коэффициента усиления постоянного тока для стандартных транзисторов NPN или PNP большой мощности относительно низкие, вплоть до 20 или даже меньше по сравнению с транзисторами с малым сигналом переключения. Это означает, что для переключения данной нагрузки требуются большие базовые токи.

В схеме Дарлингтона используются два объединенных транзистора , один из которых является основным токонесущим транзистором, а другой, являющийся гораздо меньшим «переключающим» транзистором, обеспечивает базовый ток для управления главным транзистором. В результате меньший базовый ток может использоваться для переключения гораздо большего тока нагрузки, поскольку коэффициенты усиления постоянного тока двух транзисторов умножаются. Тогда комбинация из двух транзисторов может рассматриваться как один единственный транзистор с очень высоким значением β и, следовательно, с высоким входным сопротивлением.

Наряду со стандартными парами транзисторов PNP и NPN Дарлингтона имеются также дополнительные транзисторы Шиклаи — Дарлингтона, которые состоят из отдельных согласующих транзисторов NPN и PNP, соединенных вместе в одной и той же паре Дарлингтона для повышения эффективности.

Также доступны массивы Дарлингтона, например ULN2003A, которые позволяют безопасно управлять мощными или индуктивными нагрузками, такими как лампы, соленоиды и двигатели. Управление осуществляется с помощью микропроцессорных и микроконтроллерных устройств в роботизированных и мехатронных приложениях.

Что такое транзистор Дарлингтона | Уголок радиолюбителя

В этой статье мы расскажем о транзисторе Дарлингтона или паре Дарлингтона, приведем несколько примеров схем, покажем варианты применения, преимущества и недостатки.

На современном рынке доступны самые разнообразные транзисторы Дарлингтона, которые различаются по проводимости, току коллектора, мощности рассеяния, типу корпуса, максимальному напряжению CE и т. д.

Эти транзисторы встречаются в различных типах устройств, таких как регуляторы мощности, контроллеры двигателя, аудиоусилители и т. д. Многие оптико-изоляторные схемы изготавливаются на транзисторах Дарлингтона, чтобы иметь высокую токовую нагрузку на выходном каскаде.

Почему мы используем транзистор Дарлингтона?

Как известно, для перевода транзистора в режим проводимости требуется небольшой базовый ток в схеме с общим эмиттером. Иногда этого малого тока базы (коэффициент усиления по току) может быть недостаточно, чтобы перевести транзистор в состояние проводимости.

Коэффициент усиления по току или бета транзистора — это отношение тока коллектора к току базы.

Коэффициент усиления транзистора или коэффициент усиления по току (β) = ток нагрузки или коллектора / входной или базовый ток.

Ток нагрузки = коэффициент усиления по току (β) × базовый ток

 

Для обычного транзистора значение β составляет примерно 100. Приведенное выше соотношение говорит о том, что ток нагрузки превышает в 100 раз базовый ток транзистора.

Рассмотрим схематичный рисунок, приведенный ниже. Здесь транзистор с переменным резистором, подключенным между источником питания и базой транзистора, используется для изменения яркости лампы.

В этой схеме базовый ток является единственным фактором, который определяет ток, протекающий через коллектор — эмиттер. Таким образом, изменяя сопротивление переменного резистора, можно добиться изменения яркости свечения лампы.

Если значение сопротивления переменного резистора больше, то базовый ток уменьшается — транзистор выключается. Когда сопротивление слишком мало, достаточное количество тока будет протекать через базу, что приведет к увеличению тока коллектор-эмиттер, соответственно лампа будет светить ярче. Это усиление тока в транзисторе.

В приведенном выше примере мы видели управление нагрузкой (лампой) с использованием одного транзистора. Но в некоторых схемах входной базовый ток от источника может быть недостаточным для управления нагрузкой. Мы знаем, что величина тока, протекающего через коллектор-эмиттер, является произведением тока базы и коэффициента усиления транзистора.

Поскольку увеличение тока от источника невозможно, единственный способ увеличить ток нагрузки — это увеличить коэффициент усиления транзистора. Но для каждого транзистора это постоянный коэффициент. Однако мы можем увеличить усиление, используя комбинацию из двух транзисторов. Эта конфигурация называется конфигурацией Дарлингтона.

Транзистор Дарлингтона представляет собой соединение двух транзисторов определенным образом. Пара биполярных транзисторов обеспечивает очень высокое усиление тока по сравнению с одним стандартным транзистором, как упомянуто выше.

Пара этих транзисторов может быть PNP или NP. На рисунке ниже показана конфигурация пары Дарлингтона с NPN, а также с транзисторами PNP.

Конфигурации транзисторов Дарлингтона

Рассмотрим конфигурацию NPN транзистора Дарлингтона. В этом случае очень маленький базовый ток вызывает протекание большого тока эмиттера, который затем подается на базу следующего транзистора.

Усиленный ток в первом транзисторе снова усиливается вторым транзистором. Следовательно, ток коллектор-эмиттер второго транзистора становиться значительным.

Предположим, что если коэффициент усиления по току первого транзистора равен β1, а коэффициент усиления по току второго транзистора равен β2, то общий коэффициент усиления по току транзисторов будет равен произведению β1 и β2. Если взять два транзистора с β равным 100, то общее усиление тока составит 10000. Это значение очень высокое по сравнению с одним транзистором, поэтому этот высокий коэффициент усиления по току дает высокий ток нагрузки.

Как правило, для включения транзистора базовое входное напряжение должно быть больше 0,7 В. Поскольку в этой конфигурации используются два транзистора, базовое напряжение должно быть не менее 1,4 В.

Из рисунка, усиление тока первого транзистора

β1= IC1/IB1,

следовательно, IC1 = β1 IB1

Аналогично, коэффициент усиления по току следующего транзистора

β2= IC2/IB2, then IC2 = βIB2

Общий ток на коллекторе IC= IC1+IC2

IC = β1 IB1 + β2 IB2

базовый ток второго транзистора

IB2 = I+ IC1

IB2 = β1 I+ IB

IB2 = IB (1 + β1)

Подставляя в вышеприведенное уравнение

I= β1 I+ β2IB (1 + β1)

IC = IB (β+ β2

 + β1 β2)

В приведенном выше соотношении можно сделать вывод, что

IC= IB (β1 β2)

β = (β1 β2)

VBE = VBE1 + VBE2

Пример транзисторной схемы Дарлингтона

Рассмотрим следующую схему, где пара Дарлингтона используется для переключения нагрузки, которая рассчитана на 12 В и 80 Вт. Усиление тока первого и второго транзисторов возьмем как 50 и 60 соответственно. Таким образом, базовый ток, необходимый для полного включения лампы, рассчитывается следующим образом.

Ток коллектора равен току нагрузки,

C = 80/12 = 6,67 A

Выходной ток транзистора Дарлингтона задается как Ic = I 

B (β 1 + β 2  + β 1 β 2 ),

B = I C  / (β 1 + β 2  + β 1 β 2 )

Коэффициент усиления по току, β= 50 and β2 = 60

Итак, IB= 6.67 / (50 + 60 + (60 × 50))

IB = 2.2 mA

Из приведенного выше расчета ясно, что при небольшом базовом токе мы можем переключать большие нагрузки. Этот небольшой базовый ток может подаваться с любого выхода микроконтроллера или любых цифровых логических схем.

Применение транзистора Дарлингтона

Транзисторы Дарлингтона в основном используются в схемах коммутации и усиления для обеспечения очень высокого усиления постоянного тока. Некоторые из ключевых схем — это переключатели на стороне высокого и низкого уровня, сенсорные усилители и усилители звука. Для светочувствительных устройств используются фотодарлингтон. Давайте посмотрим работу транзистора Дарлингтона на конкретном примере.

Транзистор Дарлингтон (NPN) в качестве переключателя

На рисунке ниже показано управление светодиодом с использованием транзистора Дарлингтона. Переключатель на базе также может быть заменен сенсорным датчиком, так что при касании сенсора будет загораться светодиод. Резистор на 100 кОм действует как защитный резистор для пары транзисторов.

Дарлингтонский Транзистор как Переключатель

Когда переключатель замкнут, на транзистор Дарлингтона подается напряжение более 1,4 В. Это приводит к тому, что пара Дарлингтона становится активной и пропускает ток через нагрузку. Это приводит к тому, что светодиоды начинают светиться очень ярко, даже при изменении сопротивления у базы.

Когда переключатель разомкнут, оба биполярных транзистора находятся в режиме отсечки, и ток через нагрузку равен нулю. Таким образом, светодиод гаснет.

Также возможно использовать пару Дарлингтона для управления индуктивными нагрузками, такими как реле, двигатели. По сравнению с одним транзистором, управление индуктивными нагрузками с помощью пары Дарлингтона является более эффективным, поскольку обеспечивается высокий ток нагрузки при небольшом входном токе базы.

На рисунке ниже показана пара Дарлингтона, которая управляет катушкой реле. При коммутации индуктивной нагрузки необходимо параллельно подключить диод, чтобы защитить цепь от индуцированных токов. Как и в приведенной выше схеме работы светодиодов, катушка реле получает питание при подаче тока базы. Мы также можем использовать двигатель постоянного тока в качестве индуктивной нагрузки вместо катушки реле.

Транзистор Дарлингтон (PNP) в качестве переключателя

Мы можем использовать PNP-транзисторы в качестве пары Дарлингтона, но чаще всего используются NPN-транзисторы. Нет большой разницы в схеме с использованием NPN или PNP. Ниже на рисунке показана простая схема датчика, которая выдает аварийный сигнал с использованием пары Дарлингтона.

Этот контур представляет собой простой индикатор уровня воды, в котором пара Дарлингтона используется в качестве переключателя. Мы знаем, что эта конфигурация транзистора обеспечивает большой ток коллектора, поэтому он может управлять зуммером на выходе.

Когда уровень воды недостаточен для замыкания датчика, транзистор Дарлингтона находится в выключенном состоянии. Следовательно, цепь разорвана, и через нее не протекает ток.

По мере повышения уровня воды датчик замыкается, в результате чего поступает необходимый базовый ток на пару Дарлингтона. Следовательно, цепь замыкается, и ток нагрузки протекает так, что зуммер подает сигнал.

Преимущества пары Дарлингтон

Пара Дарлингтона имеет несколько преимуществ по сравнению со стандартным одиночным транзистором. Вот некоторые из них:

  • Он обеспечивает очень высокий коэффициент усиления по току, чем стандартный одиночный транзистор
  • Он обеспечивает очень высокий входной импеданс или хорошее преобразование импеданса.
  • Они могут быть двумя отдельными транзисторами или поставляются в одном корпусе.
  • Простая и удобная конфигурация схемы, так как используется всего несколько компонентов.
  • В случае пары фотодарлингтон внешний шум намного меньше по сравнению с фототранзистором с внешним усилителем.

Недостатки пары Дарлингтон

  • Низкая скорость переключения
  • Пропускная способность ограничена
  • На определенных частотах в цепи отрицательной обратной связи эта конфигурация вводит фазовый сдвиг.
  • Требуемое напряжение базы-эмиттера высокое и в два раза больше, чем у стандартного транзистора.
  • Высокое рассеивание мощности из-за высокого напряжения насыщения.
  • Общий ток утечки высокий, потому что ток утечки первого транзистора усиливается следующим транзистором. Вот почему три или более ступений Дарлингтона невозможны.

Следовательно, пара Дарлингтона очень полезна в большинстве приложений, поскольку она обеспечивает высокий коэффициент усиления по току при низких базовых токах.

Хотя это имеет некоторые ограничения, эти пары широко используются в приложениях, где не требуется высокочастотная характеристика, а требуются высокие уровни усиления по току. В случае схем усилителя мощности звука эта конфигурация обеспечивает лучшую выходную мощность.

Составной транзистор — Википедия

Пара Дарлингтона составленная из транзисторов n-p-n типа

Составно́й транзи́стор — электрическое соединение двух (или более) биполярных транзисторов, полевых транзисторов или IGBT-транзисторов, с целью улучшения их электрических характеристик. К этим схемам относят так называемую пару Дарлингтона, пару Шиклаи, каскодную схему включения транзисторов, схему так называемого токового зеркала и др.

Пара Дарлингтона

Пара Дарлингтона с резистором, который используется в качестве нагрузки транзистора VT1.

Составной транзистор (или схема) Дарлингтона (часто — пара Дарлингтона) была предложена в 1953 году инженером Bell Laboratories Сидни Дарлингтоном (Sidney Darlington). Схема является каскадным соединением двух (редко — трех или более) биполярных[1] транзисторов, включённых таким образом, что нагрузкой в эмиттерной цепи предыдущего каскада является переход база-эмиттер транзистора последующего каскада (то есть эмиттер предыдущего транзистора соединяется с базой последующего), при этом коллекторы транзисторов соединены. В этой схеме ток эмиттера предыдущего транзистора является базовым током последующего транзистора.

Коэффициент усиления по току пары Дарлингтона очень высок и приблизительно равен произведению коэффициентов усиления по току транзисторов составляющих такую пару. У мощных транзисторов включенных по схеме пары Дарлингтона, конструктивно выпускаемой в одном корпусе (например, транзистор КТ825) гарантированный коэффициент усиления по току при нормальных условиях эксплуатации) не менее 750[2].

У пар Дарлингтона, собранных на маломощных транзисторах этот коэффициент может достигать значения 50000.

Высокий коэффициент усиления по току обеспечивает управление малым током, поданным на управляющий вход составного транзистора, выходными токами превышающими входной на несколько порядков.

Достигнуть повышения коэффициента усиления по току можно также уменьшив толщину базы при изготовлении транзистора, такие транзисторы выпускаются промышленностью и называются «супербета транзистор», но процесс их изготовления представляет определённые технологические трудности и такие транзисторы имеют очень низкие коллекторные рабочие напряжения, не превышающие нескольких вольт. Примерами супербета транзисторов могут служить серии одиночных транзисторов КТ3102, КТ3107. Однако и такие транзисторы иногда объединяют в схеме Дарлингтона. Поэтому в относительно сильноточных и высоковольтных схемах, где требуется снизить управляющий ток, используются пары Дарлингтона или пары Шиклаи.

Иногда и схему Дарлингтона не совсем корректно называют «супербета транзистор»[3].

Составные транзисторы Дарлингтона используются в сильноточных схемах, например, в схемах линейных стабилизаторов напряжения, выходных каскадах усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс и малые входные токи.

Составной транзистор имеет три электрических вывода, которые эквивалентны выводам базы, эмиттера и коллектора обычного одиночного транзистора. Иногда в схеме для ускорения закрывания выходного транзистора и снижения влияния начального тока входного транзистора используется резистивная нагрузка эмиттера входного транзистора, как показано на рисунке.

Пару Дарлингтона электрически в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в линейном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов, например, двух:

βD≈β1⋅β2{\displaystyle \beta _{D}\approx \beta _{1}\cdot \beta _{2}}
где βD{\displaystyle \beta _{D}} — коэффициент усиления по току пары Дарлингтона;
β1,{\displaystyle \beta _{1},} β2{\displaystyle \beta _{2}} — коэффициенты усиления по току транзисторов пары.

Покажем, что составной транзистор действительно имеет коэффициент β{\displaystyle \beta }, значительно больший, чем у его обоих транзисторов. Анализ проведен для схемы без эмиттерного резистора R1{\displaystyle R_{1}} (см. рисунок).

Ток эмиттера IE{\displaystyle I_{E}} любого транзистора через базовый ток IB,{\displaystyle I_{B},} статический коэффициент передачи тока базы β{\displaystyle \beta } и из 1-го правила Кирхгофа выражается формулой:

IE=IB+IC=IB+IB⋅β=IB⋅(1+β),{\displaystyle I_{E}=I_{B}+I_{C}=I_{B}+I_{B}\cdot \beta =I_{B}\cdot (1+\beta ),}
где IC{\displaystyle I_{C}} — ток коллектора.

Так как ток эмиттера второго транзистора IE2{\displaystyle I_{E2}}, опять же из 1-го правила Кирхгофа равен:

IE2=IB1+IC1+IC2,{\displaystyle I_{E2}=I_{B1}+I_{C1}+I_{C2},}
где IB1{\displaystyle I_{B1}} — базовый ток 1-го транзистора;
IC1,{\displaystyle I_{C1},} IC2{\displaystyle I_{C2}} — коллекторные токи транзисторов.

Имеем:

βD=β1+β2+β1⋅β2,{\displaystyle \beta _{D}=\beta _{1}+\beta _{2}+\beta _{1}\cdot \beta _{2},}
где β1,{\displaystyle \beta _{1},} β2,{\displaystyle \beta _{2},} — статические коэффициенты передачи тока базы на коллектор транзисторов 1 и 2.

Так как у транзисторов β>>1,{\displaystyle \beta >>1,} то βD≈β1⋅β2.{\displaystyle \beta _{D}\approx \beta _{1}\cdot \beta _{2}.}

Коэффициенты β1{\displaystyle \beta _{1}} и β2{\displaystyle \beta _{2}} различаются даже в случае применения пары совершенно одинаковых по всем параметрам транзисторов, поскольку ток эмиттера IE2{\displaystyle I_{E2}} в 1+β2{\displaystyle 1+\beta _{2}} раз больше тока эмиттера IE1{\displaystyle I_{E1}}, (это вытекает из очевидного равенства IB2=IE1,{\displaystyle I_{B2}=I_{E1},} а статический коэффициент передачи тока транзистора заметно зависит от тока коллектора и может различаться во много раз при разных токах[4].

Пара Шиклаи

{\displaystyle I_{B2}=I_{E1},} Каскад Шиклаи, эквивалентный n-p-n транзистору

Паре Дарлингтона подобно соединение транзисторов по схеме Шиклаи (Sziklai pair), названное так в честь его изобретателя Джорджа К. Шиклаи, также иногда называемое комплементарным транзистором Дарлингтона[5]. В отличие от схемы Дарлингтона, состоящей из двух транзисторов одного типа проводимости, схема Шиклаи содержит транзисторы разного типа проводимости(p-n-p и n-p-n). Пара Шиклаи электрически эквивалентна n-p-n-транзистору c большим коэффициентом усиления. Входное напряжение — это напряжение между базой и эмиттером транзистора Q1, а напряжение насыщения равно по крайней мере падению напряжения на диоде[уточнить]. Между базой и эмиттером транзистора Q2 обычно включают резистор с небольшим сопротивлением. Такая схема применяется в мощных двухтактных выходных каскадах при использовании выходных транзисторов одной проводимости.[уточнить]

Каскодная схема

{\displaystyle I_{B2}=I_{E1},}

Основная статья: Каскодный усилитель

Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства, высокое выходное сопротивление и больший линейный диапазон, то есть меньше искажает передаваемый сигнал. Так как потенциал коллектора входного транзистора практически не изменяется, это существенно подавляет нежелательное влияние эффекта Миллера и расширяет рабочий диапазон по частоте.

Достоинства и недостатки составных транзисторов

Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.

Достоинства составных пар Дарлингтона и Шиклаи:

  • Высокий коэффициент усиления по току.
  • Схема Дарлингтона изготавливается в составе интегральных схем и при одинаковом токе площадь занимаемая парой на поверхности кристалла кремния меньше, чем у одиночного биполярного транзистора.
  • Применяются при относительно высоких напряжениях.

Недостатки составного транзистора:

  • Низкое быстродействие, особенно в ключевом режиме при переходе из открытого состояния в закрытое. Поэтому составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, работающих в линейном режиме. На высоких частотах их частотные параметры хуже, чем у одиночного транзистора.
  • Прямое падение напряжения Uбэ составного транзистора в схеме Дарлингтона почти в два раза больше[6], чем у одиночного транзистора, и составляет для кремниевых транзисторов около 1,2 — 1,4 В, так как равна сумме падений напряжения на прямосмещённых p-n переходах двух транзисторов.
  • Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности, так как не может быть меньше чем падение напряжения на прямосмещённом p-n переходе плюс падение напряжения на насыщенном входном транзисторе.[уточнить]

Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии (начальный ток коллектора) создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора, так как неосновные носители, накопленные в базе VT2 при его запирании из режима насыщения не только рассасываются, но и стекают через этот резистор. Обычно сопротивление R1 выбирают величиной сотни ом в мощном транзисторе Дарлингтона и несколько килоом в маломощном транзисторе Дарлингтона. Примером схемы Дарлингтона выполненной в одном корпусе со встроенным эмиттерным резистором служит мощный n-p-n транзистор Дарлингтона типа КТ827, его типовой коэффициент усиления по току около 1000 при коллекторном токе 10 А.

Примечания

  1. ↑ Полевые транзисторы, в отличие от биполярных, не используются в составном включении, так как обладая высоким входным сопротивлением, управляются напряжением, а не током и такое включение нецелесообразно.
  2. ↑ Технический паспорт транзистора КТ825.
  3. ↑ Супербе́та (супер-β) транзисторами называют транзисторы со сверхбольшим значением коэффициента усиления по току, полученным за счёт очень малой толщины базы, а не за счёт составного включения. При этом рабочий базовый ток одиночного транзистора можно снизить до десятков пА. Такие транзисторы применены в первом каскаде операционных усилителей со сверхмалыми входными токами, например, типов LM111 и LM316.
  4. Степаненко И. П. Основы теории транзисторов и транзисторных схем. — 4-е изд., перераб. и доп.. — М.: Энергия, 1977. — С. 233, 234. — 672 с.
  5. Хоровиц П., Хилл У. Искусство схемотехники: В 3-х томах: Пер. с. англ. — 4-е изд., перераб. и доп. — М.: Мир, 1993. — Т. 1. — С. 104, 105. — 413 с. — 50 000 экз. — ISBN 5-03-002337-2.
  6. ↑ Это не всегда (не во всех применениях) является недостатком, но всегда — особенностью, которую надо учитывать при расчёте схемы по постоянному току, и которая не позволяет напрямую заменить одиночный транзистор на составной Дарлингтона.

Усилитель Дарлингтона

   Усилитель, называется именно так, не по причине, что его автор ДАРЛИНГТОН, а потому, что выходной каскад усилителя мощности построен на дарлингтоновских (составных) транзисторах.  

   Для справки: два транзистора одинаковой структуры соединены специальным образом для высокого усиления. Такое соединение транзисторов образует составной транзистор, или транзистор Дарлингтона — по имени изобретателя этого схемного решения. Такой транзистор используется в схемах работающих с большими токами (например, в схемах стабилизаторов напряжения, выходных каскадов усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс. Составной транзистор имеет три вывода (база, эмиттер и коллектор), которые эквивалентны выводам обычного одиночного транзистора. Коэффициент усиления по току типичного составного транзистора, у мощных транзисторов ≈1000 и у маломощных транзисторов ≈50000.

Достоинства транзистора Дарлингтона

— Высокий коэффициент усиления по току.

— Cхема Дарлингтона изготавливается в виде интегральных схем и при одинаковом токе рабочая поверхность кремния меньше, чем у биполярных транзисторов. Данные схемы представляют большой интерес при высоких напряжениях.

Недостатки составного транзистора

— Низкое быстродействие, особенно перехода из открытого состояния в закрытое. По этой причине составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, на высоких частотах их параметры хуже, чем у одиночного транзистора.

— Прямое падение напряжения на переходе база-эмиттер в схеме Дарлингтона почти в два раза больше чем в обычном транзисторе, и составляет для кремниевых транзисторов около 1,2 — 1,4 В.

— Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В для маломощных транзисторов и около 2 В для транзисторов большой мощности.

Принципиальная схема УНЧ

   Усилитель можно назвать самым дешевым вариантом самостоятельного построения сабвуферного усилителя. Самое ценное в схеме — выходные транзисторы, цена которых не превышает 1$. По идее, такой усилитель усилитель можно собрать за 3-5$ без блока питания. Давайте сделаем небольшое сравнение, какой из микросхем может дать мощность 100-200 ватт на нагрузку 4 Ом? Сразу в мыслях знаменитые TDA7294. Но если сравнить цены, то дарлингтоновская схема и дешевле и мощнее TDA7294!

   Сама микросхема, без комплектующих компонентов стоит 3$ как минимум, а цена активных компонентов дарлингтоновской схемы не более 2-2,5$! Притом, что дарлингтоновская схема на 50-70 ватт мощнее TDA7294!

   При нагрузке 4 Ом усилитель отдает 150 ватт, это самый дешевый и неплохой вариант сабвуферного усилителя. В схеме усилителя использованы недорогие выпрямительные диоды, которые можно достать в любом электронном устройстве. 

   Усилитель может обеспечивать такую мощность за счет того, что на выходе использованы именно составные транзисторы, но при желании они могут быть заменены на обычные. Удобно использовать комплементарную пару КТ827/25, но конечно мощность усилителя спадет до 50-70 ватт. В дифференциальном каскаде можно использовать отечественные-КТ361 или КТ3107. 

   Полный аналог транзистора TIP41 наш КТ819А, Этот транзистор служит для усиления сигнала с диффкаскадов и раскачки выходников Эмиттерные резисторы можно использовать с мощностью 2-5 ватт, они для защиты выходного каскада. Подробнее про теххарактеристики транзистора TIP41C. Даташит для TIP41 и TIP42 скачайте тут.

— Материал p-n-перехода: Si

— Структура транзистора: NPN

— Предельная постоянная рассеиваемая мощность коллектора (Pc) транзистора: 65 W

— Предельное постоянное напряжение коллектор-база (Ucb): 140 V

— Предельное постоянное напряжение коллектор-эмиттер (Uce) транзистора: 100 V

— Предельное постоянное напряжение эмиттер-база (Ueb): 5 V

— Предельный постоянный ток коллектора транзистора (Ic max): 6 A

— Предельная температура p-n перехода (Tj): 150 C

— Граничная частота коэффициента передачи тока (Ft) транзистора: 3 MHz

— Ёмкость коллекторного перехода (Cc): pF

— Статический коэффициент передачи тока в схеме с общим эмиттером (Hfe), min: 20

   Такой усилитель может быть использован как в качестве сабвуферного, так и для широкополосной акустики. Характеристики усилителя тоже неплохие. При нагрузке в 4 Ом выходная мощность усилителя порядка 150 ватт, при нагрузке в 8 Ом мощность 100 ватт, максимальная мощность усилителя может доходить до 200 ватт с питанием +/-50 вольт.


Понравилась схема — лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

2.16. Составной транзистор (схема Дарлингтона)

ГЛАВА 2. ТРАНЗИСТОРЫ

Некоторые типы усилительных каскадов



Если соединить транзисторы, как показано на рис. 2.60, то полученная схема будет работать как один транзистор, причем его коэффициент β будет равен произведению коэффициентов β составляющих транзисторов. Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс.

Схема составного транзистора Дарлингтона

Рис. 2.60. Составной транзистор Дарлингтона.

В транзисторе Дарлингтона падение напряжения между базой и эмиттером в два раза больше обычного, а напряжение насыщения равно по крайней мере падению напряжения на диоде (так как потенциал эмиттера транзистора Т1 должен превышать потенциал эмиттера транзистора Т2, на величину падения напряжения на диоде). Кроме того, соединенные таким образом транзисторы ведут себя как один транзистор с достаточно малым быстродействием, так как транзистор T1 не может быстро выключить транзистор Т2. С учетом этого свойства обычно между базой и эмиттером транзистора Т2 включают резистор (рис. 2.61). Резистор R предотвращает смешение транзистора Т2 в область проводимости за счет токов утечки транзисторов Т1 и Т2. Сопротивление резистора выбирают так, чтобы токи утечки (измеряемые в наноамперах для малосигнальных транзисторов и в сотнях микроампер для мощных транзисторов) создавали на нем падение напряжения, не превышающее падения напряжения на диоде, и вместе с тем чтобы через него протекал ток. малый по сравнению с базовым током транзистора Т2. Обычно сопротивление R составляет несколько сотен ом в мощном транзисторе Дарлингтона и несколько тысяч ом в малосигнальном транзисторе Дарлингтона.

Схема повышающая скорость выключения в составном транзисторе Дарлингтона

Рис. 2.61. Повышение скорости выключения в составном транзисторе Дарлингтона.

Промышленность выпускает транзисторы Дарлингтона в виде законченных модулей, включающих, как правило, и эмиттерный резистор. Примером такой стандартной схемы служит мощный n-p-n — транзистор Дарлингтона типа 2N6282, его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.

Соединение транзисторов по схеме Шиклаи (Sziklai). Соединение транзисторов по схеме Шиклаи представляет собой схему, подобную той. которую мы только что рассмотрели. Она также обеспечивает увеличение коэффициента β. Иногда такое соединение называют комплементарным транзистором Дарлингтона (рис. 2.62). Схема ведет себя как транзистор n-p-n — типа, обладающий большим коэффициентом β. В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения, как и в предыдущей схеме, равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора Т2 рекомендуется включать резистор с небольшим сопротивлением. Разработчики применяют эту схему в мощных двухтактных выходных каскадах, когда хотят использовать выходные транзисторы только одной полярности. Пример такой схемы показан на рис. 2.63. Как и прежде, резистор представляет собой коллекторный резистор транзистора T1 Транзистор Дарлингтона, образованный транзисторами Т2 и Т3. ведет себя как один транзистор n-p-n — типа. с большим коэффициентом усиления по току. Транзисторы Т4 и Т5, соединенные по схеме Шиклаи, ведут себя как мощный транзистор p-n-p — типа. с большим коэффициентом усиления. Как и прежде, резисторы R3 и R4 имеют небольшое сопротивление. Эту схему иногда называют двухтактным повторителем с квазидополнительной симметрией. В настоящем каскаде с дополнительной симметрией (комплементарном) транзисторы Т4 и Т5, были бы соединены по схеме Дарлингтона.

Соединение транзисторов по схеме Шиклаи

Рис. 2.62. Соединение транзисторов по схеме Шиклаи («дополняющий транзистор Дарлингтона»).

Схема мощного двухтактного выходного каскада с транзисторами только одной полярности

Рис. 2.63. Мощный двухтактный каскад, в котором использованы выходные транзисторы только n-p-n — типа.

Транзистор со сверхбольшим значением коэффициента усиления по току. Составные транзисторы — транзистор Дарлингтона и ему подобные — не следует путать с транзисторами со сверхбольшим значением коэффициента усиления по току, в которых очень большое значение коэффициента h21э получают в ходе технологического процесса изготовления элемента. Примером такого элемента служит транзистор типа 2N5962. для которого гарантируется минимальный коэффициент усиления по току, равный 450, при изменении коллекторного тока в диапазоне от 10 мкА до 10 мА; этот транзистор принадлежит к серии элементов 2N5961-2N5963, которая характеризуется диапазоном максимальных напряжений Uкэ от 30 до 60 В (если коллекторное напряжение должно быть больше, то следует пойти на уменьшение значения C). Промышленность выпускает согласованные пары транзисторов со сверхбольшим значением коэффициента β. Их используют в усилителях с низким уровнем сигнала, для которых транзисторы должны иметь согласованные характеристики; этому вопросу посвящен разд. 2.18. Примерами подобных стандартных схем служат схемы типа LM394 и МАТ-01; они представляют собой транзисторные пары с большим коэффициентом усиления, в которых напряжение Uбэ согласовано до долей милливольта (в самых хороших схемах обеспечивается согласование до 50 мкВ), а коэффициент h21э — до 1%. Схема типа МАТ-03 представляет собой согласованную пару p-n-p — транзисторов.

Транзисторы со сверхбольшим значением коэффициента β можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316.


Некоторые типичные транзисторные схемы


Схема Дарлингтона принцип действия | Техника и Программы

April 22, 2010 by admin Комментировать »

Обозначение составного транзистора, выполненного !из двух отдельных транзисторов, соединенных по схеме Дарлинг­тона, указано на рис. 2Л,а. Первый из упомянутых транзисто­ров включен по схеме эмиттерного повторителя, сигнал с эмит­тера первого транзистора поступает на базу второго транзи­стора. Достоинством этой схемы является исключительно вы­сокий коэффициент усиления. Общий коэффициент усиления по току р для этой схемы равен произведению коэффициентов усиления по току отдельных транзисторов: р = ргр2. Например, если входной транзистор пары Дарлингтона имеет коэффициент усиления, равный 120, а коэффициент усиления второго тран­зистора равен 50, то общее р составляет 6000. В действительно­сти усиление будет даже несколько большим, так как общий коллекторный ток составного транзистора равен сумме коллек­торных токов пары входящих в него транзисторов.

Полная схема составного транзистора показана на рис. 2.1,6. В этой схеме резисторы R1 и R2 составляют делитель напряжения, создающий смещение на базе первого транзистора. Ре­зистор Rн, подключенный к эмиттеру составного транзистора, образует выходную цепь. Такой прибор широко .применяется на практике, особенно в тех случаях, когда требуется большой ко­эффициент усиления по току. Схема имеет высокую чувстви­тельность к входному сигналу и отличается высоким уровнем выходного коллекторного тока, что позволяет использовать этот ток в качестве управляющего (особенно при низком напряже­нии питания). Применение схемы Дарлингтона способствует уменьшению числа компонентов в схемах.

Рис. 2.1. Схема Дарлингтона.

Схему Дарлингтона используют в усилителях низкой ча­стоты, в генераторах и переключающих устройствах. Выходное сопротивление схемы Дарлингтона во много раз ниже входного. В этом смысле ее характеристики подобны характеристикам по­нижающего трансформатора. Однако в отличие от транформа-тора схема Дарлингтона позволяет получить большое усиление по мощности. Входное сопротивление схемы примерно равно $2Rn, а ее выходное сопротивление обычно меньше Rн. В пере­ключающих устройствах схема Дарлингтона применяется в об­ласти частот до 25 кГц.

Составной транзистор — это… Что такое Составной транзистор?

Условное обозначение составного транзистора

Составной транзистор (транзистор Дарлингтона) — объединение двух или более биполярных транзисторов[1] с целью увеличения коэффициента усиления по току[2]. Такой транзистор используется в схемах работающих с большими токами (например, в схемах стабилизаторов напряжения, выходных каскадов усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс.

Составной транзистор имеет три вывода (база, эмиттер и коллектор), которые эквивалентны выводам обычного одиночного транзистора. Коэффициент усиления по току типичного составного транзистора, (иногда ошибочно называемого «супербета»[3], у мощных транзисторов (например — КТ825) ≈1000 и у маломощных транзисторов (типа КТ3102 и т. п.) ≈50000. Это означает, что небольшого тока базы достаточно для того, чтобы составной транзистор открылся.

Схема Дарлингтона

Принципиальная схема составного транзистора

Изобретение одного из видов такого транзистора является делом рук инженера-электрика Сидни Дарлингтона (Sidney Darlington).

Составной транзистор является каскадным соединением нескольких транзисторов, включенных таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка первого транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого при работе транзисторов в активном режиме приблизительно равен произведению коэффициентов усиления первого и второго транзисторов:

Покажем, что составной транзистор действительно имеет коэффициент β, значительно больший, чем у его обоих компонентов. Задавая приращение dIб=dIб1, получаем:

dIэ1=(1+β1)dIб=dIб2;

dIк=dIк1+dIк21dIб2[(1+β1)dIб].

Деля dIr на dIб, находим результирующий дифференциальный коэффициент передачи:

βΣ121β2

Поскольку всегда , можно считать:

βΣ≈β1β2.

Следует подчеркнуть, что коэффициенты и могут различаться даже в случае однотипных транзисторов, поскольку ток эмиттера Iэ2 в 1+β2 раз больше тока эмиттера Iэ1 (это вытекает из очевидного равенства Iб2=Iэ1)[4].

Схема Шиклаи

Каскад Шиклаи, эквивалентный n-p-n транзистору

Паре Дарлингтона подобно соединение транзисторов по схеме Шиклаи (Sziklai pair), названное так в честь его изобретателя Джорджа К. Шиклаи также иногда называемое комплементарным транзистором Дарлингтона[5]. В отличие от схемы Дарлингтона, состоящей из двух транзисторов одного типа проводимости, схема Шиклаи содержит транзисторы разной полярности(p-n-p и n-p-n). Пара Шиклаи ведет себя как n-p-n-транзистор c большим коэффициентом усиления. В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора Q2 рекомендуется включать резистор с небольшим сопротивлением. Такая схема применяется в мощных двухтактных выходных каскадах при использовании выходных транзисторов одной полярности.

Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства и большую неискаженную мощность в нагрузке, а также позволяет значительно уменьшить эффект Миллера.

Достоинства и недостатки составных транзисторов

Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.

Достоинства составного транзистора:

  • Высокий коэффициент усиления по току.
  • Cхема Дарлингтона изготавливается в виде интегральных схем и при одинаковом токе рабочая поверхность кремния меньше, чем у биполярных транзисторов. Данные схемы представляют большой интерес при высоких напряжениях.

Недостатки составного транзистора:

  • Низкое быстродействие, особенно перехода из открытого состояния в закрытое. По этой причине составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, на высоких частотах их параметры хуже, чем у одиночного транзистора.
  • Прямое падение напряжения на переходе база-эмиттер в схеме Дарлингтона почти в два раза больше чем в обычном транзисторе, и составляет для кремниевых транзисторов около 1,2 — 1,4 В (не может быть меньше, чем удвоенное падение напряжения на p-n переходе).
  • Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности (не может быть меньше чем падение напряжения на p-n переходе плюс падение напряжения на насыщенном входном транзисторе).

Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора VT2. Обычно сопротивление R1 составляет сотни Ом в мощном транзисторе Дарлингтона и несколько кОм в малосигнальном транзисторе Дарлингтона. Примером схемы с эмиттерным резистором служит мощный n-p-n — транзистор Дарлингтона типа 2N6282, его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.

Примечания

  1. В отличие от биполярных, полевые транзисторы не используются в составном включении. Объединять полевые транзисторы нет необходимости, так как они и без того обладают чрезвычайно малым входным током. Однако существуют схемы (например, IGBT), где совместно применяются полевые и биполярные транзисторы. В некотором смысле, такие схемы также можно считать составными транзисторами.
  2. Достигнуть повышения значения коэффициента усиления можно также уменьшив толщину базы, но это представляет определенные технологические трудности.
  3. Супербе́та (супер-β) транзисторами называют транзисторы со сверхбольшим значением коэффициента усиления по току, полученным за счёт малой толщины базы, а не за счёт составного включения. Примером таких транзисторов может служить серия КТ3102, КТ3107. Однако их также можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316).
  4. Степаненко И.П. Основы теории транзисторов и транзисторных схем. — 4-е изд., перераб. и доп. — М.: Энергия, 1977. — С. 233, 234. — 672 с.
  5. Хоровиц П., Хилл У. Искусство схемотехники: В 3-х томах: Пер. с. англ. — 4-е изд., перераб. и доп. — М.: Мир, 1993. — Т. 1. — С. 104, 105. — 413 с. — 50 000 экз. — ISBN 5-03-002337-2

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *