Site Loader

Каким должен быть хороший усилитель мощности на транзисторах

Это нужно знать

Весь перечень знаний находится на этой странице

Феномен транзисторного звучания УНЧ против «тёплого» лампового звука.


История борьбы с феноменом транзисторного звучания уходит в далёкие 80-ые годы.
С появлением продвинутых мощных транзисторных усилителей низкой частоты многих гурманов качественного воспроизведения музыки постигло разочарование — новинки с более высокими электрическими характеристиками никак не могли сравниться со своими ламповыми собратьями по мягкости и естественности звучания.
Мало того, по «качеству» звучания они субъективно уступали и стареньким германиевым УМЗЧ, выполненным по канонам простейшей схемотехники, присущей ламповым конструкциям.
Сотни умных разработчиков чесали свои просветлённые репы в надежде хоть как-то снизить тембральные искажения в транзисторных усилителях, меняли схемотехнику и элементную базу, оживлённо гнались за сверхпараметрами, писали разные статьи, пока не поняли, что к цифрам, указанным в характеристиках усилителя надо относиться сдержанно, а верить можно только собственным ушам.
Однако, проиграв глобальную борьбу с лампой за чистоту музыкального звучания УНЧ, обиженные, но не разбитые в пыль транзисторные аудиофилы всё же собрались духом и вынесли на своих плечах ряд постулатов о происхождении в УНЧ пресловутого транзисторного звучания:

1 — Глубокая отрицательная обратная связь, без которой не обходится ни один транзисторный усилитель, порождает переходные искажения, вызванные запаздыванием сигналов в петле обратной связи.
2 — Всё та же глубокая обратная связь обуславливает низкое выходное сопротивление УНЧ. Это, с одной стороны, хорошо, так как повышает коэффициент демпфирования усилителя, но, с другой стороны, чревато возникновением интермодуляционных искажений в динамических головках, что, в свою очередь, вызывает неприятные призвуки, ошибочно принимаемые за искажения усилителя.

3 — Особо продвинутые специалисты упоминают тепловые искажения, которые вызваны скачками мгновенной температуры кристалла транзистора при прохождении сигнала, в связи с изменением рассеиваемой в нем мгновенной мощности. В результате, в процессе усиления музыкального сигнала коэффициент усиления по току (или крутизна) выходных транзисторов плавно (из-за инерции тепловых процессов) изменяется на 20-30%. Эти флуктуации, в свою очередь, становятся причиной инфразвуковых интермодуляционных искажений в УНЧ, к которым ухо слушателя чрезвычайно чувствительно.

4 — Поскольку уравнения, описывающие вольтамперные характеристики полевых транзисторов, практически идентичны ВАХ вакуумных приборов, «правильный» транзисторный УМЗЧ следует реализовывать именно на полевиках.
5 — Не столь важен общий коэффициент нелинейных искажений УНЧ (в ламповых Hi-End системах он часто составляет величину 0,1% и выше), сколь спектр гармоник этих искажений.
«Покажите мне график зависимости коэффициента искажений от частоты, и я скажу, как будет звучать усилитель», — написал Владимир Ламм, основатель и идеолог американской компании, занимающейся разработкой и выпуском звукового оборудования «Lamm Industries».

ИТАК, подытожим всё сказанное:
Идеальный усилитель должен быть построен на полевых транзисторах, иметь неглубокие и максимально короткие обратные связи (в идеале внутрикаскадные), работать в режиме А (для устранения тепловых искажений) и

быть однотактным (как обладающий наиболее приятным для уха спектром гармоник выходного сигнала).
Последние 2 пункта скорее применимы для усилителей мощности, работающих при максимальных мощностях до 10Вт. Хотя существуют примеры американских мелкосерийных изделий однотактных транзисторных УНЧ и с выходной мощностью, достигающей 150Вт. Правда весит такой агрегат в одноканальном исполнении ни много ни мало — 70кг…! Поэтому для усилителей, работающих в режиме А и при значительных мощностях, предпочтительными являются всё-таки двухтактные схемы.
Именно такую схему на полевых транзисторах мы рассмотрели на странице ссылка на страницу.

Не так давно я наткнулся на обсуждение темы «Про тёплый ламповый звук». Полемика велась на странице http://www.yaplakal.com/forum7/st/320/topic988477.html и, как это часто водится на любом неспециализированном форуме — никакого особого интереса не представляла… И всё было бы как обычно, если бы не единичный комментарий товарища по имени «aleks49».
Поскольку связаться с уважаемым «aleks49» мне не удалось, а мысли, изложенные в комментарии, были хороши: как по форме, так и по содержанию, то «не пропадать же добру», — подумал я и решил привести написанный им материал на этой странице — в полном объёме и авторском изложении.


«Итак:
Попытаюсь вставить свои 5 копеек. Может быть, мои наработки и наблюдения кому-то помогут правильно сориентироваться.
Дело в том, что я всю свою трудовую деятельность занимался ремонтом и настройкой всякой электронной, электромеханической и механической техники.
Так как это было оборонное предприятие мелкосерийной продукции, то разнообразие было очень широким.
Образование у меня специфическое — спец. училище подводного плавания радиолокационные и телевизионные системы. 8 лет службы на подводных лодках по специальности. В процессе службы так же 2 раза проходил специальную подготовку по быстрому поиску неисправностей в аппаратуре моей сферы деятельности.

Работая на «гражданке» в моих возможностях было использование любых лабораторных средств контроля и испытаний электронного оборудования. Эта преамбула нужна для того, чтобы те, кто будет мне оппонировать, могли ориентироваться в какие «дебри» может зайти разговор.

Продолжаю. В 70-е я увлёкся разработкой УНЧ. И к 1979 году, повторив большое количество распространённых на то время схем, пришёл к выводу, что транзисторные усилители, построенные по схемотехнике операционного усилителя с глубокой обратной связью, сильно грешат качеством звуковоспроизведения. Несмотря на низкие нелинейные искажения (измерялось измерителем нелинейных искажений) качество звука чем-то страдало. Получалась «каша» на звуке где звучат много различных инструментов. Некоторые инструменты даже в сольном исполнении с трудом узнаются. Никакие эквалайзеры не помогают.
Более тщательное исследование явления с помощью специализированного осциллографа (очень древний, ламповый, низкочастотный с высокой чувствительностью) обнаружило, что виной всему очень большое усиление исходных схем с разорванной общей обратной связью.
Действительно, такие схемы обладали таким же громадным коэффициентом усиления, как и интегральные ОУ. С помощью общей обратной связи усиление доводилось до нужного уровня и нелинейность устранялась. Но даже усилители с КНИ 0,01% и ниже при этом не удовлетворяли по звучанию. То, что в этом виноват именно транзисторный УНЧ не вызывало сомнений. На тех же акустических системах звучание от ламповых усилителей воспринималось лучше (имелись в наличии два ламповых советских усилителя на 50 и 100W).
Измерение КНИ показало, что ламповые УНЧ оказались совсем неидеальнами. КНИ у них достигал 1%.
В чём же дело? Работа с хорошим (правильным) осциллографом показала, что транзисторные УНЧ легковозбудимы. Так называемая нулевая точка на выходе совсем не нулевая. На уровне в несколько милливольт там присутствует хаотический колебательный процесс, который превращается в ВЧ генерацию при подаче на вход УНЧ даже самого маленького сигнала. В некоторых случаях эта генерация не превышает нескольких милливольт, а частенько бывает на весь размах напряжения питания.

Таким образом, если на вход УНЧ подавать синусоидальный сигнал то в «нулевой» точке это обнаруживается. Если подавать импульсный сигнал, то фронт импульса искажён выбросом. Частота этой генерации на уровне максимальной частоты выходных транзисторов УНЧ. Ко всему прочему выяснилось, что общая обратная связь обладает существенной задержкой. Задержку можно определить с помощью измерения единичного коэффициента усиления усилителя с разомкнутой обратной связью.
С хорошими высокочастотными транзисторами это может доходить до 100 и даже 200 кГц.
Итого, если усилитель без обратной связи способен усиливать сигнал до 100 кГц то задержка будет составлять 10 микросек. До появления обратной связи на выходе усилителя наблюдается размах выходного сигнала равный всему напряжению питания выходного каскада. При этом имеется ещё дополнительный выброс на переднем фронте. Через 10 микросекунд «срабатывает» обратная связь и с затухающим колебательным процессом сигнал опускается на уровень, который определён обратной связью.
Всё это можно увидеть с помощью хорошего осциллографа и присутствует на любом сигнале с любой звуковой частотой. На предельных для данного усилителя частотах присутствуют очень замысловатые виды искажений.

Вывод.
Виновата схемотехника построения УНЧ. Нельзя рассматривать УНЧ как операционный усилитель. Специфические искажения операционного усилителя улавливаются слуховым аппаратом человека.
Как с этим бороться? Полностью отказаться от схемотехники операционного усилителя при использовании в качестве УНЧ. Для УНЧ низкого класса можно это использовать и даже применять интегральные ОУ, но выходной каскад такого ОУ должен обладать большим током покоя. Таких ОУ почти не выпускают. Так называемые микромощные ОУ, хотя и обладают большой единичной частотой, но выход в покое микротоковый.
Ламповая схемотехника подсказала выход. В силу специфики ламп (они обладают невысокими показателями усиления и требуют для питания много энергии) не применяется излишнее усиление с последующим охватом общей обратной связью. В лампах используется довольно высокое анодное напряжение, что обусловливает очень протяжённую вольт-амперную характеристику. Перегрузка лампы тоже имеет протяжённую характеристику.
Одна из особенностей лампы состоит в том, что и нелинейность у неё несколько иная, чем у транзистора.
Здесь уже нужно сравнивать лампу с транзистором с помощью измерения образующихся при усилении гармоник.
В ламповом усилительном каскаде чётные гармоники на 5-8 децибелл выше по уровню, чем нечётные. Причём существенное значение имеют только 2-я и 3-я гармоники. Остальные ниже на 20-30 дб. и могут не учитываться.
В транзисторном усилителе на биполярном транзисторе 3-я гармоника выше, чем 2-я на 5 дб. но также существенна ещё и 5-я гармоника.
На полевых транзисторах 2-я и 3-я гармоники примерно равны и 5-я гармоника не имеет существенного значения.
Каскады усиления, построенные для увеличения токовой нагрузки(катодные повторители, истоковые повторители, эмиттерные повторители) не вносят заметных искажений в сигнал.
Что можно предпринять для высококачественного усиления.
1. Входные каскады УНЧ необходимо строить на полевых транзисторах и лампах для того, чтобы изначальный сигнал на малых уровнях не приобрёл неисправимых искажений.
2. Максимальное усиление по напряжению на один каскад не должно превышать 30.
3. Не охватывать обратной связью даже 2 каскада. Обратная связь должна существовать только на одном усилительном элементе (лампа, транзистор). Всякие новомодные усилительные микросхемы не должны рассматриваться как единый усилительный элемент.
4. Усиление сигнала необходимо разделить на две функции: усиление по напряжению и усиление по току. После усиления по напряжению необходимо обязательно повторителем разгрузить каскад.
5. Между каскадами усиления напряжения и разгрузкой разделительные конденсаторы применять не нужно, а при усилении напряжения конденсаторы ставить нужно, чтобы вывести рабочую точку лампы или транзистора на линейный рабочий участок.
6. Для усилительных каскадов, работающих с сигналами близкими к 1 вольту, использовать транзисторы с большим напряжением и задавать питание близкое к предельному. Именно таким образом удаётся растянуть вольт-амперную характеристику транзистора и получить большой динамический диапазон.
7. Не сдваивать полевые транзисторы во входных каскадах УНЧ. Иногда применяется такое для уменьшения коэффициента шума. Но такое решение приводит к увеличению нелинейности вольт-амперной характеристики и растёт 3-гармоника. В результате по гармоникам полевой транзистор становится ближе к биполярному.
8. Применять каскодные схемы в анод для ламп и в коллектор для транзисторов. Каскоды через катод или эмиттер не применять т.к. КНИ при этом возрастает сразу до 0,2%.

Существует проблема фазоинверторов. Как получить противофазные сигналы с минимумом нелинейных искажений?
В дифкаскаде плечи оказываются по характеристикам разные и по усилению, и по нагрузочной способности и по нелинейности. Разгружать дифкаскад лучше всего истоковыми повторителями. И вообще любые каскады усиления напряжения разгружать истоковыми повторителями.
Вот те основы схемотехники, которые позволяют получить усиление звука с высокой верностью.

Мои соображения по поводу «мягкого лампового звука».
Лампа великолепный усилительный прибор для усиления звука и усилители на лампах за счёт растянутой характеристики показывают хороший результат. Но это не значит, что транзистор не способен конкурировать качеством звука.
В своё время в 1979 году мне удалось сделать усилитель с качеством звука, не отличимым от лампового. Тогда я применил технологии, которые перечислил текстом выше.
Получился усилитель без общей обратной связи с КНИ до 0,4% который не возможно было отличить по звучанию от лампового. Было изготовлено несколько штук разных по назначению УНЧ. Для домашнего использования до 30W и концертного использования до 100W причём для акустических систем с сопротивлением 16 ом и выше.
Качество звука оценивалось и сравнивалось работниками музыкальной культуры и лабухами, работающими по свадьбам и т.п. Для сравнения использовались имевшиеся в то время кинотеатральные профессиональные системы на транзисторах с выходными трансформаторами. Выходные трансформаторы никакого преимущества в усилителях на транзисторах не продемонстрировали. Разве только то, что могли согласовать выход усилителя с высокоомной акустикой. Но в случае с изготовленным усилителем, где применялось высокое напряжение питания и высоковольтные транзисторы, по мощностным параметрам он не уступил трансформаторным даже на высокоомной нагрузке. По качеству звука все участвующие отметили «чистоту» звука предъявленного УНЧ. Причём не возникло даже никаких ни у кого сомнений. Оказалось хорошее качество работы: как с микрофоном, так и с гитарами. Для Бас-гитары делали специальный усилитель с ограниченным диапазоном вверх и расширением вниз диапазона.
Усилители, которые делал я и мои соратники, по этому делу изготовлялись варварским способом, т.к. не было времени и денег оформлять конструкции в приличную форму. Распаивалось на «слепышах» обычными проводами, имевшимися под рукой. Под рукой тогда имелось большое количество провода МГШВ. Это многожильный провод в шёлковой и виниловой изоляции. Паялось внахлёст, межплатные соединения по месту.
Источники питания самые простецкие трансформаторы, диоды, электролиты. Платы обклеивались изолентами и полиэтиленом, иногда газетами или упаковочной бумагой. Всё обматывалось, чтобы нигде не замыкало. Коробку применяли от какого-нибудь прибора с заводской свалки. Всё уминалось и затискивалось. Имелись снаружи только сетевой шнур, тумблер включения, предохранители, регулятор уровня сигнала, регулятор громкости с тонкорректором, гнёзда для входа и выхода. Регулятор громкости был электронным своей конструкции. Для тон-коррекции применялись дроссели (сейчас никто такого не применяет).
Никаких регуляторов тембра не применялось. Как оказалось для хорошего усилителя они не нужны т.к. при использовании дома имеется уже нормализованная запись с винила или магнитофона. Никакой необходимости что-то менять в частотах не возникало.
Выходной каскад усилителя имел защиту от перегрузки по току на максимальный ток используемых транзисторов.
Входной усилитель делался на лампе 6Н16Б или 6Н23П и работал при напряжении 30В. В аноде стоял каскод на транзисторе (динамическая нагрузка), транзистор был германиевый. Разгрузка была эмиттерным повторителем на транзисторе П307. Далее стоял регулятор громкости с тон-корректором. Тон-корректор была возможность отключать. Регулятор громкости не был переменным резистором. Были три кнопки. Больше, меньше и вкл-откл тонкорректора. Схема на полевых транзисторах, максимальный уровень сигнала для такого регулятора 30мВ. Поэтому чувствительность усилителя была 30мВ. Именно при таком сигнале на входе выход получался на максимальную мощность. Внутри усилителя мощности между каскадами стояли фильтры НЧ. Частоты выше 30кГц обрезались, хотя без фильтров характеристика была линейна до 200кГц.
К чему я это рассказываю?
За всё время УНЧ творчества никогда и ни у кого не возникало даже мысли, что нужны какие-то особые провода, что провода нужно ориентировать в пространстве, что конденсаторы должны быть из меди или золота. Применялись обычные малогабаритные бумажные конденсаторы. Мощность сигнала в межкаскадных передачах мизерная, это не силовые элементы. У кондёра есть ёмкость, ТКЕ и утечка. Больше для него ничего не надо. В силовых цепях да! В силовых цепях важно ещё максимальный ток заряда-разряда. Иначе пластины отлетают.
Что касается «теплоты» звука, хочу обратить внимание на следующее. Лампоголики утверждают, что питание для ламп обязательно должно быть кенотронное, иначе звук становится неламповый. Я верю, что это действительно так. Дело в том, что кенотроны характеризуются током насыщения, что приводит к тому, что анодное напряжение слегка проседает при больших сигналах, а крутизна характеристики лампы зависима от анодного напряжения. Поэтому и появляется «мягкость» звучания. По всей видимости, это можно создать и в транзисторных каскадах. Но транзисторные каскады позволяют получить КНИ ниже, чем в лампах, с нечётными гармониками можно тоже побороться и получить приемлемый уровень. С шумами, конечно лампу не победить, но выйти на уровень когда они ниже порога слышимости — возможно.
Во всяком случае, в тех усилителях, что я делал, шумы на слух не обнаруживались. Никакого шипенья или шелеста. С гармониками та же история. 3-я гармоника всегда в транзисторных усилителях будет больше, чем в ламповых, но это примерно на 5 дб. Если же динамический диапазон усилителя сохраняется свыше 70 дб. то эту гармонику можно обнаружить только по прибору и никак не обнаружить прослушиванием. Если же транзисторный усилитель без общей ОС даёт КНИ 0.01% на малой и средней громкости (до 10W мощности), то такой усилитель значительно качественнее лампового. Опустить выходную лампу по КНИ ниже 0,2 задача очень сложная и потребует подспорья в виде добавок из транзисторов. В итоге мы опять вернёмся к вопросу — где транзисторное, а где ламповое.
Во входных каскадах лампа непревзойдённа из-за своей высоковольтности при милливольтных сигналах.
Хочу ещё отметить, что УНЧ на транзисторах без ОС тоже обладает мягкостью звучания и чёткостью звуковой картины, как и ламповые. Проблема только в том, что этот звук мало кто слышал. Только народные умельцы и их окружение».

Это сообщение отредактировал aleks49 — 12.01.2017 — 21:47

 

Лампово-транзисторный усилитель НЧ своими руками.

Делаем несложный лампово-транзисторный усилитель низкой частоты своими руками.

Усилители низкой ( или звуковой) частоты находят широчайшее применение в современном мире.  Практически ни одно устройство, способное воспроизвести звук, не обходится без усилителя НЧ. Радиолюбители тему построения  усилителей НЧ также не обходят стороной и изготавливают усилители НЧ как на интегральных микросхемах, так и на транзисторах и даже на радиолампах.

Номенклатура выпускаемых промышленностью интегральных усилителей НЧ огромна, и позволяет создать усилитель на любой вкус. Но, представляет определенный интерес изготовление усилителя НЧ на дискретных элементах, да еще и экзотических (как для сегодняшних дней) –электронных лампах и германиевых транзисторах.

В этой статье будет рассказано об изготовлении  лампово-транзисторного усилителя низкой частоты небольшой (до 4 Вт) мощности.

Для  повторения выбрана схема стереофонического усилителя НЧ из брошюры «В помощь радиолюбителю» №53 , 1976 год.

Почему именно эта схема выбрана для повторения? Из-за ее очень необычного и своеобразного построения. Это лампово-транзисторный усилитель. Причем выходной каскад собран на мощных кремниевых транзисторах П702 , а  каскады предварительного усиления собраны на электронной лампе 6Н23П. Изюминкой схемы является  очень низкое анодное напряжение лампы 6Н23П-всего 18 В. Другими словами – в данной конструкции отсутствуют опасные высокие напряжения, обычные для электронных ламп- 200…250В.

Данный усилитель не претендует на очень высокие параметры, но для бытовых применений вполне себе подходит.

Оригинальная схема  лампово-транзисторного усилителя НЧ из брошюры ВРЛ № 53 представлена ниже:

Входной сигнал через конденсатор 2С1 поступает на сетку левого ( по схеме) триода лампы 2Л1. Усиленный сигнал снимается с анода и поступает ( через эмиттерный повторитель на транзисторе 2Т1) на блок регулирования тембра. Далее сигнал поступает на регулятор громкости ( резистор R1), и далее, через конденсатор 2С3, на сетку правого ( по схеме) триода лампы 2Л1. Усиленный сигнал снимается с анода и подается на базу транзистора эмиттерного повторителя 2Т2. Эмиттерный повторитель служит для согласования высокого выходного сопротивления лампы 2Л1 и относительно низкого  входного сопротивления  оконечного усилителя мощности. Оконечный усилитель мощности собран на транзисторах 4Т1…4Т5. В выходной ступени применены мощные кремниевые транзисторы П702. Усилитель питается напряжением минус 30 В. Аноды ламп запитаны напряжением 18 В от параметрического стабилизатора на стабилитронах 2Д1 и 2Д2.

Накал лампы 2Л1 запитан постоянным напряжением 6,3 В.

Вот, вкратце, все об усилителе НЧ из брошюры ВРЛ №53…

 

Описание изготовленного мною экземпляра лампово-транзисторного усилителя НЧ.

 Я не ставил целью заиметь  стереоусилитель, поэтому был изготовлен один канал усилителя.

Мне пришлось несколько видоизменить схему по причине отсутствия  древних транзисторов П702. Усилитель я собирал как опытный образец, поэтому исключил из схемы блок регулирования тембра и эмиттерный повторитель на транзисторе 2Т1. Оконечный усилитель собран по иной схеме ввиду  отсутствия, как уже указывалось, транзисторов П702.

С целью соответствия  схемы духу времени ( 70-е года прошлого столетия), решено было оконечный усилитель собрать полностью на германиевых транзисторах. В выходном каскаде применены мощные германиевые транзисторы П214. Напряжение питания выбрано минус 24 В.

Изготовленный мною лампово-транзисторный усилитель имеет следующие технические характеристики:

-выходная мощность на нагрузке  5 Ом-4 Вт;

-чувствительность –около 30 мВ;

-уровень шумов и фона при закороченном  входе- 20 мВ;

-частотная характеристика при неравномерности +/- 1 дБ- 50 Гц…18 кГц.

 

Принципиальная фактическая схема лампово-транзисторного усилителя:

Входной сигнал через конденсатор С1 поступает на сетку левого (по схеме) триода электронной лампы  VL1. В качестве VL1 использована лампа двойной триод типа 6Н23П. Данная лампа содержит в одном баллоне два идентичных триода.Применение электронной лампы во входном каскаде обеспечивает получение высокого входного сопротивления  усилителя при минимуме шумов.  Усиленный примерно в 4 раза сигнал снимается с анода лампы и через регулятор громкости R4 подается на сетку правого (по схеме) триода лампы VL1. Далее усиленный сигнал поступает на базу транзистора VT1, на котором собран эмиттерный повторитель. Суммарный коэффициент усиления по напряжению обоих триодов лампы  составляет около 16 ( по 4 на каждый каскад). Лампа работает при низком анодном напряжении-около 20 В. Накал лампы питается постоянным напряжением 6 В.  Для питания накала лампы VL1 применен интегральный стабилизатор типа 7906 (не путать с 7806) на напряжение 6 В, который предназначен для работы в цепях, где на общий провод подан плюс источника питания. Ток накала лампы составляет около 300 мА, поэтому интегральный стабилизатор необходимо установить на небольшой радиатор.

Разумеется, можно применить и питание накала ламп от соответствующей по напряжению обмотки силового трансформатора.

 

Эмиттерный повторитель на транзисторе VT1 служит для согласования высокого выходного сопротивления лампы VL1 с низким входным сопротивлением оконечного усилителя. Оконечный усилитель собран по традиционной схеме полностью на германиевых транзисторах. В выходном каскаде работают транзисторы типа П214, установленные на радиаторы:

Налаживание усилителя не составляет особого труда.

Режимы работы лампы и транзисторов указаны на схеме. Каскады предварительного усиления наладки не требуют и при исправной лампе работают сразу.

Подбором резистора R14 устанавливают на средней точке оконечного усилителя напряжение, равное половине напряжения питания-минус 12 В. Ток покоя (примерно 40 мА ) устанавливается подбором резистора R15.

Печатная плата изготовлена методом ЛУТ:

Расположение основных узлов на плате :

Поскольку этот усилитель собирался как экспериментальный прототип, регулятор усиления я разместил прямо на плате. В других случаях этот регулятор, конечно же, размещается на передней панели устройства.

Общий вид собранного лампово-транзисторного УНЧ:

Для получения большей выходной мощности можно вместо использованного мной оконечного усилителя  ( выделен на принципиальной схеме пунктирным прямоугольником) применить более мощный. Схем  подобных усилителей полно в интернете-здесь есть простор для творчества.

 

Этот лампово-транзисторный усилитель НЧ изготовлен был по просьбе моего товарища для озвучивания радиопередач в  гараже))). . Но он может быть применен и как внешний УНЧ для ноутбука, планшета и тому подобное. К нему можно даже подключить электрогитару, или создать на его основе комбоусилитель для электронных музыкальных инструментов.

Небольшое видео о работе этого лампово-транзисторного усилителя НЧ:

 

 

№ 2798: вот мощный транзистор

№ 2798: ТРАНЗИСТОР

от Fitz Walker

Щелкните здесь для прослушивания аудио эпизода 2798

Сегодня маленький предмет производит большое впечатление. Университет Хьюстона представляет сериал о машинах, на которых работает наша цивилизация, и о людях, чья изобретательность их создала.

В конце прошлого века много говорили о лучших изобретениях ХХ века. Телевидение, интернет, самолеты — все это высоко оценивается медиа-экспертами. Я не помню, чтобы в то время был достигнут какой-либо консенсус. Но я помню свои мысли о том, что должно было стать изобретением номер один: о транзисторе.

Трудно представить себе какое-либо другое устройство, которое так сильно повлияло бы на нашу жизнь. Без транзисторов у нас не было бы компактной персональной электроники, смартфонов, умной техники и всего умного. Персональный компьютер был бы немыслимо огромен. И забудьте о том, чтобы положить мобильный телефон в карман. Транзисторы образуют строительные блоки компьютерных микросхем и являются частью всех современных электронных устройств. Наше передовое общество обязано этой крошечной, недооцененной части технологии.


Реплика первого транзистора.

До появления транзисторов нам приходилось использовать электронные лампы для управления электрическими цепями. Вакуумные трубки большие, неэффективные и быстро изнашиваются. Эти качества делают их непрактичными для небольших и сложных устройств. Транзисторы могут выполнять ту же работу в гораздо меньшем корпусе и делать все это без износа.

Транзистор обязан своим созданием трем ученым Лаборатории Белла: Джону Бардину, Уильяму Шокли и Уолтеру Браттейну. Им поручили решить задачу. Массовый рост использования телефонов потребовал эффективных и надежных электронных усилителей голоса.

Итак, Уильям Шокли собрал группу ученых для экспериментов с новыми материалами, называемыми полупроводниками, названными так потому, что их электрические свойства находятся между свойствами изолятора и проводника. Полупроводники впервые нашли широкое применение в радиолокационных системах времен Второй мировой войны. Команда Шокли решила посмотреть, смогут ли они использовать эти уникальные свойства для создания лучшего усилителя.

В результате их экспериментов в 1947 году было получено примитивное электронное устройство, изготовленное из кристалла германия и золота. Это странное устройство позволяло контролировать большое количество энергии при малом потреблении энергии. Он был примитивным и не очень маленьким, но работал. Шокли лично усовершенствовал дизайн грубой и капризной версии, впервые разработанной его командой. К 19В 50-х годах транзисторы производились массово, и они произвели революцию в мире.


Изобретатели транзистора Джон Бардин, Уильям Шокли и Уолтер Браттейн.

Транзисторы

не сразу стали хитом. Первые годы были связаны с высокими производственными затратами и незначительными полезными качествами. В течение почти двадцати лет большая часть производства транзисторов предназначалась для военных. Только в конце 1960-х транзисторы были достаточно дешевы и надежны, чтобы штурмовать потребительский рынок.

Их первое настоящее усовершенствование было сделано малоизвестной компанией Texas Instruments. Они разработали использование более дешевого кремния вместо германия. А затем они продолжили разработку первых очень компактных корпусов транзисторов, называемых интегральными схемами. Это были первые компьютерные чипы. С тех пор транзисторы трансформировались и эволюционировали в такое множество форм, что их изобретатели, вероятно, были бы неузнаваемы, будь они живы сейчас.


Современные компьютерные чипы могут содержать около 500 миллионов транзисторов.

Что касается Уильяма Шокли, отца транзистора, он покинул Bell Labs, чтобы основать собственную компанию в Пало-Альто, Калифорния. Его компания станет первой в коридоре высоких технологий, который мы сегодня знаем как Силиконовую долину.

Я Фитц Уокер из Университета Хьюстона, меня интересует, как работают изобретательные умы.

(Музыкальная тема)


Первые два изображения — это реверанс с commons.wikimedia.org, а последнее изображение любезно предоставлено Фитцем Уокером.

Краг, Хельге. Квантовые поколения: история физики в двадцатом веке . Издательство Принстонского университета, 1999. Печать.

http://inventors.about.com/od/tstartinventions/a/transistor_history.htm

http://www.pbs.org/transistor/index.html

Впервые эта серия вышла в эфир 23 мая 2012 г.

Двигатели нашей изобретательности Авторское право © 1988-2012, Джон Х. Линхард.


Предыдущий Эпизод | Индекс | Главная | Далее Эпизод

№ 2730: Неожиданное будущее

№ 2730: НЕОЖИДАННОЕ БУДУЩЕЕ

Джон Х. Линхард

Щелкните здесь для прослушивания аудио эпизода 2730

Сегодня полупроводник переписывает наше будущее. Инженерный колледж Хьюстонского университета представляет этот сериал о машинах, которые делают нашу цивилизацию run, и люди, чья изобретательность создала их.

Это тревожно — как мы формируем то, что видим, чтобы оно соответствовало нашим ожиданиям. Конечно, так трудно отделить объективную правду от ожидания. Работа инженера это чревата проверками и перекрестными проверками. Но одно место, от которого забота не приносит нам никакой пользы, находится в наша ответственность за формирование будущего.

Наша работа по созданию технологического будущего, когда невозможно предсказать какое-либо будущее, действительно довольно странно. Мы пытаемся сформировать представление о том, куда мы движемся, а затем направление. Что ж, вы видите здесь надвигающуюся ловушку: направление, в котором движется наша технология это направление наших вечно ошибочных ожиданий.

Итак пример: Полупроводник и его потомок транзистор. Полупроводник – это кристаллический материал с особыми свойствами электропроводности. Во-первых, ожидание: В 19В 30-е годы мы все видели будущее волшебным образом улучшенных транспортных систем. Мы будем жить с автомагистралями со скоростью 200 миль в час, автомобилями, которые могут расправлять крылья и летать, дирижабль службы в городах … Это мир, который мы инженеры Ожидается, что он будет построен, когда рассеется дым Второй мировой войны.

Кто бы мог подумать, что транзистор все изменит. Гораздо больше, чем путешествия, общение связало бы нас вместе. Когда я обнаружил, что работаю над разработкой транзисторов в 1954, мы все еще думали, что наше высокотехнологичное будущее связано с транспортом. мы не получить записку, хотя она лежала прямо перед нами.

Транзистор можно проследить до светоизлучающего диода — ныне вездесущего светодиода. Двадцатичетырехлетний российский изобретатель Олег Лосев показал, как можно было создать светодиод свет от полупроводникового материала. Это было в 1927 году, в том же году, когда Линдберг склепал общественность, одержимая транспортом, с его рейсом из Нью-Йорка в Париж.

Лосев написал много работ о полупроводниках и их свойствах. К 1942 году он казалось, приближается к следующей важной части этой идеи — что полупроводники могут также использоваться для усиления и переключения электрических сигналов — они могут быть превращены в транзисторы, которые позже заменят радиолампы.

Но это был тот самый год, когда он умер от голода в страшной немецкой блокаде Ленинграда. Тем не менее, полупроводники теперь раскрывали свой потенциал. В 1950-е, инженеры пробудился к удивительным вещам, которые можно было бы сделать с транзисторами. И сегодня мы не живем час нашего дня без использования транзистора во многих его невидимых формах. Мы вряд ли повернуть голову, не глядя на низкоэнергетический светодиодный источник света.

Так как же технологии превзошли ожидания? Это произошло из-за очень странного факта, что наш технологии – наши учителя. Мы делаем что-то новое, и только тогда оно раскрывает свои способность перенаправлять нашу жизнь. Лосев дал нам новую идею. Другие со временем стали внимание к возможностям внутри этой идеи. Но последним шагом в этом процессе был транзистор. раскрывая все, что он мог сделать. Именно тогда он переписал наше человеческое будущее.

Я Джон Линхард из Хьюстонского университета, где нас интересует как работают изобретательные умы.

(Музыкальная тема)


См. записи в Википедии для полупроводник, для транзистора, для Олега Лосева, и для транзисторного радио. Все изображения предоставлены Викискладом.


Реплика первого транзистора, изготовленная в Bell Labs в 19 г.47.

Regency TR-1, первый транзисторный радиоприемник. Техасские инструменты, 1954 г.

Впервые эта серия вышла в эфир 27 июля 2011 г.

Двигатели нашей изобретательности Copyright © 1988-2011 Джон Х. Линхард.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *