Site Loader

Содержание

Биполярный транзистор — принцип работы для чайников!

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы  и вообще с чем его едят, то берем  стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание,  будет удобнее ориентироваться в статье 🙂

[contents]

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы.  Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу  у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу  а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут  так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие,  выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой.    В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто  прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа,  при прозвонке  создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора  n-p-n типа  диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

 

 Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как 

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе  может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор  Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае  мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством.  Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора.  И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть  схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в  любом ближайшем  магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов  и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Pnp транзистор в режиме ключа

Микроконтроллерами можно производить управление мощными устройствами – лампами накаливания, нагревательными ТЭНами, даже электроприводами. Для этого используются транзисторные ключи – устройства для коммутации цепи. Это универсальные приборы, которые можно применить буквально в любой сфере деятельности – как в быту, так и в автомобильной технике.

Что такое электронный ключ?

Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:

На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.

Коммутация нагрузки

Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15. 14 А, напряжений 50. 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.

Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.

Электромагнитное реле

Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.

Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.

Выводы электромагнитного реле

Обычно в электромагнитных реле имеется 5 выводов:

  1. Два контакта, предназначенных для управления. К ним подключается обмотка возбуждения.
  2. Три контакта, предназначенных для коммутации. Один общий контакт, который нормально замкнут и нормально разомкнут с остальными.

В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом.

Как работает электромагнитное реле

Принцип работы электромагнитного реле довольно простой:

  1. Обмотка через кнопку соединяется с питанием.
  2. В разрыв цепи питания потребителя включаются силовые контакты реле.
  3. При нажатии на кнопку подается питание на обмотку, происходит притягивание пластины и замыкание группы контактов.
  4. Подается ток на потребителя.

Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника.

Проводимость транзисторов

Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:

  1. P-N-P.
  2. N-P-N.

К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.

Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.

Транзистор в режиме ключа

Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:

  1. От микроконтроллера через переход «база – эмиттер».
  2. При этом канал «коллектор – эмиттер» открывается.
  3. Через канал «коллектор – эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.

Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов – около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.

Принцип работы транзистора

Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.

В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер – коллектор» может меняться в больших пределах.

Пример работы транзистора в режиме ключа

Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер – коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор – эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).

При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор – эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.

Режим насыщения

У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база – эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.

Практические конструкции

Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.

Работа с микроконтроллерами

При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.

Применяются несложные конструкции, состоящие из таких элементов:

  1. Биполярный транзистор.
  2. Резистор для ограничения входного тока.
  3. Полупроводниковый диод.
  4. Электромагнитное реле.
  5. Источник питания 12 вольт.

Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.

Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор – эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.

Использование транзисторов в конструкциях

Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.

Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.

Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.

Для упрощения рассказа можно представить транзистор в виде переменного резистора. Вывод базы это есть как раз та самая ручка, которую можно покрутить. При этом изменяется сопротивление участка коллектор – эмиттер. Крутить базу, конечно, не надо, может оторваться. А вот подать на нее некоторое напряжение относительно эмиттера, конечно, можно.

Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько КОм. Получается, что напряжение база – эмиттер (Uбэ) равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. Примерно такой же, как у диода в обратном направлении! В этом случае говорят, что транзистор находится в состоянии ОТСЕЧКИ, что на обычном языке значит, закрыт или заперт.

Противоположное состояние называется НАСЫЩЕНИЕ. Это когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.

Чтобы довести транзистор до такого состояния, надо обеспечить достаточно большой ток базы, подав на нее относительно эмиттера большое напряжение Uбэ,- порядка 0,6…0,7В. Да, для перехода база-эмиттер такое напряжение без ограничительного резистора очень велико. Ведь входная характеристика транзистора, показанная на рисунке 1, очень похожа на прямую ветвь характеристики диода.

Рисунок 1. Входная характеристика транзистора

Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. Простой пример: маленькая микросхема включает большую лампочку!

Чтобы определить величину такого усиления транзистора в ключевом режиме используется «коэффициент усиления по току в режиме большого сигнала». В справочниках от обозначается греческой буквой β «бетта». Практически для всех современных транзисторов при работе в ключевом режиме этот коэффициент никак не меньше 10…20 Определяется β как соотношение максимально возможного тока коллектора к минимально возможному току базы. Величина безразмерная, просто «во сколько раз».

Даже если ток базы будет больше, чем требуется, беды особой нет: транзистор все равно не сможет открыться больше. На то он и режим насыщения. Кроме обычных транзисторов для работы в ключевом режиме используются «дарлингтоновские» или составные транзисторы. Их «супер – бетта» может достигать 1000 и более раз.

Как рассчитать режим работы ключевого каскада

Чтобы не быть совсем голословным, попробуем рассчитать режим работы ключевого каскада, схема которого показана на рисунке 2.

Задача такого каскада очень простая: включить и выключить лампочку. Конечно, нагрузка может быть любой, – обмотка реле, электромотор, просто резистор, да мало ли что. Лампочка взята просто для наглядности эксперимента, для его упрощения. Наша задача чуть посложнее. Требуется рассчитать величину резистора Rб в цепи базы, чтобы лампочка горела в полный накал.

Такие лампочки применяются для подсветки приборной доски в отечественных авто, поэтому найти ее несложно. Транзистор КТ815 с током коллектора 1,5А для такого опыта вполне подойдет.

Самое интересное во всей этой истории, что напряжения в расчетах участия не принимают, лишь бы соблюдалось условие β ≥ Iк/Iб. Поэтому лампочка может быть на рабочее напряжение 200В, а базовая цепь управляться от микросхем с напряжением питания 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то лампочка будет мигать без проблем.

Но в нашем примере микросхем никаких не предвидится, базовая цепь управляется просто контактом, на который просто подается напряжение 5В. Лампочка на напряжение 12В, ток потребления 100мА. Предполагается, что наш транзистор имеет β ровно 10. Падение напряжения на переходе база – эмиттер Uбэ = 0,6В. См. входную характеристику на рисунке 1.

При таких данных ток в базе должен быть Iб = Iк / β = 100 / 10 = 10(мА).

Напряжение на базовом резисторе Rб составит (за вычетом напряжения на переходе база – эмиттер) 5В – Uбэ = 5В – 0,6В = 4,4В.

Вспоминаем закон Ома: R = U / I = 4,4В / 0,01А = 440Ом. Согласно системе СИ подставляем напряжение в вольтах, ток в амперах, результат получаем в Омах. Из стандартного ряда выбираем резистор сопротивлением 430Ом. На этом расчет можно считать законченным.

Но, кто внимательно посмотрит на схему, может спросить: «А почему ничего не было сказано о резисторе между базой и эмиттером Rбэ? Про него просто забыли, или он не так и нужен?»

Назначение этого резистора – надежно закрыть транзистор в тот момент, когда кнопка разомкнута. Дело в том, что если база будет «висеть в воздухе», воздействие всяческих помех на нее просто гарантировано, особенно, если провод до кнопки достаточно длинный. Чем не антенна? Почти, как у детекторного приемника.

Чтобы надежно закрыть транзистор, ввести его в режим отсечки необходимо, чтобы потенциалы эмиттера и базы были равны. Проще всего было бы в нашей «учебной схеме» использовать переключающий контакт. Надо включить лампочку перекинули контакт на +5В, а когда потребовалось выключить – просто замкнули вход всего каскада на «землю».

Но не всегда и не везде можно позволить такую роскошь, как лишний контакт. Поэтому проще выровнять потенциалы базы и эмиттера при помощи резистора Rбэ. Номинал этого резистора рассчитывать не надо. Обычно его принимают равным десяти Rб. Согласно практическим данным его величина должна быть 5…10КОм.

Рассмотренная схема является разновидностью схемы с общим эмиттером. Тут можно отметить две особенности. Во-первых, это использование в качестве управляющего напряжения 5В. Именно такое напряжение используется, когда ключевой каскад подключается к цифровым микросхемам или, что теперь более вероятно, к микроконтроллерам.

Во-вторых, сигнал на коллекторе инвертирован по отношению к сигналу на базе. Если на базе присутствует напряжение, контакт замкнут на +5В, то на коллекторе оно падает практически до нуля. Ну, не до нуля, конечно, а до напряжения указанного в справочнике. При этом лампочка визуально не инвертируется,- сигнал на базе есть, есть и свет.

Инвертирование входного сигнала происходит не только в ключевом режиме работы транзистора, но и в режиме усиления. Но об этом будет рассказано в следующей части статьи.

Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой.

С чего все начиналось

Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и… пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.

Нажали на черную большую пипочку – ток побежал, отжали – получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку – сигнал есть, отжали пипку – сигнала нет.

Транзисторный ключ

Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между “включено” и “выключено” мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.

Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:

Знакомая схемка не так ли? Здесь все элементарно и просто 😉 Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2—>лампочка—>коллектор—>эмиттер—>к минусовой клемме Bat2. Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор “R” здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.

Условия для работы транзисторного ключа

Итак, давайте вспомним, какие требования должны быть, чтобы полностью “открыть” транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:

1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.

2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется “режимом насыщения“.

Этот рисунок – воображение моего разума. Здесь я нарисовал тот самый режим насыщения.

Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.

Базовая схема транзисторного ключа

А что теперь надо сделать, чтобы лампочка вообще не горела? Отключить ее ручками? Зачем? Ведь у нас есть управляемый резистор: коллектор-эмиттер, сопротивление которого мы можем менять, прогоняя через базу определенную силу тока 😉 Итак, что нужно для того, чтобы лампочка вообще перестала гореть? Возможны два способа:

Первый способ. Полностью отключить питание от резистора базы, как на рисунке ниже

В реальности вывод базы является своего рода маленькой антенной, которая может принимать различные наводки и помехи из окружающего пространства. От этих наводок в базе может начать течь ток малого номинала. А как вы помните, для того, чтобы открыть транзистор много и не надо. И может даже случится так, что лампочка будет даже очень тихонько светится!

Как же выйти из этой ситуации? Да очень легко! Достаточно поставить резистор между базой и эмиттером, то есть сделать так, чтобы при отключении напряжения, на базе напряжение было равно нулю. А какой вывод транзистора у нас находится под нулем? Эмиттер! То есть научным языком, мы должны сделать так, чтобы потенциал на базе был равен потенциалу на эмиттере 😉

И что, теперь каждый раз при отключении заземлять базу? В идеале – да. Но есть более хитрое решение 😉 Достаточно поставить резистор между базой и эмиттером. Его номинал в основном берут примерно в 10 раз выше, чем номинал базового резистора.

Так как в схеме появился еще один резистор, то базовый резистор назовем RБ , а резистор между базой и эмиттером не будем придумывать и назовем RБЭ. Схема примет вот такой вид:

Как же ведет себя резистор RБЭ в схеме? Если ключ S замкнут, то этот резистор не оказывает никакого влияния на работу схемы, так как через него протекает и без того малая сила тока, которая управляет базой. Ну а если ключ S разомкнут, то, как я уже сказал, потенциал на базе будет равняться потенциалу эмиттера, то есть нулю.

Второй способ. Добиться того, чтобы UБЭ

Что в первом, что во втором случае транзистор у нас не пропускает ток через коллектор-эмиттер. В этом случае говорят, что транзистор находится в режиме “отсечки“.

Расчет транзисторного ключа

Как же рассчитать примерно значение резистора базы? Есть нехитрые формулы. Для того, чтобы их разобрать, рассмотрим вот такую схемку:

Для начала можно найти ток базы:

IБ – это базовый ток, в Амперах

kНАС– коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.

IK– коллекторный ток, в Амперах

Ну а дальше дело за малым

Это самый простой расчет без всяких заморочек.

Расчет транзисторного ключа на практике

Ну что же, давайте рассчитаем наш базовый резистор для этой схемы в режиме насыщения. На базу будем подавать распространенное питание в 5 В.

Возьмем транзистор средней мощности КТ819Б и лампочку-нагрузку для нашего транзисторного ключа. Лампочка на 6 В.

Транзистор КТ819Б структуры NPN

А вот и его цоколевка

Почти стандартная распиновка слева-направо: Эмиттер-Коллектор-База.

Лампочка при питании 6 В светит примерно вот так:

А вот такую силу тока потребляет наша подопечная, если ее соединить напрямую к блоку питания.

0,23 Ампера. Именно такую силу тока должна кушать наша лампочка в режиме насыщения, когда транзистор полностью открыт. То есть это у нас будет коллекторный ток Ik . Так как сопротивление нити накала лампочки меняется при подключении ее к источнику питания, то лучше всего сразу же измерить ее силу тока, как мы и сделали.

Теперь дело за малым. Надо замерить коэффициент бета. Для этого случая на моем рабочем столе есть прибор транзисторметр. Итак, у меня получилось значение 148

Итак, находим ток базы по формуле

Чем больше силы тока мы подаем на базу, тем больше мы вводим транзистор в режим глубокого насыщения. Здесь уже вы сами должны выбрать значение коэффициента насыщения. Как я уже писал выше, чем больше коэффициент, тем сильнее уходит транзистор в режим насыщения. Режим глубокого насыщения чреват тем, что он задерживает выключение транзистора, но хорош тогда, когда надо долго держать нагрузку включенной, так как в этом случае транзистор греется меньше всего. Если вы не забыли, мощность, рассеиваемая на транзисторе будет равна P=UКЭ х IН

P – это мощность в Ваттах

UКЭ – напряжение между коллектором и эмиттером, В

IН – сила тока, протекающая через нагрузку и коллектор-эмиттер, А

Из формулы: чем меньше UКЭ , тем меньше будет греться транзистор

Поэтому, берем среднее значение коэффициента насыщения равное 3. Получаем:

Теперь считаем базовый резистор по формуле:

Берем ближайший из ряда, то есть 1 кОм.

Давайте посмотрим, будет ли работать наш транзисторный ключ? Итак, RБ берем рассчитанное значение в 1 кОм.

Собираем схему и смотрим, как она работает

В данном случае синие провода – это питание с Bat2 (MEILI), а другие два провода – это питание с блока питания Bat1 (YaXun)

Как вы помните, лампочка у нас потребляла силу тока в 0,23 Ампер при прямом включении ее к блоку питания. Сейчас же она кажет почти то же самое значение с небольшой погрешностью. Но можно все равно сказать, что при открытом транзисторном ключе сопротивление коллектора-эмиттера очень мало. То есть все напряжение поступает на лампу.

Так как амперметр на YaXun стрелочный и не может измерять очень маленькие значение тока, то воспользуемся мультиметром и посмотрим, сколько же потребляет наш транзистор в режиме полного открытия. Для этого ставим мультиметр в разрыв цепи. Более подробно, как измерять силу тока и напряжение мультиметром, вы можете прочитать в этой статье.

Мы получили 4,5 мА. Очень близко к расчетному 4,7 мА. Не забываем подтянуть базу к земле резистором большим номиналом RБЭ, иначе база может поймать помеху и открыть невзначай транзистор, что приведет к ложному срабатыванию. В нашем случае мы берем резистор от 10 кОм и более.

Ну все, такой транзисторный ключ будет уже защищен от ложных срабатываний и его можно использовать в своих электронных безделушках.

Применение транзисторного ключа в связке с МК

Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:

В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.

Заключение

В настоящее время биполярные транзисторы уже морально устаревают. На смену им приходят мощные полевые транзисторы и твердотельные реле, так как они практически не потребляют ток. Также часто в режиме ключа используют диоды, тиристоры, терморезисторы и даже электронные лампы. Электронные ключи широко применяются в различных автоматических устройствах, в логических схемах и системах управления. Чем же хорош ключ на биполярном транзисторе? Я думаю, скорее всего своей дешевизной, широким распространением и долговечностью самих биполярных транзисторов.

Расчет биполярного транзистора в ключевом режиме с резистивной нагрузкой

Расчет биполярного транзистора в ключевом режиме с резистивной нагрузкой

Упрощенный расчет транзистора для работы в ключевом режиме на резистивную нагрузку.

 

Ключевой режим работы характеризуется тем, что транзистор находится в одном из двух состояний: в полностью открытом (режим насыщения), или полностью закрытом (состояние отсечки).

 

Рассмотрим пример, где в качестве нагрузки выступает контактор типа КНЕ030 на напряжение 27В с катушкой сопротивлением 150 Ом. Индуктивным характером катушки в данном примере пренебрежем, считая, что реле будет включено раз и надолго.

Рассчитываем ток коллектора:

Ik=(UccUкэнас)/Rн    , где

Ik –ток коллектора

      Ucc- напряжение питания (27В)

      Uкэнас- напряжение насыщения биполярного транзистора (типично от 0.2 до 0.8В, хотя и может прилично различаться для разных транзисторов), в нашем случае примем 0.4В

      Rн- сопротивление нагрузки (150 Ом)

Итак,

Ik= (27-0.4)/150 = 0.18A = 180мА

На практике из соображений надежности элементы всегда необходимо выбирать с запасом. Возьмем коэффициент 1.5

Таким образом, нужен транзистор с допустимым током коллектора не менее 1.5*0.18=0.27А и максимальным напряжением коллектор-эмиттер не менее 1.5*27=40В.

Открываем справочник по биполярным транзисторам .  По заданным параметрам подходит КТ815А (Ikмакс=1.5А Uкэ=40В)

      Следующим этапом рассчитываем ток базы, который нужно создать, чтобы обеспечить ток коллектора 0.18А.

      Как известно, ток коллектора связан с током базы соотношением

      Ik=Iб*h21э,

где h31э – статический коэффициент передачи тока.

 При отсутствии дополнительных данных можно взять табличное гарантированное минимальное значение для КТ815А (40). Но для КТ815 есть график зависимости h31э от тока эмиттера. В нашем случае ток эмиттера 180мА, этому значению соответствует h31э=60. Разница невелика, но для чистоты эксперимента возьмем графические данные.

Итак,

            Iб=180/60=3мА

Для расчета базового резистора R1 смотрим второй график, где приведена зависимость напряжения насыщения база-эмиттер (Uбэнас) от тока коллектора. При токе коллектора 180мА напряжение насыщения базы будет 0.78В (При отсутствии такого графика можно использовать допущение, что ВАХ перехода база-эмиттер подобна ВАХ диода и в диапазоне рабочих токов напряжение база-эмиттер находится в пределах 0.6-0.8 В)

Следовательно, сопротивление резистора R1 должно быть равно:

R1=(Uвх-Uбэнас)/Iб = (5-0.78)/0.003 = 1407 Ом = 1.407 кОм.

Из стандартного ряда сопротивлений выбираем ближайшее в меньшую сторону (1.3 кОм)

Если к базе подключен шунтирующий резистор (вводится для более быстрого выключения транзистора или для повышения помехоустойчивости) нужно учитывать, что часть входного тока уйдет в этот резистор, и тогда формула примет вид:

R1= (Uвх-Uбэнас)/(Iб+IR2) = (Uвх-Uбэнас)/(Iб+ Uбэнас/R2)

Так, если R2=1 кОм, то

R1= (5-0.78)/(0.003+0.78/1000) = 1116 Ом = 1.1 кОм

 

Рассчитываем потери мощности на транзисторе:

            P=Ik*Uкэнас

Uкэнас берем из графика: при 180мА оно составляет 0.07В

            P= 0.07*0.18= 0.013 Вт

Мощность смешная, радиатора не потребуется.

Транзисторы работающие как реле в ключевом режиме

Если нужно использовать транзистор в качестве «реле», то есть чтоб он или был полностью открыт, или полностью закрыт (не проводил ток совсем), лучше всего подключить его в конфигурации с общим эмиттером (если это биполярный транзистор) или с общим истоком, если используем полевой МОП-транзистор. В зависимости от того как требуется управлять нагрузкой и надо выбрать соответствующий транзистор:

  • NPN (биполярный) или с каналом N-типа (MOSFET), если отрицательный кабель должен быть отключен, а положительный — подключен постоянно,
  • PNP (биполярный) или с каналом P-типа (MOSFET), если положительный кабель должен быть отключен, а отрицательный подключен постоянно.

Все четыре варианта включения показаны на схемах ниже:

Чтобы включить такой транзистор, на его базу или затвор должно подаваться напряжение:

  • выше, чем на эмиттер или исток (для транзисторов NPN или с каналом N)
  • ниже, чем на эмиттер или исток (для транзисторов PNP или с каналом P).

Напряжение может поступать от микроконтроллера, оптрона или другой схемы управления, например компаратора. Вот как это делается на практике.

В случае биполярных транзисторов надо установить соответствующий высокий базовый ток. Только тогда транзистор может насыщаться и нормально функционировать как реле. А двухпозиционное транзисторное управление ограничит потери рассеиваемой мощности.

Если нужно использовать MOSFET, значение этого управляющего напряжения должно превышать пороговое напряжение UGSth транзистора в несколько раз. Затвор полевого МОП-транзистора не потребляет ток, когда он полностью открыт. Для перезарядки пропускной способности затвора требуется протекание тока. Также обратите внимание на максимальное напряжение затвор-исток, которое обычно составляет 12 — 20 В — подробности в даташите для данного транзистора. Превышение этого значения может привести к выходу из строя радиоэлемента.

Транзистор выключается путем приведения его напряжения база-эмиттер (или затвор-исток) к нулю. Самый простой способ сделать это — подключить управляющий вход к линии, к которой подключен эмиттер (или исток). Остерегайтесь PNP или P-канальных транзисторов — если схема управления запитана от напряжения ниже чем транзистор, его нельзя будет выключить. Тут необходимо использовать дополнительную схему управления или брать транзистор типа NPN (или с каналом N).

 

Резисторы R1 в каждом из решений отключают транзистор, когда управляющий сигнал не подан. Его сопротивление не критично, обычно принимают в пределах 10 — 100 кОм. Резисторы R2 ограничивают ток, протекающий через базы биполярных транзисторов, и их сопротивление можно рассчитать по формуле:

R2 = ((USTER — UBE) · bMIN) / (Icmax · k)

  • Icmax — максимальный ток, который может потреблять нагрузка.
  • bMIN — минимальное значение коэффициента усиления по току данного транзистора.
  • USTER — базовое управляющее напряжение от цепи управления.
  • UBE — напряжение в открытом состоянии база-эмиттер (около 0,7 В для обычных биполярных транзисторов, около 1,5 В для транзисторов Дарлингтона).
  • k — коэффициент ограничения, определяющий степень насыщения транзистора. Предполагается, что должен быть 2 и более.

Резисторы R3 играют аналогичную роль — ограничивают ток затвора. Однако их значение не так критично, потому что они ограничивают ток только при переключении транзистора. Обычно можно использовать тоже 10 — 100 Ом.

Биполярный транзистор или полевой

Когда следует выбирать биполярный транзистор, а когда — полевой МОП-транзистор? В подавляющем большинстве устройств MOSFET победит — у него низкие потери мощности. Биполярный же транзистор стоит рассмотреть при низком управляющем напряжении (например, 1,8 В).

В схемах с биполярными транзисторами резисторы R1 подключались непосредственно рядом с управляющим выходом, а в случае полевых МОП-транзисторов — между затвором и истоком. В связи с этим они не принимают базовый ток биполярных транзисторов, необходимый для их надлежащего насыщения. С другой стороны, в случае полевых МОП-транзисторов резисторы R1 не оказывают такого большого влияния на их работу, потому что сопротивления R1 и R3 существенно различаются, R1 больше R3.

Далее приведены 4 примера управления Arduino нагрузкой, потребляющей ток до 0,5 А. Все питаются от 5 В.

Если данная нагрузка включает в себя катушку или двигатель, соответствующий з

Работа транзистора в ключевом режиме

Для рассмотрения вопроса работы транзистора в ключевом режиме заменим, полупроводниковый элемент на переменный резистор. В качестве регулятора для изменения сопротивления (проводимости у транзистора) служит та самая ручка, которую можно крутить. Таким элементом у транзистора является база, воздействие на которую вызывает изменение сопротивления участка эмиттер-коллектор.

Транзистор может находиться в закрытом состоянии (режим отсечки) или в открытом состоянии (режим насыщения). Насыщение транзистора характеризуется его полным открытым состоянием. Сопротивление перехода коллектор-эмиттер в режиме насыщения транзистора практически равно нулю и его включение в таком режиме без нагрузки приведет к выходу полупроводникового элемента из строя. Ток базы в режиме насыщения транзистора достигает большой величины, а напряжение на переходе база-эмиттер составляет 0,6…0,7В, что для данного перехода очень велико. Входная характеристика транзистора приведена ниже.

Состояния транзистора отсечка и насыщения применяются для работы транзистора в ключевом режиме (аналог контакта реле). Определяющим понятием работы транзистора в ключевом режиме является то, что ток базы транзистора небольшой величины (ток управления) управляет большим током коллектора (нагрузки), который может превосходить ток базы в десятки раз. Для определения коэффициента усиления транзистора при ключевом режиме применяют понятие «коэффициента усиления по току в режиме большого сигнала» (β «бетта»), рассчитываемый через отношение максимального тока коллектора к минимальному току базы. Для современных полупроводниковых транзисторов коэффициент β лежит в пределах от 10 до 20.

Помимо одиночных транзисторов для работы в ключевом режиме применяют «дарлингтоновские» или составные транзисторы. Коэффициент усиления таких схем может достигать 1000. Пример схемы ключевого каскада приведен ниже.

В качестве нагрузки, включаемой транзистором, используется лампочка. Назначение резистора Rбэ – перевести транзистор в закрытое состояние при размыкании контакта за счет выравнивания потенциалов базы и эмиттера. Основной задачей для такой схемы является правильный подбор сопротивления в цепи базы Rб, которое позволит обеспечить работу лампочки с максимальным накалом.

Исходные данные для расчета:
— номинальное напряжение лампочки 12В; номинальный ток – 100 мА;
— коэффициент β=10;
— падение напряжение база-эмиттерUбэ=0,6 В.

Для начала рассчитаем ток в базе: Iб = Iк / β = 100 / 10 = 10(мА). Напряжение на переходе база-эмиттер: Uбэ = 5В – 0,6В = 4,4В. Из закона Ома находим сопротивление резистора: Rб = Uбэ / Iб = 4,4В / 0,01А = 440 Ом. Из стандартного ряда сопротивлений выбираем резистор Rбэ=430 Ом.



Всего комментариев: 0


Транзисторный ключ ⋆ diodov.net

С развитием электронной импульсной техники транзисторный ключ в том или ином виде применяются практически в любом электронном устройстве. Более того, преимущественно количество микросхем состоят из десятков, сотен и миллионов транзисторных ключей. А в цифровой технике вообще не обходятся без них. В обще современный мир электроники не мыслим без рассмотренного в данной статье устройства.

Здесь мы научимся выполнять расчет транзисторного ключа на биполярном транзисторе (БТ). Одно из распространённых их применений – согласование микроконтроллера с относительно мощной нагрузкой: мощными светодиодами, семисегментными индикаторами, шаговыми двигателями и т.п.

Основная задача любого транзисторного ключа состоит в коммутации мощной нагрузки по команде маломощного сигнала.

Электронные ключи глубоко проникли и укоренились в области автоматики, вытеснив механические электромагнитные реле. В отличие от электромагнитного реле транзисторный ключ лишен подвижных механических элементов, что значительно увеличивает ресурс, быстродействие и надежность устройства. Скорость включения и отключения, то есть частота работы несравнимо выше с реле.

Однако и электромагнитные реле обладают полезными свойствами. Падение напряжения на замкнутых контактах реле значительно меньше, чем на полупроводниковых элементах, находящихся в открытом состоянии. Кроме того реле имеет гальваническую развязку высоковольтных цепей с низковольтными.

Как работает транзисторный ключ

В данной статье мы рассмотрим, как работает транзисторный ключ на биполярном транзисторе. Такие полупроводниковые элементы производятся двух типов – n-p-n и p-n-p структуры, которые различаются типом применяемого полупроводника (в p-полупроводнике преобладают положительные заряды – «дырки»; в n-полупроводнике – отрицательные заряды – электроны).

Выводы БТ называются база, коллектор и эмиттер, которые имеет графическое обозначение на чертежах электрических схем, как показано на рисунке.

С целью понимания принципа работы и отдельных процессов, протекающих в биполярных транзисторах, их изображают в виде двух последовательно и встречно соединенных диодов.

Наиболее распространенная схема БТ, работающего в ключевом режиме, приведена ниже.

Чтобы открыть транзисторный ключ нужно подвести потенциалы определенного знака к обеим pn-переходам. Переход коллектор-база должен быть смещен в обратном направлении, а переход база-эмиттер – в прямом. Для этого электроды источника питания UКЭ подсоединяют к выводам базы и коллектора через нагрузочный резистор RК. Обратите внимание, положительный потенциал UКЭ посредством RК подается на коллектор, а отрицательный потенциал – на эмиттер. Для полупроводника p-n-p структуры полярность подключения источника питания UКЭ изменяется на противоположную.

Резистор в цепи коллектора RК служит нагрузкой, которая одновременно защищает биполярный транзистор от короткого замыкания.

Команда на открытие БТ подается управляющим напряжением UБЭ, которое подается на выводы базы и эмиттера через токоограничивающий резистор RБ. Величина UБЭ должна быть не меньше 0,6 В, иначе эмиттерный переход полностью не откроется, что вызовет дополнительные потери энергии в полупроводниковом элементе.

Чтобы не спутать полярность подключения напряжения питания UКЭ и управляющего сигнала UБЭ БТ разной полупроводниковой структуры, обратите внимание на направление эмиттерной стрелки. Стрелка обращена в сторону протекания электрического тока. Ориентируясь на направление стрелки достаточно просто расположить правильным образом источники напряжения.

Входная статическая характеристика

Биполярный транзистор может работать в двух принципиально разных режимах – в режиме усилителя и в режиме ключа. Работа БТ в усилительном режиме уже подробно рассмотрена с примерами расчетов в нескольких статьях. Очень рекомендую ознакомиться с ними. Ключевой режим работы БТ рассматривается в данной статье.

Как и электрический ключ, транзисторный ключ может (и должен) находится только в одном из двух состояний – включенном (открытом) и выключенном (закрытом), что отображено на участках нагрузочной прямой, расположенной на входной статической характеристике биполярного транзистора. На участке 3-4 БТ закрыт, а на его выводах потенциалы UКЭ. Коллекторный ток IК близок к нулю. При этом ток в цепи базы IК также отсутствует, собственно по этой причине БТ и закрыт. Область на входной статической характеристике, отвечающая закрытому состоянию называется областью отсечки.

Второе состояние – БТ полностью открыт, что показано на участке 1-2. Как видно из характеристики, ток IКимеет некое значение, которое зависит от величин UКЭ и RК. В цепи база-эмиттер также протекает ток IБ, величина которого достаточна для полного открытия биполярного транзистора.

Падение напряжения на pn-переходе коллектор-эмиттер в зависимости от серии транзистора и его мощности находится в пределах от сотых до десятых вольта. Такая рабочая область БТ, в которой он полностью открыт, называется областью насыщения.

В третьей области полупроводниковый ключ занимает среднее положение между открыто-закрыто, то есть он приоткрыт или призакрыт. Такая область, используется для транзистора, работающего усилителем, называется активной областью.

Расчет транзисторного ключа

Расчет транзисторного ключа на биполярном транзисторе выполним на примере подключения светодиода к источнику питания 9 В, то есть к кроне. В качестве управляющего сигнала подойдет обычная батарейка 1,5 В. Для примера, возьмем БТ n-p-n структуры серии 2222A. Хотя подойдет любой другой, например 2N2222, PN2222, BC547 или советский МП111Б и т.п.

Рассматриваемую схему транзисторного ключа довольно просто собрать на макетной плате и произвести соответствующие измерения с помощью мультиметра, тем самым оценить точность наших расчетов.

Далее все расчеты сводятся к определению сопротивлений резистора коллектора RК и базы RБ. Хотя более логично, особенно при подключении мощной нагрузки, сначала подобрать транзистор по току и напряжению, а затем рассчитывать параметры резисторов. Однако в нашем и большинстве других случаев ток нагрузки относительно не большей и U источника питания невысокое, поэтому подходит практически любой маломощный БТ.

Все исходные данные сведены в таблицу.

Порядок расчета

Расчет начнем с определения сопротивления резистора RК, который предназначен для ограничения величины тока IК, протекающего через светодиод VD. RК находится по закону Ома:

Величина IК равна IVD = 0,01 А. Найдем падение напряжения на резисторе:

Значение UКЭ нам известно, оно равно 9 В, ΔUVD также известно и равно 2 В. А падение напряжения на переходе коллектор-эмиттер для большинства современных маломощных БТ составляет до 0,1 В. Поэтому примем с запасом ΔUКЭ = 0,1 В. Теперь подставим все значения в выше представленную формулу:

Находим сопротивление RК:

Ближайший стандартный номинал резистора 680 Ом и 750 Ом. Выбираем резистор большего номинала RК = 750 Ом. При этом ток, протекающий через светодиод IVD в цепи коллектора, несколько снизится. Пересчитаем его величину:

Теперь осталось определить сопротивление резистора в цепи базы RБ:

Формула содержит сразу две неизвестны – ΔURб и IБ. Найдем сначала падение напряжения на резисторе ΔURб:

UБЭ нам известно – 1,5 В. А падение напряжения на переходе база-эмиттер в среднем принимают 0,6 В, отсюда:

Для определения тока базы IБ необходимо знать IК, который мы ранее пересчитали (IК = 0,0092 А), и коэффициент усиления биполярного транзистора по току, обозначаемы буквой β (бэта). Коэффициент β всегда приводится в справочниках или даташитах, но гораздо удобнее и точнее определить его с помощью мультиметра. Используемый нами 2222A имеет β = 231 единицу.

Из таблицы стандартных номиналов резисторов выбираем ближайший меньший номинал (для гарантированного открытия БТ) 22 кОм.

Для более точного выбора параметров вместо постоянных резисторов в цепи включают переменные резисторы, включенные по схеме, приведенной ниже.

Таким образом, мы выполнили расчет транзисторного ключа, то есть определили RК и RБ по заданным исходным данным. Более полный расчет включает определение мощности рассеивания указанных резисторов, но ввиду незначительной нагрузки в нашем примере, подойдут резисторы с минимальной мощность рассеивания.

Еще статьи по данной теме

Биполярные транзисторы. Назначение, виды, характеристики

Транзисторы предназначены  для решения задач усиления  и переключения электрических сигналов. Время бурного развития транзисторов –  50 –  80 годы прошлого столетия. В настоящее время следует признать, что транзисторы как отдельные компоненты используются в схемах не так часто. Массово они применяются только внутри интегральных схем.

Различают  транзисторы  двух  видов:  биполярные  и  униполярные  (полевые).

В  биполярных транзисторах  в создании токов участвуют как электроны (отрицательно  заряженные  частицы),  так  и  дырки  (положительно  заряженные частицы). Отсюда название вида транзисторов.

Биполярные транзисторы устроены сложнее полупроводниковых диодов, они имеют два pn-перехода и три вывода,  называемых  база,  эмиттер  и  коллектор.  Различают  два  вида  БТ:  NPN и PNP.

Устройство, особенности и схемотехнику  будем рассматривать на при-мере  NPN-транзисторов  –  наиболее  используемых  в  современной  практике, для  PNP-транзисторов рассуждения аналогичны и различия заключаются толь-ко в подключении питающих напряжений.

Устройство и принцип действия биполярных транзисторов

Устройство и принцип действия  NPN-транзисторов  показаны  на  рисунке 2.19.

NPN-транзистор  имеет  три  микроэлектронные  области:  две  –  с  N-проводимостью и одну  –  с  P  –  проводимостью. Каждая область имеет вывод с указанными на рисунке названиями.

Структуру  NPN-БТ можно также представить в уже более понятных обозначениях: как два диода, соединённых анодами в области базы.

На рисунке  2.20   показан наиболее распространённый способ использования биполярных транзисторов, когда на базу и коллектор подаются положительные (+) потенциалы  по отношению  к  эмиттеру.  При  этом  положительный  потенциал  коллектора выше потенциала базы!  Другими словами, коллекторный  pn-переход  смещён в обратном направлении  (смотрите,  коллекторный диод формально  закрыт), а базовый – в прямом.

При этом если в базу задать ток, то в силу структурной особенности кристалла  биполярного транзистора,  этот  базовый  ток  Iб будет  «подсасывать»  из  коллекторной  области электроны и формировать коллекторный ток

Iк= β*Iб ,  (2.7)

где β> 1 называется коэффициентом усиления тока базы.

Типовые паспортные значения β = 20÷500. Ток эмиттера, таким образом, в соответствии с первым законом Кирхгофа

Iэ = (β +1)*Iб   (2.8)

Линейный режим работы биполярных транзисторов

В линейном режиме работы биполярный транзистор усиливает входные сигналы.

Простейшие транзисторные схемы, с помощью которых можно усиливать малые напряжения  показаны на рисунке 2.21.  Схемы  такой конфигурации  принято называть схемами (каскадами) с общим эмиттером (схемы ОЭ), т.к. один из выводов БТ  –  эмиттер,  используется для  формирования как входного, так и выходного сигнала  –  является общим для них.  Поясним работу такого усилителя.

Пусть  усиливаемый  сигнал  –  переменное  синусоидальное  напряжение, которое  подаётся  на  вход  схемы  общего эмиттера.  Усиленный  сигнал  снимается  с  выхода схемы ОЭ.  Усиленный сигнал имеет ту же форму синусоиды, но следует в противофазе с входным: когда входная синусоида возрастает, выходная синусоида спадает.

Основная  характеристика  усилителя  –  коэффициент  усиления  входного напряжения, который рассчитывается как

Кус=ΔUвых/ΔUвх ≈ R2/rэ,   (2.9)

где  rэ  –  сопротивление  эмиттера.  Сопротивление  эмиттера  можно  подсчитать по формуле:

rэ= ϕт/Iэ = k*T/q*Iэ ≈ k*T/q*Iк,    (2.10)

где  k — постоянная Больцмана,

Т – температура в кельвинах,

q – заряд электрона.

При температуре +25ºС (300 К) ϕт = 26 мВ.

Примечания

  1. Существует графический  способ  оценки  rэ.  Для  этого  требуется  знание  входной вольт-амперной характеристики выбранного биполярного транзистора;
  2. Коэффициент усиления сигнала по напряжению, как видно из формулы, зависит от температуры. В том случае, когда диапазон работы усилительной схемы широк, применяют чуть более сложные модификации схемы объединенных эмиттеров, более устойчивые к изменению температуры.

Следует иметь в виду, что выражение для  Кус приблизительное и оно будет тем более справедливо, чем больше β, хорошо, если β >100.

Расчёт схемы ОЭ по постоянному току

На этом этапе нам необходимо рассчитать значения  R1и  R2, которые  задают  режим по постоянному току, а  R2кроме  того входит в выражение для Кус.

Работа биполярного транзистора описывается входными и выходными характеристиками (показано  на  рисунке  2.22).  Входная  характеристика  Iб=ʄ(Uэ),  как  и  следовало  ожидать,  аналогична  характеристике  п/п  диода.  Однако  у  транзистора  поведение этой  характеристики  зависит  (несильно)  ещё  и  от  напряжения  Uкэ.  Поэтому  в технических  описаниях  на  выбранный  транзистор  даются  семейства  входных характеристик, где параметром является  Uкэ. Выходная характеристика ‒ также семейство зависимостей типа Iк= ʄ (Uкэ), параметром для которых является базовый ток Iб.

Оба семейства имеют принципиально нелинейное поведение, однако, это не мешает их использовать для режима линейного усиления. Для этого надо построить  нагрузочную прямую  на выходном семействе,  рассчитать положение на ней рабочей точки (РТ) и определить из графика начальный ток базы.

Нагрузочная прямая строится, как и раньше для диода, между двумя аналогичными точками: 

Iк=  Eпит/R2  и  Uкэпит. В нашем расчёте  мы задались  значениями  Епит=15 В и  Iк =  Eпит/R2  =30 мА. Тогда  R2=15/0,03 = 500 Ом. Строим прямую и выбираем положение РТ  –  это середина  линейного участка    (показано  на  рисунке  2.22). Линейным участком  будем называть участок нагрузочной прямой  между  напряжением  насыщения  и  напряжением  отсечки.  Параметры РТ в нашем примере соответствуют следующим значениям (показано  на рисунке 2.23): 

Uкэ.рт  ≈ 7 В,  Iк.рт  ≈ 16 мА,  Iб.рт ≈ 0,3 мА.

Далее: выбираем из семейства входных ту характеристику, которая соответствует найденному значению Uкэ≈ 7,0 В, задаём Iб = 0,3 мА, и определяем Uбэ≈ 0,65 В. Строим актуальный участок входной нагрузочной прямой и рассчитываем R1= (15-0,65) В/ 0,3 мА = 45 кОм.

Примечание   –  На практике расчёт проводиться несколько сложнее.

Рассчитаем коэффициент усиления каскада при t°=25 °С.

Кус = Iэ R2/ ϕт = 16 мА × 500 Ом/ 26 мВ ≈ 308.

Важно  теперь  проверить:  не  превышает  ли  мощность,  рассеиваемая  на коллекторе, номинальное паспортное значение выбранного биполярного транзистора.

Расчёт ведётся в рабочей точке:  Uкэ.рт  ×Iк.рт  = 7 В×16 мА=112 мВт. Это значение постоянно и не меняется в режиме усиления входного сигнала, когда напряжения и токи коллектора меняются в широком диапазоне. Это объясняется тем, что напряжение и ток коллектора меняются в этой схеме в  противофазе: когда ток увеличивается, напряжения уменьшается, и наоборот.

Расчёт схемы ОЭ по переменному току

Пример формирования выходных сигналов схемы с ОЭ под воздействием изменения тока базы показан на рисунке 2.23. Под воздействием синусоидально изменяющегося тока базы (синусоида, изображённая пунктиром)  РТ смещается вдоль нагрузочной прямой  сначала вверх до своего максимума, а затем вниз до своего минимума.

По рисунку видим, что при изменении тока базы в диапазоне  от  0,05  до 0,55  мА  с  амплитудой  (0,55-0,05)/2  =  250  мкА,  ток  коллектора  изменяется  в диапазоне примерно от 3 мА до 29 мА с амплитудой (29-3)/2 =  13 мА. Имеем отсюда следующее значение коэффициента усиления по току:

Кi= 13 000/250 = 52

Напряжение коллектора изменяется в диапазоне примерно от 0,5 В до 13 В с амплитудой (13-0,5)/2 = 6,25 В. Ещё раз подчеркнём, что изменение напряжения коллектора осуществляется в противофазе  с изменением входного (усиливаемого) тока: при увеличении тока базы увеличивается коллекторный ток и уменьшается коллекторное напряжение!

Пока мы ничего не говорили о конденсаторах  С1и  С2.  Это  так называемые    разделительные конденсаторы. Они не пропускают  постоянные составляющие усиливаемых напряжений  и пропускают только переменные. Их значения  должны  быть  достаточно  большими:  чем  больше  значения  ёмкостей,  тем меньше  ʄн –  минимальная  усиливаемая  частота.  Обычно  эти  конденсаторы имеют значения от 1 до 100 мкФ.

Ключевой режим работы биполярных транзисторов

Смотрим на выходные характеристики БТ.  При  подаче большого тока  в базу (>0,3 мА) напряжение  Uкэ уменьшается до своего минимального значения (типовое  значение  0,2  В).  Говорят  «транзистор  переходит  в  режим  насыщения».

С  другой  стороны,  если  в  базу  ток  не  подавать  (Iб ~ 0),  то  коллекторный ток прерывается и напряжение на выходе каскада будет равно напряжению питания Епит ‒ биполярный транзистор будет находится в «режиме отсечки».

Собственно эти два состояния БТ и описывают  ключевой режим его работы:  ключ (транзистор) включён или выключен, нагрузка подключена к питанию или отключена. Простейшие  ключевые схемы  на БТ показаны на рисунке 2.24.  На  представленных  принципиальных  схемах  показано,  что  управление схемами осуществляется с помощью цифровых сигналов: логического нуля  («0»)и  логической единицы  («1»). В современной практике такие сигналы формируются чаще всего микроконтроллерами.

Обращаем внимание, что оба вида БТ используется в схемах с плюсовым (положительным) питанием (+Епит) и нагрузка  в обоих случаях расположена в коллекторной  цепи  БТ.  При  этом:  логическая  единица  в  одном  из  случаев (NPN-транзистор) замыкает ключ, а в другом (PNP-транзистор) – размыкает.

Условие замыкания ключа: Iб  *  β  >Iк.нас  ≈  Епит/Rнагр. Ток базы приближённо можно рассчитать для обоих случаев так: Iб= (Епит-0,6)/R1.

Зная  напряжение  питания,  сопротивление  нагрузки  и  коэффициент  усиления тока базы β, можно рассчитать по указанным формулам R1.

Конструктивные разновидности биполярных транзисторов

Конструктивные разновидности биполярных транзисторов показаны на рисунке 2.25.

Проверка работоспособности биполярных транзисторов

Многие  мультиметры  позволяют  измерять  коэффициент  усиления  тока базы (β; h21) транзисторов  с гибкими выводами.  На рисунке  2.26    показано типовое решение этой задачи. В специальный разъём, соблюдая указанный на лицевой панели порядок, подключается транзистор.  Значение  β  высвечивается на дисплее.

Примечания 

  1. NPN- и PNP-транзисторы имеют раздельные гнёзда для подключения.
  2. Для обоих типов транзисторов предусмотрено по два гнезда для подключения эмиттера. Это связано с возможными конструктивными различиями в цоколёвках транзисторов.

Работа транзистора в качестве переключателя

В этом руководстве по транзистору мы узнаем о работе транзистора в качестве переключателя. Переключение и усиление — это две области применения транзисторов и транзисторов, поскольку коммутатор является основой для многих цифровых схем. Мы изучим различные режимы работы (активный, насыщение и отключение) транзистора, то, как транзистор работает как переключатель (как NPN, так и PNP), а также некоторые практические прикладные схемы, использующие транзистор в качестве переключателя.

Введение

Транзисторы — это трехслойное полупроводниковое устройство с тремя выводами, которое часто используется в операциях усиления и переключения сигналов. Как одно из важных электронных устройств, транзистор нашел применение в огромном количестве приложений, таких как встроенные системы, цифровые схемы и системы управления.

Вы можете найти транзисторы как в цифровой, так и в аналоговой области, поскольку они широко используются для различных приложений, таких как схемы переключения, схемы усилителя, схемы питания, цифровые логические схемы, регуляторы напряжения, схемы генераторов и т. Д.

В этой статье основное внимание уделяется переключающему действию транзистора и дается краткое объяснение транзистора как переключателя.

Краткое описание BJT

Существует два основных семейства транзисторов: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET). Биполярный транзистор или просто БЮТ представляет собой трехслойное полупроводниковое устройство с тремя выводами и двумя переходами. Он состоит из двух PN-переходов, соединенных спина к спине с общим средним слоем.

Когда мы говорим термин «транзистор», он часто относится к BJT. Это устройство, управляемое током, в котором выходной ток регулируется входным током. Название биполярное указывает на то, что два типа носителей заряда, то есть электроны и дырки, проводят ток в BJT, где дырки являются носителями положительного заряда, а электроны — носителями отрицательного заряда.

Транзистор имеет три области: базу, эмиттер и коллектор. Эмиттер представляет собой сильно легированный вывод и испускает электроны в базу.Вывод базы слегка легирован и передает электроны, инжектированные эмиттером, на коллектор. Вывод коллектора умеренно легирован и собирает электроны с базы. Этот коллектор больше по сравнению с двумя другими областями, поэтому он может рассеивать больше тепла.

BJT бывают двух типов: NPN и PNP. Оба они работают одинаково, но различаются по смещению и полярности источника питания. В транзисторе PNP материал N-типа зажат между двумя материалами P-типа, тогда как в случае транзистора NPN материал P-типа зажат между двумя материалами N-типа.

Эти два транзистора могут иметь разные типы, такие как общий эмиттер, общий коллектор и общая база.

Если вы хотите работать с MOSFET в качестве коммутатора, сначала изучите основы MOSFET.

Режимы работы транзисторов

В зависимости от условий смещения, таких как прямое или обратное, транзисторы имеют три основных режима работы, а именно области отсечки, активности и насыщения.

Активный режим

В этом режиме транзистор обычно используется в качестве усилителя тока.В активном режиме два перехода смещены по-разному, что означает, что переход эмиттер-база смещен в прямом направлении, тогда как переход коллектор-база смещен в обратном направлении. В этом режиме ток течет между эмиттером и коллектором, и величина протекающего тока пропорциональна базовому току.

Режим отсечки

В этом режиме коллекторный базовый переход и эмиттерный базовый переход смещены в обратном направлении. Поскольку оба PN-перехода имеют обратное смещение, ток почти не протекает, за исключением небольших токов утечки (обычно порядка нескольких наноампер или пикоампер).BJT в этом режиме выключен и, по сути, представляет собой разомкнутую цепь.

Область отсечки в основном используется в коммутационных и цифровых логических схемах.

Режим насыщения

В этом режиме работы переходы эмиттер-база и коллектор-база смещены в прямом направлении. Ток свободно течет от коллектора к эмиттеру с практически нулевым сопротивлением. В этом режиме транзистор полностью включен и представляет собой замкнутую цепь.

Область насыщения также в основном используется в коммутационных и цифровых логических схемах.

На рисунке ниже показаны выходные характеристики BJT. На приведенном ниже рисунке область отсечки имеет рабочие условия, когда выходной ток коллектора равен нулю, нулевой базовый входной ток и максимальное напряжение коллектора. Эти параметры приводят к образованию большого обедненного слоя, который также не позволяет току течь через транзистор. Следовательно, транзистор полностью выключен.

Аналогично, в области насыщения транзистор смещен таким образом, что прикладывается максимальный ток базы, что приводит к максимальному току коллектора и минимальному напряжению коллектор-эмиттер.Это приводит к уменьшению размера обедненного слоя и пропусканию максимального тока через транзистор. Следовательно, транзистор полностью открыт.

Следовательно, из приведенного выше обсуждения мы можем сказать, что транзисторы можно заставить работать как твердотельный переключатель ВКЛ / ВЫКЛ, работая транзистором в областях отсечки и насыщения. Этот тип приложения переключения используется для управления светодиодами, двигателями, лампами, соленоидами и т. Д.

Транзистор как переключатель

Транзистор может использоваться для переключения для размыкания или замыкания цепи.Твердотельное переключение этого типа обеспечивает значительную надежность и меньшую стоимость по сравнению с обычными реле.

В качестве переключателей можно использовать транзисторы NPN и PNP. В некоторых приложениях в качестве переключающего устройства используется силовой транзистор, при этом может потребоваться другой транзистор уровня сигнала для управления мощным транзистором.

NPN-транзистор как переключатель

На основе напряжения, приложенного к клемме базы, выполняется операция переключения транзистора.Когда между базой и эмиттером приложено достаточное напряжение (V IN > 0,7 В), напряжение коллектор-эмиттер примерно равно 0. Следовательно, транзистор действует как короткое замыкание. Коллекторный ток V CC / R C протекает через транзистор.

Точно так же, когда на вход не подается напряжение или нулевое напряжение, транзистор работает в области отсечки и действует как разомкнутая цепь. В этом типе коммутационного соединения нагрузка (здесь светодиод используется в качестве нагрузки) подключается к коммутационному выходу с контрольной точкой.Таким образом, когда транзистор включен, ток будет течь от источника к земле через нагрузку.

Пример транзистора NPN в качестве переключателя

Рассмотрим пример ниже, где сопротивление базы R B = 50 кОм, сопротивление коллектора R C = 0,7 кОм, V CC составляет 5 В, а значение бета равно 125. В основании подается входной сигнал от 0 В до 5 В. Мы собираемся увидеть выход на коллекторе, изменяя напряжение V I в двух состояниях: 0 и 5 В, как показано на рисунке.

I C = V CC / R C , когда V CE = 0

I C = 5 В / 0,7 кОм

I C = 7,1 мА

Базовый ток I B = I C / β

I B = 7,1 мА / 125

I B = 56,8 мкА

Из приведенных выше расчетов максимальное или пиковое значение тока коллектора в цепи составляет 7,1 мА, когда напряжение V CE равно нулю.И соответствующий ток базы для этого тока коллектора составляет 56,8 мкА.

Итак, ясно, что при увеличении тока базы выше 56,8 мкА транзистор переходит в режим насыщения.

Рассмотрим случай, когда на входе подается нулевое напряжение. Это приводит к тому, что базовый ток равен нулю, и, поскольку эмиттер заземлен, базовый переход эмиттера не смещен в прямом направлении. Следовательно, транзистор находится в выключенном состоянии, а выходное напряжение коллектора равно 5 В.

Когда V I = 0 В, I B = 0 и I C = 0,

V C = V CC — (I C * R C )

= 5V — 0

= 5V

Предположим, что приложенное входное напряжение составляет 5 вольт, тогда базовый ток можно определить, применив закон Кирхгофа для напряжения.

Когда V I = 5 В,

I B = (V I — V BE ) / R B

Для кремниевого транзистора, V BE = 0.7 В

Таким образом, I B = (5 В — 0,7 В) / 50 кОм

= 86 мкА, что больше 56,8 мкА

Следовательно, поскольку базовый ток больше 56,8 мкА, транзистор будет доведен до насыщения, т. е. он будет полностью включен, когда на входе приложено 5 В. Таким образом, выход на коллекторе становится примерно нулевым.

Транзистор PNP как переключатель

Транзистор PNP работает так же, как NPN для операции переключения, но ток течет от базы.Этот тип переключения используется для конфигураций с отрицательным заземлением. Для транзистора PNP клемма базы всегда смещена отрицательно по отношению к эмиттеру.

При этом переключении базовый ток протекает, когда базовое напряжение более отрицательное. Проще говоря, низкое напряжение или более отрицательное напряжение вызывает короткое замыкание транзистора, в противном случае это будет разомкнутая цепь.

При этом нагрузка подключается к транзисторному коммутационному выходу с опорной точкой. Когда транзистор включен, ток течет от источника через транзистор к нагрузке и, наконец, к земле.

Пример транзистора PNP в качестве переключателя

Подобно схеме транзисторного переключателя NPN, вход схемы PNP также является базой, но эмиттер подключен к постоянному напряжению, а коллектор подключен к земле через нагрузку, как показано на рисунке .

В этой конфигурации база всегда смещена отрицательно по отношению к эмиттеру за счет соединения базы на отрицательной стороне и эмиттера на положительной стороне входного источника питания. Итак, напряжение V BE отрицательное, а напряжение питания эмиттера по отношению к коллектору положительное (V CE положительное).

Следовательно, для проводимости транзистора эмиттер должен быть более положительным как по отношению к коллектору, так и по отношению к базе. Другими словами, база должна быть более отрицательной по отношению к эмиттеру.

Для расчета токов базы и коллектора используются следующие выражения.

I C = I E — I B

I C = β * I B

I B = I C / β

Рассмотрим пример выше, что нагрузка требует тока 100 мА, а бета-значение транзистора равно 100.Тогда ток, необходимый для насыщения транзистора, равен

Минимальный базовый ток = ток коллектора / β

= 100 мА / 100

= 1 мА

Следовательно, когда базовый ток равен 1 мА, транзистор будет полностью открыт. . Но для гарантированного насыщения транзистора требуется практически на 30 процентов больше тока. Итак, в этом примере требуемый базовый ток составляет 1,3 мА.

Практические примеры транзистора в качестве переключателя

Транзистор для переключения светодиода

Как обсуждалось ранее, транзистор можно использовать в качестве переключателя.На схеме ниже показано, как транзистор используется для переключения светоизлучающего диода (LED).

  • Когда переключатель на клемме базы разомкнут, ток через базу не течет, поэтому транзистор находится в состоянии отсечки. Таким образом, транзистор работает как разомкнутый контур, и светодиод гаснет.
  • Когда переключатель замкнут, базовый ток начинает течь через транзистор, а затем достигает насыщения, в результате чего светодиод загорается.
  • Резисторы установлены для ограничения токов, протекающих через базу и светодиод.Также можно изменять интенсивность светодиода, изменяя сопротивление на пути тока базы.

Транзистор для работы реле

Также можно управлять работой реле с помощью транзистора. С помощью небольшой схемы транзистора, способного возбуждать катушку реле, так что внешняя нагрузка, подключенная к ней, управляется.

  • Рассмотрим приведенную ниже схему, чтобы узнать, как работает транзистор для подачи питания на катушку реле.Входной сигнал, приложенный к базе, приводит к переходу транзистора в область насыщения, в результате чего в цепи происходит короткое замыкание. Таким образом, на катушку реле подается напряжение и срабатывают контакты реле.
  • При индуктивных нагрузках, особенно при переключении двигателей и катушек индуктивности, внезапное отключение питания может поддерживать высокий потенциал на катушке. Это высокое напряжение может привести к значительному повреждению остальной цепи. Следовательно, мы должны использовать диод параллельно с индуктивной нагрузкой, чтобы защитить схему от индуцированных напряжений индуктивной нагрузки.

Транзистор для управления двигателем
  • Транзистор также может использоваться для однонаправленного управления и регулирования скорости двигателя постоянного тока путем переключения транзистора через равные промежутки времени, как показано на рисунке ниже.
  • Как упоминалось выше, двигатель постоянного тока также является индуктивной нагрузкой, поэтому мы должны разместить на нем диод свободного хода для защиты цепи.
  • Переключая транзистор в областях отсечки и насыщения, мы можем многократно включать и выключать двигатель.
  • Также можно регулировать скорость двигателя от состояния покоя до полной скорости, переключая транзистор на различных частотах. Мы можем получить частоту переключения от управляющего устройства или микросхемы, например микроконтроллера.

У вас есть четкое представление о том, как транзистор можно использовать в качестве переключателя? Мы надеемся, что предоставленная информация с соответствующими изображениями и примерами проясняет всю концепцию переключения транзисторов. Далее, если у вас есть сомнения, предложения и комментарии, вы можете написать ниже.

Заключение

Полное руководство по использованию транзистора в качестве переключателя. Изучите основы биполярного переходного транзистора, области работы транзистора, работу транзисторов NPN и PNP в качестве переключателя, практическое применение переключающего транзистора.

Транзисторы — learn.sparkfun.com

Добавлено в избранное Любимый 79

Приложения I: Коммутаторы

Одно из самых фундаментальных применений транзистора — использовать его для управления потоком энергии к другой части схемы — используя его в качестве электрического переключателя.Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.

Транзисторные переключатели являются важными блоками для построения схем; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.

Транзисторный переключатель

Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:

Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.

В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом выводе. Вывод микроконтроллера ввода / вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.

Когда напряжение на базе превышает 0,6 В (или любое другое значение V th вашего транзистора), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0.6V транзистор находится в режиме отсечки — ток не течет, потому что это похоже на разрыв цепи между C и E.

Схема, приведенная выше, называется переключателем нижнего уровня , потому что переключатель — наш транзистор — находится на стороне низкого (заземления) цепи. В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:

Подобно схеме NPN, база — это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер подключен к высокому уровню, а нагрузка подключена к транзистору со стороны земли.

Эта схема работает так же хорошо, как и коммутатор на основе NPN, но есть одно огромное отличие: для включения нагрузки база должна быть низкой. Это может вызвать сложности, особенно если высокое напряжение нагрузки (V CC — 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить выключателем , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .

Базовые резисторы!

Вы заметите, что каждая из этих схем использует последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.

Напомним, что в некотором смысле транзистор — это просто пара соединенных между собой диодов. Мы смещаем диод база-эмиттер в прямом направлении, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток.Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.

Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.

Резистор должен быть достаточно большим, чтобы эффективно ограничить ток, но достаточно маленьким, чтобы питать базу достаточным током .Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.

Цифровая логика

Транзисторы

можно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.

(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)

Инвертор

Вот схема транзистора, которая реализует инвертор , или НЕ затвор:

Инвертор на транзисторах.

Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером. Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтянут до VCC

.

(На самом деле это фундаментальная конфигурация транзистора под названием с общим эмиттером .Подробнее об этом позже.)

И Ворота

Вот пара транзисторов, используемых для создания логического элемента И с 2 входами :

2-входной логический элемент И на транзисторах.

Если один из транзисторов выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то выходной сигнал схемы также высокий.

OR Выход

И, наконец, вот логический элемент ИЛИ с 2 входами :

Затвор ИЛИ с 2 входами, построенный на транзисторах.

В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню. Если оба транзистора выключены, то через резистор выводится низкий уровень.

Н-образный мост

H-мост — это транзисторная схема, способная приводить в движение двигатели как по часовой, так и против часовой стрелки . Это невероятно популярная трасса — движущая сила бесчисленных роботов, которые должны уметь двигаться как на вперед, так и на назад.

По сути, H-мост представляет собой комбинацию четырех транзисторов с двумя входными линиями и двумя выходами:

Вы можете догадаться, почему это называется Н-мостом?

(Примечание: обычно у хорошо спроектированного H-моста есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)

Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.

H-мост имеет таблицу истинности, которая выглядит примерно так:

2525
Вход A Вход B Выход A Выход B Направление двигателя
0 0 1 1 Остановлено (торможение)
1 0 По часовой стрелке
1 0 0 1 Против часовой стрелки
1 1 0 с торможением 0

Осцилляторы

Генератор — это схема, которая генерирует периодический сигнал, который колеблется между высоким и низким напряжением.Генераторы используются во всевозможных схемах: от простого мигания светодиода до генерации тактового сигнала для управления микроконтроллером. Есть много способов создать схему генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы.

Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух дополняющих осциллирующих сигналов.

Помимо двух транзисторов, конденсаторы являются настоящим ключом к этой схеме.Колпачки поочередно заряжаются и разряжаются, в результате чего два транзистора поочередно включаются и выключаются.

Анализ работы этой схемы — отличное исследование работы как конденсаторов, так и транзисторов. Для начала предположим, что C1 полностью заряжен (сохраняется напряжение около В CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:

  • Если Q1 включен, то левая пластина C1 (на схеме) подключена примерно к 0 В. Это позволит C1 разряжаться через коллектор Q1.
  • Пока C1 разряжается, C2 быстро заряжается через резистор меньшего номинала — R4.
  • Когда C1 полностью разрядится, его правая пластина будет подтянута примерно до 0,6 В, что включит Q2.
  • На этом этапе мы поменяли местами состояния: C1 разряжен, C2 заряжен, Q1 выключен, а Q2 включен. Теперь танцуем в другую сторону.
  • Q2 включен, позволяет C2 разряжаться через коллектор Q2.
  • Когда Q1 выключен, C1 может относительно быстро заряжаться через R1.
  • Как только C2 полностью разрядится, Q1 снова включится, и мы вернемся в состояние, в котором мы начали.

Может быть трудно с головой окунуться. Вы можете найти еще одну отличную демонстрацию этой схемы здесь.

Выбирая определенные значения для C1, C2, R2 и R3 (и сохраняя R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора:

Итак, при значениях для конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора будет около 1.5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду.


Как вы, наверное, уже заметили, существует тонн схем, в которых используются транзисторы. Но мы почти не коснулись поверхности. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Пришло время увидеть больше примеров!



← Предыдущая страница
Режимы работы

Его режимы работы и его работа

Основным устройством в области электротехники и электроники является регулируемый клапан, который позволяет слабым сигналом регулировать больший поток, аналогично форсунке, регулирующей поток воды из насосов, трубок и др. .Когда-то этот регулируемый клапан, который применялся в области электричества, представлял собой вакуумные лампы. Внедрение и использование электронных ламп были хорошими, но сложность с этим была большой, и потреблялась огромная электрическая мощность, которая передавалась в виде тепла, что сокращало срок службы лампы. В качестве компенсации этой проблемы транзистор был устройством, которое обеспечило хорошее решение, удовлетворяющее требованиям всей электротехнической и электронной промышленности. Это устройство было изобретено «Уильямом Шокли» в 1947 году.Чтобы обсудить больше, давайте погрузимся в подробную тему о том, что такое транзистор, реализации транзистора в качестве переключателя и многих характеристик.


Что такое транзистор?

Транзистор — это трехконтактное полупроводниковое устройство, которое может использоваться для коммутации приложений, усиления слабых сигналов, а тысячи и миллионы транзисторов соединены между собой и встроены в крошечную интегральную схему / микросхему, которая создает компьютерную память.Переключатель транзистора, который используется для размыкания или замыкания цепи, что означает, что транзистор обычно используется в качестве переключателя в электронных устройствах только для приложений с низким напряжением из-за его низкого энергопотребления. Транзистор работает как переключатель, когда он находится в областях отсечки и насыщения.

Типы биполярных транзисторов

По сути, транзистор состоит из двух PN-переходов, эти переходы формируются путем размещения полупроводникового материала N-типа или P-типа между парой полупроводниковых материалов противоположного типа.

Транзисторы с биполярным переходом подразделяются на типы

Транзистор имеет три вывода, а именно базу, эмиттер и коллектор. Эмиттер — это сильно легированный вывод, и он испускает электроны в базовую область. Клемма базы слегка легирована и передает инжектированные эмиттером электроны на коллектор. Коллекторный вывод промежуточно легирован и собирает электроны с базы.

Транзистор типа NPN представляет собой композицию из двух легированных полупроводниковых материалов N-типа между легированным полупроводниковым слоем P-типа, как показано выше.Точно так же транзисторы типа PNP представляют собой композицию из двух легированных полупроводниковых материалов P-типа между легированным полупроводниковым слоем N-типа, как показано выше. Функционирование транзисторов NPN и PNP одинаково, но они различаются по смещению и полярности источника питания.


Транзистор как переключатель

Если в схеме используется BJT-транзистор в качестве переключателя, то смещение транзистора, NPN или PNP, настроено для работы транзистора с обеих сторон кривых ВАХ, показанных ниже.Транзистор может работать в трех режимах: в активной области, в области насыщения и в области отсечки. В активной области транзистор работает как усилитель. Как транзисторный ключ, он работает в двух областях: , область насыщения, (полностью включен) и , область отсечки, (полностью выключена). Транзистор как схема переключателя — транзистор

как переключатель

Транзисторы обоих типов NPN и PNP могут работать как переключатели. В некоторых приложениях силовой транзистор используется в качестве коммутационного инструмента.В этом состоянии может не потребоваться использование другого сигнального транзистора для управления этим транзистором.

Рабочие режимы транзисторов

Из приведенных выше характеристик видно, что розовая заштрихованная область в нижней части кривых представляет область отсечки, а синяя область слева представляет область насыщения транзистора. эти области транзистора определены как

Область отсечки

Условиями работы транзистора являются нулевой входной базовый ток (IB = 0), нулевой выходной ток коллектора (Ic = 0) и максимальное напряжение коллектора (VCE), что приводит к в большом слое истощения и отсутствие тока, протекающего через устройство.

Таким образом, транзистор переключается в положение «Полностью выключено». Таким образом, мы можем определить область отсечки при использовании биполярного транзистора в качестве переключателя, поскольку переходы NPN-транзисторов имеют обратное смещение, VB <0,7 В и Ic = 0. Точно так же для транзисторов PNP потенциал эмиттера должен быть –ve по отношению к базе транзистора.

Cut-Off Mode

Затем мы можем определить «область отсечки» или «режим OFF» при использовании биполярного транзистора в качестве переключателя, как если бы оба перехода были смещены в обратном направлении, IC = 0 и VB <0.7v. Для транзистора PNP потенциал эмиттера должен быть отрицательным по отношению к клемме базы.

Характеристики области отсечки

Характеристики области отсечки следующие:

  • Как база, так и входные клеммы заземлены, что означает «0»
  • Уровень напряжения на переходе база-эмиттер меньше 0,7 В
  • Переход база-эмиттер находится в обратном смещении
  • Здесь транзистор функционирует как ОТКРЫТЫЙ переключатель
  • Когда транзистор полностью выключен, он перемещается в область отсечки
  • Переход база-коллектор в состоянии обратного смещения
  • На клемме коллектора не будет протекания тока, что означает Ic = 0
  • Значение напряжения на переходе эмиттер-коллектор и на выходных клеммах равно «1»
Область насыщения

In В этой области транзистор будет смещен так, что будет приложена максимальная величина базового тока (IB), что приведет к максимальному току коллектора (IC = VCC / RL), а затем к минимальному значению коллектор-эмиттер. падение напряжения (VCE ~ 0).В этом состоянии обедненный слой становится минимально возможным и максимальным током, протекающим через транзистор. Поэтому транзистор включен «полностью».

Saturation Mode

Определение «области насыщения» или «режима включения» при использовании биполярного NPN-транзистора в качестве переключателя как если бы оба перехода были смещены в прямом направлении, IC = максимум, и VB> 0,7v. Для транзистора PNP потенциал эмиттера должен быть + ve по отношению к базе. Это , работающий транзистора как переключатель .

Характеристики области насыщения

Характеристики насыщения :

  • И база, и входные клеммы подключены к Vcc = 5 В
  • Уровень напряжения на переходе база-эмиттер больше 0,7 В
  • База- эмиттерный переход находится в состоянии прямого смещения
  • Здесь транзистор функционирует как ЗАКРЫТЫЙ переключатель
  • Когда транзистор полностью выключен, он перемещается в область насыщения
  • Переход база-коллектор находится в состоянии прямого смещения
  • Текущий ток на клемме коллектора Ic = (Vcc / RL)
  • Значение напряжения на переходе эмиттер-коллектор, а на выходных клеммах равно «0»
  • Когда напряжение на переходе коллектор-эмиттер равно «0», это означает Идеальное состояние насыщения

Кроме того, работа транзистора как переключателя может быть подробно описана ниже:

Транзистор

как переключатель — NPN

В зависимости от значения приложенного напряжения на краю базы транзистора выполняется переключение.Когда имеется хорошее напряжение, которое составляет ~ 0,7 В между эмиттером и краями базы, поток напряжения на коллекторе к краю эмиттера равен нулю. Таким образом, транзистор в этом состоянии работает как переключатель, а ток, протекающий через коллектор, считается током транзистора.

Таким же образом, когда на входной вывод не подается напряжение, транзистор работает в области отсечки и работает как разомкнутая цепь. В этом методе переключения подключенная нагрузка контактирует с точкой переключения, где она действует как контрольная точка.Таким образом, когда транзистор переходит в состояние «ВКЛ», ток будет протекать от вывода источника к земле через нагрузку.

NPN-транзистор в качестве переключателя

Чтобы прояснить этот метод переключения, давайте рассмотрим пример.

Предположим, что транзистор имеет значение сопротивления базы 50 кОм, сопротивление на краю коллектора составляет 0,7 кОм, а приложенное напряжение равно 5 В и принимает значение бета как 150. На краю базы сигнал, который изменяется от 0 до 5 В. применены. Это соответствует тому, что выход коллектора наблюдается путем изменения значений входного напряжения, которые составляют 0 и 5 В.Рассмотрим следующую диаграмму.

Когда V CE = 0, тогда I C = V CC / R C

IC = 5 / 0,7

Таким образом, ток на клемме коллектора составляет 7,1 мА

При значении бета 150 , тогда Ib = Ic / β

Ib = 7,1 / 150 = 47,3 мкА

Итак, базовый ток составляет 47,3 мкА

При указанных выше значениях максимальное значение тока на клемме коллектора составляет 7,1 мА в напряжение между коллектором и эмиттером равно нулю, а значение тока базы равно 47.3 мкА. Таким образом, было доказано, что когда значение тока на краю базы увеличивается выше 47,3 мкА, то транзистор NPN переходит в область насыщения.

Предположим, что транзистор имеет входное напряжение 0 В. Это означает, что базовый ток равен «0», и когда эмиттерный переход заземлен, эмиттерный и базовый переходы не будут находиться в состоянии прямого смещения. Итак, транзистор находится в выключенном состоянии, а значение напряжения на краю коллектора равно 5 В.

Vc = Vcc — (IcRc)

= 5-0

Vc = 5V

Предположим, что транзистор имеет входное напряжение 5V.Здесь значение тока на краю базы можно узнать, используя принцип напряжения Кирхгофа.

Ib = (Vi — Vbe) / Rb

Когда рассматривается кремниевый транзистор, он имеет Vbe = 0,7 В

Итак, Ib = (5-0,7) / 50

Ib = 56,8 мкА

Таким образом , было доказано, что когда значение тока на краю базы увеличивается выше 56,8 мкА, то транзистор NPN переходит в область насыщения при условии на входе 5 В.

Транзистор как переключатель — PNP

Функциональные возможности переключения для транзисторов PNP и NPN аналогичны, но разница в том, что в транзисторе PNP ток протекает от клеммы базы.Эта конфигурация переключения используется для отрицательного заземления. Здесь базовая кромка имеет соединение с отрицательным смещением в соответствии с эмиттерной кромкой. Когда напряжение на клемме базы больше -ve, будет протекать ток базы. Чтобы было ясно, что, когда существуют клапаны с очень минимальным или отрицательным напряжением, это делает транзистор короткозамкнутым, если не разомкнутым, либо высоким импедансом.

В этом типе подключения нагрузка связана с коммутационным выходом вместе с контрольной точкой.Когда транзистор PNP находится во включенном состоянии, ток будет течь от источника к нагрузке, а затем к земле через транзистор.

Транзистор PNP в качестве переключателя

Как и при переключении транзистора NPN, вход транзистора PNP также находится на краю базы, тогда как вывод эмиттера соединен с фиксированным напряжением, а вывод коллектора соединен с землей через нагрузку. На рисунке ниже поясняется схема.

Здесь клемма базы всегда находится в состоянии отрицательного смещения в соответствии с фронтом эмиттера и базой, которую он подключил на отрицательной стороне, а эмиттер на положительной стороне входного напряжения.Это означает, что напряжение от базы к эмиттеру отрицательное, а напряжение от эмиттера к коллектору положительное. Таким образом, проводимость транзистора будет, когда напряжение эмиттера будет более положительным, чем напряжение на выводах базы и коллектора. Таким образом, напряжение на базе должно быть более отрицательным, чем на других клеммах.

Чтобы узнать значения токов коллектора и базы, нам понадобятся следующие выражения.

Ic = Ie — Ib

Ic = β. Ib

Где Ub = Ic / β

Чтобы прояснить этот метод переключения, давайте рассмотрим пример.

Предположим, что цепи нагрузки требуется 120 мА, а бета-значение транзистора равно 120. Тогда значение тока, необходимое для перехода транзистора в режим насыщения, равно

Ib = Ic / β

= 120 мА / 100

Ib = 1 мАмп

Итак, когда ток базы равен 1 мАмп, тогда транзистор полностью находится в состоянии ВКЛ. В то время как в практических сценариях для правильного насыщения транзистора требуется примерно 30-40 процентов большего тока.Это означает, что базовый ток, необходимый для устройства, составляет 1,3 мА / с.

Операция переключения транзистора Дарлингтона

В некоторых случаях коэффициент усиления постоянного тока в устройстве BJT очень минимален для прямого переключения напряжения или тока нагрузки. Из-за этого используются переключающие транзисторы. В этом состоянии небольшое транзисторное устройство включено для включения и выключения переключателя и повышенного значения тока для регулирования выходного транзистора.

Чтобы увеличить усиление сигнала, два транзистора соединены способом «комплементарной конфигурации сложения усиления».В этой конфигурации коэффициент усиления является результатом работы двух транзисторов.

Транзистор Дарлингтона

Транзисторы Дарлингтона обычно входят в состав двух биполярных транзисторов типа PNP и NPN, где они соединены таким образом, что значение усиления исходного транзистора умножается на значение усиления второго транзисторного устройства.

Это дает результат, в котором устройство работает как одиночный транзистор с максимальным усилением по току даже для минимального значения базового тока.Полный коэффициент усиления по току устройства переключения Дарлингтона является произведением значений коэффициента усиления по току как PNP, так и NPN транзисторов, и это представлено как:

β = β1 × β2

С учетом вышеизложенного, транзисторы Дарлингтона имеют максимальное β и коллектор. текущие значения потенциально связаны с переключением одного транзистора.

Например, когда входной транзистор имеет значение усиления по току 100, а второй имеет значение усиления 50, тогда общий коэффициент усиления по току равен

β = 100 × 50 = 5000

Итак, когда нагрузка ток составляет 200 мА, тогда значение тока в транзисторе Дарлингтона на клемме базы составляет 200 мА / 5000 = 40 мкА, что является большим уменьшением по сравнению с прошлым 1 мА для одного устройства.

Конфигурации Дарлингтона

В транзисторе Дарлингтона есть в основном два типа конфигурации, а именно

Конфигурация переключателя транзистора Дарлингтона демонстрирует, что выводы коллектора двух устройств соединены с выводом эмиттера исходного транзистора, который имеет соединение с базовым краем второго транзисторного устройства. Таким образом, значение тока на выводе эмиттера первого транзистора будет формироваться, когда входной ток второго транзистора, таким образом, будет находиться в состоянии «Включено».

Входной транзистор, который является первым, получает свой входной сигнал на клемме базы. Входной транзистор обычно усиливается, и он используется для управления следующими выходными транзисторами. Второе устройство усиливает сигнал, что приводит к максимальному значению усиления по току. Одной из важнейших особенностей транзистора Дарлингтона является его максимальное усиление по току, когда он связан с одним устройством BJT.

Помимо возможности максимальных характеристик переключения напряжения и тока, другим дополнительным преимуществом является максимальная скорость переключения.Эта операция переключения позволяет использовать устройство специально для цепей инвертора, двигателя постоянного тока, цепей освещения и регулирования шагового двигателя.

Разница, которую следует учитывать при использовании транзисторов Дарлингтона по сравнению с обычными одинарными типами BJT при реализации транзистора в качестве переключателя, заключается в том, что входное напряжение на переходе базы и эмиттера должно быть больше, что составляет почти 1,4 В для кремниевого типа. устройство, так как из-за последовательного соединения двух PN-переходов.

Некоторые из общих практических применений транзистора в качестве переключателя

В транзисторе, если ток не течет в цепи базы, ток не может течь в цепи коллектора. Это свойство позволит использовать транзистор в качестве переключателя. Транзистор можно включать и выключать, меняя базу. Есть несколько применений схем переключения, работающих на транзисторах. Здесь я рассмотрел транзистор NPN, чтобы объяснить несколько приложений, в которых используется транзисторный переключатель.

Световой выключатель

Схема разработана с использованием транзистора в качестве переключателя для зажигания лампы при ярком освещении и выключения ее в темноте и светозависимого резистора (LDR) в делителе потенциала. Когда окружающая темнота, сопротивление LDR становится высоким. Затем транзистор выключается. Когда LDR подвергается воздействию яркого света, его сопротивление падает до меньшего значения, что приводит к увеличению напряжения питания и увеличению тока базы транзистора. Теперь транзистор включен, коллекторный ток течет и лампочка загорается.

Переключатель с обогревом

Одним из важных компонентов схемы переключателя с обогревом является термистор. Термистор — это тип резистора, который реагирует в зависимости от окружающей температуры. Его сопротивление увеличивается при низкой температуре и наоборот. Когда термистор нагревается, его сопротивление падает, а базовый ток увеличивается, после чего увеличивается ток коллектора, и срабатывает сирена. Эта конкретная схема подходит как система пожарной сигнализации.

Переключатель с подогревом
Управление двигателем постоянного тока (драйвер) в случае высокого напряжения

Учтите, что на транзистор не подается напряжение, тогда транзистор отключается, и ток через него не течет. Следовательно, реле остается в выключенном состоянии. Питание на двигатель постоянного тока подается от нормально замкнутой (NC) клеммы реле, поэтому двигатель будет вращаться, когда реле находится в состоянии ВЫКЛ. Подача высокого напряжения на базу транзистора BC548 вызывает включение транзистора и подачу напряжения на катушку реле.

Практический пример

Здесь мы узнаем значение базового тока, необходимого для полного перехода транзистора в состояние ВКЛ, когда нагрузке требуется ток 200 мА, когда входное значение увеличивается до 5 В. Также знайте стоимость руб.

Значение базового тока транзистора

Ib = Ic / β с учетом β = 200

Ib = 200 мА / 200 = 1 мА

Значение базового сопротивления транзистора Rb = (Vin — Vbe) / Ib

Руб = (5-0.7) / 1 × 10 -3

Rb = 4,3 кОм

Транзисторные переключатели широко используются в различных приложениях, например, для связи оборудования с большим током или высоким напряжением, такого как двигатели, реле или светильники, до минимума. значение напряжения, цифровые ИС или используемые в логических элементах, таких как элементы И или ИЛИ. Кроме того, когда выходной сигнал логического элемента равен + 5 В, тогда как устройству, которое необходимо регулировать, может потребоваться напряжение питания 12 В или даже 24 В.

Или такой нагрузке, как двигатель постоянного тока, может потребоваться контроль скорости с помощью нескольких непрерывных импульсов. Транзисторные переключатели позволяют выполнять эту операцию быстрее и проще по сравнению с традиционными механическими переключателями.

Зачем использовать транзистор вместо переключателя?

При использовании транзистора вместо переключателя даже минимальная величина базового тока регулирует более высокий ток нагрузки на выводе коллектора. Используя транзисторы вместо переключателя, эти устройства поддерживаются реле и соленоидами.Тогда как в случае, когда необходимо регулировать более высокие уровни токов или напряжений, используются транзисторы Дарлингтона.

В целом, вкратце, некоторые из условий, которые применяются при работе транзистора в качестве переключателя, следующие:

  • При использовании BJT в качестве переключателя, тогда необходимо работать либо в условиях неполного включения, либо в условиях полного включения.
  • При использовании транзистора в качестве переключателя минимальное значение тока базы регулирует повышенный ток нагрузки коллектора.
  • При реализации транзисторов для переключения в качестве реле и соленоидов лучше использовать диоды маховика.
  • Для регулирования больших значений напряжения или тока лучше всего подходят транзисторы Дарлингтона.

И эта статья предоставила исчерпывающую и ясную информацию о транзисторе, рабочих областях, работе как коммутатор, характеристиках и практическом применении. Другая важная и связанная с этим тема, которую необходимо знать, это что такое цифровой логический транзисторный переключатель и его рабочая принципиальная схема?

Как использовать транзистор в качестве переключателя с примерами схем

Транзистор — это электронный компонент, который также используется в качестве цифрового переключателя.Хотя работает он аналогично механическому переключателю. Но цифровой сигнал с высокой логикой управляет этим переключателем по сравнению с традиционными кнопками. Мы управляем традиционными переключателями вручную, применяя механическую силу.

Введение в транзистор

Мы разрабатываем этот цифровой переключатель, соединяя полупроводниковые материалы P-типа и N-типа друг с другом. Когда мы комбинируем полупроводниковые материалы P-типа и N-типа друг с другом, между ними образуется переход. Этот переход также известен как PN-переход или транзистор.Этот PN-переход контролирует поток тока через соединение. Но этот переход разрывается из-за подачи правильного напряжения смещения на контакты транзистора.

Транзисторы бывают двух типов, таких как NPN и PNP. Это трехконтактное устройство. Эти терминалы:

  • База (при использовании в качестве переключателя мы применяем управляющую логику к этой клемме)
  • Коллектор
  • Излучатель

Когда мы прикладываем напряжение смещения к клемме базы, PN-переход выходит из строя.После этого ток может течь между выводами коллектора и эмиттера. В противном случае прямой ток не может протекать через устройство.

можно проверить эти практичные транзисторы: 2N2222, MPSA42, 2N3906

Использование транзистора в качестве переключателя

Теперь узнаем:

  • Как использовать транзистор в качестве переключателя в схемах электроники
  • как использовать его в качестве переключателя в проектах микроконтроллеров.

Где использовать?

В любом приложении нам необходимо соединить транзистор с микроконтроллером . Но вопрос, который может прийти вам в голову, зачем нам нужно сопрягать транзистор с микроконтроллером? Поскольку выводы микроконтроллера не могут обеспечивать выходной ток более 3 мА и напряжение более 5 В. Если мы хотим подключить нагрузку, требующую более высокого рабочего тока, более 3 мА, микроконтроллер сгорит. Многим выходным устройствам потребуется схема переключения транзисторов для работы с нагрузкой с высокими требованиями к току, такой как реле, соленоиды и двигатели.

Как им пользоваться?

На этой диаграмме показаны три рабочие области транзистора, такие как область насыщения, активная область и область отсечки.В области насыщения он остается полностью включенным. В отрезанной области он остается полностью отключенным. Для переключения нам нужно, чтобы это устройство работало либо в полностью включенном, либо в полностью выключенном состоянии. Следовательно, мы можем игнорировать точку Q и переключать ее между областями насыщения и среза.

Как работают транзисторы в качестве переключателя?

Как мы видели ранее, мы можем использовать только два региона. Теперь посмотрим, как транзистор работает в этих областях.

Область отключения также известна как полностью выключенный режим.В этом режиме он действует как разомкнутый переключатель. Чтобы устройство работало в отключенном режиме, необходимо подключить к обоим переходам напряжение обратного смещения. Следовательно, в этом рабочем состоянии ток не может течь между выводом коллектора и эмиттера из-за разрыва цепи между этими выводами.

В области насыщения транзистор остается в полностью открытом режиме. Максимальный ток, который может протекать через коллектор к эмиттеру, зависит от номинальной емкости транзистора. Мы обеспечиваем прямое смещение напряжения между базой и выводом эмиттера.Это работает как короткое замыкание между коллектором и эмиттером. Напряжение смещения обычно превышает 0,7 В.

Пример цифровых логических переключателей

Это устройство на основе PN-перехода имеет множество применений, таких как интерфейс с сильноточной нагрузкой, интерфейс реле и взаимодействие двигателей через микроконтроллеры. Но во всех этих приложениях основная цель — переключение.

На этой схеме показан пример управления мощными нагрузками, такими как двигатели, лампы и обогреватель.

  • В этой схеме мы хотим управлять нагрузкой 12 В с помощью логического логического элемента И. Но выход логического элемента И составляет всего 5 вольт
  • Используя транзистор в качестве переключателя, мы можем управлять нагрузкой 12 В или даже высоким напряжением с помощью цифрового логического сигнала 5 вольт
  • Мы также можем использовать эти устройства для более быстрого переключения и управление широтно-импульсной модуляцией в отличие от традиционных механических переключателей

Пример управления двигателем

В этом примере мы используем управление двигателем постоянного тока с помощью переключателя.Полупроводниковый прибор действует как переключатель. На этой схеме мы можем предоставить управляющий сигнал с любого микроконтроллера, такого как Arduino, платы разработки STM32F4.

Резистор с выводом базы является токоограничивающим резистором. Поскольку контакты GPIO любого микроконтроллера могут обеспечивать базовый управляющий ток менее 20 мА. Кроме того, D1 — это диод свободного хода, который контролирует обратную ЭДС двигателя. Обходит эффект обратной ЭДС. Мы можем использовать любой транзистор в зависимости от номинальной мощности двигателя.

В заключение, если управляющий сигнал на базовом входе равен 0 вольт. Он подаст сигнал ВКЛ. Потому что мы используем переключатель PNP в этой примерной схеме. Точно так же он останется выключенным, его управляющий сигнал будет ВЫСОКИЙ.

Транзистор

как переключатель с Arduino Пример

На этой схеме показано взаимодействие Arduino с NPN-транзистором и двигателем. Эта схема предназначена только для демонстрационных целей. Потому что мы обеспечиваем питание нагрузки через источник питания Arduino.В этом примере мы можем управлять только 5-вольтовым двигателем постоянного тока. Если вам нужно управлять двигателем большой мощности, вам следует использовать специальный силовой транзистор и отдельный блок питания.

Транзистор как переключатель Пример моделирования Proteus

Этот пример является точной копией предыдущей схемы. Но вместо него используется транзистор NPN. Следовательно, управляющие сигналы будут действовать наоборот.

Транзистор как переключатель Примеры

В этом разделе мы увидим различные примеры использования транзистора в качестве переключателя.

Два транзистора в качестве переключателя Пример

В этой схеме два транзистора. В первом транзисторе база заземлена, и ток в нее не может течь. В результате транзистор «выключен», и ток не может течь через лампочку. В другом случае ток течет в базу, поэтому транзистор включен, и ток может течь через него, что приводит к включению лампочки.

В этом примере два резистора установлены так, что база транзистора находится под достаточно высоким напряжением, чтобы ток мог течь в нее, и, как следствие, транзистор включен.В результате ток проходит через лампочку, которая излучает свет.

Управление током базы транзистора с помощью потенциометра

В этом случае ток, протекающий в базу, можно изменять. Если ток большой, транзистор включен и лампочка горит. Если стрелка потенциометра перемещается вниз, ток в базе падает до тех пор, пока транзистор не выключится и ток через лампочку не перестанет течь.

Управляющее реле с транзистором в качестве переключателя

В этом примере принцип тот же, что и в предыдущем примере схемы, за исключением того, что вместо включения и выключения лампочки активируется катушка реле, которая, в свою очередь, включает лампочки во вторичной цепи.

Управление работой транзисторного переключателя с помощью конденсатора

В этой примерной схеме используется конденсатор для управления током, протекающим к клемме базы транзистора. Первоначально конденсатор заряжается через резистор над ним. В конце концов верхняя пластина конденсатора достигает такого потенциала, что ток начинает течь в базу транзистора, включая транзистор и заставляя лампочку светиться.

Также следует отметить, что лампа остается выключенной, пока внутри конденсатора не накопится достаточно заряда, который может обеспечить ток включения на вывод базы транзистора.

В этой примерной схеме конденсатор заряжается до тех пор, пока его нижняя пластина не будет иметь такой низкий потенциал, что ток не может протекать через базу транзистора. В результате транзистор сначала включен, но через некоторое время отключается. В этой и последней схемах присутствует эффект синхронизации. По прошествии определенного периода времени, который можно определить выбором резистора и конденсатора, транзистор либо включается, либо выключается.

Схема транзистора в этом примере в качестве переключателя аналогична схеме в предыдущем примере, за исключением того, что, изменяя значение переменного резистора, можно изменять время, которое проходит до включения транзистора.

Видеолекция

В приведенной выше схеме логический пробник используется в качестве входа от микроконтроллера, а диод D1 используется в качестве свободно вращающегося диода, чтобы позволить току течь, когда устройство находится в выключенном состоянии. Помните, что мы использовали 3904 только для демонстрации. При выборе транзисторов следует учитывать максимальный ток, который может протекать через транзистор во включенном состоянии. Вход микроконтроллера используется только для управления транзистором во включенном или выключенном состоянии, как показано на рисунке ниже.

Обратите внимание, что обычно к выходному устройству подключают диод подавления обратной ЭДС. Это важно для таких устройств, как реле, соленоиды и двигатели, которые создают обратную ЭДС при отключении питания.

На практике мы использовали в основном реле для сильноточных нагрузок. В этом случае транзистор, используемый для управления реле и нагрузкой, соединен с реле.

Транзистор в качестве переключателя Применения

  • Контроллер высоковольтных ламп, двигателей и нагревателей
  • Высокочастотное переключение с широтно-импульсной модуляцией
  • Действует как усилитель

Статьи по теме:

Биполярный переходной транзистор (BJT) в качестве переключателя | Биполярные переходные транзисторы

Транзисторы с биполярным переходом (также известные как BJT) могут использоваться в качестве усилителя , фильтра, выпрямителя, генератора или даже переключателя , пример которого мы рассмотрим в первом разделе.Транзистор будет работать как усилитель или другая линейная схема, если транзистор смещен в линейную область. Транзистор можно использовать в качестве переключателя, если он смещен в областях насыщения и отсечки. Это позволяет току течь (или нет) в других частях цепи.

Поскольку ток коллектора транзистора пропорционально ограничен его базовым током, его можно использовать как своего рода переключатель с управлением по току. Относительно небольшой поток электронов, проходящий через базу транзистора, может контролировать гораздо больший поток электронов через коллектор.

Использование BJT в качестве переключателя: пример

Предположим, у нас есть лампа, которую мы хотим включать и выключать выключателем. Такая схема была бы чрезвычайно простой, как на рисунке ниже (а).

Для иллюстрации давайте вставим транзистор вместо переключателя, чтобы показать, как он может управлять потоком электронов через лампу. Помните, что управляемый ток через транзистор должен проходить между коллектором и эмиттером.

Поскольку мы хотим контролировать ток через лампу, мы должны расположить коллектор и эмиттер нашего транзистора там, где были два контакта переключателя.Мы также должны убедиться, что ток лампы будет перемещаться на против в направлении стрелки эмиттера, чтобы гарантировать правильное смещение перехода транзистора, как показано на рисунке ниже (b).

(а) механический переключатель, (б) транзисторный переключатель NPN, (в) транзисторный переключатель PNP.

Для работы также можно было выбрать транзистор PNP. Его применение показано на рисунке выше (c).

Выбор между NPN и PNP действительно произвольный.Все, что имеет значение, — это поддержание правильного направления тока для правильного смещения перехода (поток электронов проходит под углом против стрелки символа транзистора).

На приведенных выше рисунках база любого BJT не подключена к подходящему напряжению, и ток не течет через базу. Следовательно, транзистор не может включиться. Возможно, проще всего было бы подключить переключатель между базовым и коллекторным проводами транзистора, как показано на рисунке (а) ниже.

Транзистор: а — отсечка, лампа выключена; (б) насыщенный, лампа включена. Отсечка

и насыщенные транзисторы

Если переключатель разомкнут, как показано на рисунке (а), базовый провод транзистора останется «плавающим» (ни к чему не подключен), и ток через него не будет проходить. В этом состоянии транзистор считается отсечкой .

Если переключатель замкнут, как показано на рисунке (b), ток сможет течь от базы к эмиттеру транзистора через переключатель.Этот базовый ток позволит протекать гораздо большему току от коллектора к эмиттеру, таким образом зажигая лампу. В этом состоянии максимального тока цепи транзистор считается насыщенным .

Конечно, использование транзистора в этом качестве для управления лампой может показаться бессмысленным. Вместо транзистора для этой функции будет достаточно обычного переключателя.

Зачем использовать транзистор для управления током?

Здесь можно отметить два момента.Во-первых, это тот факт, что при использовании таким образом переключающим контактам необходимо обрабатывать только тот небольшой базовый ток, который необходим для включения транзистора; сам транзистор обрабатывает большую часть тока лампы. Это может быть важным преимуществом, если переключатель имеет низкий номинальный ток: небольшой переключатель может использоваться для управления относительно сильноточной нагрузкой.

Что еще более важно, управление током транзистора позволяет нам использовать что-то совершенно другое для включения или выключения лампы.Рассмотрим рисунок ниже, где пара солнечных элементов обеспечивает 1 В, чтобы преодолеть напряжение 0,7 В база-эмиттер транзистора, чтобы вызвать ток базы, который, в свою очередь, управляет лампой.

Солнечный элемент служит датчиком освещенности.

Или мы могли бы использовать термопару (многие из которых соединены последовательно), чтобы обеспечить необходимый базовый ток для включения транзистора на рисунке ниже.

Одна термопара обеспечивает менее 40 мВ.Многие из них могут производить транзистор V BE с напряжением более 0,7 В, чтобы вызвать ток базы и, как следствие, ток коллектора к лампе.

Даже микрофон (см. Рисунок ниже) с достаточным выходом напряжения и тока (от усилителя) мог бы включить транзистор, при условии, что его выход выпрямляется из переменного тока в постоянный, так что PN-переход эмиттер-база внутри транзистора всегда будет смещенный вперед:

Усиленный микрофонный сигнал выпрямляется до постоянного тока для смещения базы транзистора, обеспечивая больший ток коллектора.

К настоящему моменту суть должна быть очевидна. Для включения транзистора можно использовать любой достаточный источник постоянного тока, и этот источник тока должен составлять лишь часть тока, необходимого для включения лампы.

Здесь мы видим, что транзистор работает не только как переключатель, но и как усилитель t rue: для управления относительно большим количеством мощности используется сигнал с относительно низким энергопотреблением. Обратите внимание, что фактическая мощность для зажигания лампы исходит от батареи, расположенной справа от схемы.Это не значит, что слабый сигнальный ток от солнечного элемента, термопары или микрофона волшебным образом преобразуется в большее количество энергии. Скорее, эти небольшие источники энергии просто контролируют мощность батареи, чтобы зажечь лампу.

BJT as Switch ОБЗОР:

  • Транзисторы могут использоваться в качестве переключающих элементов для управления мощностью постоянного тока нагрузки. Коммутируемый (управляемый) ток проходит между эмиттером и коллектором; управляющий ток проходит между эмиттером и базой.
  • Когда транзистор пропускает через него нулевой ток, говорят, что он находится в состоянии отсечки (полностью непроводящий).
  • Когда через транзистор проходит максимальный ток, говорят, что он находится в состоянии насыщения (полностью проводящий).

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Схемы транзисторов

| Electronics Club

Транзисторные схемы | Клуб электроники

Типы | Токи | Функциональная модель | Использовать как переключатель | Выход IC | Датчики | Инвертор | Дарлингтон пара

Следующая страница: Емкость

См. Также: Транзисторы

На этой странице объясняется работа транзисторов в простых схемах, в основном их использование в качестве переключателей.Практические вопросы, такие как тестирование, меры предосторожности при пайке и идентификация выводов, включены в страница транзисторов.

Типы транзисторов

Есть два типа стандартных (биполярных) транзисторов, NPN и PNP , с разными обозначениями схем. Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор. Большинство используемых сегодня транзисторов являются NPN-транзисторами, потому что их проще всего сделать из кремния. Эта страница в основном посвящена транзисторам NPN, и новичкам следует сначала сосредоточиться на этом типе.

Выводы имеют маркировку основание (B), коллектор (C) и эмиттер (E). Эти термины относятся к внутренней работе транзистора, но их не так много. Помогите понять, как используется транзистор, поэтому относитесь к ним как к ярлыкам.

Обозначения схем транзисторов

Пара Дарлингтона — это два транзистора, соединенные вместе. чтобы дать очень высокий коэффициент усиления по току.

Помимо стандартных (биполярный переход) транзисторов, есть полевые транзисторы , которые обычно обозначаются как FET s.У них разные символы схем и свойства, и они не рассматриваются на этой странице.

Rapid Electronics: транзисторы


Токи транзисторов

На схеме показаны два пути тока через транзистор.

Малый базовый ток управляет большим током коллектора .

Когда переключатель замкнут небольшой ток течет в основание (B) транзистор. Этого достаточно, чтобы светодиод B тускло светился.Транзистор усиливает этот небольшой ток, чтобы позволить большему току течь через его коллектор (C) к его эмиттеру (E). Этот ток коллектора достаточно велик, чтобы светодиод C светился ярко.

При разомкнутом переключателе базовый ток не течет, поэтому транзистор отключается коллекторный ток. Оба светодиода выключены.

Вы можете построить эту схему с двумя стандартными 5-миллиметровыми красными светодиодами и любым универсальным маломощным Транзистор NPN (например, BC108, BC182 или BC548).Это хороший способ проверить транзистор и убедиться, что он работает.

Транзистор усиливает ток и может использоваться как переключатель, как описано на этой странице.

С подходящими резисторами (и конденсаторами для переменного тока) транзистор может усиливать напряжение, такое как аудиосигнал. но это еще не рассматривается на этом веб-сайте.

Режим общего эмиттера

Это устройство, в котором эмиттер (E) находится в цепи управления (базовый ток) а в управляемой цепи (коллекторный ток) называется общим эмиттерным режимом .Это наиболее широко используемая схема транзисторов, поэтому ее нужно изучить в первую очередь.



Функциональная модель NPN-транзистора

Функционирование транзистора сложно объяснить и понять с точки зрения его внутренней структуры. Более полезно использовать эту функциональную модель.

  • Переход база-эмиттер ведет себя как диод.
  • A базовый ток I B протекает только при напряжении V BE через переход база-эмиттер равен 0.7В или больше.
  • Ток малой базы I B управляет током большого коллектора Ic варьируя сопротивление R CE .
  • Ic = h FE × I B (если транзистор не открыт и не насыщен). h FE — коэффициент усиления по току (строго по постоянному току), Типичное значение для h FE равно 100 (это отношение, поэтому у него нет единиц измерения).
  • Сопротивление коллектор-эмиттер R CE контролируется током базы I B :
    I B = 0 , R CE = бесконечность, транзистор выключен
    I B малый , R CE уменьшенный, транзистор частично включен
    I B увеличено , R CE = 0, транзистор полностью открыт («насыщен»)
Дополнительные примечания:
  • Базовый ток I B должен быть ограничен, чтобы предотвратить повреждение транзистора. и резистор может быть подключен последовательно с базой.
  • Транзисторы имеют максимальный ток коллектора Ic.
  • Коэффициент усиления по току h FE может широко варьироваться , даже для однотипных транзисторов!
  • Транзистор, заполненный на на (с R CE = 0), называется « насыщенный ».
  • При насыщении транзистора напряжение коллектор-эмиттер В CE снижается почти до 0В.
  • Когда транзистор насыщается, определяется ток коллектора Ic. напряжением питания и внешним сопротивлением в цепи коллектора, а не коэффициент усиления транзистора по току.В результате соотношение Ic / I B для насыщенного транзистора коэффициент усиления по току меньше FE .
  • Ток эмиттера I E = Ic + I B , но Ic намного больше, чем I B , поэтому примерно I E = Ic.

Использование транзистора в качестве переключателя

Когда транзистор используется в качестве переключателя, он должен быть либо ВЫКЛ. , либо полностью ВКЛЮЧЕННЫМ . Он никогда не должен быть включен частично (со значительным сопротивлением между C и E), потому что в В этом состоянии транзистор может перегреться и выйти из строя.

В полностью открытом состоянии напряжение V CE на транзисторе почти равно нулю, и транзистор находится в называется насыщенным , потому что он больше не может пропускать ток коллектора Ic.

Устройство, переключаемое транзистором, называется нагрузкой .

При выборе транзистора для использования в качестве переключателя необходимо учитывать его максимальный ток коллектора. Ic (макс.) и его минимальное усиление по току ч FE (мин.) . Номинальное напряжение транзистора может быть проигнорировано при напряжении питания менее 15 В.

Технические данные транзистора

Большинство поставщиков предоставляют данные о транзисторах, которые они продают, например Быстрая электроника.

Мощность, развиваемая переключающим транзистором, должна быть очень маленькой

Мощность, развиваемая в транзисторе, отображается как нагрев , и транзистор будет разрушен, если станет слишком горячим. Это не должно быть проблемой для транзистора, используемого в качестве переключателя, если он был выбран и настроен правильно, потому что мощность, развиваемая внутри него, будет очень маленькой.

Мощность (тепло), развиваемая в транзисторе:

Power = Ic × V CE

  • Когда OFF : Ic равен нулю, поэтому мощность равна нулю .
  • Когда полный ВКЛ : V CE почти равен нулю, поэтому мощность очень мала .
Может ли реле быть лучше транзисторного переключателя?

Транзисторы не могут переключать переменный ток или высокое напряжение (например, электросеть), и они обычно не лучший выбор для коммутации больших токов (> 5A).Реле подходят для всех этих ситуаций, но учтите, что для переключения тока катушки реле может все же потребоваться маломощный транзистор. Для получения дополнительной информации, включая преимущества и недостатки, см. страницу реле.

Защитный диод для нагрузок с катушкой, таких как реле и двигатели

Если транзистор переключает нагрузку с помощью катушки, такой как двигатель или реле, диод должен быть подключен к нагрузке, чтобы защитить транзистор от кратковременное высокое напряжение, возникающее при отключении нагрузки.

На схеме показано, как защитный диод подключен к нагрузке «в обратном направлении», в данном случае катушка реле.

Для этого подходит сигнальный диод типа 1N4148.

Зачем нужен защитный диод?

Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается. при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку. (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это предотвращает индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.


Подключение транзистора к выходу включения / выключения цифровой ИС

Большинство микросхем не могут обеспечивать большие выходные токи, поэтому может потребоваться использование транзистора. для переключения большего тока, необходимого для таких устройств, как лампы, двигатели и реле.Микросхема таймера 555 необычна тем, что может обеспечивать относительно большой ток до 200 мА, Достаточно для многих реле и других нагрузок без транзистора.

Базовый резистор ограничивает ток, протекающий в базу транзистора, чтобы предотвратить его повреждение. но он также должен пропускать достаточный базовый ток, чтобы транзистор был полностью насыщен. при включении.

Транзистор, который не полностью насыщен при включении, может перегреться и выйти из строя. особенно если транзистор переключает большой ток (> 100 мА).

В следующем разделе объясняется, как выбрать транзистор и базовый резистор для обеспечения полного насыщения.

Переключение нагрузки с другим напряжением питания

Транзистор может использоваться для включения ИС, подключенной к источнику низкого напряжения (например, 5 В) для переключения тока нагрузки с отдельным источником постоянного тока (например, 12 В).

Два источника питания должны быть связаны. Обычно их соединения 0 В связаны и транзистор NPN используется на выходе IC. Однако, если на выходе IC используется транзистор PNP, положительные (+) соединения вместо этого должны быть связаны.

Выбор транзистора и базового резистора для цифрового выхода ИМС

Следуйте этому пошаговому руководству, чтобы выбрать подходящий транзистор для подключения к выходу включения / выключения. цифровой ИС (логический вентиль, счетчик, PIC, микроконтроллер и т. д.) для переключения нагрузки, такой как лампа, двигатель или реле. Данные о транзисторах можно получить у большинства поставщиков, например см. Быстрая электроника.

1. Выберите правильный тип транзистора, NPN или PNP

Вы хотите, чтобы нагрузка включалась, когда выход IC высокий? Или когда он или низкий?

  • Для включения, когда на выходе IC высокий , используйте транзистор NPN .
  • Для включения, когда на выходе IC низкий уровень , используйте транзистор PNP .

Транзисторы NPN и PNP подключаются по-разному, как показано на схемах ниже, но Расчеты и требуемые свойства одинаковы для обоих типов транзисторов.

Транзисторный переключатель NPN
нагрузка включена, когда выход IC высокий

Транзисторный переключатель PNP
нагрузка включена, когда выход IC низкий

2.Узнайте напряжение питания и характеристики нагрузки.

Для определения требуемых свойств транзистора вам необходимо знать следующие значения:

  • Vs = напряжение питания нагрузки.
  • R L = сопротивление нагрузки (например, сопротивление катушки реле).
  • Ic = ток нагрузки (= Vs / R L ).
  • Максимальный выходной ток микросхемы — см. Техническое описание микросхемы. Если вы не можете найти эту информацию, примите низкое значение, например 5 мА.
  • Vc = напряжение питания IC (обычно это Vs, но оно будет другим, если IC и нагрузка имеют отдельные источники питания).

Примечание: не путайте IC (интегральная схема) с Ic (ток коллектора).

3. Определить требуемые свойства транзистора

Выберите транзистор правильного типа (NPN или PNP из шага 1), чтобы удовлетворить следующие требования:

  • Максимальный ток коллектора транзистора Ic (max) должен быть больше тока нагрузки:
    Ic (макс.)> напряжение питания Vs
    сопротивление нагрузки R L
  • Минимальный коэффициент усиления по току транзистора h FE (мин) должен быть не менее 5 умноженный на ток нагрузки Ic, деленный на максимальный выходной ток IC.
    ч FE (мин)> 5 × ток нагрузки Ic
    макс. IC current
4. Определите значение для базового резистора R
B

Базовый резистор (R B ) должен пропускать ток, достаточный для обеспечения нормальной работы транзистора. полностью насыщен при включении, и хорошо бы увеличить ток базы (I B ) примерно в пять раз значение, которое просто насыщает транзистор.Воспользуйтесь приведенной ниже формулой, чтобы найти подходящее сопротивление для R B и выбрать ближайшее стандартное значение.

R B = 0,2 × R L × h FE (см. Примечание)

Примечание: Если ИС и нагрузка имеют разные напряжения питания, например 5 В для ИС но 12 В для нагрузки используйте формулу ниже для R B :

R B = Vc × h FE , где Vc — напряжение питания
IC
5 × Ic
5.Проверьте, нужен ли вам защитный диод

Если включаемой и выключаемой нагрузкой является двигатель, реле или соленоид (или любое другое устройство с катушкой): диод должен быть подключен к нагрузке, чтобы защитить транзистор от короткого замыкания. высокое напряжение, возникающее при отключении нагрузки. Обратите внимание, что диод подключен «наоборот», как показано на рисунке. на диаграммах выше.

Пример

Выход из КМОП-микросхемы серии 4000 требуется для работы реле с 100, включается, когда выход IC высокий.Напряжение питания составляет 6 В как для ИС, так и для нагрузки. ИС может обеспечивать максимальный ток 5 мА.

  • Требуется транзистор NPN , потому что катушка реле должна быть включена, когда выход IC высокий.
  • Ток нагрузки = Vs / R L = 6/100 = 0,06 A = 60 мА, поэтому транзистор должен иметь Ic (макс.)> 60 мА .
  • Максимальный ток от ИС составляет 5 мА, поэтому транзистор должен иметь ч FE (мин)> 60 (5 × 60 мА / 5 мА).
  • Выберите транзистор малой мощности общего назначения BC182 с Ic (макс.) = 100 мА и ч FE (мин) = 100 .
  • R B = 0,2 × R L × h FE = 0,2 × 100 × 100 = 2000, поэтому выберите R B = 1k8 или 2k2 .
  • Для катушки реле требуется защитный диод .

Rapid Electronics: транзисторы


Использование транзистора в качестве переключателя с датчиками

На схемах ниже показано, как подключить LDR (датчик освещенности) к транзистору, чтобы светочувствительный переключатель цепи на светодиоде. Есть две версии: одна включается в темноте, другая при ярком свете.Переменный резистор регулирует чувствительность. Для переключения светодиода можно использовать любой транзистор малой мощности общего назначения.

Если транзистор переключает нагрузку с помощью катушки (например, двигателя или реле) вместо светодиода, вы должны включить защитный диод поперек нагрузки.

Если переменный резистор находится между + Vs и базой, вы должны добавить резистор с фиксированным номиналом не менее 1к (10к в примере ниже) для защиты транзистора, когда переменный резистор уменьшен до нуля, в противном случае чрезмерная база ток разрушит транзистор.

Светодиод загорается, когда LDR темно

Светодиод загорается, когда LDR яркий

Обратите внимание, что переключающее действие этих простых схем не очень хорошее, потому что будет промежуточная яркость, когда транзистор будет частично на (не насыщенный). В этом состоянии транзистор может перегреться, если он не коммутирует небольшой ток. Нет проблем с малым током светодиода, но больший ток лампы, двигателя или реле может вызвать перегрев.

Другие датчики, например термистор, могут использоваться с этими схемами, но для них может потребоваться другой переменный резистор. Вы можете рассчитать приблизительное значение переменного резистора (Rv), используя мультиметр для определения минимального и максимального значений сопротивления датчика (Rmin и Rmax), а затем по этой формуле:

Значение переменного резистора:
Rv = квадратный корень из (Rmin × Rmax)

Например, LDR: Rmin = 100, Rmax = 1M, поэтому Rv = квадратный корень из (100 × 1M) = 10к.

Вы можете сделать гораздо лучшую схему переключения, подключив датчики к подходящему IC (чип). Действие переключения будет намного более резким без частичного включения.



Транзисторный инвертор (НЕ затвор)


Дарлингтон пара

Пара Дарлингтона — это два транзистора, соединенных вместе, так что ток, усиливаемый первым, усиливается. далее вторым транзистором.

Пара ведет себя как одиночный транзистор с очень высоким коэффициентом усиления по току, так что для включения пары требуется лишь крошечный базовый ток.

Коэффициент усиления по току пары Дарлингтона (h FE ) равен двум индивидуальным коэффициентам усиления (h FE1 и h FE2 ), умноженные вместе — это дает паре очень высокий коэффициент усиления по току, например 10000.

Коэффициент усиления по току пары Дарлингтона:
h FE = h FE1 × h FE2

Обратите внимание, что для включения пары Дарлингтона должно быть 0,7 В на обоих переходах база-эмиттер, которые являются соединены последовательно так 1.Для включения требуется 4В.

Rapid Electronics: транзисторы Дарлингтона

Транзисторы Дарлингтона

пары Дарлингтона доступны в виде корпуса «транзистор Дарлингтона» с тремя выводами. (B, C и E) эквивалентно стандартному транзистору.

Вы также можете сделать свою собственную пару Дарлингтона из двух обычных транзисторов. TR1 может быть маломощным, но TR2 может потребоваться высокая мощность. Максимальный ток коллектора Ic (max) для пары такой же, как Ic (max) для TR2.

Цепь сенсорного переключателя

Пара Дарлингтона достаточно чувствительна, чтобы реагировать на небольшой ток, проходящий через ваша кожа, и его можно использовать для изготовления сенсорного переключателя , как показано на схеме.

Для этой схемы, которая просто зажигает светодиод, два транзистора могут быть любого общего назначения. транзисторы малой мощности назначения.

100к резистор защищает транзисторы, если контакты соединены куском провода.

Схема сенсорного переключателя


Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку.У них есть широкий ассортимент компонентов, инструментов и материалов для электроники, и я рад рекомендую их как поставщика.


Следующая страница: Емкость | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

клуб электроники.инфо © Джон Хьюс 2021

Как использовать транзистор в качестве переключателя

В этом уроке я покажу, как использовать транзистор в качестве переключателя. Переключение и усиление являются наиболее распространенным применением транзистора, а транзистор используется в качестве переключателя во многих цифровых схемах. Используя транзистор в качестве переключателя, мы можем использовать небольшой уровень напряжения для управления большим уровнем напряжения. Например, используя 3,3 В или 5 В, мы можем управлять 12 В или даже 250 В.

Прежде чем двигаться дальше, мы должны понять режимы работы транзистора.

Режимы работы транзистора

В зависимости от условий смещения транзистор в основном работает в трех областях, а именно в областях отсечки, активности и насыщения.

Активный режим

Когда транзистор находится в активном режиме, его можно использовать в качестве усилителя тока. В активном режиме переход эмиттер-база транзистора должен быть смещен в прямом направлении, а переход коллектор-база должен иметь обратное смещение, как показано ниже. В активном режиме ток протекает между эмиттером и коллектором, и величина протекания тока пропорциональна базовому току.

Режим насыщения

В режиме насыщения переходы эмиттер-база и коллектор-база смещены вперед, как показано ниже. Здесь транзистор действует как источник постоянного тока, и транзистор полностью включен. В этом режиме транзистор действует почти как короткое замыкание. Мы будем использовать этот режим транзистора, чтобы использовать его в качестве переключателя.

Режим отсечки

В этом режиме переходы эмиттер-база и коллектор-база имеют обратное смещение. В этом режиме транзистор полностью отключен, в результате ток, протекающий через транзистор, равен нулю.

Следовательно, из приведенного выше обсуждения становится ясно, что транзистор можно заставить работать как переключатель ВКЛ / ВЫКЛ, управляя транзистором в областях отсечки и насыщения. Этот тип коммутационного приложения может использоваться в цифровой электронике, а также в бытовых приложениях.

Транзистор в качестве переключателя

В качестве переключателя могут использоваться как NPN-, так и PNP-транзисторы. В этом разделе мы увидим, как использовать их оба как в случае активного высокого, так и активного минимума.

Транзистор NPN как переключатель

Транзистор может работать, подавая некоторое напряжение на вывод базы.Когда между базой и эмиттером прикладывается некоторое напряжение (выше порогового, то есть Vin> 0,7 В), тогда транзистор будет в состоянии ВКЛ, следовательно, ток коллектора Vcc / Rc протекает через транзистор. Поэтому действует короткое замыкание и напряжение коллектор на эмиттер примерно равно нулю.

Аналогично, когда Vin = 0 В или на входе транзистора отсутствует входное напряжение, тогда транзистор работает в области отсечки и, следовательно, транзистор действует как разомкнутая цепь, и, следовательно, напряжение коллектора к эмиттеру равно напряжению смещения транзистора.

Реализация

Предположим, что бета-значение транзистора равно 100, сопротивление базы Rb = 1 кОм и сопротивление коллектора Rc = 300 Ом, даже вы можете выбрать любое значение, но всегда выбирайте значение резистора так, чтобы Rb >> Rc, поскольку нам нужно только небольшой базовый ток для выполнения операции. В основе используется источник постоянного тока, и мы собираемся увидеть выход на коллекторе, изменяя входное напряжение в двух состояниях, то есть 0 В и 5 В, как показано на рис.

Транзистор NPN как переключатель

Когда, Vin> 0.7 v (транзистор в состоянии ON)

Получаем Ic = Vcc / Rc и Vce = 0.

Ic = 5 В / 330 Ом = 15,1 мА

Следовательно, базовый ток Ib = Ic / β

Ib = 151,5 мкА

Из приведенного выше расчета максимальное значение тока коллектора в цепи составляет 15,1 мА при Vce = 0 В и соответствующий базовый ток составляет 151,5 мкА. Следовательно, когда базовый ток превышает 151,5 мкА, транзистор переходит в состояние насыщения.

Когда, Vin <0,7 В (транзистор в выключенном состоянии)

Мы получаем Ib = 0 и Ic = 0

Vce = Vcc-IcRc = 5 В — 0 = 5 В

Когда входное напряжение 5 В, то база ток можно найти с помощью закона напряжения Кирхгофа.

Когда Vin = 5 В

Ib = (Vin — Vbe) / Rb (Vbe = 0,7 В для кремниевого транзистора)

Ib = (5 В — 0,7) / 1000 = 4,3 мА

Что больше 151,5 мкА Следовательно, транзистор приводится в состояние насыщения. Таким образом, выход на коллекторе становится примерно 0 В.

Также возможно управление реле с помощью транзистора. Транзистор может возбуждать катушку реле, так что подключенной к нему внешней нагрузкой можно управлять, как показано ниже.

NPN-транзистор, работающий с внешней нагрузкой с помощью реле

При индуктивных нагрузках, особенно при переключении двигателей и катушек индуктивности, внезапное отключение питания может поддерживать высокий потенциал на катушке. Это высокое напряжение может привести к значительному повреждению остальной цепи. Следовательно, мы должны использовать диод в антипараллельном соединении с индуктивной нагрузкой, чтобы защитить схему от индуцированных напряжений индуктивной нагрузки.

Конфигурации транзисторного переключателя NPN:

Есть в основном две конфигурации транзистора NPN в качестве переключателя:

  1. Активный высокий
  2. Активный низкий

Активный высокий

Каждый раз, когда реле последовательно с NPN-транзистор, тогда схема станет активной входной цепью с высоким уровнем i.е. V в > 0,7 В в этом состоянии реле срабатывает, и внешняя нагрузка получает питание, как показано на рисунке.

Примечание: В последовательной конфигурации реле может быть на стороне эмиттера или может быть на стороне коллектора, но предпочтительно иметь нагрузку на стороне коллектора.

Активный низкий уровень

Всякий раз, когда реле подключено параллельно к NPN-транзистору, цепь становится активной входной цепью низкого уровня, то есть V в <= 0.Реле 7 В в этом состоянии сработает, и внешняя нагрузка будет запитана, как показано на рисунке.

Активная низкая конфигурация с реле, параллельным транзистору NPN

Транзистор PNP в качестве переключателя

Подобно транзистору NPN, транзистор PNP также может действовать как переключатель, но в этом случае эмиттер подключен к постоянному напряжению и коллектор подключается к земле через нагрузку, как показано на рисунке ниже.

В этой конфигурации база всегда имеет отрицательное смещение относительно эмиттера.Итак, напряжение Vbe отрицательное. Следовательно, для проведения PNP-транзистора эмиттер должен быть более положительным как по отношению к коллектору, так и по отношению к базе. Вы можете видеть на рисунке, что база подключена к отрицательной клемме батареи, а эмиттер подключен к положительной клемме батареи.

Также можно управлять реле для управления внешней нагрузкой с помощью транзистора PNP. Транзистор может возбуждать катушку реле, так что подключенной к нему внешней нагрузкой можно управлять, как показано ниже. NPN-транзистор, работающий с внешней нагрузкой с использованием реле

При индуктивных нагрузках, особенно при переключении двигателей и катушек индуктивности, внезапное отключение питания может поддерживать высокий потенциал на катушке. Это высокое напряжение может привести к значительному повреждению остальной цепи. Следовательно, мы должны использовать диод в антипараллельном соединении с индуктивной нагрузкой, чтобы защитить схему от индуцированных напряжений индуктивной нагрузки.

Конфигурации транзисторного переключателя PNP:

Подобно NPN, транзисторный переключатель PNP также имеет две конфигурации переключателя:

  1. Активный высокий
  2. Активный низкий

Активный высокий

Когда реле параллельно с транзистором PNP, тогда схема станет входной цепью с активным высоким уровнем.В этом состоянии реле срабатывает, и внешняя нагрузка получает питание, когда на базу транзистора подается высокий входной сигнал, как показано на изображении ниже. Конфигурация с активным высоким уровнем с реле, параллельным транзистору PNP

Активный низкий уровень

Всякий раз, когда реле подключено последовательно с транзистором PNP, тогда цепь становится входной цепью с активным низким уровнем, то есть V в <= - 0,7 В при этом реле состояния сработает, и внешняя нагрузка будет запитана, как показано на рисунке.

(Примечание: в последовательной конфигурации реле может быть на стороне эмиттера или может быть на стороне коллектора)

Вы также можете посмотреть это видео о работе транзистора в качестве переключателя.