Site Loader

Содержание

УСТРОЙСТВО ДЛЯ ЗАРЯДА LI-ION АККУМУЛЯТОРОВ

Это полноценное решение проблемы зарядки аккумуляторов мобильных телефонов используемых для питания других устройств. Собранное устройство не является ноу-хау, данный вариант лишь претендует считаться несколько более информативным, дающим возможность предметного контроля за прохождением  процесса заряда аккумулятора. 

Схема

Схема можно сказать типовая. Возможны два варианта питания, от любого БП дающего напряжение 5,5 – 7 вольт и ток до 500 мА (схема собирается со всеми указанными электронными компонентами) и ЗУ мобильного телефона (диод 1N5819 и электролитический конденсатор не ставить). На схеме указаны окончательные номиналы  компонентов собранного и работоспособного устройства. За исключением биполярного транзистора p-n-p S8550, у которого максимальный ток коллектора 0,5 А, поставлен SS8550, с максимальным током коллектора 1,5А. Можно попробовать применить аналог S8550 это КТ815/КТ817, а SS8550 — КТ6115Б.

Фотографии

Первоначально схема была собрана на макетной плате и отрегулирована. Запитана от зарядки  телефона Samsung дающей на выходе 5,5 В и до 650 мА. Необходимое выходное напряжение в 4,2 вольта выставлено путём изменения номиналов резисторов R7 и R12, которые образуют резистивный делитель. Изменение номиналов производится согласованно, сразу на обоих резисторах. Методика такая: первое, что следует помнить это то, что сумма номиналов этих резисторов не должна превышать 10 кОм, но может быть меньшей. Её величина зависит от  фактического соотношения разброса номиналов и характеристик прочих электронных компонентов конкретно собранной схемы.  Соотношение сопротивления подбираемых резисторов для подбора можно применять такое: R7 к R12, как 4/3 или 3/2. 

Например берём сумму двух этих резисторов равную 6 кОм, 6 : 7 = 0,85. Теперь  R7 = 0,85 х 4 = 3,4 кОм, а R12 = 0,85 х 3 = 2,55 кОм. (проверка 3,4 + 2,55 = 5,95 а,  0,05 допустимая погрешность, но можно при желании посчитать и в «ноль»).

Не будьте строги к данной рекомендации — на практике работает — зачастую это главное.

При подключении к схеме аккумулятора, и включения ЗУ в сеть загорелись жёлтый светодиод «питание включено» и зелёный «заряд идёт». Начальный ток заряда для данного аккумулятора составил 160 мА. Максимальный начальный ток, который наблюдал на более разряженных аккумуляторах был 370 мА.

В процессе зарядки ток заряда плавно понижался и втечении двух часов снизился до 70 мА, а пять минут спустя погас зелёный светодиод «заряд идёт» и загорелся красный «заряд окончен». Амперметр зафиксировал падение тока до нуля, вольтметр показывал более 4 вольт.

Напряжение полностью заряженного аккумулятора составило ожидаемые 4,2 вольта. На следующем этапе изготовления устройства для него был выбран корпус. Подошёл от вышедшего из строя блока питания микрокалькулятора «Электроника».

В первую очередь был установлен индикатор от магнитофона выполняющий роль одновременно амперметра и вольтметра, для чего был оборудован шунтом, подстроечным резистором и небольшим тумблером для переключения функций А/V. В верхней части наружной половины корпуса установлены светодиоды индикации.

Затем была помещена плата ЗУ устройства (видно, что на транзистор установлен небольшой радиатор). Подстроечный резистор вольтметра припаян на вывод тумблера.

С учетом, оставшегося в корпусе места была «разведена» печатная плата дополнительного узла производящего контроль заряда.

При изготовлении платы, в целях проверки «повторяемости» схемы, намеренно не стал использовать тщательно подобранные и проверенные электронные компоненты с макетной платы. За исключением микросхемы. К подбору номинала вновь устанавливаемых резисторов  отнёсся без строгости. Подбор резисторов R7 и R12 безусловно понадобился, но схема заработала практически сразу.

Шкала индикатора стала естественно двойной. Миллиамперы измеряются до 400 мА, есть дополнительная отметка на значении в 70 мА – значении окончании заряда. Вольты измеряются до 5 В, дополнительной отметкой обозначены 4,2 В – напряжение максимально допустимого заряда. Шкала подсвечивается светодиодом, перенесённым на неё с платы ЗУ. Переключение между шкалами производится при помощи тумблера. Кнопка и светодиод над ней – проверка правильности подключения предназначенного для зарядки аккумулятора.

Сетевые штыри расположены на противоположной части корпуса. Их наличие обусловило компактность конструкции.

Изначально устройство было собрано для зарядки аккумулятора от мобильного телефона питающего светодиодный фонарь. Но теперь, когда оно есть, появилась возможность беспрепятственного использования таких аккумуляторов и во многих других случаях.

Видео

Так что смело рекомендую данную схему, как доступную альтернативу более продвинутым, но и дефицитным, спецконтроллерам. Собрал зарядное устройство, Babay

   Форум по зарядным

   Форум по обсуждению материала УСТРОЙСТВО ДЛЯ ЗАРЯДА LI-ION АККУМУЛЯТОРОВ

Биполярный транзистор S8550D, PNP, 40V, 1.5A, корпус TO-92 SS8550D S8550

Описание

Многие задаются вопросом, где купить фирменные Биполярные транзисторы по доступной цене? в интернет-шопе Igostech представлен безграничный ассортимент товара.

Биполярный транзистор S8550D, PNP, 40V, 1.5A, корпус TO-92 SS8550D S8550

Особенности транзисторов SS8550D, PNP, 40V, 1.5A, корпус TO-92

Современные биполярные транзисторы являются отличными, функциональными и качественными радиокомпонентами. Биполярные транзисторы применяются в современных аналоговых и цифровых устройствах. Довольно часто их можно встретить схемах современных радиоприемников, а также в телевизорах, различных усилителях сигнала, в радиопередатчиках и прочих устройствах.

Устройство современных транзисторов

Биполярный транзистор S8550D, PNP, 40V, 1.5A, корпус TO-92 SS8550D S8550

Биполярные транзисторы имеют довольно простое устройство — практически все транзисторы производят из кремниевых кристаллов. Транзистор состоит из трех слоев полупроводника, к каждому из которых подключен электрод. Как правило средний электрод является базой, а два остальных — эмиттером и коллектором.
Свойства транзистора зависят от свойств полупроводниковых слоев, материала, формы и прочих факторов. Собственно от этого зависит и размер транзисторов и тип их корпуса.

Режимы работы биполярных транзисторов

Биполярные транзисторы имеют несколько режимов работы:

  • В нормальном режиме работы переход транзистора эмиттер-база открыт, а вот переход коллектор-база закрыт.
  • Если же переходы транзистора будут открыты в обратном порядке — эмиттер-база закрыт, а коллектор-база открыт, то получим инверсный активный режим.
  • Если оба перехода открыты и направлены к базе, такой режим называют режимом насыщения. При этом, токи насыщения эмиттера и коллектора направлены к базе.
  • Существует так называемый режим отсечки, при котором переход коллектора смещается обратно, а на переход эмиттера будет подаваться как прямое, так и обратное смещение напряжения.
  • В барьерном режиме транзистор будет работать как своеобразный диод. Чтобы активировать такой режим работы транзистора, перед эмиттером или коллектором устанавливают резистор.

Правила безопасности при работе с биполярными резисторами

Биполярные транзисторы могут работать в цепях с довольно высоким напряжением, поэтому необходимо соблюдать элементарные правила безопасности. Не прикасайтесь к контактам транзистора включенного в высоковольтную сеть.

Если вы меняете испорченный транзистор на новый, внимательно проследите за тем, чтобы параметры нового компонента были аналогичны таковым у старого. Особенно если вы берете не такой же компонент, а его аналог.

Ну и конечно всегда нужно учитывать как параметры электросети, так и самого транзистора. Если через цепь будет протекать 100 вольт, а транзистор будет рассчитан максимум на 90, он может просто сгореть.

Похожее

SS8050D / SS8550D — Биполярные импортные — ТРАНЗИСТОРЫ — Электронные компоненты (каталог)

 

Корпус: TO-92

 

SS8050D (N-P-N) и SS8550D (P-N-P) — комплементарная пара среднечастотных транзисторов средней мощности. Применяются в выходных каскадах усилителей небольшой мощности и схемах управления низковольтными нагрузками (электродвигателями, реле и т.п.)

Основные параметры SS8050D и SS8550D:

 

Параметр

SS8050D

SS8550D

Структура

N-P-N

P-N-P

Uк-э.макс.

25V

Uк-б.макс.

40V

Iк.макс.

1,5A

Pрасс.макс.

1W

Fгр.

> 100MHz

(тип. 190..200MHz)

< 9pF

< 15pF

Iк.обр.

< 0,1µA

Hfe

160..300

Uкэ.нас.

<0,5V

Диапазон рабочих температур

-65..+150°С

Корпус

TO-92

Аналоги

PSS8050D

S8050D

КТ6114В

PSS8550D

S8550D

КТ6115В

 

 

 

Более подробные характеристики транзисторов SS8050D и SS8550D с чертежами корпуса и графиками работы Вы можете получить скачав файл документации ниже (на английском языке).

Обозначение транзисторов SS8050 и SS8550:

 

Транзистор s8050 параметры цоколевка

Биполярный кремниевый N-P-N транзистор SS8050 по своим характеристикам и параметрам, предназначен для общего назначения коммутации и усиления. Особенностью его является то, что он выдерживает высокий ток и использует только низкое напряжение. Приведем его основные физические данные:

  • Корпус — ТО-92;
  • Материал изготовления-пластик;
  • Выводы — пайка в MIL-STD-202;
  • Методика 208;
  • Комплиментарная пара — SS8550.

Ниже в таблице приведем предельно допустимые электрические режимы эксплуатации при Токр. среды = 25 ˚C:

Обозначение Параметр Значение Единицы
измерения
Uкб max Напряжение коллектор-база 40 В
Uкэ max Напряжение коллектоp-эмиттер 25 В
Uэб max Напряжение эмиттер-база 6 В
Iк max Постоянный ток коллектора 1.5 А
Pк max Рассеиваемая мощность коллектора 1 Вт
Тj Температура перехода 150 ˚C
Tamb Диапазон рабочих температур -65 до 150 ˚C
Tstg Диапазон температур хранения -65 до 150 ˚C

Теперь рассмотрим электрические характеристики транзистора SS8050:

Обозначение Параметр Условия испытания Mин. Тип Maкс. Единицы
измерения
Uкб проб. Коллектор-база напряжение пробоя IК=100 мкA, IЭ=0 40 В
Uкэ проб. Коллектор-эмиттер напряжение пробоя IК=2 мA, IБ=0 25 В
Uэб проб. Эмиттер-база напряжение пробоя IЭ=100 мкA, IК=0 6 В
Iкбо Коллектор-база ток отсечки Uкб=35В, IЭ=0 100 нА
Iэбо Эмиттер-база ток отсечки Uэб=6В, IК=0 100 нА
h31Э Статический коэффициент передачи
тока
IК=5 мA, Uкэ=1.0В
SS8050А
SS8050B
SS8050C
SS8050D
IК=100 мA, Uкэ=1.0В
IК=800 мA, Uкэ=1.0В

45
85
120
160
85
40

135



160
110


160
200
300
300






Uкэ(нас) Напряжение насыщения коллектор-эмиттер IК=800 мA, IБ=80 мA 0.28 В
Uбэ(нас) Напряжение насыщения база-эмиттер IК=800 мA, IБ=80мA 0.98 В
Uбэ(вкл.) Напряжение включения база-эмиттер lр IК=1 0 мA, Uкэ=1B 0.66 В
Ск Емкость коллекторного перехода Uкб=10 В, IЭ=0, f=1мГц 9 пФ
fгр. Граничная частота коэф. передачи тока Uкэ=10 B, IК=50мA, f=100 МГц 100 190 МГц

Но также транзисторы серии SS8050 разделяются на группы по коэффициенту усиления (по току, напряжению или мощности) на следующие виды:

  • SS8050B транзистор обладает коэффициентом усиления в диапазоне от 85 до 160;
  • SS8050C — в диапазоне от 120 до 200;
  • SS8050D — имеет коэффициент в диапазоне от 160 до 300.

Цоколевка транзистора SS8050

Цоколевка данного транзистора ничем не отличается от его сверстников, он имеет 3 жестких контакта (ножки):

Внимание! Будьте осторожны при пайке, делайте это не ближе 5мм от основания.

Аналоги

Если вдруг под рукой нет SS8050, то его можно заменить на аналоги со схожими характеристиками:

Представленные выше транзисторы лучше российских аналогов и найти их можно в любой радиолавки или в интернете. А также более подробную информация можно найти в DataSheet устройства SS8050, там вы увидите графики тестирования и много другой углубленной информации.

Главная О сайте Теория Практика Контакты

Высказывания:
Любая программа стремится занять всю доступную память.
Выводы программиста

Основные параметры транзистора 8050 биполярного высокочастотного npn.

Эта страница показывает существующую справочную информацию о параметрах биполярного высокочастотного npn транзистора 8050 . Дана подробная информация о параметрах, схеме и цоколевке, характеристиках, местах продажи и производителях. Аналоги этого транзистора можно посмотреть на отдельной странице.

Исходный полупроводниковый материал, на основе которого изготовлен транзистор: кремний (Si)
Структура полупроводникового перехода: npn

Pc max Ucb max Uce max Ueb max Ic max Tj max, °C Ft max Cc tip Hfe
1W 40V 25V 6V 1.5A 150°C 100MHz 9 85MIN

Производитель: STE
Сфера применения: Low Power, General Purpose
Популярность: 54399
Условные обозначения описаны на странице «Теория».

Схемы транзистора 8050

Общий вид транзистора 8050. Цоколевка транзистора 8050.

Обозначение контактов:
Международное: C – коллектор, B – база, E – эмиттер.
Российское: К – коллектор, Б – база, Э – эмиттер.

Коллективный разум. Дополнения для транзистора 8050.

Дополнение: 8050 в варианте эмитор колектор база.
Дата добавления: 2016-06-27 10:46:40; Пользователь: путин иван дмитриевич.

Другие разделы справочника:

Есть надежда, что справочник транзисторов окажется полезен опытным и начинающим радиолюбителям, конструкторам и учащимся. Всем тем, кто так или иначе сталкивается с необходимостью узнать больше о параметрах транзисторов. Более подробную информацию обо всех возможностях этого интернет-справочника можно прочитать на странице «О сайте».
Если Вы заметили ошибку, огромная просьба написать письмо.
Спасибо за терпение и сотрудничество.

[Click the image to enlarge it]

S8050 Pin Description

Pin Number

Pin Name

Description

Current Drains out through emitter

Controls the biasing of transistor

Current flows in through collector

Features
  • Low Voltage, High Current NPN Transistor
  • Small Signal Transistor
  • Maximum Power: 2 Watts
  • Maximum DC Current Gain (hFE) is 400
  • Continuous Collector current (IC) is 700mA
  • Base- Emitter Voltage (VBE) is 5V
  • Collector-Emitter Voltage (VCE) is 20V
  • Collector-Base Voltage (VCB) is 30V
  • High Used in push-pull configuration doe Class B amplifiers
  • Available in To-92 Package

Note: Complete Technical Details can be found at the S8050 datasheet given at the end of this page.

Complementary PNP Transistors

Alternative NPN Transistors

S9014, MPSA42, SS8050, BC547, 2N3904, 2N2369, 2N3055, 2N3904, 2N3906

S8050 Equivalent Transistors

Brief Description on S8050

S8050 is a NPN transistor hence the collector and emitter will be left open (Reverse biased) when the base pin is held at ground and will be closed (Forward biased) when a signal is provided to base pin. It has a maximum gain value of 400; this value determines the amplification capacity of the transistor normally S8050. Since it is very high it is normally used for amplification purposes. However at a normal operating collector current the typical value of gain will be 110. The maximum amount of current that could flow through the Collector pin is 700mA, hence we cannot drive loads that consume more than 700mA using this transistor. To bias a transistor we have to supply current to base pin, this current (IB) should be limited to 5mA.

When this transistor is fully biased then it can allow a maximum of 700mA to flow across the collector and emitter. This stage is called Saturation Region and the typical voltage allowed across the Collector-Emitter (V­CE) or Collector-Base (VCB) could be 20V and 30V respectively. When base current is removed the transistor becomes fully off, this stage is called as the Cut-off Region.

S8050 in Push-Pull Configuration

As mentioned in the features the S8050 transistor is commonly used in push pull configuration with Class B amplifier. So let us discuss how that is done.

A push pull amplifier, commonly known as Class B amplifier is type of multistage amplifier commonly used for audio amplification of loudspeakers. It is very simple to construct and requires two identical complimentary transistors operate. By complimentary it means that we need a NPN transistor and its equivalent PNP transistor. Like here the NPN transistor will be S8050 and its equivalent PNP transistor will be S8550. A simple circuit diagram of the Class B amplifier with the using the S8050 is shown below.

Applications
  • Audio Amplification Circuits
  • Class B Amplifiers
  • Push pull Transistors
  • Circuits where high gain is required
  • Low signal applications

2D model of the component

If you are designing a PCB or Perf board with this component then the following picture from the S8050 transistor Datasheet will be useful to know its package type and dimensions.

КТ315 характеристики транзистора, цоколевка и российские аналоги


Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.



Тестирование полупроводниковых диодов

При тестировании диодов с помощью стрелочных ампервольтомметрами следует использовать нижние пределы измерений. При проверке исправного диода сопротивление в прямом направлении составит несколько сотен Ом, в обратном направлении — бесконечно большое сопротивление. При неисправности диода стрелочный (аналоговый) ампервольтомметр покажет в обоих направлениях сопротивление близкое к 0 (при пробое диода) или бесконечно большое сопротивление при разрыве цепи. Сопротивление переходов в прямом и обратном направлениях для германиевых и кремниевых диодов различно.

Проверка диодов с помощью цифровых мультиметров производится в режиме их тестирования. При этом, если диод исправен, на дисплее отображается напряжение на р-n переходе при измерении в прямом направлении или разрыв при измерении в обратном направлении. Величина прямого напряжения на переходе для кремниевых диодов составляет 0,5…0,8 В, для германиевых — 0,2…0,4 В. При проверке диода с помощью цифровых мультиметров в режиме измерения сопротивления при проверке исправного диода обычно наблюдается разрыв как в прямом, так и в обратном направлении из-за того, что напряжение на клеммах мультиметра недостаточно для того, чтобы переход открылся.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить исправность транзистора

Для наиболее распространенных биполярных транзисторов их проверка аналогична тестированию диодов, так как саму структуру транзистора р-n-р или n-р-n можно представить как два диода (см. рисунок выше), с соединенными вместе выводами катода, либо анода, представляющими собой вывод базы транзистора. При тестировании транзистора прямое напряжение на переходе исправного транзистора составит 0,45…0,9 В. Говоря проще, при проверке омметром переходов база-эмиттер, база-коллектор исправный транзистор в прямом направлении имеет маленькое сопротивление и большое сопротивление перехода в обратном направлении. Дополнительно следует проверять сопротивление (падение напряжения) между коллектором и эмиттером, которое для исправного транзистора должно быть очень большое, за исключением описанных ниже случаев. Однако есть свои особенности и при проверке транзисторов. На них мы и остановимся подробнее.

Одной из особенностей является наличие у некоторых типов мощных транзисторов встроенного демпферного диода, который включен между коллектором и эмиттером, а также резистора номиналом около 50 Ом между базой и эмиттером. Это характерно в первую очередь для транзисторов выходных каскадов строчной развертки. Из-за этих дополнительных элементов нарушается обычная картина тестирования. При проверке таких транзисторов следует сравнивать проверяемые параметры с такими же параметрами заведомо исправного однотипного транзистора. При проверке цифровым мультиметром транзисторов с резистором в цепи база-эмиттер напряжение на переходе база-эмиттер будет близким или равным 0 В.

Другими «необычными» транзисторами являются составные, включенные по схеме Дарлингтона. Внешне они выглядят как обычные, но в одном корпусе имеется два транзистора, соединенные по схеме, изображенной на рис. 2. От обычных их отличает высокий коэффициент усиления — более 1000.

Тестирование таких транзисторов особенностями не отличается, за исключением того, что прямое напряжение перехода база-эмиттер составляет 1,2…1,4 В. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв.

Тестирование однопереходных и программируемых однопереходных транзисторов

Однопереходный транзистор (ОПТ) отличается наличием на его вольт-амперной характеристике участка, с отрицательным сопротивлением. Наличие такого участка говорит о том, что такой полупроводниковый прибор может использоваться для генерирования колебаний (ОПТ, туннельные диоды и др.).

Однопереходный транзистор используется в генераторных и переключательных схемах. Для начала разберем, чем отличается однопереходный транзистор от программируемого однопереходного транзистора. Это несложно:

  • общим для них является трехслойная структура (как у любого транзистора) с 2мя р-n переходами;
  • однопереходный транзистор имеет выводы, называемые база 1 (Б1), база 2 (Б2), эмиттер. Он переходит в состояние проводимости, когда напряжение на эмиттере превышает значение критического напряжения переключения, и находится в этом состоянии до тех пор, пока ток эмиттера не снизится до некоторого значения, называемого током запирания. Все это очень напоминает работу тиристора;
  • программируемый однопереходный транзистор имеет выводы, называемые анод (А), катод (К) и управляющий электрод (УЭ). По принципу работы он ближе к тиристору. Переключение его происходит тогда, когда напряжение на управляющем электроде превышает напряжение на аноде (на величину примерно 0,6 В — прямое напряжение р-n перехода). Таким образом, изменяя с помощью делителя напряжение на аноде, можно изменять напряжение переключения такого прибора т.е. «программировать» его.

Чтобы проверить исправность однопереходного и программируемого однопереходного транзистора следует измерить омметром сопротивление между выводами Б1 и Б2 или А и К для проверки на пробой. Но наиболее точные результаты можно получить, собрав схему для проверки однопереходных и программируемых однопереходных транзисторов (см. схему ниже — для ОПТ — рис. слева, для программируемого ОПТ — рис. справа).

Рис. 3

Проверка цифровых транзисторов

Рис. 4 Упрощенная схема цифрового транзистора слева, Справа — схема тестирования. Стрелка означает «+» измерительного прибора

Другими необычными транзисторами являются цифровые (транзисторы с внутренними цепями смещения). На рис 4. выше изображена схема такого цифрового транзистора. Номиналы резисторов R1 и R2 одинаковы и могут составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы.

Цифровой транзистор внешне не отличается от обычного, но результаты его «прозвонки» могут поставить в тупик даже опытного мастера. Для многих они как были «непонятными», так таковыми и остались. В некоторых статьях можно встретить утверждение — «тестирование цифровых транзисторов затруднено… Лучший вариант — замена на заведомо исправный транзистор». Бесспорно, это самый надежный способ проверки. Попробуем разобраться, так ли это на самом деле. Давайте разберемся, как правильно протестировать цифровой транзистор и какие выводы сделать из результатов измерений.

Для начала обратимся к внутренней структуре транзистора, изображенной на рис.4, где переходы база-эмиттер и база-коллектор для наглядности изображены в виде двух включенных встречно диодов. Резисторы R1 и R2 могут быть как одного номинала, так и могут отличаться и составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы. Пусть сопротивление резистора R1 будет 10 кОм, a R2 — 22 кОм. Сопротивление открытого кремниевого перехода примем равным 100 Ом. В частности, эту величину показывает стрелочный авометр Ц4315 при измерении сопротивления на пределе х1.

В прямом направлении цепь база-коллектор рассматриваемого транзистора состоит из последовательно соединенных резистора R1 и сопротивления собственно перехода база-коллектор (VD1 на рис. 1). Сопротивлением перехода, так как оно значительно меньше сопротивления резистора R1, можно пренебречь, и этот замер даст величину, приблизительно равную значению сопротивления резистора R1, которое в нашем примере равно 10 кОм. В обратном направлении переход остается закрытым, и ток через этот резистор не течет. Стрелка авометра должна показать «бесконечность».

Цепь база-эмиттер представляет собой смешанное соединение резисторов R1, R2 и сопротивления собственно перехода база-эмиттер (VD2 на рис. 4 слева). Резистор R2 включен параллельно этому переходу и практически не изменяет его сопротивления. Следовательно, в прямом направлении, когда переход открыт, ампервольтомметр вновь покажет величину сопротивления, приблизительно равную значению сопротивления базового резистора R1. При изменении полярности тестера переход база-эмиттер остается закрытым, и ток протекает через последовательно соединенные резисторы R1 и R2. В этом случае тестер покажет сумму этих сопротивлений. В нашем примере она составит приблизительно 32 кОм.

Как видите, в прямом направлении цифровой транзистор тестируется так же, как и обычный биполярный транзистор, с той лишь разницей, что стрелка прибора показывает значение сопротивления базового резистора. А по разности измеренных сопротивлений в прямом и обратном направлениях можно определить величину сопротивления резистора R2.

Теперь рассмотрим тестирование цепи эмиттер-коллектор. Эта цепь представляет собой два встречно включенных диода, и при любой полярности тестера его стрелка должна была бы показать «бесконечность». Однако, это утверждение справедливо только для обычного кремниевого транзистора.

В рассматриваемом случае из-за того, что переход база-эмиттер (VD2) оказывается зашунтированным резистором R2, появляется возможность открыть переход база-коллектор при соответствующей полярности измерительного прибора. Измеренное при этом сопротивление транзисторов имеет некоторый разброс, но для предварительной оценки можно ориентироваться на значение примерно в 10 раз меньшее сопротивления резистора R1. При смене полярности тестера сопротивление перехода база-коллектор должно быть бесконечно большим.

На рис. 4 справа подведен итог вышесказанному, которым удобно пользоваться в повседневной практике. Для транзистора прямой проводимости стрелка будет означать «-» измерительного прибора.

В качестве измерительного прибора необходимо использовать стрелочные (аналоговые) АВОметры с током отклонения головки около 50 мкА (20 кОм/В).

Следует отметить, что вышеизложенное носит несколько идеализированный характер, и на практике, могут быть ситуации, требующие логического осмысления результатов измерений. Особенно в случаях, если цифровой транзистор окажется дефектным.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка транзисторов мультиметром: нештатный режим

Допустим, вызывает сомнение исправность транзистора полевого типа. Известный русский вопрос в электронике присутствует. Начинают думать… м-да.

  • Полевой транзистор отпирается или запирается определенным знаком напряжения. Обсуждали выше. Если помните, говорили, при прозвонке на щупах тестера небольшое постоянное напряжение. Будем использовать в наших тестах. Пока транзистор на плате, сложно сделать измерения, стоит изъять из привычного окружения, как можно применить нестандартные методики. Оказывается, если приложить на электрод отпирающее напряжение, за счет некоторой собственной емкости транзистора область зарядится, сохраняя приобретенные свойства. Допускается прозвонить электроды между истоком и стоком. Сопротивление порядка 0,5 кОм покажет: полевой транзистор работоспособен. Стоит закоротить базу с другими отводами, проводимость исчезнет. Полевой транзистор закрылся и годен.
  • Биполярные транзисторы, полевые с управляющим p-n переходом проверяют гораздо проще. В первом случае применяется схема замещения элемента двумя диодами, включенными навстречу (или наоборот спинками). Подадим отпирающее напряжение (p – плюс, n – минус), получив на измерителе сопротивления номинал 500 – 700 Ом. Можно также звонить, пользуясь слухом. Недаром на шкале часто нарисован диод. Прозвонка используется для проверки работоспособности. Напряжения хватает открыть p-n-переход.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Инструкция проверки тестером

Тестеры различаются по видам моделей:

  1. Существуют приборы, в которых конструкцией предусмотрены устройства, позволяющие измерить коэффициент усиления микротранзисторов малой мощности.
  2. Обычные тестеры позволяют осуществить проверку в режиме омметра.
  3. Цифровой тестер измеряет транзистор в режиме проверки диодов.

В любом из случаев существует стандартная инструкция:

  1. Прежде, чем начать проверку, необходимо снять заряд с затвора. Это делается так – буквально на несколько секунд заряд необходимо замкнуть с истоком.
  2. В случае, когда проверяется маломощный полевой транзистор, то перед тем, как взять его в руки, обязательно нужно снять статический заряд со своих рук. Это можно сделать, взявшись рукой за что-нибудь металлическое, имеющее заземление.
  3. При проверке стандартным тестером, необходимо в первую очередь определить сопротивление между стоком и истоком. В обоих направлениях оно не должно иметь особого различия. Величина сопротивления при исправном транзисторе будет небольшой.
  4. Следующий шаг – измерение сопротивления перехода, сначала прямое, затем обратное. Для этого необходимо подключить щупы тестера к затвору и стоку, а затем к затвору и истоку. Если сопротивление в обоих направлениях имеет разную величину, триодное устройство исправно.

Читать также: Интернет провод обжать цвета

Транзистор КТ8232 — DataSheet


Цоколевка и внутренняя схема транзистора КТ8232 Параметры транзистора КТ8232

ПараметрОбозначениеМаркировкаУсловияЗначениеЕд. изм.
АналогКТ8232А1ST6060 *1, IR6060 *1, BU941ZP *3, BU941ZT *3, BU941ZSM *3, BU941ZPFI *3, BU941ZTFI *3, BU920P *2
КТ8232Б1IDI8002 *3, GT8002 *3, IDI8005 *3, RCA9201C *3
Структураn-p-n
Максимально допустимая постоянная рассеиваемая мощность коллектораPK max,P*K, τ max,P**K, и maxКТ8232А1125*Вт
КТ8232Б1125*
Граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттеромfгр, f*h41б, f**h41э, f***maxКТ8232А1МГц
КТ8232Б1
Пробивное напряжение коллектор-база при заданном обратном токе коллектора и разомкнутой цепи эмиттераUКБО проб., U*КЭR проб., U**КЭО проб.КТ8232А1350В
КТ8232Б1350
Пробивное напряжение эмиттер-база при заданном обратном токе эмиттера и разомкнутой цепи коллектораUЭБО проб.,КТ8232А15В
КТ8232Б15
Максимально допустимый постоянный ток коллектораIK max, I*К , и maxКТ8232А120А
КТ8232Б120
Обратный ток коллектора — ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттераIКБО, I*КЭR, I**КЭOКТ8232А1мА
КТ8232Б1
Статический коэффициент передачи тока транзистора в режиме малого сигнала для схем с общим эмиттеромh31э, h*21ЭКТ8232А110 В; 5 А300..8000
КТ8232Б110 В; 5 А300…8000
Емкость коллекторного переходаcк, с*12эКТ8232А1100 ВпФ
КТ8232Б1100 В
Сопротивление насыщения между коллектором и эмиттеромrКЭ нас, r*БЭ нас, К**у.р.КТ8232А1≤0.18Ом, дБ
КТ8232Б1≤0.18
Коэффициент шума транзистораКш, r*b, P**выхКТ8232А1Дб, Ом, Вт
КТ8232Б1
Постоянная времени цепи обратной связи на высокой частотеτк, t*рас, t**выкл, t***пк(нс)КТ8232А1пс
КТ8232Б1

Описание значений со звездочками(*,**,***) смотрите в таблице параметров биполярных транзисторов.

*1 — аналог по электрическим параметрам, тип корпуса отличается.

*2 — функциональная замена, тип корпуса аналогичен.

*3 — функциональная замена, тип корпуса отличается.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Ne555p характеристики схема подключения

Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования. На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.

В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймер на биполярных транзисторах имеет один существенный недостаток, связанный с переходом выходного каскада из одного состояния в противоположное. Каждое переключение сопровождается паразитным сквозным током, который в пике может достигать 400 мА, увеличивая тепловые потери. Решение проблемы заключается в установке полярного конденсатора ёмкостью до 0,1 мкФ между выводом управления (5) и общим проводом. Благодаря ему, повышается стабильность при запуске и надёжность всего устройства. Кроме того, для повышения помехоустойчивости цепь питания дополняют неполярным конденсатором 1 мкФ.

Таймеры, собранные на КМОП-транзисторах, лишены перечисленных недостатков и не нуждаются в монтаже внешних конденсаторов.

Основные параметры ИМС серии 555

Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме. На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера. Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1. Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности — Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R1 – 200кОм-0,125Вт и электролитический конденсатор С1 – 4,7мкФ-16В. R2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

UВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке. С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования. На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.

В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймер на биполярных транзисторах имеет один существенный недостаток, связанный с переходом выходного каскада из одного состояния в противоположное. Каждое переключение сопровождается паразитным сквозным током, который в пике может достигать 400 мА, увеличивая тепловые потери. Решение проблемы заключается в установке полярного конденсатора ёмкостью до 0,1 мкФ между выводом управления (5) и общим проводом. Благодаря ему, повышается стабильность при запуске и надёжность всего устройства. Кроме того, для повышения помехоустойчивости цепь питания дополняют неполярным конденсатором 1 мкФ.

Таймеры, собранные на КМОП-транзисторах, лишены перечисленных недостатков и не нуждаются в монтаже внешних конденсаторов.

Основные параметры ИМС серии 555

Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме. На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера. Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1. Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности — Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R1 – 200кОм-0,125Вт и электролитический конденсатор С1 – 4,7мкФ-16В. R2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

UВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке. С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Автор: с2. Опубликовано в Все статьи

Наверное нет такого радиолюбителя, который не использовал бы в своей практике эту микросхему.

Микросхема существует с 1971 года, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер»,

Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 39 лет практически каждый уважающий себя производитель полупроводников, считал свои долгом выпустить свою версию этой микросхемы.

Но при этом в функциональности и расположении выводов никаких различий нет. Все они полные аналоги оригинала Signetics Corporation. Новые виды схемных решений находятся и по сей день .

Меня эта микросхема по прежнему часто удивляет , как изменив в схеме подключение одного элемента, схема приобретает новую функциональность.

В статье простые схемы примеры практического применения данной микросхемы

Триггер Шмидта.

Это очень простая, но эффективная схема. Схема позволяет, подавая на вход аналоговый сигнал, получить чистый прямоугольный сигнал на выходе

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Простой таймер.

  • Схема простого таймера NE555, видео обзор от пользователя jakson .

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Схема таймера NE555, для получения более точных интервалов.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Простой ШИМ

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Сумеречный выключатель.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Управление устройством с помощью одной кнопки.

  • Вариант исполнения такой схемы находится в этом блоге.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Аналогичная схема управление одной кнопкой на микросхеме CD4013 (аналог 561TM2)

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Датчик (индикатор) влажности.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Контроль уровня воды.


Два датчика уровня жидкости могут служить для контроля за количеством воды в баке . Один датчик сообщает о малом количестве воды в баке, а второй о том , что бак полный. При небольшой доработке схемы выходные сигналы схемы можно подключить к более серьёзным нагрузкам :).

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

ON/OFF сенсор.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Схема для включения светодиодной подсветки от автономного питания, на 10- 30секунд.

Один вариант из применения, встраивается во входную дверь в районе замочной скважины.

Подсветка включается посредством нажатия кнопки на дверной ручке – в результате не возникнет проблем с открытием замка при отсутствии естественного либо искусственного освещения.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Кодовый замок на таймере NE555.

Подобной разработки кодового замка на таймере NE555, в интернете я пока не встречал, поэтому эта разработка посвящается всем любителям этой чудесной микросхемы.
Схему на микросхеме NE555 в виде кодового замка на дверь или сейф, нетрудно реализовать на этом таймере.
Еще я знаю, что 555 нормально работает при отрицательных температурах,(если предстоит эксплуатация на улице) и более широкий диапазон напряжения питания до 16V. Надежность микросхемы не подлежит сомнению.

И так привожу в пример схему, цифровой код в которой будет состоять из 4 цифр (технически схему можно реализовать и на одной кнопке, но это будет слишком банально, я думаю что 4 цифры для начала самый раз, наращивать количество цифр в коде этой схемы можно до бесконечности ,(одинаковыми частями по блочно, обвел на схеме U2).
В приведенной схеме все 4 таймера работают по одной схеме, имеются небольшие отличия в таймерах U1, U4. Схема U2 и U3 повторяются один в один.
Каждый таймер в этой схеме может быть настроен на своё рабочее время, на это задействована время задающая цепочка R1, R2, C1.
А также секретность кода можно увеличить подключив доп. коммутирующие диоды.( в качестве примера привел включение одного диода D1, большее не рисовал, так как думаю, что тогда схема будет восприниматься очень сложно).
Главное отличие этой схемы на таймерах 555, от подобных схем, наличие настройки рабочего времени каждого таймера, при простоте этой схемы, вероятность подбора кода посторонним лицом будет очень невелик.

Работа схемы;
– Нажимаем кнопку ноль, запускается таймер U1, его рабочее время настроено на удержание логической единицы (вывод 3) в течении 30 сек, после этого можно нажать кнопку 1.
– Нажимаем кнопку 1 таймер U2, его рабочее время настроено на 2 сек., в течении этого времени надо нажать кнопку 2 (иначе U2 удержание логической единицы (вывод 3) сбрасывается и нажатие кн. 2 не будет иметь смысла)
– Нажимаем кнопку 2, таймер U3 настроен на удержание логической единицы (вывод 3) в течении 25 сек, после этого можно нажать кнопку 3, но ……….. смотрим на коммутирующий диод D1, из за него кнопку 3 нет смысла быстро нажимать, пока не закончится 30 секундное рабочее время таймера U1,
– После нажатия кнопки 3, таймер U4 выдает логическую единицу (U4 вывод 3)на исполнительное устройство.
Еще остается добавить что, в действующем устройстве цифровой код будет расположен не по порядку номеров, а хаотично,
и любое нажатие других кнопок будет сбрасывать таймеры в 0.
Ну в общем пока всё, все варианты использования тут не описать, вижу что не все, я здесь в описании затронул …… в общем если есть идея, ее техническая реализация всегда найдётся.
Все настройки, рабочего времени микросхем U1…….U4 являются тестовыми, и описаны здесь для примера. 🙂
(в охранных системах для непрошеных гостей самое трудное, это индивидуальные решения, доказано временем )
Прикладываю архив со схемой в протеус, в нем работу схемы можно оценить наглядно.

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Назначение восьми ног микросхемы.

1. Земля.

Вывод, который подключается к минусу питания и к общему проводу схемы.
2. Запуск.
Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, ) и конденсатором С – это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.
3. Выход.

Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий – высокий уровень происходит приблизительно за 100 нс.
4. Сброс.
При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и есть reset. Входное напряжение не зависит от величины напряжения питания – это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод рекомендуется подключить к плюсу питания, пока в нем нет необходимости.
5. Контроль.
Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.
6. Останов.
Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.
7. Разряд.
Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

8. Плюс питания.

Напряжение питания таймера может находиться в пределах 4,5-16 вольт.

Программа параметров и расчета NE555.rar 1,3Mb.

Работа схемы таймера NE555 в протеусе.

Введение в S8550 — Инженерные проекты


Здравствуйте, друзья, надеюсь, у вас все отлично. В сегодняшнем руководстве мы подробно рассмотрим Introduction to S8550 . S8550 — это PNP-транзистор, отныне во время обратного смещения коллектор и эмиттер будут открыты, а во время прямого смещения они будут закрыты. Значение усиления 300, это значение определяет возможность увеличения транзистора. Его усиление очень велико, поэтому он используется для просьб об увеличении.

Когда он полностью смещен, он может пропускать ток до 700 мА поперек коллектора и эмиттера. Эта фаза называется областью насыщения, и различительное напряжение, допустимое на (VCE) или (VCB), может составлять 20 В и 30 В соответственно. В сегодняшнем посте мы рассмотрим его защиту, фрагменты, коннотацию, представления и т. Д. Я также поделюсь некоторыми ссылками, где я связал его с другими микроконтроллерами. Вы также можете получить больше материала об этом в комментариях, я расскажу вам больше об этом.Итак, давайте начнем с базового Introduction to S8550.

Введение в S8550
  • S8550 отныне является PNP-транзистором во время обратного смещения коллектор и эмиттер будут открыты, а во время прямого смещения они будут закрыты.
  • Выпускается в гибком кожухе ТО-92. Когда мы наблюдаем за гладкой стороной с проникающими вниз выводами, три вывода, выходящие слева направо, называются эмиттером, базой и коллектором.
  • Обычно используется PNP транзистор, это надежный менее дорогой транзистор, имеющий хорошие практические характеристики.
  • Он предназначен для усиления звука и других общих требований в электронной схеме. Он также используется в коммерческих целях.
  • Это лучший выбор для разнообразных электронных схем, поскольку он имеет коэффициент рассеяния 1 Вт, поэтому он подходит для усиления акустического сигнала примерно до 1 Вт.
  • Максимальный ток, который может выдержать кабина коллектора, составляет 700 мА, так как он используется для большого количества запросов на переключение в электронных цепях.
  • Коэффициент усиления для этого транзистора составляет 300, что делает его лучше других транзисторов.
Распиновка S8550
Работа S8550
  • Теперь обсудим его работу.
  • Как указано в заголовке выше, транзистор S8550 обычно используется в двухтактной схеме с усилителем класса B. Итак, давайте обсудим, как это работает.
  • Двухтактный усилитель, обычно относящийся к классу B, относится к категории многокаскадных усилителей, используемых для усиления звука мегафонов.
  • Его очень легко собрать, и для него нужны два неотличимых транзистора.
  • Восхищение означает, что нам нужен транзистор NPN и соответствующий ему транзистор PNP. Теперь NPN-транзистор — S8050, а соответствующий ему PNP-транзистор — S8550.
  • Принципиальная схема усилителя класса B с S8550 нанесена ударом.
Применение S8550
  • Он используется в схемах усиления звука.
  • Это усилитель класса B.
  • Это двухтактный транзистор.
  • Используется в таких схемах, где требуется высокий ток.
  • Используется в меньшем количестве сигналов.
  • Потребляет ток нагрузки ниже -700 мА.
  • Используется в различных схемах как переключатель.
  • Усиливает сигналы с низким усилением до высокого усиления.

Итак, все было про S8550, если есть вопросы, задавайте в комментариях. Я проведу вас всесторонне. Будьте осторожны до следующего урока. Спасибо за прочтение.

Автор: Захид Али

Я профессиональный писатель технического контента, мое хобби — узнавать новые вещи и делиться ими с новыми учениками. Также имею опыт работы в различных отраслях в качестве инженера. Теперь я делюсь своими техническими знаниями со студентами инженерных специальностей.

Сообщение навигации

S8550-E-T92-B лист данных — Технические характеристики: Полярность: PNP; Тип корпуса: ТО-92,

5SGA25h3501 :. Запатентованная технология свободно плавающего кремния Низкие потери в открытом состоянии и коммутационные потери Кольцевой электрод затвора Промышленный стандартный корпус Рейтинг устойчивости к космическому излучению VDRM VRRM IDRM IRRM VDClink Повторяющееся пиковое напряжение в закрытом состоянии Повторяющееся пиковое обратное напряжение Повторяющееся пиковое значение тока в закрытом состоянии Повторяющееся пиковое обратное напряжение Постоянный постоянный ток напряжение при отказе 100 FIT.

ARF664 : диод быстрого восстановления. ДЛЯ ПРИЛОЖЕНИЙ IGBT, IEGT, GCT БЕСПЕРЕБОЙНАЯ РАБОТА НИЗКИЕ ПОТЕРИ ЦЕЛЬ МЯГКОГО ВОССТАНОВЛЕНИЯ Повторяющееся напряжение до среднего прямого тока Пульсирующий ток 18 кА Повторяющееся пиковое обратное напряжение Неповторяющееся пиковое обратное напряжение Повторяющееся пиковое обратное напряжение Постоянное постоянное напряжение V = VRRM Средний прямой ток Средний прямой ток Бросок прямого тока I t Вперед.

FQD9N08 : N-канальный транзистор QFET на 80 В. Эти силовые полевые транзисторы с N-канальным режимом усиления производятся с использованием запатентованной Fairchild технологии плоских полосок DMOS.Эта передовая технология специально разработана для минимизации сопротивления в открытом состоянии, обеспечения превосходных коммутационных характеристик и устойчивости к импульсам высокой энергии в лавинном и коммутационном режимах. Эти устройства хороши.

KSR1009 : Эпитаксиальный. Эпитаксиальный кремниевый транзистор NPN. Схема переключения, инвертор, интерфейсная схема, схема драйвера Встроенный резистор смещения (R = 4,7 кОм) Дополнение к абсолютным максимальным номинальным значениям KSR2009 Ta = 25C, если не указано иное Символ VCBO VCEO VEBO PC TJ TSTG Параметр Коллектор-базовое напряжение Коллектор-эмиттер напряжение-эмиттер- Базовое напряжение Коллектор Токоприемник Температура перехода рассеиваемой мощности.

KSR2005 : Эпитаксиальный кремниевый транзистор PNP. Схема переключения, инвертор, интерфейсная схема, схема драйвера Встроенный резистор смещения (R1 = 4,7 кОм, R2 = 10 кОм) Дополнение к абсолютным максимальным номинальным значениям KSR1005 Ta = 25C, если не указано иное Символ VCBO VCEO VEBO PC TJ TSTG Коллектор параметров — коллектор базового напряжения Напряжение эмиттера Напряжение эмиттер-база Коллектор Токоприемник Рассеиваемая мощность Температура перехода.

NTE2429 : Коммутатор общего назначения на кремниевых дополнительных транзисторах.NTE2428 (NPN) и NTE2429 (PNP) Кремниевые комплементарные транзисторы Переключатель общего назначения: NTE2428 и NTE2429 — это кремниевые комплементарные транзисторы, корпус типа SOT89 для поверхностного монтажа, предназначенный для использования в толстопленочных и тонкопленочных схемах. Типичные приложения включают телефонные и общепромышленные применения. Абсолютные максимальные номинальные характеристики: CollectorBase Voltage (Open.

SK2440C-SK24100C :. 18020 Hobart Blvd., Unit B Gardena, CA USA Тел .: (310) 767-1052 Факс: (310) 767-7958 Низкий уровень шума переключения Низкое падение напряжения в прямом направлении Низкое тепловое сопротивление Высокая коммутационная способность Высокая устойчивость к скачкам напряжения Высокая надежность B1 Корпус: TO-247 (TO-3P) формованный пластик (рейтинг воспламеняемости U / L 94V-0) Клеммы: прямоугольные штыри с зазором Паяемость:.

STH8NA60FI : Среднее напряжение. Старый ТОВАР: не подходит под дизайн-в. N — РЕЖИМ УЛУЧШЕНИЯ КАНАЛА БЫСТРО МОЩНЫЙ МОП-ТРАНЗИСТОР ТИПИЧНЫЙ RDS (ВКЛ.) 30 В ОТ ВХОДА К ИСТОЧНИКУ НОМИНАЛЬНОЕ ПЕРЕКЛЮЧЕНИЕ ПОВТОРЯЮЩИЕСЯ ДАННЫЕ ПО ЛАВИНЕ 100% ИСПЫТАННЫЕ В ЛАВИНЕ ПРИ НИЗКОЙ ВНУТРЕННЕЙ ЕМКОСТИ 100 ° C — ПОВЫШЕННАЯ ПЕРЕДАЧА ЗАРЯДА ЗАРЯДА ДО 24 МИНИМАЛЬНАЯ ПЕРЕДАЧА ЗАРЯДА НА 24 МОЩНОСТИ s ПЕРЕКЛЮЧАТЕЛЬНЫЕ ИСТОЧНИКИ ПИТАНИЯ (SMPS) s ПРЕОБРАЗОВАТЕЛИ DC-AC.

STTH806TTI : тандемные диоды на 600 В.Turboswitch — тандемный сверхбыстрый повышающий диод на 600 В. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ИЗДЕЛИЯ IF (AV) VRRM Tj (max) VF (max) IRM (тип.) 600 В (последовательно) V 4A СПЕЦИАЛЬНО ПОДХОДИТ В КАЧЕСТВЕ БУСТРАЛЬНОГО ДИОДА В НЕПРЕРЫВНОМ РЕЖИМЕ КОРРЕКТОРА МОЩНОСТИ И УСЛОВИЯ ЖЕСТКОГО ПЕРЕКЛЮЧЕНИЯ. РАЗРАБОТАН ДЛЯ РАБОТЫ С ВЫСОКИМ DI / DT. СВЕРХБЫСТРЫЙ ТОК ВОССТАНОВЛЕНИЯ ДЛЯ КОНКУРЕНЦИИ С GaAs-устройствами. ДОПУСТИМЫЕ РАЗМЕРЫ МОП-транзисторов и теплоотводов. ВНУТРЕННИЙ.

FDS5670D84Z : 10000 мА, 60 В, N-КАНАЛ, Si, МАЛЫЙ СИГНАЛ, МОП-транзистор. s: Полярность: N-канал; Режим работы MOSFET: Улучшение; V (BR) DSS: 60 вольт; rDS (вкл.): 0.0140 Ом; Тип упаковки: СО-8, СО-8; Количество блоков в ИС: 1.

FP4R0CS100MPR : КОНДЕНСАТОР, АЛЮМИНИЕВЫЙ ЭЛЕКТРОЛИТИЧЕСКИЙ, ТВЕРДЫЙ ПОЛИМЕР, ПОЛЯРИЗОВАННЫЙ, 4 В, 10 мкФ, ПОВЕРХНОСТНОЕ КРЕПЛЕНИЕ. s: Соответствует RoHS: Да; : Поляризованный; Диапазон емкости: 10 мкФ; Допуск емкости: 20 (+/-%); WVDC: 4 вольта; Ток утечки: 10 мкА; СОЭ: 500 миллиом; Тип монтажа: технология поверхностного монтажа; Рабочая температура: от -55 до 105 C (от -67 до 221 F).

IN08141 : 1 ЭЛЕМЕНТ, 0.51 uH, ИНДУКТОР ОБЩЕГО НАЗНАЧЕНИЯ, SMD. s: Вариант монтажа: Технология поверхностного монтажа; Устройств в упаковке: 1; Стиль вывода: ОБРАТНЫЙ; Стандарты и сертификаты: RoHS; Применение: универсальное; Диапазон индуктивности: 0,5100 мкГн; Номинальный постоянный ток: 39000 мА.

RL-9720-150M : 1 ЭЛЕМЕНТ, 15 мкГН, ИНДУКТОР ОБЩЕГО НАЗНАЧЕНИЯ, SMD. s: Вариант монтажа: Технология поверхностного монтажа; Устройств в упаковке: 1; Стиль поводка: ОДНА ПОВЕРХНОСТЬ; Литой / экранированный: экранированный; Применение: общего назначения, силовой дроссель; Диапазон индуктивности: 15 мкГн; Номинальный постоянный ток: 1050 мА; Рабочая температура: от -40 до 130 C (от -40 до 266 F).

SMBZ27 : 27 В, 5 Вт, КРЕМНИЙ, ДИОД РЕГУЛЯТОРА ОДНОНАПРАВЛЕННОГО НАПРЯЖЕНИЯ. s: Тип диода: ДИОД РЕГУЛЯТОРА НАПРЯЖЕНИЯ.

2450FB39B100 : ВЧ ТРАНСФОРМАТОР 2400 — 2500 МГц. s: Категория: Сигнал; Другие типы трансформаторов / применение: RF; Монтаж: чип-трансформатор; Рабочая температура: от -40 до 85 C (от -40 до 185 F); Стандарты: RoHS.

821-M0864 : ТЕЛЕКОМ ТРАНСФОРМАТОР. s: Категория: Сигнал; Другие типы трансформаторов / применение: Телеком; Монтаж: чип-трансформатор; Рабочая температура: от -40 до 85 C (от -40 до 185 F).

UTC-IC S8550

DtSheet
    Загрузить

UTC-IC S8550

Открыть как PDF
Похожие страницы
Техническая спецификация
UTC-IC HE8550_10
Техническая спецификация
UTC-IC HE8050
UTC-IC 8550S_10
Техническая спецификация
UTC-IC MMBTA92
Техническая спецификация
UTC-IC 8050SL-X-AE3-R
Техническая спецификация
UTC-IC MMBTA94_10
UTC-IC 2SC945G-X-T92-B
UTC-IC 2N5551L-X-T92-K
UTC-IC MMBT3906_09
HE8050L
UTC-IC MMBTA42_09
UTC-IC MPSA42
UTC-IC BC858-X-AL3-R
UTC-IC 2SD882G-X-TM3-T
UTC-IC BC807
Техническая спецификация
UTC-IC MMBT3904G-AL3-R

dtsheet © 2021 г.

О нас DMCA / GDPR Злоупотребление здесь

транзистор% 20s8550% 20d% 20331 техническое описание и примечания по применению

хб * 9Д5Н20П

Аннотация: Стабилитрон khb9d0n90n 6v транзистор khb * 2D0N60P KHB7D0N65F BC557 транзистор kia * 278R33PI KHB9D0N90N схема транзистора ktd998
Текст: нет текста в файле


Оригинал
PDF 2N2904E BC859 KDS135S 2N2906E BC860 KAC3301QN KDS160 2N3904 BCV71 KDB2151E хб * 9Д5Н20П khb9d0n90n Стабилитрон 6в хб * 2Д0Н60П транзистор KHB7D0N65F BC557 транзистор kia * 278R33PI Схема КХБ9Д0Н90Н ktd998 транзистор
KIA78 * pI

Реферат: транзистор КИА78 * п ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П хб9д0н90н КИД65004АФ транзистор mosfet хб * 2Д0Н60П KIA7812API
Текст: нет текста в файле


Оригинал
PDF 2N2904E BC859 KDS135S 2N2906E BC860 KAC3301QN KDS160 2N3904 BCV71 KDB2151E KIA78 * pI транзистор KIA78 * р ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П khb9d0n90n KID65004AF Транзистор MOSFET хб * 2Д0Н60П KIA7812API
2SC4793 2sa1837

Аннотация: 2sC5200, 2SA1943, 2sc5198 2sC5200, 2SA1943 транзистор 2SA2060 силовой транзистор npn to-220 транзистор 2SC5359 2SC5171 эквивалент транзистора 2sc5198 эквивалентный транзистор NPN
Текст: нет текста в файле


Оригинал
PDF 2SA2058 2SA1160 2SC2500 2SA1430 2SC3670 2SA1314 2SC2982 2SC5755 2SA2066 2SC5785 2SC4793 2sa1837 2sC5200, 2SA1943, 2sc5198 2sC5200, 2SA1943 транзистор 2SA2060 силовой транзистор нпн к-220 транзистор 2SC5359 Транзисторный эквивалент 2SC5171 2sc5198 эквивалент NPN транзистор
транзистор

Аннотация: транзистор ITT BC548 pnp транзистор транзистор pnp BC337 pnp транзистор BC327 NPN транзистор pnp bc547 транзистор MPSA92 168 транзистор 206 2n3904 транзистор PNP
Текст: нет текста в файле


OCR сканирование
PDF 2N3904 2N3906 2N4124 2N4126 2N7000 2N7002 BC327 BC328 BC337 BC338 транзистор транзистор ITT BC548 pnp транзистор транзистор pnp BC337 pnp транзистор BC327 NPN транзистор pnp bc547 транзистор MPSA92 168 транзистор 206 2n3904 ТРАНЗИСТОР PNP
CH520G2

Аннотация: Транзистор CH520G2-30PT цифровой 47к 22к PNP NPN FBPT-523 транзистор npn коммутирующий транзистор 60в CH521G2-30PT R2-47K транзистор цифровой 47k 22k 500ma 100ma Ch4904T1PT
Текст: нет текста в файле


Оригинал
PDF A1100) QFN200 CHDTA143ET1PT FBPT-523 100 мА CHDTA143ZT1PT CHDTA144TT1PT CH520G2 CH520G2-30PT транзистор цифровой 47к 22к PNP NPN FBPT-523 транзистор npn переключающий транзистор 60 в CH521G2-30PT R2-47K транзистор цифровой 47k 22k 500ma 100ma Ch4904T1PT
транзистор 45 ф 122

Реферат: Транзистор AC 51 mos 3021, TRIAC 136, 634, транзистор tlp 122, транзистор, транзистор переменного тока 127, транзистор 502, транзистор f 421.
Текст: нет текста в файле


OCR сканирование
PDF TLP120 TLP121 TLP130 TLP131 TLP160J транзистор 45 ф 122 Транзистор AC 51 mos 3021 TRIAC 136 634 транзистор TLP 122 ТРАНЗИСТОР транзистор ac 127 транзистор 502 транзистор f 421
CTX12S

Аннотация: SLA4038 fn651 SLA4037 sla1004 CTB-34D SAP17N ​​2SC5586 2SK1343 CTPG2F
Текст: нет текста в файле


Оригинал
PDF 2SA744 2SA745 2SA746 2SA747 2SA764 2SA765 2SA768 2SA769 2SA770 2SA771 CTX12S SLA4038 fn651 SLA4037 sla1004 CTB-34D SAP17N 2SC5586 2SK1343 CTPG2F
Варистор RU

Аннотация: Транзистор SE110N 2SC5487 SE090N 2SA2003 Транзистор высокого напряжения 2SC5586 SE090 RBV-406
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 Варистор РУ SE110N транзистор 2SC5487 SE090N 2SA2003 транзистор высокого напряжения 2SC5586 SE090 РБВ-406
Q2N4401

Аннотация: D1N3940 Q2N2907A D1N1190 Q2SC1815 Q2N3055 D1N750 Q2N1132 D02CZ10 D1N751
Текст: нет текста в файле


Оригинал
PDF RD91EB Q2N4401 D1N3940 Q2N2907A D1N1190 Q2SC1815 Q2N3055 D1N750 Q2N1132 D02CZ10 D1N751
fn651

Абстракция: CTB-34D 2SC5586 hvr-1×7 STR20012 sap17n 2sd2619 RBV-4156B SLA4037 2sk1343
Текст: нет текста в файле


Оригинал
PDF 2SA744 2SA745 2SA746 2SA747 2SA764 2SA765 2SA768 2SA769 2SA770 2SA771 fn651 CTB-34D 2SC5586 hvr-1×7 STR20012 sap17n 2sd2619 РБВ-4156Б SLA4037 2sk1343
2SC5471

Аннотация: Транзистор 2SC5853 2sa1015 2sc1815 транзистор 2SA970 транзистор 2SC5854 транзистор 2sc1815 2Sc5720 транзистор 2SC5766 низкочастотный малошумящий PNP-транзистор
Текст: нет текста в файле


Оригинал
PDF 2SC1815 2SA1015 2SC2458 2SA1048 2SC2240 2SA970 2SC2459 2SA1049 A1587 2SC4117 2SC5471 2SC5853 2sa1015 транзистор 2sc1815 транзистор 2SA970 транзистор 2SC5854 транзистор 2sc1815 Транзистор 2Sc5720 2SC5766 Низкочастотный малошумящий транзистор PNP
Mosfet FTR 03-E

Аннотация: mt 1389 fe 2SD122 dtc144gs малошумящий транзистор Дарлингтона V / 65e9 транзистор 2SC337 mosfet ftr 03 транзистор DTC143EF
Текст: нет текста в файле


OCR сканирование
PDF 2SK1976 2SK2095 2SK2176 О-220ФП 2SA785 2SA790 2SA790M 2SA806 Mosfet FTR 03-E mt 1389 fe 2SD122 dtc144gs малошумящий транзистор Дарлингтона Транзистор V / 65e9 2SC337 MOSFET FTR 03 транзистор DTC143EF
fgt313

Реферат: транзистор fgt313 SLA4052 RG-2A Diode SLA5222 fgt412 RBV-3006 FMN-1106S SLA5096, диод ry2a
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SC4024 2SA1215 2SC4131 2SA1216 2SC4138 100 В переменного тока 2SA1294 2SC4140 fgt313 транзистор fgt313 SLA4052 Диод РГ-2А SLA5222 fgt412 РБВ-3006 FMN-1106S SLA5096 диод ry2a
транзистор 91330

Аннотация: ТРАНЗИСТОР tlp 122 R358 TLP635F 388 транзистор 395 транзистор транзистор f 421 IC 4N25 симистор 40 RIA 120
Текст: нет текста в файле


OCR сканирование
PDF 4Н25А 4Н29А 4Н32А 6Н135 6N136 6N137 6N138 6N139 CNY17-L CNY17-M транзистор 91330 ТРАНЗИСТОР TLP 122 R358 TLP635F 388 транзистор 395 транзистор транзистор f 421 IC 4N25 симистор 40 RIA 120
1999 — ТВ системы горизонтального отклонения

Реферат: РУКОВОДСТВО ПО ЗАМЕНЕ ТРАНЗИСТОРОВ AN363 TV горизонтальные отклоняющие системы 25 транзисторов горизонтального сечения tv горизонтального отклонения переключающих транзисторов TV горизонтальных отклоняющих систем mosfet горизонтального сечения в электронном телевидении CRT TV электронная пушка TV обратноходовой трансформатор
Текст: нет текста в файле


Оригинал
PDF 16 кГц 32 кГц, 64 кГц, 100 кГц.Системы горизонтального отклонения телевизора РУКОВОДСТВО ПО ЗАМЕНЕ ТРАНЗИСТОРА an363 Системы горизонтального отклонения телевизора 25 транзистор горизонтального сечения тв Транзисторы переключения горизонтального отклонения Системы горизонтального отклонения телевизора MOSFET горизонтальный участок в ЭЛТ телевидении Электронная пушка для ЭЛТ-телевизора Обратный трансформатор ТВ
транзистор

Реферат: силовой транзистор npn к-220 транзистор PNP PNP МОЩНЫЙ транзистор TO220 демпферный диод транзистор Дарлингтона силовой транзистор 2SD2206A npn транзистор Дарлингтона TO220
Текст: нет текста в файле


Оригинал
PDF 2SD1160 2SD1140 2SD1224 2SD1508 2SD1631 2SD1784 2SD2481 2SB907 2SD1222 2SD1412A транзистор силовой транзистор нпн к-220 транзистор PNP ПНП СИЛОВОЙ ТРАНЗИСТОР ТО220 демпферный диод Транзистор дарлингтона силовой транзистор 2SD2206A npn darlington транзистор ТО220
1999 — транзистор

Аннотация: МОП-транзистор POWER MOS FET 2sj 2sk транзистор 2sk 2SK тип Низкочастотный силовой транзистор n-канальный массив fet высокочастотный транзистор TRANSISTOR P 3 транзистор mp40 список
Текст: нет текста в файле


Оригинал
PDF X13769XJ2V0CD00 О-126) MP-25 О-220) MP-40 MP-45 MP-45F О-220 MP-80 MP-10 транзистор МОП-МОП-транзистор POWER MOS FET 2sj 2sk транзистор 2ск 2СК типа Низкочастотный силовой транзистор n-канальный массив FET высокочастотный транзистор ТРАНЗИСТОР P 3 транзистор mp40 список
транзистор 835

Аннотация: Усилитель с транзистором BC548, стабилизатор транзистора AUDIO Усилитель с транзистором BC548, транзистор 81 110 Вт, 85 транзистор, 81 110 Вт, 63 транзистор, транзистор, 438, транзистор, 649, ТРАНЗИСТОР.
Текст: нет текста в файле


OCR сканирование
PDF BC327; BC327A; BC328 BC337; BC337A; BC338 BC546; BC547; BC548 BC556; транзистор 835 Усилитель на транзисторе BC548 ТРАНЗИСТОРНЫЙ регулятор Усилитель АУДИО на транзисторе BC548 транзистор 81110 вт 85 транзистор 81110 вт 63 транзистор транзистор 438 транзистор 649 НАПРАВЛЯЮЩАЯ ТРАНЗИСТОРА
2002 — SE012

Аннотация: sta474a SE140N диод SE115N 2SC5487 SE090 sanken SE140N STA474 UX-F5B
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 SE012 sta474a SE140N диод SE115N 2SC5487 SE090 Санкен SE140N STA474 UX-F5B
2SC5586

Реферат: транзистор 2SC5586, диод RU 3AM 2SA2003, СВЧ диод 2SC5487, однофазный мостовой выпрямитель ИМС с выходом 1A RG-2A Diode Dual MOSFET 606 2sc5287
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 2SC5586 транзистор 2SC5586 диод РУ 3АМ 2SA2003 диод СВЧ 2SC5487 однофазный мостовой выпрямитель IC с выходом 1A Диод РГ-2А Двойной полевой МОП-транзистор 606 2sc5287
pwm инверторный сварочный аппарат

Аннотация: KD224510 250A транзистор Дарлингтона Kd224515 Powerex демпфирующий конденсатор инвертор сварочной цепи KD221K75 kd2245 kd224510 применение транзистора
Текст: нет текста в файле


OCR сканирование
PDF
варикап диоды

Аннотация: БИПОЛЯРНЫЙ ТРАНЗИСТОР GSM-модуль с микроконтроллером МОП-транзистор с p-каналом Hitachi SAW-фильтр с двойным затвором МОП-транзистор в УКВ-усилителе Транзисторы МОП-транзистор с p-каналом Mosfet-транзистор Hitachi VHF fet lna Низкочастотный силовой транзистор
Текст: нет текста в файле


OCR сканирование
PDF PF0032 PF0040 PF0042 PF0045A PF0065 PF0065A HWCA602 HWCB602 HWCA606 HWCB606 варикап диоды БИПОЛЯРНЫЙ ТРАНЗИСТОР модуль gsm с микроконтроллером P-канал MOSFET Hitachi SAW фильтр МОП-транзистор с двойным затвором в УКВ-усилителе Транзисторы mosfet p channel Мосфет-транзистор Hitachi vhf fet lna Низкочастотный силовой транзистор
Лист данных силового транзистора для ТВ

Аннотация: силовой транзистор 2SD2599, эквивалент 2SC5411, транзистор 2sd2499, 2Sc5858, эквивалентный транзистор 2SC5387, компоненты 2SC5570 в строчной развертке.
Текст: нет текста в файле


Оригинал
PDF 2SC5280 2SC5339 2SC5386 2SC5387 2SC5404 2SC5411 2SC5421 2SC5422 2SC5445 2SC5446 Техническое описание силового транзистора для телевизора силовой транзистор 2SD2599 эквивалент транзистор 2sd2499 2Sc5858 эквивалент транзистор 2SC5570 компоненты в горизонтальном выводе
2009 — 2sc3052ef

Аннотация: 2n2222a SOT23 ТРАНЗИСТОР SMD МАРКИРОВКА s2a 1N4148 SMD LL-34 ТРАНЗИСТОР SMD КОД ПАКЕТ SOT23 2n2222 sot23 ТРАНЗИСТОР S1A 64 smd 1N4148 SOD323 полупроводник перекрестная ссылка toshiba smd marking code транзистор
Текст: нет текста в файле


Оригинал
PDF 24 ГГц BF517 B132-H8248-G5-X-7600 2sc3052ef 2n2222a SOT23 КОД МАРКИРОВКИ SMD ТРАНЗИСТОРА s2a 1Н4148 СМД ЛЛ-34 ПАКЕТ SMD КОДА ТРАНЗИСТОРА SOT23 2н2222 сот23 ТРАНЗИСТОР S1A 64 smd 1N4148 SOD323 перекрестная ссылка на полупроводник toshiba smd маркировочный код транзистора
2007 — DDA114TH

Аннотация: DCX114EH DDC114TH
Текст: нет текста в файле


Оригинал
PDF DCS / PCN-1077 ОТ-563 150 МВт 22 кОм 47 кОм DDA114TH DCX114EH DDC114TH

SPICE-моделирование BJT из Datasheet

Биполярным транзисторам

BJT требуется определенное количество параметров, чтобы получить хорошую модель.Синтаксис этой модели:

.model ModelNameNPN (par1 = a par2 = b ……… parn = x)

для корпуса PNP:

.model ModelNamePNP (par1 = a par2 = b ……… parn = x)

, где пар1 пар2 …… .parn — это параметры, которые позволяют моделировать уравнения BJT.

Основные параметры для разумного моделирования поведения компонента приведены в следующей таблице:

Параметры Описание Единицы Значение по умолчанию
IS Транспортный ток насыщения A 1e-16
XTI Степень влияния температуры искробезопасного газа без размера 3.0
EG Напряжение запрещенной зоны (высота барьера) эВ 1,11
VAF Прямое напряжение Раннее В Бесконечное
BF Идеальная максимальная прямая бета без размера 100
ISE Ток насыщения утечки базовый эмиттер A 0
NE Коэффициент эмиссии утечки базового эмиттера без размера блока 1.5
IKF Угол для сильноточного спада вперед-бета A Бесконечный
NK Сильноточный коэффициент спада без размера 0,5
XTB Бета-коэффициент температуры в прямом и обратном направлениях без размера блока 0
BR Идеальное максимальное обратное бета без размера 1.0
ISC Ток насыщения утечки базовый коллектор A 0
NC Коэффициент эмиссии утечки из базового коллектора без размера 2,0 ​​
IKR Угол для обратного бета-спада сильного тока A Бесконечный
RC Омическое сопротивление коллектора Ом 0
CJC p-n емкость с нулевым смещением база-коллектор F 0
MJC Поправочный коэффициент p-n база-коллектор без размера блока 0.33
VJC V 0,75
FC Коэффициент разрядного конденсатора прямого смещения без размера блока 0,5
CJE p-n емкость базового эмиттера при нулевом смещении F 0
MJE Градуировочный коэффициент p-n базового эмиттера без размера блока 0,33
VJE Встроенный потенциал базового эмиттера В 0.75
TR Идеальное время обратного прохождения сек 1e-8
TF Идеальное время прохождения вперед сек 0
ITF Зависимость времени прохождения от Ic A 0
XTF Коэффициент зависимости смещения от времени прохождения без размера блока 0
VTF Зависимость времени прохождения от Vbc V Бесконечное
RB Сопротивление базы нулевого смещения (максимальное) Ом 0

100 шт S8550 S8550D Биполярный транзистор PNP TO-92 Упаковка


Характеристики

  • Pcm: 625 мВт
  • Напряжение коллектор-база В CBO: 40 В, Icm: 500 мА
  • Корпус: TO-92
  • Полярность: PNP
  • 100 x S8550 S8550D Биполярный транзистор PNP TO -92 Упаковка

Цена была:
Сопутствующие товары

Описание продукта Техническая информация Отзывы клиентов

Описание продукта
Транзистор S8550 D331 9 PNP2 TO92

эквивалентные таблицы данных и примечания к применению, лист данных… Первая строка: sk 8050s j3y транзистор PNP транзистор S8550 2TY S8050 эквивалент d965 транзистор эквивалент DIODES SOD-123 1N4148W 1N4448W 1N5711W * 1N6263W * B0520LW … транзистор, купить качественный транзистор у производителей и поставщиков. Сигнальный PNP-транзистор. Мин. Минимальный заказ: 3000 Шт. 1. Малосигнальный PNP-транзистор 2. Напряжение между коллектором и эмиттером (VCEO): -50 В 3. Коллекторный ток … Таблицы данных, эквивалентные C1815, и указания по применению, технические данные … Первая строка: транзистор c1815 C1815 таблица эквивалентов транзисторов c1815 эквивалент C1815 ES51945 (5000 отсчетов) Двойной дисплей / нет 5000 отсчетов двойной дисплей 128L … Биполярные транзисторы Полупроводники и активные элементы 18 значений 900 шт. Биполярный транзистор TO-92 Box Kit A1015 2N5551 . подробнее Цена: 28,19 $ Транзисторы S8050, покупайте качественные транзисторы S8050 у производителей … Транзисторы S8050, источник Транзисторы S8050 Продукты на транзисторах, интегральные схемы от производителей и поставщиков по всему миру, которые предлагают высокое качество… Техническое описание и примечания по применению BDW93C, техническое описание, схема, pdf … Первая строка: Транзисторы Дарлингтона серии BDW93, BDW94 Разработаны для универсальных приложений переключения скорости усилителя. Поддерживающее напряжение коллектор-эмиттер — VCEO (sus … Транзисторный усилитель — RhithFro.com Discount Construction и … Коэффициент усиления по напряжению составляет 0,05, когда на выходе транзисторного усилителя 5 В среднеквадратического значения, а на входе 100 мВ среднеквадратичного значения. истина или ложь ?? Ложь — если быть правдой, на выходе будет … Параметры и характеристики транзистора SS8550… SS8550 техническое описание транзистора … Введите полный или частичный номер детали производителя минимум из 3 букв или цифр 2SC945 техническое описание и примечание по применению, техническое описание, схема, pdf … Datasheet Результаты поиска 1 — 43 из примерно 43 для 2SC945; 2SC945: Continental Device India Limited: Справочник по полупроводниковым устройствам за 1996 г .: 108,39 КБ, 1 стр. Технические характеристики и характеристики транзисторов 8550 … Технические данные транзисторов 8550 … Введите полный или частичный номер детали производителя, состоящий как минимум из 3 букв или цифр Схема драйвера транзисторного реле

с формулой и расчетами

В этой статье мы подробно изучим схему драйвера транзисторного реле и узнаем, как спроектировать ее конфигурацию, вычисляя параметры по формулам.

Важность реле

Реле — один из самых важных компонентов в электронных схемах. Реле играют основную роль в выполнении операций, особенно в цепях, где задействована передача большой мощности или переключение сетевой нагрузки переменного тока.

Здесь мы узнаем, как правильно управлять реле с использованием транзистора, и применить конструкцию в электронной системе для переключения подключенной нагрузки без проблем.


Для более глубокого изучения того, как работает реле , прочтите эту статью


Реле, как мы все знаем, представляет собой электромеханическое устройство, которое используется в форме переключателя.

Он отвечает за переключение внешней нагрузки, подключенной к его контактам, в ответ на относительно меньшую электрическую мощность, приложенную к соответствующей катушке.

В основном катушка намотана на железный сердечник, когда на катушку подается небольшой постоянный ток, она возбуждает и ведет себя как электромагнит.

Подпружиненный контактный механизм, расположенный в непосредственной близости от катушки, немедленно реагирует и притягивается к силе электромагнита катушки, находящейся под напряжением. В процессе контакт соединяет одну из своих пар вместе и разъединяет дополнительную пару, связанную с ним.

Обратное происходит, когда на катушке отключается постоянный ток, и контакты возвращаются в исходное положение, соединяя предыдущий набор дополнительных контактов, и цикл может повторяться столько раз, сколько возможно.

Для электронной схемы обычно требуется драйвер реле, использующий каскад транзисторной схемы, чтобы преобразовать ее коммутационный выход постоянного тока малой мощности в коммутационный выход переменного тока большой мощности.

Однако сигналы низкого уровня от электроники, которые могут быть получены из каскада IC или каскада слаботочного транзистора, могут быть неспособны напрямую управлять реле.Поскольку для реле требуются относительно более высокие токи, которые обычно могут быть недоступны от источника IC или низкотокового транзисторного каскада.

Чтобы преодолеть вышеуказанную проблему, ступень управления реле становится обязательной для всех электронных схем, которые нуждаются в этой услуге.

Драйвер реле — это не что иное, как дополнительный транзисторный каскад, присоединенный к реле, которое необходимо задействовать. Транзистор обычно и исключительно используется для управления реле в ответ на команды, полученные от предыдущего каскада управления.

Принципиальная схема

Ссылаясь на приведенную выше принципиальную схему, мы видим, что конфигурация включает только транзистор, базовый резистор и реле с обратным диодом.

Однако есть несколько сложностей, которые необходимо решить, прежде чем проект можно будет использовать для требуемых функций:

Поскольку базовое напряжение возбуждения на транзисторе является основным источником для управления работой реле, его необходимо точно рассчитать для оптимальные результаты.

Значение базового резистора id прямо пропорционально току на выводах коллектор / эмиттер транзистора или, другими словами, ток катушки реле, который является нагрузкой коллектора транзистора, становится одним из основных факторов и напрямую влияет на него. номинал базового резистора транзистора.

Формула расчета

Основная формула для расчета базового резистора транзистора задается выражением:

R = (Us — 0,6) hFE / ток катушки реле,

  • Где R = резистор базы транзистор,
  • Us = Источник или напряжение триггера на базовом резисторе,
  • hFE = Коэффициент усиления транзистора по прямому току,

Последнее выражение, которое является «током реле», можно найти, решив следующий закон Ома :

I = Us / R, где I — требуемый ток реле, Us — напряжение питания реле.

Практическое применение

Сопротивление катушки реле можно легко определить с помощью мультиметра.

Us также будет известным параметром.

Допустим, напряжение питания Us = 12 В, сопротивление катушки 400 Ом, тогда

Ток реле I = 12/400 = 0,03 или 30 мА.

Также можно предположить, что Hfe любого стандартного низкосигнального транзистора составляет около 150.

Применяя вышеуказанные значения в фактическом уравнении, мы получаем

R = (Ub — 0.6) × Hfe ÷ Ток реле

R = (12 — 0,6) 150 / 0,03

= 57000 Ом или 57 К, ближайшее значение составляет 56 К.

Диод, подключенный к катушке реле, никак не связан с приведенный выше расчет, его все же нельзя игнорировать.

Диод следит за тем, чтобы обратная ЭДС, генерируемая катушкой реле, была закорочена через нее, а не попала в транзистор. Без этого диода обратная ЭДС попыталась бы найти путь через коллектор-эмиттер транзистора и в течение нескольких секунд навсегда повредила бы транзистор.

Драйвер реле Схема с использованием PNP BJT

Транзистор лучше всего работает в качестве переключателя, когда он подключен к общей конфигурации эмиттера, то есть эмиттер BJT всегда должен быть подключен непосредственно к линии «земли». Здесь «земля» относится к отрицательной линии для NPN и положительной линии для PNP BJT.

Если в цепи используется NPN, нагрузка должна быть соединена с коллектором, что позволит включать / выключать ее путем включения / выключения отрицательной линии.Это уже объяснялось в вышеупомянутых обсуждениях.

Если вы хотите включить / выключить положительную линию, в этом случае вам придется использовать PNP BJT для управления реле. Здесь реле может быть подключено через отрицательную линию питания и коллектор PNP. Точную конфигурацию см. На рисунке ниже.

Однако для запуска PNP потребуется отрицательный триггер в его основе, поэтому, если вы хотите реализовать систему с положительным триггером, вам, возможно, придется использовать комбинацию как NPN, так и PNP BJT, как показано на следующем рисунке. :

Если у вас есть какие-либо конкретные вопросы относительно вышеупомянутой концепции, пожалуйста, не стесняйтесь выражать их в комментариях для получения быстрых ответов.

Драйвер реле энергосбережения

Обычно напряжение питания для работы реле рассчитывается таким образом, чтобы обеспечить оптимальное втягивание реле. Однако требуемое удерживающее напряжение обычно намного ниже.

Обычно это даже не половина напряжения втягивания. В результате большинство реле могут работать без проблем даже при этом пониженном напряжении, но только тогда, когда гарантируется, что при начальном напряжении активации достаточно высокое для втягивания.

Схема, представленная ниже, может быть идеальной для реле, рассчитанных на работу с током 100 мА или ниже и при напряжении питания ниже 25 В.Использование этой схемы обеспечивает два преимущества: во-первых, реле функционирует при существенно низком токе; на 50% ниже номинального напряжения питания, а ток снижен примерно до 1/4 от фактического номинального значения реле! Во-вторых, реле с более высоким номинальным напряжением можно использовать с более низкими диапазонами питания. (Например, реле на 9 В, которое требуется для работы с напряжением 5 В от источника TTL).

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *