Site Loader

Описание LM317T: характеристики и схема подключения

Сегодня разберём характеристики трехконтактного стабилизатора LM317T и его стандартные схемы подключения, драйверы тока и схему с регулируемым блоком питания. Данная микросхема очень популярна и не мудрено что на ней собирают множество различных устройств. Может выдавать напряжение на выходе от 1,2 до 37 В. Есть защита от больших значений токов и перегрева.

Цоколевка

Распиновку LM317T будем рассматривать в корпусе ТО-220. У большинства производителей выводы расположены в следующем порядке: слева управляющий, посередине выход и справа вход. Но в тех-документации от Micro Commercial Components выход и вход поменяны местами: слева управление, за ним идёт вход и последний выход. На рисунке ниже выходы представлены в том порядке, как и у большинства компаний.

Технические характеристики

Следует отметить что измерение всех параметров производились в лаборатории при температуре +25°С. И так, для стабилизатора LM317T характеристики равны:

  • диапазон напряжений на выходе стабилизатора от 1,25 до 37 В;
  • нестабильность выходного напряжения – 0,1%;
  • опорное напряжение VREF от 1,2 до 1,3 В;
  • Максимальная разность между входным и выходным напряжением Vi — Vo = 40 В;
  • выходной ток IO = 1,5 А;
  • регулируемый ток вывода IADJ от 50 до 100 мкА;
  • термическое сопротивление кристалл-воздух Rthj-amb = 65 °С/Вт;
  • тепловое сопротивление кристалл-корпус Rthj-case = 5 °С/Вт;
  • рабочая температура перехода TOPR = 0 … +125 ОС;
  • диапазон температур хранения TSTG = -65 …+150 ОС.

Аналоги

Ели Вам нужен аналог LM317T, он у него есть и даже полностью идентичный, это KA317M. Так что смело используйте его.

Схемы включения

Сначала разберём стандартную схему, которую можно найти в технической документации на LM317T. На ней кроме самого стабилизатора находится два конденсатора, один из которых установлен на входе (ёмкостью 0,1 мФ), а второй на выходе (1,0 мФ). А также двух резисторов R1 и R1.

Как видно резисторы R1 и R2 подключены к управляющему выходу устройства по схеме делителя напряжения. Сопротивление R1 является постоянным и его величина, по рекомендациям производителя, должна быть равна 240 Ом. С помощью R2 можно регулировать выходное напряжение. Его можно найти по формуле:

В ней второе слагаемое мало, так как величина IADJ не может быть дольше 100 мА, поэтому его можно не учитывать в расчётах. Из формулы понятно, чем больше сопротивление R2, тем больше выходное напряжение.

Рассчитаем какое напряжение будет на выходе, если величина сопротивления R2 равна 1,5 кОм.

Как видно и расчёта, на выходе будет напряжение 9 В. Но чтобы получить данную разность потенциалов на вход нужно подать напряжение большей величины.

Часто возникает задача найти R2 зная необходимое напряжение стабилизации. Для этого можно использовать формулу:

Чтобы вам не пришлось делать расчёты вручную приведём таблицу, в которой все необходимые значения уже посчитаны (сопротивление R1 = 240 Ом).

Напряжение стабилизации, ВВеличина сопротивления R2, ОмБлижайшее стандартное значение, Ом
3336330
3,3393,6390
4,7662,4680
5720750
5,5816820
7,41180,81 200
914881 500
1016801 600
1220642 000
1526402 700
1832163 300
2036003 600
2545604 700
2749005 100

На LM317T легко собрать драйвер тока. Обычно такие схемы используются для питания отдельных светодиодов и светодиодных матриц. Производители рекомендуют использовать такую схему:

В этом примере выходной ток через светодиод устанавливается подбором сопротивления R1. Рассчитать его можно по формуле:

где Iout – ток на выходе стабилизатора, который равен току через светодиод.

Типичный ток через одиночный маломощный светодиод равен 0,02 А. Подставляем данное значение в формулу и получаем сопротивление R1 – 62,5 Ом. Чтобы резистор не перегорел нужно определить его мощность. Для этого используем формулу:

В нашем случае мощность резистора должна быть больше 0,022*62,5=0,024 Вт, то есть подойдёт любой резистор, даже самый маленький.

После стандартных примеров перейдём к реальной конструкции. Рассмотрим регулируемый блок питания, в котором можно регулировать напряжение на выходе в диапазоне от 1,2 до 30 В и рассчитанный на максимальный выходной ток в 10 А. При этом БП имеет защиту от короткого замыкания.

Данное устройство сделано из минимального количества недорогих деталей. Так как стабилизатор LM317T способен выдержать ток не более 1,5 А, то в конструкции используется транзистор MJE13009, благодаря которому на выходе можно получить ток равный 10 А.

Регулировка выходного напряжения осуществляется с помощью переменного резистора Р1 номиналом 5 кОм. Кроме этого в схеме используются шунтирующие резистора R1 и R2 с одинаковым сопротивлением – 200 Ом. После отключения питания конденсатор С1 разряжается через резистор R3 сопротивлением 10 кОм. На выходе трансформатора напряжение может быть от 12 до 35 В. Диодный мост можно брать любой, способный выдержать ток от 10 А и выше, например, GBJ2510 рассчитанный на 25 А.

Транзистор MJE13009 можно заменить на MJE13007 или отечественные КТ805, КТ808, КТ819 или другие. При выборе транзистора важно обращать внимание на силу тока на выходе стабилизированного блока питания.

Используемый транзистор и LM317T нужно устанавливать на радиатор с достаточно большой для охлаждения площадью. Для этих целей можно использовать систему охлаждения компьютерного процессора. Не забудьте изолировать LM317T от радиатора теплопроводящей прокладкой. Также на радиатор желательно установить и диодный мост.

Производители и DataSheet

Перечислим основные компании, которые занимаются производством LM317T и приложим их datasheet:

  • Texas Instruments;
  • ON Semiconductor;
  • Inchange Semiconductor;
  • Fairchild Semiconductor;
  • Comset Semiconductor.

В отечественных магазинах можно прибрести продукцию следующих фирм:

  • STMicroelectronics;
  • Tiger Electronic;
  • Micro Commercial Components.

LM317 микросхема стабилизатор: характеристики, назначение выводов, аналоги

LM317 — регулируемый стабилизатор напряжения на 1,5А.

  • Выходной ток 1,5 А.
  • Диапазон регулирования выходного напряжения –1,2…37 В.
  • Тепловая защита.
  • Ограничение тока короткого замыкания.
  • Ограничение выделяемой мощности (по встроенным температурным датчикам).
  • Может использоваться для стабилизации высоких напряжений.
  • В микросхеме отсутствует свинец.

Содержание

  1. Корпус и назначение выводов
  2. Типовая схема применения
  3. Предельно допустимые значения
  4. Электрические характеристики
  5. Внутренняя схема LM317
  6. Типовая схема включения для замера параметров
  7. Информация для использования
  8. Основные принципы работы LM317
  9. Регулирование нагрузки
  10. Внешние конденсаторы
  11. Защитные диоды
  12. Импортные и отечественные аналоги LM317
  13. Типовые эксплуатационные характеристики

Корпус и назначение выводов

Вывода:

1 – Регулировка.

2 – VOUT, Выходное напряжение.

3 – VIN, Входное напряжение.

Теплоотводящая пластина корпуса микросхемы соединена с выводом 2.

Типовая схема применения

*Cin устанавливается в непосредственной близости к регулятору при отсутствии или значительном удалении фильтрующих конденсаторов источника питания.

** CO не влияет на параметры регулятора, но снижает высокочастотные помехи выходного напряжения.

Предельно допустимые значения

ПараметрОбозн.ВеличинаЕд. изм.
Диапазон регулированияVВХ−VВЫХ−0.3…40V
Мощность рассеянияPDВнутр.огранич.W
Корпус 221A
TA = +25°C
Тепловое сопротивлениеθJA65°C/W
кристалл-воздух
Тепловое сопротивлениеθJC5°C/W
кристалл-корпус
Корпус 936 (D2PAK−3)PDВнутр.огранич.W
TA = +25°C
Тепловое сопротивлениеθJA70°C/W
кристалл-воздух
Тепловое сопротивлениеθJC5°C/W
кристалл-корпус
Диапазон рабочих температурTJ− 55…+150°C
Диапазон температур храненияTstg− 65…+150°C

Примечания:

  1. Превышение предельно допустимых значений, указанных в таблице, может привести к необратимым повреждениям микросхемы.
  2. Рекомендуемые условия работы не должны превышать работу устройства с предельно допустимыми значениями параметров.
  3. Длительная работа с предельно допустимыми значениями в будущем может повлиять на надежность работы устройства.

Электрические характеристики

ПараметрОбозн.МинТипМаксЕд. изм.
Ток на выводе регулировкиIAdj50100µA
Опорное напряжение, 3,0V≤VI−VO≤ 40V, 10mA≤IO≤Imax, PD≤PmaxVref1.21.251.3V
Минимальный ток нагрузки для начала стабилизации (VI−VO = 40 V)ILmin3.510mA
Максимальный ток нагрузкиMaximum Output CurrentImaxA
VI−VO≤15 V,1. 52.2
VI−VO = 40 V,0.150.4
Средний уровень шумаN0.003% VO
Уровень пульсацийRRdB
без CAdj65
CAdj = 10 µF6680
Температура отключения180°C
Тепловое сопротивление кристалл-корпусRθJC5°C /W

Внутренняя схема LM317

Микросхема содержит 29 транзисторов.

Типовая схема включения для замера параметров

Значение R2 найти по формуле: Vout =ISET х R2 + 1,250 х Vin, где ISET=5,25 mA.

Основные принципы работы LM317

LM317 – 3-выводная интегральная микросхема-стабилизатор напряжения. Это 3-клеммный плавающий регулятор. Для осуществления основной функции по стабилизации выходного напряжения между регулировочным выводом и выходом микросхемы формируется опорное напряжение (Vref) 1,25 В.

Значение выходного напряжения задается по формуле:

Значение тока на регулировочном выводе микросхемы (IAdj) не превышает 100 mkA во всем диапазоне нагрузок и регулируемых напряжений. Поэтому для практического использования вторым членом в формуле можно пренебречь.

На основе анализа формулы можно сделать вывод, что микросхема имеет ограничения по минимальному току нагрузки. Если его значения меньше величины, указанной в соответствующем пункте таблицы «электрические параметры» выходное напряжение будет подниматься.

В LM317 для стабилизации выходного напряжения контролируется опорное напряжение между выводами, поэтому микросхему можно использовать для работы с высокими напряжениями относительно земли.

Рисунок: основная схема включения.

Регулирование нагрузки

LM317 способен стабилизировать выходное напряжение в широком диапазоне нагрузок. Для максимальной эффективности стабилизации необходимо учесть ряд требований:

  1. программирующий резистор (R1) размещается максимально близко к микросхеме, чтобы исключить влияние подводящих проводников;
  2. заземляющий конец R2 подсоединяется к основным дорожкам (шинам) заземления на плате, чтобы улучшить регулирование нагрузки.

Внешние конденсаторы

Чтобы уменьшить влияние входного импеданса подводящей линии, повысить стабильность работы регулятора, в непосредственной близости к выводу 3 (VIN) устанавливают входной байпасный конденсатор (Cin), – дисковый 0,1 F или танталовый 1,0 F.

Между выводом регулировки и нулевым проводником устанавливают конденсатор CAdj. Он предотвращает появление пульсаций на выходе микросхемы. Конденсатор емкостью 10 µF подавляет пульсации на 15 дБ при выходном напряжении 10 В.

LM317 будет эффективно выполнять функции регулятора напряжения и при отсутствии конденсатора СО. Однако производитель рекомендует устанавливать на выходе микросхемы фильтрующий конденсатор, – 1,0 µF танталовый или 25 µF алюминиевый электролитический. Он погасит возможные ВЧ шумы и помехи и обеспечит стабильность работы регулятора.

Защитные диоды

Если LM317 используется с выходными конденсатора, рекомендуется устанавливать защитные диоды, как показано на рисунке. При снятии питающего напряжения они предотвратят несанкционированную разрядку выходных конденсаторов через вывод 2 (VOUT) микросхемы.

На рисунке приведена рекомендуемая схема подключения LM317 с защитными диодами для напряжения на выходе свыше 25 В или высоких значений емкости (CO > 25µF, CAdj > 10µF).

Комбинация диодов D1 и D2 полностью защищает микросхему от возможного разряда конденсаторов CAdj и СО.

Рисунок: регулятор напряжения с диодной защитой.

Импортные и отечественные аналоги LM317

Уже не одно десятилетие интегральные регуляторы напряжения с различными параметрами выпускаются импортными и отечественными производителями радиоэлектронных компонентов. Поэтому найти для замены LM317 полный аналог или микросхему с максимально близкими характеристиками не представляет особого труда.

Среди продукции отечественных производителей самой популярной заменой является КР142ЕН12.

Перечень полных аналогов LM317 импортного производства включает: GL317; SG317; UPC317; ECG1900.

Список для замены LM317 будет неполным, если в него не включить элементы с близкими техническими параметрами:

  • LM117 LM217 – работают в диапазоне температур -55… +150 °С,
  • LM338, LM138, LM350 — регуляторы напряжения на 5А, 5А и 3А,
  • LM317HV, LM117HV — выходное напряжение на выходе до 60V.

Типовые эксплуатационные характеристики

Зависимость относительного изменения выходного напряжения от температуры кристалла.

Зависимость выходного тока от разницы входного и выходного напряжения.

Зависимость силы тока на выводе «регулировка» от температуры кристалла.

Зависимость опорного напряжения от температуры кристалла.

Зависимость минимального рабочего тока (тока покоя) от разницы входного и выходного напряжения.

Зависимость уровня пульсаций от выходного напряжения.

Зависимость уровня пульсаций от выходного тока.

Зависимость уровня пульсаций от частоты.

Зависимость выходного импеданса от частоты.

График отклика микросхемы на импульс входного напряжения.

График отклика микросхемы на импульс изменения нагрузки.

Регулятор напряжения – Регулируемый выход, положительный 1,5 А

%PDF-1.4 % 1 0 объект > эндообъект 5 0 объект >> эндообъект 2 0 объект > эндообъект 3 0 объект > эндообъект 4 0 объект > транслировать Acrobat Distiller 19.0 (Windows)BroadVision, Inc.2021-08-06T08:46:12+02:002021-08-06T08:45:32+02:002021-08-06T08:46:12+02:00application/pdf

  • LM317 — Регулятор напряжения — регулируемый выход, положительный 1,5 А
  • онсеми
  • LM317 представляет собой регулируемый стабилизатор положительного напряжения с 3 выводами, способный подавать более 1,5 А в диапазоне выходного напряжения от 1,2 В до 37 В. Этот регулятор напряжения исключительно прост в использовании и требует только двух внешних резисторов для установки выходного напряжения. Напряжение. Кроме того, он использует внутреннее ограничение тока, тепловое отключение и компенсацию безопасной зоны, что делает его практически устойчивым к выбросам.
  • UUID: 69e4f3e1-7e54-4a57-9d2e-c004183e2a66uuid: d7f2f65d-3786-4dc9-9b55-8b01119059da конечный поток эндообъект 6 0 объект >
    эндообъект 7 0 объект > эндообъект 8 0 объект > эндообъект 90 объект > эндообъект 10 0 объект > эндообъект 11 0 объект > эндообъект 12 0 объект > эндообъект 13 0 объект > эндообъект 14 0 объект > эндообъект 15 0 объект > эндообъект 16 0 объект > эндообъект 17 0 объект > эндообъект 18 0 объект > эндообъект 19 0 объект > эндообъект 20 0 объект > эндообъект 21 0 объект > эндообъект 22 0 объект > эндообъект 23 0 объект > эндообъект 24 0 объект > эндообъект 25 0 объект > эндообъект 26 0 объект > эндообъект 27 0 объект > транслировать H\WK-7*dy$}J* j۲%u=DJ }~}G9$吥%H+;ǖq/»R%-Nƞq 68-zӏsA- г[ ~R Q U Z%Ղ/]o]IT$rBufkLCj 2jǹl^0Zq|$2t^[\ŬFh[#7PljbEY» ФЛНФ5П В~5 а KۉjЀg5[:7sbp`YS8IlG

    Регулятор напряжения LM317 Распиновка, характеристики, аналог и техническое описание

    27 декабря 2017 — 0 комментариев

            Регулятор напряжения LM317
            Распиновка регулятора напряжения LM317

        Конфигурация контактов LM317

        Номер контакта

        Название контакта

        Описание

        1

        Настройка

        Эти контакты регулируют выходное напряжение

        2

        Выходное напряжение (Ввых)

        Регулируемое выходное напряжение, установленное контактом регулировки, может быть получено с этого контакта

        .

        3

        Входное напряжение (Vin)

        Входное напряжение, которое должно регулироваться, подается на этот контакт

         

        Особенности
        • Регулируемый 3-контактный регулятор положительного напряжения
        • Выходное напряжение может быть установлено в диапазоне от 1,25 В до 37 В
        • Выходной ток 1,5 А
        • Максимальная разница между входным и выходным напряжением составляет 40 В, рекомендуется 15 В.
        • Максимальный выходной ток при разнице напряжений 15 В составляет 2,2 А
        • Рабочая температура перехода 125°C
        • Доступен в пакетах To-220, SOT223, TO263

         

        Примечание: Полную техническую информацию можно найти на странице LM317 техпаспорт приведен в конце этой страницы.

         

        Альтернативные регуляторы напряжения

        LM7805, LM7806, LM7809, LM7812, LM7905, LM7912, LM117V33, XC6206P332MR.

        LM317 Эквиваленты

        LT1086, LM1117 (SMD), PB137, LM337 (Регулятор с отрицательным переменным напряжением)

        , где можно использовать LM317

        , где используется LM317 997779999

        , где используется LM317

        .0036, скорее всего, будет первым выбором. Помимо использования в качестве регулятора переменного напряжения, его также можно использовать в качестве регулятора фиксированного напряжения, ограничителя тока, зарядного устройства, регулятора напряжения переменного тока и даже в качестве регулируемого регулятора тока. Одним заметным недостатком этой ИС является то, что во время регулирования падение напряжения на ней составляет около 2,5, поэтому, если вы хотите избежать этой проблемы, обратите внимание на другие эквивалентные ИС, приведенные выше.

        Таким образом, если вы ищете регулируемый регулятор напряжения для подачи тока до 1,5 А, то эта микросхема регулятора может быть правильным выбором для вашего приложения.

         

        Как использовать LM317

        LM317 представляет собой 3-контактный регулятор IC , очень простой в использовании. В его техническом описании есть много схем применения, но эта ИС известна тем, что используется в качестве регулятора переменного напряжения. Итак, давайте рассмотрим, как использовать эту микросхему в качестве регулируемого регулятора напряжения.

        Как было сказано ранее, микросхема имеет 3 контакта, в которых входное напряжение подается на контакт 3 (VIN), затем с помощью пары резисторов (делитель потенциала) мы устанавливаем напряжение на контакте 1 (регулировка), которое будет определять выходное напряжение микросхема, выведенная на контакт 2 (VOUT). Теперь, чтобы заставить его работать как регулятор переменного напряжения, мы должны установить переменное напряжение на контакте 1, что можно сделать с помощью потенциометра в делителе потенциала. Приведенная ниже схема предназначена для приема 12 В (вы можете подать до 24 В) в качестве входа и регулирует его от 1,25 В до 10 В.

        Резистор R1 (1 кОм) и потенциометр (10 кОм) вместе создают разность потенциалов на контакте регулировки, которая соответствующим образом регулирует выходной контакт. Формулы для расчета выходного напряжения на основе значений резисторов:

          В  ВЫХОД  = 1,25 × (1 + (R2/R1))  

        Теперь давайте проверим эту формулу для приведенной выше схемы. Значение R1 составляет 1000 Ом, а значение R2 (потенциометр) равно 5000, потому что это потенциометр на 10 кОм, установленный на 50% (50/100 из 1000 = 5000).

        Vвых = 1,25 × (1 + (5000/1000))

                  = 1,25 × 6

                  = 7,5 В

        Моделирование показывает 7,7 В, что довольно близко. Вы можете изменять выходное напряжение, просто меняя потенциометр. В нашей схеме в качестве нагрузки подключен двигатель, который потребляет около 650 мА, вы можете подключить любую нагрузку до 1,5 А.

        По тем же формулам можно рассчитать номинал резистора для требуемого выходного напряжения.

        alexxlab

        Добавить комментарий

        Ваш адрес email не будет опубликован. Обязательные поля помечены *