виды и различия — Техника на vc.ru
Транзистор — это полупроводниковый прибор с тремя и более электродами. Его сопротивление основного перехода нелинейно зависит от действующего на управляющем электроде напряжения.
454 просмотров
Приборы делятся на полевые и биполярные (позже появилось еще несколько видов). На данное время транзисторы выполняют практически все основные усилительные генераторные, а также коммутационные функции.
Из истории применения
Первые транзисторы могли работать лишь на невысоких напряжениях в десятки вольт и частоте до сотен МГц. Позже появились маломощные экземпляры — более 1 ГГц. При первом полете в космос корабля «Восток-1», на его борту находилось более 600 транзисторов. Все же, основные функции выполняли электронные радиолампы. Промышленность выпускала их вплоть до 80-х — 90-х годов. Но вакуумные лампы окончательно были вытеснены появлением сверхвысокочастотных, мощных высоковольтных, IGBT, mosfet и других транзисторов.
Классификация
На данное время существует уже десятки видов транзисторов и число их растет. Давайте рассмотрим некоторые из них.
Биполярные транзисторы
Это самые распространенные усилительные приборы, имеющие 3 электрода:
• коллектор;
• эмиттер;
• база.
При экранировке кристалла иногда применяется 4-й электрод — корпус. Для включения в схему транзистора с двумя цепями (управляющей и управляемой), необходимо общее соединение одного из выводов. Существуют схемы с:
• ОК — усиливается только по току;
• ОЭ — усиливается ток и напряжение;
• ОБ — усиливается напряжение.
Кристалл биполярных приборов изготавливают из кремния, реже германия. У последнего напряжение смещения меньше, примерно на 0,45 В. Оно подается на базу для нормальной работы прибора.
В структурах полупроводников на эмиттер подают p-n-p — плюс и n-p-n — минус. Существуют и другие типы, которые относятся к биполярным транзисторам.
Однопереходные транзисторы с одной стороны перехода имеют эмиттер, со второй — 2 базы, прикрепленные по разным сторонам второго перехода. У этих устройств дифференциальное сопротивление имеет отрицательный участок на вольт-амперной характеристике.
Многоэмиттерные транзисторы используются, в основном, в качестве интегральных компонентов в логических элементах. Однако есть сборки, содержащие биполярные транзисторы с несколькими эмиттерами для реализации эффективной развязки некоторого количества входных либо выходных цепей.
Сверхвысокочастотные транзисторы также используются в составе интегральных микросхем. Однако существуют дискретные элементы, усилительные свойства которых прекращаются, приближаясь к частоте в 100 ГГц.
Полевые транзисторы
Выводы полевого транзистора:
• сток;
• исток;
• затвор.
Как и биполярные, так и полевые транзисторы имеют 3 типа включения, в которых схема:
• с ОС (общим стоком) усиливает лишь ток;
• ОИ — ток и напряжение;
• ОЗ — напряжение.
Работа полевого транзистора основана на сужении/расширении токопроводящего участка, воздействием электрического поля, образованного подачей на управляющий электрод (затвор) определенного напряжения.
Приборы такого класса могут иметь затвор в виде p-n-перехода, а сам его электрод крепится к n-каналу (— на стоке) или p-каналу (+ на стоке). Разработаны также полевые транзисторы с изолированным затвором, которые бывают со встроенным или индукционным каналом. Причем все они разделяются по полярности, имея канал n или p-типа.
Mosfet-транзисторы содержат усложненную, так называемую, МОП-структуру. Благодаря этому, устройства имеют сопротивление основного перехода в пределах от единиц Ом, до нескольких в мОМ. Ток может составлять десятки или даже сотни ампер.
IGBT-транзисторы являются составными приборами, у которых на входе мощного биполярного транзистора, установлен полевой. При этом составное устройство обладает высоким усилением и входным сопротивлением. IGBT-структура может быть образована мощным высоковольтным биполярным транзистором, маломощным биполярным, полевым. Такое устройство используется в выходных каскадах мощных преобразователей напряжения, импульсных источников питания.
В современной электронике транзисторы играют важную роль, используются почти во всех ее каскадах. В каталоге компании «ЗУМ-СМД» есть практически все применяемые в электронике транзисторы от известных брендов.
усилительный элемент, как он работает
Транзистор является трехэлектродным полупроводниковым прибором. Его основой (базой), как и у полупро-водникового диода, которому был посвящен третий практикум, служит пластинка полупроводника, но в объеме этого полупроводника искусственно созданы две противоположные ему по — электропроводности области (рис. 26).
Пластинка полупроводника и две области в ней образуют два р-n перехода. Если две крайние области обладают электропроводностью R-типа, а пластинка электропроводностью n-типа, такой транзистор имеет структуру р-n-р (рис. 26, а). Если, наоборот, электропроводность крайних областей «-типа, а пластинки — р-типа, такой транзистор имеет структуру n-р-n (рис. 26, б).
Независимо от структуры транзистора, саму пластинку полупроводника называют базой (б), крайнюю область меньшего объема — эмиттером (э), другую крайнюю область большего объема — коллектором (к). Переход между эмиттером и базой называют эмиттерным, между коллектором и базой — коллекторным.
Условные изображения на схемах транзисторов разных структур отличаются только тем, что стрелка, обозначающая эмиттер, у транзистора структуры р-n-р обращена в сторону базы, а у транзистора структуры n-р-n от базы. Стрелка эмиттера символизирует направление тока через транзистор.
У начинающих радиолюбителей наибольшей популярностью пользуются транзисторы структуры р-n-р. Такую структуру имеют, например, низкочастотные маломощные транзисторы серий МП39. ..МП42. Для этого практикума можно использовать любой из транзисторов этих серий.
Переходы транзистора — диоды. Транзистор можно представить себе как два включенных встречно диода, совмещенных в одной пластинке полупроводника и имеющих один общий катод, роль которого выполняет база транзистора. В этом нетрудно убедиться на опыте.
Между коллектором и базой транзистора включи соединенные последовательно батарею 3336Л и лампочку накаливания, рассчитанную на напряжение 2,5 В и ток 0,15 А. Если плюс источника напряжения соединен базой, а минус с коллектором, то лампочка гореть не будет (рис. 27), При другой полярности напряжения источника питания лампочка должна гореть.
В первом случае постоянное напряжение подается на коллекторный переход в обратном, то есть непропускном направлении. В это время коллекторный р-n переход закрыт, его сопротивление велико и через него, как и через закрытый диод, течет незначительный обратный ток, именуемый в данном случае обратным током коллектора Iкo.
У исправного транзистора серий МП39…МП42 обратный ток коллектора не превышает, как правило, 20…30 мкА. Такой ток не может накалить нить лампочки. При втором включении батареи ее напряжение подано на коллекторный переход в прямом, то есть пропускном, на-правлении переход открыт и через него течет прямой ток коллектора Iк, сила которого определяется в основном сопротивлением нити лампочки и внутренним сопротивлением источника питания.
Проведи аналогичный опыт с эмиттерным р-n переходом. Результат будет таким же: при обратном напряжении переход будет закрыт, при прямом — открыт. Различают два основных режима работы транзистора: режим переключения, именуемый иногда ключевым, и режим усиления.
Транзистор в режиме переключения. Опыт, иллюстрирующий работу транзистора в таком режиме, проводи по схеме, показанной на рис. 28. Между эмиттером и коллектором транзистора V включи последовательно соединенные батарею GB (3336Л), выключатель 5 (тумблер) и ту же лампочку накаливания (2,5 ВХО,15 А).
Они образуют коллекторную цепь транзистора. Положительный электрод батареи должен быть соединен с эмитте-ром, а отрицательный — с коллектором (через выключатель и лампочку). Замкни проволочной перемычкой базу с эмиттером (на схеме рис. 28 показано штриховой линией) и включи питание. Лампочка, включенная в коллекторную цепь транзистора, не горит.
Удали перемычку и на некоторое время включи между этими электродами транзистора последовательно соединенные один гальванический элемент 332 (G) и резистор (Rб) сопротивлением 100…200 Ом, но так, чтобы минус элемента был обращен к базе, а плюс к эмиттеру. Лампочка горит, хотя, возможно, неярко.
Поменяй местами полярность элемента. Теперь лампочка не горит. Повтори этот опыт несколько .раз, и ты убедишься в том, что лампочка в коллекторной цепи горит только тогда, когда на базе относительно эмиттера бывает отрицательное напряжение.
В первом из этих опытов, когда ты, соединив перемычкой базу с эмиттером, замкнул накоротко эмиттерный переход, транзистор стал просто диодом, на который подавалось обратное, закрывающее его напряжение. Через него шел лишь незначительный неуправляемый обратный ток коллекторного перехода. Транзистор находился в закрытом состоянии.
Удалив перемычку, ты восстановил эмиттерный переход. Первым включением элемента на базу было подано небольшое постоянное напряжение Uб в прямом для эмиттерного перехода направлении. Эмиттерный переход открылся, через него пошел прямой ток, который открыл второй переход транзистора — коллекторный. Транзистор оказался открытым, и по цепи эмиттер — база — коллектор пошел ток транзистора, который значительно больше тока в цепи эмиттер — база. Он и накалил нить лампочки.
Когда ты изменил полярность включения элемейта на обратную, положительное напряжение Uб закрыло эмиттерный переход, а вместе с ним закрылся и коллекторный переход. При этом ток через транзистор почти прекратился, и лампочка не горела.
В этих опытах транзистор был в одном из двух состояний: открытом или закрытом. Переключение транзистора из одного состояния в другое происходило под действием тока в цепи эмиттер — база, создаваемого напряжением на базе. Это и есть режим переключения. Такой режим работы транзистора широко используют, в частности, в аппаратуре электронной автоматики.
Измерь миллиамперметром токи базовой и коллекторной цепей транзистора. Ток в базовой цепи может быть несколько миллиампер, а в коллекторной достигать 80…100 мА. Значит, можно сделать вывод: относительно небольшой ток базы управляет значительным током коллекторной цепи транзистора. Транзистор, следовательно, усиливает ток.
Усилительные свойства транзистора характеризуются статическим коэффициентом передачи тока базы h31Э (читают так: аш-два-один-Э). Большая буква Э в обозначении говорит о том, что при измерении этого параметра транзистор включают по так называемой схеме с общим эмиттером. Практически можно считать, что коэффициент h21Э равен частному от деления тока коллектора Iк на ток базы Iб, то есть
Если, например, ток коллектора в 50 раз больше тока базы, то можно считать, что статический коэффициент передачи тока этого транзистора равен приблизительно 50. Обычно в радиолюбительских конструкциях усилителей или приемников используют транзисторы с коэффициентом Ii2ia от 30…40 до 80…100. Чем он больше, тем, естественно, транзистор может дать большее усиление сигнала.
Какова в проведенных опытах роль резистора R$? Ограничивать ток базы и тем самым предотвращать тепловой пробой эмиттерного перехода. Вообще же во время этих опытов транзистор работал при базовом и коллекторном токах, превышающих допустимые. Длительное использование маломощного транзистора при таких токах может привести к выходу его из строя.
Транзистор в режиме усиления. Для иллюстрации работы транзистора в этом режиме проведи следующую серию опытов с тем же транзистором. Первый опыт проиллюстрирован на рис. 29. Это простейший одно-транзисторный усилитель низкой частоты (НЧ). Зажимы слева («Вход»), куда подводится усиливаемый низкочастотный сигнал, являются входом, а участок коллекторной цепи транзистора, в которую включена нагрузка — телефоны BI — выходом усилителя НЧ.
Между базой транзистора и минусовым проводником батареи GB, питающей усилитель, включи резистор Re, сопротивление которого подбери опытным путем (что на схемах обозначают звездочкой). Через него на базу должно подаваться небольшое, около 0,1…0,15 В, начальное отрицательное напряжение, именуемое смещением.
Напряжение смещения создает в базовой цепи ток, приоткрывающий транзистор. Резистором Rб устанавливают исходный ток коллектора IК| соответствующий работе транзистора в режиме усиления. Без смещения транзистор будет искажать усиливаемый сигнал.
Конденсатор Сраз на входе усилителя является разделительным элементом: не оказывая заметного сопротивления колебаниям НЧ, то есть электрическим колебаниям звукового диапазона, он в то же время должен препятствовать замыканию постоянной составляющей базовой цепи транзистора на плюсовой проводник батареи питания через источник усиливаемого сигнала. Роль разделительного, или связывающего элемента, может выполнять электролитический конденсатор любого типа (ЭМ, К50-3, К50-6) емкостью 5. .. 10 мкФ на номинальное напряжение 6…10 В.
Транзистор V, базовый резистор Rб и электролитический конденсатор Сраз смонтируй на пластинке из картона или сухой фанеры (см. рис, 29 внизу) размерами примерно 60X120 мм. На свободном месте этой монтажной платы позже можно будет смонтировать второй каскад усиления колебаний низкой частоты.
Желательно, чтобы головные телефоны В1, включаемые в коллекторную» цепь транзистора, были низкоомны-ми (например, ТА-56), с катушками электромагнитов сопротивлением постоянному току 60…120 Ом. Можно также использовать телефонный капсюль ДЭМ-4М, включив его, как и телефоны, непосредственно в коллекторную цепь транзистора.
Обрати особое внимание на полярность включения электролитического конденсатора Сраз: отрицательной обкладкой он должен быть соединен с базой, где относительно эмиттера действует наибольшее (0,1…0,2 В) отрицательное напряжение смещения, открывающее транзистор, а положительной обкладкой — с эмиттером (через источник усиливаемого сигнала).
Проверь монтаж — нет ли ошибок. Если монтаж выполнен точно по принципиальной схеме усилителя, то включи в коллекторную цепь транзистора миллиамперметр (на схеме эта точка обозначена крестом), подключи батарею и, подбирая резистор Rб, установи в коллекторной цели ток покоя, равный 1…2 мА.
Если ток меньше рекомендуемого, то в базовую цепь включай резистор меньшего сопротивления, если, наоборот, больше, — резистор большего сопротивления. Вообще же, чем больше коэффициент h31Э транзистора, тем больше должно быть сопротивление базового резистора.
Затем подай на вход усилителя низкочастотный сигнал, источником которого может быть, например, абонентский громкоговоритель .(на рис. 29 — В2), который можно использовать как электродинамический микрофон.
Если говорить перед таким «микрофоном», то создаваемые им колебания звуковой частоты будут усиливаться транзистором, а телефоны, включенные в коллекторную цепь, преобразовывать их в звук.
Чтобы лучше ощутить эффект усиления, подключи этот источник низкочастотного сигнала сначала непосредственно к телефонам, выключив предварительно питание, а затем вновь ко входу усилителя. Разница в громкости звучания телефонов должна быть значительной.
На вход усилителя можно включить звукосниматель (прибор, преобразующий механические колебания иглы в электрические колебания) и проиграть грампластинку — в телефонах на выходе усилителя будут слышны достаточно громкие звуки мелодии или голос певца, записанные на грампластинку.
Отключи временно резистор Re, от базы или минусового проводника источника питания. Как теперь звучат телефоны? Тише и, кроме того, со значительными искажениями звука.
Так и должно быть, так как транзистор работает без смещения. В этом случае эмиттерный переход транзистора открывается только при отрицательных полупериодах входного сигнала, а при положительных полупериодах он остается закрытым. Отсюда и искажения.
На предыдущем практикуме, посвященном колебательному контуру, ты сделал детекторный приемник. Теперь, пользуясь рис. 30, добавь к нему усилитель низкой частоты. Здесь резистор RH сопротивлением 10…12 кОм, заменивший головные телефоны детекторного приемника, выполняет роль нагрузки детектора VI. Создающиеся на нем колебания низкой частоты через разделительный конденсатор Сраз поступают на вход усилителя.
Обрати внимание на включение диода VI, выполняющего роль детектора: катодом он соединен с колебательным контуром, а анодом — с нагрузочным резистором.
Теперь телефоны звучат значительно громче, чем в детекторном приемнике.
В этих опытах на вход усилителя подавалось переменное напряжение низкой частоты, источником которого были: в первом опыте — электродинамическая головка абонентского громкоговорителя, преобразующая звуковые колебания в электрические, во втором — выходная цепь детекторного приемника.
Эта переменное напряжение Uб (см. графики на рис. 29) создавало в цепи эмиттер — база слабый переменный ток, управляющий значительно большим током коллектора IК: при отрицательных полупериодах на базе коллекторный ток увеличивался, при положительных — уменьшался. Происходило усиление, а усиленный сигнал преобразовывался телефонами в звуковые колебания. Транзистор работал в режиме усиления.
В опытах этого практикума использовался транзистор структуры р-n-р. Аналогичные опыты можно провести и с маломощными транзисторами структуры n-р-n, например, серий МП35…МП38, КТ315. В этом случае надо только изменить полярность включения источника питания и электролитического конденсатора. Запомни; коллектор транзистора структуры n-р-n должен соединяться через нагрузку с плюсом, а эмиттер — с минусом источника питания.
В заключение — коротко о способах включения транзистора. Во всех опытах этого практикума, кроме самого первого, транзистор был включен по схеме с общим эмиттером. Усиливаемый сигнал подводился к выводам базы и эмиттера, а усиленный сигнал снимался с участка цепи между выводами эмиттера и коллектора. Эмиттер, таким образом, был общим для входной и выходной цепей транзистооа. Отсюда и название способа включения транзистора: с общим эмиттером, оно особенно распространено в радиолюбительской практике.
Литература: Борисов В. Г. Практикум начинающего радиолюбителя.2-е изд., перераб. и доп. 1984.
Как работают транзисторы? — Объясните это Stuff
Криса Вудфорда. Последнее обновление: 8 декабря 2021 г.
Ваш мозг содержит около 100 миллиардов клеток, называемых нейронами, — крошечные переключатели, которые позволяют вам думать и запоминать вещи. Компьютеры содержат миллиарды миниатюрных «мозговых клеток». Они называются транзисторами и они сделаны из кремния, химического элемента, обычно встречающегося в песке. Транзисторы произвели революцию в электронике с момента их появления. изобретенный более полувека назад Джоном Бардином, Уолтером Браттейном и Уильям Шокли. Но что это такое и как они работают?
Фото: Насекомое с тремя ногами? Нет, обычный транзистор на электронной плате. Хотя простые схемы содержат такие же отдельные транзисторы, сложные схемы внутри компьютеров также содержат микрочипы, внутри каждого из которых могут быть тысячи, миллионы или сотни миллионов транзисторов. (Технически, если вас интересуют более сложные детали, это кремниевый PNP-транзистор усилителя 5401B. Я объясню, что все это означает, через мгновение.)
Содержание
- Что на самом деле делает транзистор?
- Как делают транзистор?
- Силиконовые бутерброды
- Как работает переходной транзистор
- Как работает полевой транзистор (FET)
- Как работают транзисторы в калькуляторах и компьютерах?
- Кто изобрел транзистор?
- Узнать больше
Что на самом деле делает транзистор?
Фото: Подробный обзор модели 5401B.
Транзистор очень прост и очень сложен. Давайте начнем с простая часть. Транзистор — это миниатюрный электронный компонент, может выполнять две разные работы.
При работе в качестве усилителя требуется в крошечном электрическом токе на одном конце ( входной ток) и производит гораздо больший электрический ток (выходной тока) на другом. Другими словами, это своего рода усилитель тока. Это входит действительно полезно в таких вещах, как слуховые аппараты, одна из первых вещей люди использовали транзисторы для. В слуховом аппарате есть крошечный микрофон. который улавливает звуки окружающего мира и превращает их в колеблющиеся электрические токи. Они подаются на транзистор, который усиливает их и приводит в действие крошечный громкоговоритель, поэтому вы слышите гораздо более громкую версию звуков вокруг вас. Уильям Шокли, один из изобретателей транзистора, однажды объяснил студенту транзисторные усилители в более юмористическим способом: «Если взять тюк сена и привязать его к хвост мула, а затем зажег спичку и поджег стог сена, и если вы затем сравните энергию, израсходованную вскоре после этого мул с энергией, затраченной вами на зажигание спички, вы поймете концепцию усиления».
Транзисторы также могут работать как переключатели. А Крошечный электрический ток, протекающий через одну часть транзистора, может создать гораздо большую ток течет через другую его часть. Другими словами, малый ток переключается на больший. По сути, так работают все компьютерные чипы. Для например, микросхема памяти содержит сотни миллионов или даже миллиарды транзисторов, каждый из которых может быть включен или выключен индивидуально. Поскольку каждый транзистор может находиться в двух различных состояниях, он может хранить два разных числа, ноль и единицу. С миллиардами транзисторов чип может хранить миллиарды нулей и единиц, и почти столько же обычных цифр и букв (или символов, как мы их называем). Подробнее об этом чуть позже.
Фото: Компактные слуховые аппараты были одним из первых применений транзисторов, и это относится примерно к концу 1950-х или 1960-м годам. Размером с колоду игральных карт, он был предназначен для ношения в кармане пиджака или на нем. На другой стороне корпуса есть микрофон, который улавливает окружающие звуки. Вы можете ясно видеть четыре маленьких черных транзистора внутри, которые усиливают эти звуки, а затем направляют их в маленький громкоговоритель (внизу), который находится в вашем ухе.
Самое замечательное в машинах старого образца было то, что вы могли их друг от друга, чтобы понять, как они работают. Это никогда не было слишком сложно, с немного толкать и тыкать, чтобы узнать, какой бит сделал что и как дело привело к другому. Но электроника совсем другая. это все об использовании электронов для управления электричеством. Электрон – это минута частица внутри атома. Он такой маленький, он весит чуть меньше 0,0000000000000000000000000000001 кг! Работают самые современные транзисторы управляя движением отдельных электронов, так что вы можете представьте, какие они маленькие. В современном компьютерном чипе размер ноготь, вы, вероятно, найдете от 500 миллионов и два миллиарда отдельных транзисторов. Нет никакой возможности разобрать транзистор, чтобы узнать, как он работает.
Как делают транзистор?
Фото: Кремниевая пластина. Фото предоставлено Исследовательским центром Гленна НАСА (NASA-GRC).
Транзисторы изготовлены из кремния, химического элемента, содержащегося в песке, который обычно не проводит электричество (он не позволяет электронам легко проходить через него). Кремний — это полупроводник, а значит, ни на самом деле проводник (что-то вроде металла, который пропускает электричество) ни изолятор (что-то вроде пластика, который останавливает ток). Если мы обрабатываем кремний примесями (процесс, известный как легирование), мы можем заставить его вести себя по-другому способ. Если мы легируем кремний химическими элементами мышьяком, фосфором, или сурьмы, кремний получает несколько дополнительных «свободных» электронов, которые может проводить электрический ток, поэтому электроны будут вытекать из него более естественно. Поскольку электроны имеют отрицательный заряд, кремний обработанный таким образом, называется n-типом (отрицательный тип). Мы также можем легировать кремний другими примесями, такими как бор, галлий и алюминий. В кремнии, обработанном таким образом, их меньше. «свободные» электроны, поэтому электроны в близлежащих материалах будут стремиться влиться в него. Мы называем этот вид кремния p-типа (положительный тип).
Вкратце, мимоходом, важно отметить, что ни кремний n-типа, ни кремний p-типа на самом деле не имеют заряда в себе : оба являются электрически нейтральными. Это правда, что у кремния n-типа есть дополнительные «свободные» электроны, которые увеличивают его проводимость, в то время как у кремния p-типа этих свободных электронов меньше, что помогает увеличить его проводимость противоположным образом. В каждом случае дополнительная проводимость возникает из-за добавления нейтральных (незаряженных) атомов примесей к кремнию, составляющему нейтральный для начала — и мы не можем создавать электрические заряды из воздуха! Более подробное объяснение потребовало бы, чтобы я представил идею под названием ленточная теория, которая немного выходит за рамки этой статьи. Все, что нам нужно помнить, это то, что «лишние электроны» означают дополнительные свободных электронов, которые могут свободно перемещаться и помогают проводить электрический ток.
Силиконовые бутерброды
Теперь у нас есть два разных типа силикона. Если мы сложим их вместе в слоях, делая бутерброды из материала p-типа и n-типа, мы можем сделать различные виды электронных компонентов, которые работают во всех видах способы.
Рисунок: соедините кремний n-типа с кремнием p-типа, и вы получите n-p переход, который является основой диодов и транзисторов.
Предположим, мы соединяем кусок кремния n-типа с кусочком p-типа. силикон и поставить электрические контакты с обеих сторон. Увлекательно и полезно вещи начинают происходить на стыке двух материалы. Если мы обратимся на токе, мы можем заставить электроны течь через переход от со стороны n-типа на сторону p-типа и наружу по схеме. Этот происходит из-за отсутствия электронов на стороне р-типа переход перетягивает электроны со стороны n-типа и наоборот. Но если мы реверсируем ток, электроны вообще не будут течь. Что у нас есть сделанный здесь называется диод (или выпрямитель). это электронный компонент, пропускающий ток только в одном направлении. Его полезно, если вы хотите превратить переменный (двусторонний) электрический ток в постоянный (односторонний) ток. Диоды тоже можно сделать так, чтобы они излучали светятся, когда через них проходит электричество. Вы могли видеть эти светодиоды на карманных калькуляторах и электронных дисплеи на стереоаппаратуре Hi-Fi.
Принцип работы переходного транзистора
Фото: Типичный кремниевый PNP-транзистор (A1048, предназначенный для усилителя звуковой частоты).
Теперь предположим, что вместо этого мы используем три слоя силикона в нашем бутерброде. из двух. Мы можем сделать бутерброд p-n-p (с кусочком n-типа кремния в качестве заполнения между двумя ломтиками p-типа) или n-p-n сэндвич (с p-типом между двумя плитами n-типа). Если мы присоединить электрические контакты ко всем трем слоям сэндвича, мы можем сделать компонент, который будет либо усиливать ток, либо включать его, либо выключен — другими словами, транзистор. Посмотрим, как это работает в случае n-p-n транзистор.
Итак, мы знаем, о чем говорим, давайте дадим имена трем электрические контакты. Мы позвоним двум контактам, соединенным с двумя кусочки кремния n-типа эмиттер и коллектор, и контакт соединенный с кремнием p-типа, мы назовем его основанием. Когда нет ток течет в транзисторе, мы знаем, что кремнию p-типа не хватает электронов (показанных здесь маленькими знаками плюс, представляющими положительные заряды), а два куска кремния n-типа имеют дополнительные электроны (показаны маленькими знаками минус, представляющими отрицательные заряды).
Другой способ взглянуть на это — сказать, что хотя n-тип имеет избыток электронов, p-тип имеет дырки, где электроны должно быть. Обычно отверстия в основании действуют как барьер, предотвращая любое при этом протекает значительный ток от эмиттера к коллектору. транзистор находится в выключенном состоянии.
Транзистор работает, когда электроны и дырки начинают двигаться
через два перехода между кремнием n-типа и p-типа.
Давайте подключите транзистор к некоторой мощности. Допустим, мы присоединяем небольшой положительное напряжение на базу, делает эмиттер отрицательно заряженным, и сделать коллектор положительно заряженным. Электроны вытягиваются из эмиттер в базу, а затем из базы в коллектор. И транзистор переходит в состояние «включено»:
Небольшой ток, который мы включаем на базе, создает большой ток поток между эмиттером и коллектором. Повернув небольшой вход ток в большой выходной ток, транзистор действует как усилитель. Но он также действует как переключатель в то же время. Когда нет тока на база, между коллектором и эмиттер. Включите базовый ток и течет большой ток. Итак, база ток включает и выключает весь транзистор. Технически это тип транзистора называется биполярным, потому что два разных вида (или «полярности») электрического заряда (отрицательные электроны и положительные отверстия) участвуют в протекании тока.
Мы также можем понять транзистор, представив его как пару диодов. С база положительная, а эмиттер отрицательный, переход база-эмиттер подобен прямому смещению. диод, с электронами, движущимися в одном направлении через переход (слева направо в диаграмме) и отверстия, идущие в обратном направлении (справа налево). База-сборщик переход подобен диоду с обратным смещением. Положительное напряжение коллектора тянет большая часть электронов проходит через внешнюю цепь и попадает во внешнюю цепь (хотя некоторые электроны действительно рекомбинируют с дырками в базе).
Как работает полевой транзистор (FET)
Работа всех транзисторов основана на управлении движением электронов, но не все они делают это одинаково. Подобно переходному транзистору, полевой транзистор (полевой транзистор) имеет три разных вывода, но они имеют названия исток (аналог эмиттера), сток (по аналогии с коллектор), и затвор (аналог основания). В полевом транзисторе слои кремний n-типа и p-типа устроены немного по-разному и покрытые слоями металла и оксида. Это дает нам устройство, называемое МОП-транзистор (поле оксида металла и полупроводника) эффектный транзистор).
Хотя в истоке и стоке n-типа есть дополнительные электроны, они не могут течь от одного к другому из-за отверстий в ворота р-типа между ними. Однако, если мы присоединим положительный напряжение на затвор, там создается электрическое поле, позволяющее электроны текут по тонкому каналу от истока к стоку. Этот «эффект поля» позволяет течь току и включает транзистор:
транзистор потому что только один вид («полярность») электрического заряда участвует в том, чтобы заставить его работать.
Как работают транзисторы в калькуляторах и компьютерах?
На практике вам не нужно ничего знать о электроны и дырки, если вы не собираетесь чтобы зарабатывать на жизнь разработкой компьютерных чипов! Все, что вам нужно знать, это то, что транзистор работает как усилитель или переключатель, используя небольшой ток чтобы включить больший. Но есть еще одна вещь, которую стоит знать: как все это помогает компьютерам хранить информацию и принимать решения?
Мы можем соединить несколько транзисторных переключателей, чтобы сделать что-то называется логическим вентилем, который сравнивает несколько входные токи и в результате дает другой выход. Логические ворота позволяют компьютерам делать очень простые решения с использованием математической техники, называемой булевой алгеброй. Ваш мозг принимает решения точно так же. Например, используя «входные данные» (вещи, которые вы знаете) о погоде и о том, что у вас есть в вашей прихожей, вы можете принять такое решение: «Если идет дождь И я возьми зонт, я пойду в магазины». Это пример булевой алгебры с использованием так называемого И «оператор» (слово «оператор» — это всего лишь немного математического жаргона для заставить вещи казаться сложнее, чем они есть на самом деле). Ты можешь сделать аналогичные решения с другими операторами. «Если ветрено ИЛИ идет снег, тогда я надену пальто» пример использования оператора ИЛИ. Или как насчет «Если идет дождь И я есть зонт ИЛИ у меня есть пальто, тогда можно выходить на улицу». Используя AND, ИЛИ и другие операторы, называемые NOR, XOR, NOT и NAND, компьютеры могут складывать или сравнивать двоичные числа. Эта идея является краеугольным камнем компьютерных программ: логическое серия инструкций, которые заставляют компьютеры что-то делать.
Обычно переходной транзистор «выключен» при отсутствии базы тока и переключается в положение «включено», когда протекает базовый ток. Это означает, что это потребляет электрический ток для включения или выключения транзистора. Но такие транзисторы можно соединить с логическими вентилями, чтобы их выход соединения возвращаются на свои входы. Транзистор затем остается включенным даже при отключении базового тока. Каждый раз новый база течет ток, транзистор «щелкает» или выключается. Остается в одном из эти стабильные состояния (либо включено, либо выключено) до тех пор, пока другой ток приходит и переворачивает его в другую сторону. Такая договоренность известен как триггер, и он превращает транзистор в простой запоминающее устройство, в котором хранится ноль (когда он выключен) или единица (когда он на). Триггеры — это основная технология, используемая в микросхемах компьютерной памяти.
Кто изобрел транзистор?
Произведение искусства: оригинальная конструкция точечного транзистора, изложенная в Американский патент Джона Бардина и Уолтера Браттейна (2 524 035), поданный в июне 1948 г. (примерно через шесть месяцев после оригинальное открытие) и награжден 3 октября 1950 года. Это простой PN-транзистор с тонкий верхний слой германия P-типа (желтый) на нижнем слое германия N-типа (оранжевый). Три контакта: эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый). Вы можете прочитать больше в оригинальном патентном документе, который указан в ссылках ниже. Работа предоставлена Управлением по патентам и товарным знакам США.
Транзисторы были изобретены в Bell Laboratories в Нью-Джерси в 1947 году. тремя блестящими американскими физиками: Джоном Бардином (1908–1991), Уолтером Браттейн (1902–1987) и Уильям Шокли (1910–1989).
Группа под руководством Шокли пыталась разработать новый тип усилителя для телефонной системы США, но что они на самом деле изобрели оказались гораздо более распространенными Приложения. Бардин и Браттейн создали первый практичный транзистор. (известный как точечный транзистор) во вторник, 16 декабря, 1947. Хотя Шокли сыграл большую роль в этом проекте, он был разъяренный и взволнованный тем, что его оставили в стороне. Вскоре после этого, во время остановиться в гостинице на конференции по физике, он в одиночку вычислил теория переходного транзистора — гораздо лучшего устройства, чем транзистор с точечным контактом.
В то время как Бардин ушел из Bell Labs, чтобы стать академиком (он продолжил добиться еще большего успеха, изучая сверхпроводники в Иллинойском университете), Браттейн остался на некоторое время, прежде чем уйти на пенсию, чтобы стать учителем. Шокли основал собственную компанию по производству транзисторов и помог вдохновить современное явление, которое называется «Силиконовая долина» (процветающий район вокруг Пало-Альто, Калифорния, где корпорации электроники собрались). Двое его сотрудников, Роберт Нойс и Гордон Мур, ушли основал Intel, крупнейшего в мире производителя микрочипов.
Бардин, Браттейн и Шокли ненадолго воссоединились несколько лет спустя, когда они разделили высшую науку в мире награда, т. Нобелевская премия по физике 1956 г., за их открытие. Их история захватывающая история о интеллектуальный блеск борется с мелкой завистью, и это хорошо стоит прочтения больше о. Вы можете найти несколько замечательных рассказов об этом среди книг и веб-сайты, перечисленные ниже.
Подробнее
На этом сайте
- Компьютеры: краткая история
- Флэш-память
- Интегральные схемы
- Логические элементы
- Тиристоры
Другие веб-сайты
- The Journey Inside: образовательный веб-сайт Intel, посвященный транзисторам и интегральным схемам.
- Transistorized !: веб-сайт PBS о Бардине, Браттейне, Шокли и истории транзисторов.
- Транзистор: узнайте о транзисторах в увлекательной игровой форме с помощью игр и интерактивов на веб-сайте Нобелевской премии. [Архивировано через Wayback Machine.]
Книги
Технические и практические
- Марка: Electronics by Charles Platt. O’Reilly, 2015. Четкий, хорошо иллюстрированный учебник для начинающих в области электроники и отличное место для начала увлеченного подростка. Эксперимент 10 начинается с покрытия транзисторов.
- Начало работы в области электроники, Форрест М. Мимс III. Издательство Master Publishing, 2003 г. Надежное введение с множеством примеров схем, которые можно попробовать.
- Искусство электроники, Пол Горовиц, Уинфилд Хилл. Издательство Кембриджского университета, 2015 г. Это гораздо более подробный учебник для студентов, которым я сам пользовался в колледже.
- Почему вещи такие, какие они есть, Б.С. Чандрасекар. Издательство Кембриджского университета, 1998. Относительно простое для понимания, в основном не математическое введение в физику твердого тела; по сути, это объясняет, как на самом деле работают твердые тела изнутри. Глава 10 объясняет электрические токи и полупроводники.
Исторический
- Электронная революция: изобретение будущего Дж. Б. Уильямса. Springer, 2017. Обширный обзор того, как электроника изменила нашу жизнь за последнее столетие или около того.
- Хрустальный огонь: The Изобретение транзистора и рождение века информации Майклом Риорданом и Лилиан Ходдесон. WW Norton & Co., 1998. Очень читаемая история транзисторов и интегральных схем.
Статьи
Технические
- Этот 40-летний транзистор изменил индустрию связи Джоанна Гудрич, IEEE Spectrum, 26 декабря 2019 г. Празднование быстро переключающихся транзисторов с высокой подвижностью электронов (HEMT), изобретенных в 1979 Такаши Мимура из Fujitsu.
- Приветствую перовскитные транзисторы Дэвида Шнайдера. IEEE Spectrum, 16 января 2019 г. Как кристаллы перовскита можно «нарисовать» на подложке для изготовления полевых транзисторов.
- Является ли NanoRing от Qualcomm транзистором (ближайшего) будущего? Сэмюэл К. Мур. IEEE Spectrum, 14 декабря 2017 г. Как и почему Qualcomm остановилась на устройствах, называемых нанокольцами, в качестве потенциально новых типов транзисторов.
- Размеры затвора транзисторов в один нанометр были достигнуты Декстером Джонсоном. IEEE Spectrum, 7 октября 2016 г. Будущее за нанотранзисторами из углеродных нанотрубок?
- Преемник транзистора, установленный Венди М. Гроссман, чтобы скоро наступить век «Машины». Scientific American, 22 июля 2014 г. В основе компьютеров завтрашнего дня могут лежать мемристоры, а не транзисторы.
- Представляем вакуумный транзистор: устройство, сделанное из ничего, Джин-Ву Хан и Мейя Мейяппан. IEEE Спектр. 23 июня 2014 года. Частично вакуумная лампа, частично транзистор, он может работать в 10 раз быстрее, чем кремний, утверждают исследователи NASA Ames.
- Intel переходит на 3D-технологии, реконструируя транзистор Чарльз Артур, Guardian, 4 мая 2011 г. Создание «трехмерных» транзисторов позволяет инженерам втиснуть еще больше их в одно и то же пространство.
- Прыжок в микромир после транзистора Джон Маркофф. The New York Times, 31 августа 2009 г. Какие устройства могут заменить транзисторы?
Исторический
- В картинках: Transistor History: BBC News, 15 ноября 2007 г. Фотографии пионеров транзисторов, первых транзисторов и схем.
- Утерянная история транзистора Майкла Риордана. IEEE Spectrum, 30 апреля 2004 г. .
- Транзисторная физика У. Шокли. Американский ученый, 19 января.54, стр. 41–72.
Патенты
- Патент США: 2,524,035: Трехэлектродный элемент схемы с использованием полупроводниковых материалов: оригинальный патент на точечный транзистор, поданный Джоном Бардином и Уолтером Браттейном 17 июня 1948 г. и выданный в октябре 1950 г.
- Патент США: 2 569 347: элемент схемы, использующий полупроводниковый материал: это было яростное продолжение первоначального патента Шокли, поданного 26 июня 1948 г. (примерно через 10 дней после первоначального патента Бардина / Браттейна) и выданного 25 сентября 19 г.51.
- Патент США: 2 502 488: Полупроводниковый усилитель: еще один патент Шокли, поданный в сентябре 1948 г. и выданный в апреле 1950 г.
Видео
Технический
- MAKE представляет: The Transistor: отличное, понятное 9-минутное введение в тему транзисторов от Коллина Каннингема из MAKE. Объясняет разницу между маломощными (сигнальными) транзисторами и мощными устройствами, почему транзисторы лучше электронных ламп и для чего мы можем использовать транзисторы. Также есть очень хорошее объяснение оригинальных точечных транзисторов Бардина и Браттейна.
Исторический
Нам повезло, что у нас есть сохранившиеся архивные кадры трех первопроходцев в области транзисторов!
- Интервью Уильяма Шокли, 1969 г.: Шокли объясняет, как были изобретены транзисторы и какую роль он в этом сыграл.
- Искра гениальности: История Джона Бардина в Университете Иллинойса: 23-минутный документальный фильм о жизни и работе Бардина.
- Архивы AT&T: доктор Уолтер Браттейн о физике полупроводников: посмотрите, как доктор Браттейн объясняет теорию полупроводников и физику твердого тела (29минут).
Также из архивов вам может понравиться:
- Архивы AT&T: Бутылка волшебства: Как электронные лампы сделали возможным усиление междугородных телефонных звонков. Транзисторы были следующим логическим шагом и изначально разрабатывались именно для той же цели.
- Архивы AT&T: Транзистор: Этот документальный фильм 1953 года исследует вероятное социальное влияние транзисторов.
Что такое транзистор? (Определение, принцип работы, пример)
Транзисторы изготовлены из таких материалов, как кремний или германий, которые способны пропускать электрический ток контролируемым образом. Материалы транзисторов легированы или «обработаны» примесями для создания структуры, называемой p-n переходом. В этом случае «p» означает положительный результат, а «n» — отрицательный. Эти обозначения относятся к типу легирующих атомов (примесей), добавленных в полупроводниковый материал.
Наиболее распространенным типом транзистора является полевой транзистор металл-оксид-полупроводник (MOSFET), который широко используется в электронных устройствах, таких как компьютеры, смартфоны и телевизоры.
Компоненты транзистора
Транзистор состоит из трех основных частей: эмиттера, базы и коллектора. Эмиттер служит источником электронов, коллектор — стоком, а база — терминалом управления.
Еще от этого экспертаЧто такое диэлектрическая проницаемость?
Как работают транзисторы?
Когда через базу протекает слабый ток, он управляет потоком гораздо большего тока между эмиттером и коллектором. Это связано с тем, что переход база-эмиттер смещен в прямом направлении, что позволяет электронам течь от эмиттера к базе. Переход база-коллектор имеет обратное смещение, что означает, что электроны не могут течь от базы к коллектору. Однако, когда через базу протекает ток, он открывает переход база-коллектор и позволяет электронам течь от эмиттера к коллектору.
Этот процесс позволяет базе управлять потоком тока между эмиттером и коллектором, поэтому мы можем использовать транзистор различными способами.
Типовая структура транзистора, состоящего из эмиттера, коллектора и базы. | Изображение: Shutterstock
Почему мы используем транзисторы?
Транзистор может действовать как переключатель или затвор для электронных сигналов. На практике это означает, что мы используем транзисторы в качестве электронных переключателей, которые включают или выключают электронные схемы. Это основная функция, которую мы используем в цифровых логических схемах, например, в компьютерах, где мы используем транзисторы для представления единиц и нулей двоичного кода.
Мы также можем использовать транзисторы для управления питанием различных электронных компонентов. Транзистор действует как переключатель для включения и выключения тока. Кроме того, мы можем использовать транзисторы для регулировки уровня напряжения, что позволяет эффективно использовать мощность в электронных устройствах.
Одним из наиболее важных применений транзисторов является усилитель. Мы можем использовать транзисторы для усиления слабых сигналов, таких как выходной сигнал микрофона, до уровней, которые могут управлять громкоговорителем.
Транзисторы: как работают транзисторы. | Видео: Образ мышления инженеров
Какие существуют два основных типа транзисторов?
BJT
В BJT переход база-эмиттер смещен в прямом направлении небольшим током. Эта конфигурация позволяет электронам течь от эмиттера к базе. Переход база-коллектор имеет обратное смещение, тем самым действуя как барьер для потока электронов. Однако переход база-эмиттер с прямым смещением позволяет небольшому количеству электронов проходить через переход база-коллектор. Этот процесс создает небольшой ток между клеммами коллектора и эмиттера, который контролируется базовым током.
Хотите узнать больше о физике? Мы вас поняли. Что такое ЭМИ?
FET
В FET клемма затвора отделена от канала изоляционным материалом. Подача напряжения на клемму затвора создает электрическое поле, которое может притягивать или отталкивать свободные электроны в канале. Этот процесс изменяет проводимость канала и, таким образом, контролирует протекание тока между выводами истока и стока. Полевые транзисторы имеют высокий входной импеданс, что означает, что они потребляют очень мало тока от входного сигнала.
Таким образом, транзисторы действуют как переключатель или усилитель, в зависимости от того, как они подключены и какой ток протекает через них. Входной ток управляет выходным током, который мы можем использовать для усиления или переключения сигналов.
Почему важны транзисторы?
На изображении показана печатная плата с транзисторами. | Изображение: ShutterstockТранзисторы являются основными строительными блоками современной электроники. Это универсальные устройства, которые могут действовать как переключатели, усилители и регуляторы сигнала, что позволяет обрабатывать и хранить цифровую информацию. Широкое использование транзисторов в электронных устройствах сильно повлияло на нашу повседневную жизнь, позволив использовать современные технологии связи, развлечений, транспорта и здравоохранения. Например, транзисторы позволили миниатюризировать электронные схемы, что привело к созданию портативных устройств, таких как смартфоны, ноутбуки и носимые устройства.
Если бы не изобрели транзисторы, наш мир был бы совсем другим. Вполне вероятно, что компьютерной революции и стремительного развития электроники не произошло бы, поскольку транзисторы являются ключевым компонентом цифровых схем и современных вычислений. Это замедлило бы технологический прогресс в таких областях, как связь, развлечения, транспорт и здравоохранение. Электронные устройства были бы намного больше, медленнее и менее эффективны. Между тем, портативных устройств, таких как смартфоны, ноутбуки и носимые устройства, вообще не существовало бы.
Узнайте больше с помощью встроенного технического словаряЧто такое электрический заряд?
Примеры транзисторов
Транзисторы используются в самых разных электронных устройствах и оборудовании, вот некоторые распространенные области применения:
- Компьютеры : Транзисторы являются основным строительным блоком современных компьютеров. Мы используем их в цифровых логических схемах, микросхемах памяти и микропроцессорах, которые являются важнейшими компонентами компьютера.