Что делает транзистор простыми словами
Предлагаю тебе, мой уважаемый начинающий электронщик, прочесть эту статью, в которой я описал, пожалуй, самый основной из существующих электронных компонентов — транзистор.
Изобретение транзистора в ХХ веке по праву является одним из значимых событий, транзистор как электронный компонент пришел на смену электронным лампам. Электронные лампы на тот период времени, безраздельно служили во всех радиоэлектронных устройствах, при этом электронные лампы имели множество недостатков. Одним из самых значительных недостатков была их большая потребляемая мощность, так – же лампы имели очень большой вес и габариты, но при этом не отличались механической прочностью. Электронная аппаратура становилась все сложнее, большое количество электронных ламп требовало большего потребления энергии, возросло количество отказов техники — к примеру вычислительные машины (компьютеры того времени) собранные на лампах, могли работать без поломок лишь считанные минуты, а габариты этих “компьютеров” были таковы, что занимали целый многоэтажный дом.
Полупроводниковый транзистор лишен всех тех недостатков которые присущи электронным лампам и во многом превосходит их. Низкое энергопотребление, малый вес и размер, а механическая прочность такова, что если сбросить современный транзистор с высоты 10го этажа с ним ничего не случится.
Первый транзистор разработали ученые – физики У. Шокли, Д. Бардин и У. Брайтен, в 1956 году они были удостоены нобелевской премии. Теперь эти имена известны всему миру.
И так, давай поближе познакомимся с этим замечательным электронным компонентом.
Биполярный транзистор
Устройство биполярного транзистора.
Транзистор это — электронный прибор, корпус которого выполнен из металла или пластика. В корпусе находится кристалл кремния, который обработан специальным образом. Этот кристалл состоит из трех частей — коллектор, эмиттер, база, к ним подключены электроды которые выведены из корпуса транзистора. Рассмотрим условное обозначение транзистора, очень напоминает диод, (особенно выделенная часть). В принципе, транзистор, с натяжкой можно назвать диодом, так как транзистор тоже является полупроводником, но у транзистора есть дополнительный элемент – “база”.
База расположена между коллектором и эмиттером и является преградой для прохождения напряжения. Для того чтобы транзистор мог выполнять возложенные на него обязанности необходимо “активировать” базу, после чего транзистор будет работать как ключевой элемент, как усилитель тока, или напряжения.
Принцип работы транзистора.
Обычно в специальной литературе и интернет сайтах, описание работы транзистора сводится к разжевыванию теории электронно — дырочного перехода, диффузии и прочей нудной теории. Думаю, если бы мне, когда я только начинал увлекаться радиоэлектроникой, таким образом объяснили принцип работы транзистора, забросил бы я это дело и пошел с пацанами делать самопалы и пугачи, ну или в худшем случае в авиомодельный кружок). Но к счастью для меня в радиокружках того времени работали люди которые умели так преподать теорию, что было понятно и не напряжно. Постараюсь и я, все объяснить в простой и доступной форме.
И так, биполярные транзисторы бывают двух типов PNP транзистор и NPN транзистор еще их называют — “прямой” и “обратный” транзистор. P-N-P – это прямой транзистор (легко запомнить, первая буква Р -соответственно прямой), N-Р-N – обратный.
На схеме обозначаются:
Рассмотрим схему работы транзистора в ключевом режиме.
Транзистор типа N-P-N, на коллектор транзистора подан (+V) напряжение для питания лампочки накаливания, лампочка не будет светиться так как напряжение через транзистор не проходит в таком случае говорят транзистор “закрыт”. Для того чтобы транзистор “открылся” на базу транзистора так же необходимо подать напряжение (+Vбазы). Напряжение +Vбазы (зеленые стрелки), пройдет через выключатель К1, резистор R1, через базу на эмиттер и с эмиттера на минус источника питания. Транзистор откроется, напряжение +V (красные стрелки), пройдет через лампочку, коллектор и базу на эмиттер транзистора и с эмиттера на –V источника питания, цепь “замкнется” и лампочка будет светиться.
В этом примере транзистор работает как ключ, открывает и закрывает прохождение электрического тока.
Теперь рассмотрим работу в ключевом режиме транзистора типа P-N-P.
В этом случае, наша схема будет отличаться тем что, отрицательное напряжение питания подается через лампочку на коллектор, а плюс источника подключен к эмиттеру транзистора, на базу нужно подавать отрицательное напряжение –Vб. Отпирающее напряжение (зеленые стрелки) плюса источника питания через эмиттер через базу VT, резистор R1, выключатель пройдет на минус источника питания и транзистор откроется. Плюс источника питания (красные стрелки) через эмиттер, базу проходит на коллектор и через лапочку накаливания на минус питания, лампочка будет светиться.
Запомни простую истину – обратный транзистор открывается подачей положительного напряжения на базу, прямой отрицательного. Еще проще – обратный транзистор открывается плюсом, прямой минусом. Плюс питания у обратного транзистора подается на коллектор а минус на эмиттер, у прямого наоборот, минус на коллекторе плюс на эмиттере. Соответственно ток в обратном транзисторе течет от коллектора к эмиттеру в прямом транзисторе от эмиттера к коллектору.
Где можно применить работу транзистора в ключевом режиме?
Главное достоинство транзистора заключается еще и в том, что подавая на базу совсем небольшое напряжение всего в несколько десятков вольта, можно коммутировать мощные исполнительные устройства, например, вместо лампочки можно поставить реле, и оно будет своими контактами включать мощный электромотор тем самым используя низкое напряжение управления мы обеспечиваем безопасность человека.
Еще один пример.
На схеме изображен N-P-N транзистор в базу которого включен переменный резистор R1, при помощи этого резистора можно плавно изменять величину напряжения приложенного к базе транзистора. Перемещая ползунок резистора (вывод со стрелочкой) ближе к плюсу источника питания (в верх по схеме) мы тем самым будем увеличивать сопротивление резистора R1, соответственно величина напряжения на базе транзистора уменьшится, транзистор закроется, если ползунок перемещать в противоположную сторону, напряжение на базе увеличится. Ты догадался, что будет происходить с лампочкой? Очень надеюсь, что догадался, зря я что ли уже столько букв написал). Да, лампочка будет изменять интенсивность свечения. Чем больше напряжение на базе транзистора, тем ярче будет светиться лампочка. Эту схему можно с успехом применить, для регулировки свечения лампочки ручного фонарика).
Теперь разберемся с работой транзистора в режиме усиления.
Транзистор может работать не только как ключевой элемент, но и как усилитель тока, напряжения или того и другого одновременно. Существует несколько способов включения транзистора – это с общим коллектором, общей базой, и общим эмиттером. Схема с общим эмиттером получила наибольшее применение поэтому ее и рассмотрим.
Схема с транзистором работающем в режиме усиления, более сложная чем ключевая, но тем не менее разобраться с принципом ее работы не так сложно.
В ключевом режиме транзистор находится в режиме отсечки (закрыт) или в режиме насыщения (открыт) для того чтобы транзистор работал как усилитель его нужно заставить работать в “пограничном” режиме между отсечкой и насыщением. Помнишь, мы регулировали свечение лампочки, изменяя напряжение на базе транзистора при помощи переменного сопротивления (потенциометра). Когда лампочка горела в пол накала это и был “пограничный” режим, или если говорить другими (умными словами), мы задавали смещение на базу транзистора. Идем дальше. Допустим ты решил услышать, о чем говорят твои рыбки в аквариуме :), нашел подводный микрофон и поместил его к рыбкам, но микрофон выдает очень слабый сигнал и если подключить к нему наушники ничего не услышишь. Значит нужно усилить сигнал чтобы он был достаточной силы.
Схема усилителя. На этой схеме, различных электронных компонентов значительно больше чем в схеме где транзистор работает как ключ, но если ты читал мои предыдущие статьи в рубрике электроника для начинающих , ты знаешь, что такое электролитический конденсатор.
В схеме усилителя резистор R1 является самым главным, он задает ток смещения на базе Т1 чтобы отпереть транзистор, вывести его из режима отсечки в активный режим, или иными словами задать базовый ток. От того, какой номинал (величину сопротивления) резистора мы будем использовать, будет зависеть сила тока, который потечет через цепь +Uпит – R1 — база — эмиттер и на минус источника питания. Задавая нужный базовый ток резистором R1, мы выбираем режим работы нашего усилителя, при котором сигнал с микрофона не будет больше режима насыщения и отсечки, а будет примерно в середине активного режима транзистора. Микрофон выдает сигнала который представляет собой переменный ток, надеюсь ты уже знаешь, что переменный ток имеет как положительную, так и отрицательную полярность, соответственно на базу транзистора будет подаваться либо (+) либо (–) в зависимости от этого транзистор будет больше открываться или наоборот закрываться. Следовательно, напряжение на коллекторе в точке подключения конденсатора С2 так же будет меняться и на входе конденсатора С2 ты получишь копию входного микрофонного сигнала, только многократно усиленную.
Ведь на вход усилителя, мы подаем с микрофона очень маленькое напряжение, измеряемое в микровольтах, а на коллекторе транзистора, пульсация напряжения будет в несколько Вольт, теперь можно подключить наушники и услышать рыбок :).
Конечно, эту схему усилителя собирать не стоит, так как она имеет некоторые недостатки, но, как пример работы транзистора в качестве усилителя, очень даже годится. Теперь ты знаешь, как работает транзистор – это НЕ сложно!
Источник: slojno.net
Как работает транзистор и где используется?
Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор – это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.
Виды транзисторов
Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.
Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда , что ускоряет работу.
Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:
- мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
- отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
- переноса подвижных частиц;
- стабильности при отклонениях температуры;
- небольших шумов из-за отсутствия инжекции;
- потребления малой мощности при работе.
Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.
Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.
Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.
Биполярные транзисторы
Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.
Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.
Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.
Полевые транзисторы
Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:
- с управляющим p-n-переходом;
- транзисторы МДП с изолированным затвором.
Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.
Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.
Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники – сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла – затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.
Устройство и принцип работы для начинающих
Технологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние – в этом заключается двойная работа приборов.
Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:
- выводы из металла;
- диэлектрические изоляторы;
- корпус транзисторов из стекла, металла, пластика, металлокерамики.
До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификации применяются при производстве полупроводниковых устройств. Их можно было подключить как транзистор и применять, т. к. многие функциональные характеристики ламп годятся при описании работы полевых видов.
Преимущества и недостатки замены ламп транзисторами
Изобретение транзисторов является стимулирующим фактором для внедрения инновационных технологий в электронике. В сети используются современные полупроводниковые элементы, по сравнению со старыми ламповыми схемами такие разработки имеют преимущества:
- небольшие габариты и малый вес, что важно для миниатюрной электроники;
- возможность применить автоматизированные процессы в производстве приборов и сгруппировать этапы, что снижает себестоимость;
- использование малогабаритных источников тока из-за потребности в низком напряжении;
- мгновенное включение, разогревание катода не требуется;
- повышенная энергетическая эффективность из-за снижения рассеиваемой мощности;
- прочность и надежность;
- слаженное взаимодействие с дополнительными элементами в сети;
- стойкость к вибрации и ударам.
Недостатки проявляются в следующих положениях:
- кремниевые транзисторы не функционируют при напряжении больше 1 кВт, лампы эффективны при показателях свыше 1-2 кВт;
- при использовании транзисторов в мощных сетях радиовещания или передатчиках СВЧ требуется согласование маломощных усилителей, подключенных параллельно;
- уязвимость полупроводниковых элементов к воздействию электромагнитного сигнала;
- чувствительная реакция на космические лучи и радиацию, требующая разработки стойких в этом плане радиационных микросхем.
Схемы включения
Чтобы работать в единой цепи транзистору требуется 2 вывода на входе и выходе. Почти все виды полупроводниковых приборов имеют только 3 места подсоединения. Чтобы выйти из трудного положения, один из концов назначается общим. Отсюда вытекают 3 распространенные схемы подключения:
- для биполярного транзистора;
- полярного устройства;
- с открытым стоком (коллектором).
Биполярный модуль подключается с общим эмиттером для усиления как по напряжению, так и по току (ОЭ). В других случаях он согласовывает выводы цифровой микросхемы, когда существует большой вольтаж между внешним контуром и внутренним планом подключения. Так работает подсоединение с общим коллектором, и наблюдается только рост тока (ОК). Если нужно повышение напряжения, то элемент вводится с общей базой (ОБ). Вариант хорошо работает в составных каскадных схемах, но в однотранзисторных проектах ставится редко.
Полевые полупроводниковые приборы разновидностей МДП и с использованием p-n-перехода включаются в контур:
- с общим эмиттером (ОИ) – соединение, аналогичное ОЭ модуля биполярного типа
- с единым выходом (ОС) – план по типу ОК;
- с совместным затвором (ОЗ) – похожее описание ОБ.
В планах с открытым стоком транзистор включается с общим эмиттером в составе микросхемы. Коллекторный вывод не подсоединяется к другим деталям модуля, а нагрузка уходит на наружный разъем. Выбор интенсивности вольтажа и силы тока коллектора производится после монтажа проекта. Приборы с открытым стоком работают в контурах с мощными выходными каскадами, шинных драйверах, логических схемах ТТЛ.
Для чего нужны транзисторы?
Область применение разграничена в зависимости от типа прибора – биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.
Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.
Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:
- в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
- в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.
Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.
Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.
Транзисторы обоих видов используются в следующих случаях:
- В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
- В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
- В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.
Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.
Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.
Источник: odinelectric.ru
Как работает транзистор: принцип и устройство
Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. Полупроводниковые транзисторы пришли на смену морально устаревшим ламповым, которые устанавливались в старые телевизоры. Для изготовления полупроводниковых моделей ранее использовался германий, но сферы его применения ограничены из-за чувствительности к температурным колебаниям. На смену германию пришел кремний, т.к. кремниевые детали стоят дешевле германиевых и более устойчивы к скачкам температуры. Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических цилиндрических. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.
Устройство транзисторов
Наиболее популярный вид полупроводникового транзистора – биполярный. В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.
- Б – база, очень тонкий внутренний слой;
- Э – эмиттер, предназначается для переноса заряженных частиц в базу;
- К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.
- n-типа — носителями зарядов являются электроны.
- p-типа — носители зарядов – положительно заряженные «дырки».
Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла. Легирование – это добавление в состав материала различных примесей для улучшения физических и химических свойств этого материала. Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p.
Принцип работы транзистора
Транзистор работает в режимах «Открыто» и «Закрыто». Рассмотрим, как работает транзистор биполярного типа на уровне «чайников», и на каких физических процессах основано его функционирование. В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.
Простое изложение принципа работы биполярного транзистора:
- Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
- Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
- При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.
Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.
Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.
Как работает транзистор — видео
Источник: www.radioelementy.ru
Основы электроники для чайников: что такое транзистор и как он работает
Электроника окружает нас всюду. Но практически никто не задумывается о том, как вся эта штука работает. На самом деле все довольно просто. Именно это мы и постараемся сегодня показать. А начнем с такого важного элемента, как транзистор. Расскажем, что это такое, что делает, и как работает транзистор.
Что такое транзистор?
Транзистор – полупроводниковый прибор, предназначенный для управления электрическим током.
Где применяются транзисторы? Да везде! Без транзисторов не обходится практически ни одна современная электрическая схема. Они повсеместно используются при производстве вычислительной техники, аудио- и видео-аппаратуры.
Времена, когда советские микросхемы были самыми большими в мире, прошли, и размер современных транзисторов очень мал. Так, самые маленькие из устройств имеют размер порядка нанометра!
Приставка нано- обозначает величину порядка десять в минус девятой степени.
Однако существуют и гигантские экземпляры, использующиеся преимущественно в областях энергетики и промышленности.
Транзисторы
Существуют разные типы транзисторов: биполярные и полярные, прямой и обратной проводимости. Тем не менее, в основе работы этих приборов лежит один и тот же принцип. Транзистор — прибор полупроводниковый. Как известно, в полупроводнике носителями заряда являются электроны или дырки.
Область с избытком электронов обозначается буквой n (negative), а область с дырочной проводимостью – p (positive).
Как работает транзистор?
Чтобы все было предельно ясно, рассмотрим работу биполярного транзистора (самый популярный вид).
Биполярный транзистор (далее – просто транзистор) представляет собой кристалл полупроводника (чаще всего используется кремний или германий), разделенный на три зоны с разной электропроводностью. Зоны называются соответственно коллектором, базой и эмиттером. Устройство транзистора и его схематическое изображение показаны на рисунке ни же
Биполярный транзистор
Разделяют транзисторы прямой и обратной проводимости. Транзисторы p-n-p называются транзисторами с прямой проводимостью, а транзисторы n-p-n – с обратной.
Транзисторы
Теперь о том, какие есть два режима работы транзисторов. Сама работа транзистора похожа на работу водопроводного крана или вентиля. Только вместо воды – электрический ток. Возможны два состояния транзистора – рабочее (транзистор открыт) и состояние покоя (транзистор закрыт).
Что это значит? Когда транзистор закрыт, через него не течет ток. В открытом состоянии, когда на базу подается малый управляющий ток, транзистор открывается, и большой ток начинает течь через эмиттер-коллектор.
Физические процессы в транзисторе
А теперь подробнее о том, почему все происходит именно так, то есть почему транзистор открывается и закрывается. Возьмем биполярный транзистор. Пусть это будет n-p-n транзистор.
Если подключить источник питания между коллектором и эмиттером, электроны коллектора начнут притягиваться к плюсу, однако тока между коллектором и эмиттером не будет. Этому мешает прослойка базы и сам слой эмиттера.
Транзистор закрыт
Если же подключить дополнительный источник между базой и эмиттером, электроны из n области эмиттера начнут проникать в область баз. В результате область базы обогатиться свободными электронами, часть из которых рекомбинирует с дырками, часть потечет к плюсу базы, а часть (большая часть) направится к коллектору.
Таким образом, транзистор получается открыт, и в нем течет ток эмиттер коллектор. Если напряжение на базе увеличить, увеличится и ток коллектор эмиттер. Причем, при малом изменении управляющего напряжения наблюдается значительный рост тока через коллектор-эмиттер. Именно на этом эффекте и основана работа транзисторов в усилителях.
Транзистор открыт
Вот вкратце и вся суть работы транзисторов. Нужно рассчитать усилитель мощности на биполярных транзисторах за одну ночь, или выполнить лабораторную работу по исследованию работы транзистора? Это не проблема даже для новичка, если воспользоваться помощью специалистов нашего студенческого сервиса.
Не стесняйтесь обращаться за профессиональной помощью в таких важных вопросах, как учеба! А теперь, когда у вас уже есть представление о транзисторах, предлагаем расслабиться и посмотреть клип группы Korn “Twisted transistor”! Например, вы решили купить отчет по практике, обращайтесь в Заочник.
Источник: zaochnik-com.ru
Как работает транзистор и где используется?
Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор – это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.
Виды транзисторов
Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.
Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда , что ускоряет работу.
Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:
- мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
- отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
- переноса подвижных частиц;
- стабильности при отклонениях температуры;
- небольших шумов из-за отсутствия инжекции;
- потребления малой мощности при работе.
Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.
Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.
Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.
Биполярные транзисторы
Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.
Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.
Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.
Полевые транзисторы
Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:
- с управляющим p-n-переходом;
- транзисторы МДП с изолированным затвором.
Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.
Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.
Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники – сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла – затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.
Устройство и принцип работы для начинающих
Технологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние – в этом заключается двойная работа приборов.
Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:
- выводы из металла;
- диэлектрические изоляторы;
- корпус транзисторов из стекла, металла, пластика, металлокерамики.
До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификации применяются при производстве полупроводниковых устройств. Их можно было подключить как транзистор и применять, т. к. многие функциональные характеристики ламп годятся при описании работы полевых видов.
Преимущества и недостатки замены ламп транзисторами
Изобретение транзисторов является стимулирующим фактором для внедрения инновационных технологий в электронике. В сети используются современные полупроводниковые элементы, по сравнению со старыми ламповыми схемами такие разработки имеют преимущества:
- небольшие габариты и малый вес, что важно для миниатюрной электроники;
- возможность применить автоматизированные процессы в производстве приборов и сгруппировать этапы, что снижает себестоимость;
- использование малогабаритных источников тока из-за потребности в низком напряжении;
- мгновенное включение, разогревание катода не требуется;
- повышенная энергетическая эффективность из-за снижения рассеиваемой мощности;
- прочность и надежность;
- слаженное взаимодействие с дополнительными элементами в сети;
- стойкость к вибрации и ударам.
Недостатки проявляются в следующих положениях:
- кремниевые транзисторы не функционируют при напряжении больше 1 кВт, лампы эффективны при показателях свыше 1-2 кВт;
- при использовании транзисторов в мощных сетях радиовещания или передатчиках СВЧ требуется согласование маломощных усилителей, подключенных параллельно;
- уязвимость полупроводниковых элементов к воздействию электромагнитного сигнала;
- чувствительная реакция на космические лучи и радиацию, требующая разработки стойких в этом плане радиационных микросхем.
Схемы включения
Чтобы работать в единой цепи транзистору требуется 2 вывода на входе и выходе. Почти все виды полупроводниковых приборов имеют только 3 места подсоединения. Чтобы выйти из трудного положения, один из концов назначается общим. Отсюда вытекают 3 распространенные схемы подключения:
- для биполярного транзистора;
- полярного устройства;
- с открытым стоком (коллектором).
Биполярный модуль подключается с общим эмиттером для усиления как по напряжению, так и по току (ОЭ). В других случаях он согласовывает выводы цифровой микросхемы, когда существует большой вольтаж между внешним контуром и внутренним планом подключения. Так работает подсоединение с общим коллектором, и наблюдается только рост тока (ОК). Если нужно повышение напряжения, то элемент вводится с общей базой (ОБ). Вариант хорошо работает в составных каскадных схемах, но в однотранзисторных проектах ставится редко.
Полевые полупроводниковые приборы разновидностей МДП и с использованием p-n-перехода включаются в контур:
- с общим эмиттером (ОИ) – соединение, аналогичное ОЭ модуля биполярного типа
- с единым выходом (ОС) – план по типу ОК;
- с совместным затвором (ОЗ) – похожее описание ОБ.
В планах с открытым стоком транзистор включается с общим эмиттером в составе микросхемы. Коллекторный вывод не подсоединяется к другим деталям модуля, а нагрузка уходит на наружный разъем. Выбор интенсивности вольтажа и силы тока коллектора производится после монтажа проекта. Приборы с открытым стоком работают в контурах с мощными выходными каскадами, шинных драйверах, логических схемах ТТЛ.
Для чего нужны транзисторы?
Область применение разграничена в зависимости от типа прибора – биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.
Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.
Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:
- в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
- в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.
Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.
Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.
Транзисторы обоих видов используются в следующих случаях:
- В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
- В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
- В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.
Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.
Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.
Источник: odinelectric.ru
Что делает транзистор простыми словами
Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса. В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).
Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.
Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.
Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.
В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.
Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.
Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.
Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.
Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.
Основная задача транзистора – усиливать поступающий сигнал. Проблема в том, что у любого триода имеются только три контакта, в то время как сам усилитель имеет четыре полюса – два для входящего сигнала и два для выходящего, то есть усиленного. Выход из положения – использовать один из контактов транзистора дважды: и как вход, и как выход.
По этому принципу различают три вида подключения. Стоит отметить, что не имеет принципиальной разницы, какой тип прибора используется – полевой или биполярный.
Все три описанных выше типа подключения применяются в зависимости от того, какие цели преследуют конструкторы.
В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.
Устройство и принцип работы транзистора
Практическую значимость биполярного транзистора для современной электроники и электротехники невозможно переоценить. Биполярные транзисторы применяются сегодня повсюду: для генерации и усиления сигналов, в электрических преобразователях, в приемниках и передатчиках, да и много где еще, перечислять можно очень долго.
Поэтому в рамках данной статьи мы не будем касаться всевозможных сфер применения биполярных транзисторов, а только рассмотрим устройство и общий принцип действия этого замечательного полупроводникового прибора, который начиная с 1950-х годов перевернул всю электронную промышленность, а с 70-х годов сильно способствовал ускорению технического прогресса.
Биполярный транзистор — трехэлектродный полупроводниковый прибор, включающий себя в качестве основы три слоя чередующихся по типу проводимости. Таким образом, транзисторы бывают NPN и PNP-типа. Полупроводниковые материалы, из которых делают транзисторы, это в основном: кремний, германий, арсенид галлия и другие.
Кремний, германий и другие вещества изначально являются диэлектриками, но если в них добавить примеси, то они станут полупроводниками. Добавки в кремний типа фосфора (донор электронов) сделают кремний полупроводником N-типа, а если в кремний добавить бор (акцептор электронов), то кремний станет полупроводником P-типа.
В результате полупроводники N-типа обладают электронной проводимостью, а полупроводники P-типа — дырочной проводимостью. Как вы поняли, проводимость определяется по виду рабочих носителей заряда.
Так вот, трехслойный пирог из полупроводников P-типа и N-типа — это по сути и есть биполярный транзистор. К каждому слою припаяны выводы, которые называются: эмиттер, коллектор и база.
База — это управляющий проводимостью электрод. Эмиттер — это источник носителей тока в цепи. Коллектор — это то место, в направлении которого устремляются носители тока под действием приложенной к устройству ЭДС.
Условные обозначения биполярных транзисторов типов NPN и PNP на схемах различны. Данные обозначения как раз и отражают устройство и принцип действия транзистора в электрической цепи. Стрелка всегда изображается между эмиттером и базой. Направление стрелки — это направление управляющего тока, который подается в цепь база-эмиттер.
Так, у NPN-транзистора стрелка направлена от базы в сторону эмиттера, это значит что в активном режиме именно электроны из эмиттера устремятся к коллектору, при этом управляющий ток должен быть направлен от базы — к эмиттеру.
У PNP-трназистора наоборот: стрелка направлена от эмиттера в сторону базы, это значит что в активном режиме дырки из эмиттера устремляются к коллектору, при этом управляющий ток должен быть направлен от эмиттера — к базе.
Давайте разберемся, почему так происходит. При подаче постоянного положительного напряжения на базу NPN-транзистора (в районе 0,7 вольт) относительно его эмиттера, p-n-переход база-эмиттер данного NPN-транзистора (см. рисунок) смещается в прямом направлении, и потенциальный барьер между переходами коллектор-база и база-эмиттер снижается, теперь электроны могут двигаться через него под действием ЭДС в цепи коллектор-эмиттер.
При достаточном токе базы, ток коллектор-эмиттер возникнет в данной цепи и сложится с током база-эмиттер. NPN-транзистор перейдет в открытое состояние.
Соотношение между током коллектора и управляющим током (базы) называется коэффициентом усиления транзистора по току. Данный параметр приводится в документации на транзистор, и может лежать в диапазоне от единиц до нескольких сотен.
При подаче постоянного отрицательного напряжения на базу PNP-транзистора (в районе -0,7 вольт) относительно его эмиттера, n-p-переход база-эмиттер данного PNP-транзистора смещается в прямом направлении, и потенциальный барьер между переходами коллектор-база и база-эмиттер снижается, теперь дырки могут двигаться через него под действием ЭДС в цепи коллектор-эмиттер.
Обратите внимание на полярность питания коллекторной цепи. При достаточном токе базы, ток коллектор-эмиттер возникнет в данной цепи и сложится с током база-эмиттер. PNP-транзистор перейдет в открытое состояние.
Биполярные транзисторы обычно используются в различных устройствах в усилительном, барьерном или в ключевом режиме.
В усилительном режиме ток базы никогда не опускается ниже тока удержания, при котором транзистор все время пребывает в открытом проводящем состоянии. В данном режиме колебания малого тока базы инициируют соответствующие колебания значительно большего тока коллектора.
В ключевом режиме транзистор переходит из закрытого состояния в открытое, выполняя роль быстродействующего электронного коммутатора. В барьерном режиме — путем варьирования тока базы управляют током нагрузки, включенной в цепь коллектора.
Биполярный транзистор
Автор: Владимир Васильев · Опубликовано 9 сентября 2015 · Обновлено 29 августа 2018
Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.
Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье ?
Виды транзисторов
Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.
Биполярный транзистор
Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.
Триоды за редким исключением применяют в аппаратуре для меломанов.
Биполярные транзисторы выглядеть могут так.
Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.
Это изображение транзисторов еще называют УГО (Условное графическое обозначение).Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.
Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.
У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.
Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).
Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.
Принцип работы биполярного транзистора
А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.
Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.
Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.
Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).
- Коллектор имеет более положительный потенциал , чем эмиттер
- Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
- Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
- В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.
Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.
-коэффициент усиления по току.
Его также обозначают как
Исходы из выше сказанного транзистор может работать в четырех режимах:
- Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
- Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
- Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
- Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.
Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.
Транзистор в ключевом режиме
Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.
Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.
На рисунке изображена схема работы транзистора в ключевом режиме.
Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.
В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.
Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).
Чтож, теперь давайте попробуем рассчитать значение базового резистора.
На сколько мы знаем, что значение тока это характеристика нагрузки.
Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.
Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.
Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.В результате мы вполне можем найти сопротивление резистора
Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.
Все дело в том, что здесь есть небольшой нюанс.
Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти
Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).
Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.
В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.
Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.
Эмиттерный повторитель
Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.
Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.
Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.
Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.
«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока!
Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.
Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.
Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!
Где транзисторы купить?
Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.
Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.
Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.
Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.
Желаю вам удачи, успехов и солнечного настроения!
Поймем вместе принципы работы транзистора
Транзисторы являются активными компонентами и используются повсеместно в электронных цепях в качестве усилителей и коммутационных устройств (транзисторных ключей). Как усилительные приборы они применяются в приборах высокой и низкой частоты, генераторах сигналов, модуляторах, детекторах и многих других цепях. В цифровых схемах, в импульсных блоках питания и управляемых электроприводах они служат в качестве ключей.
Биполярные транзисторы
Так называется наиболее распространенный тип транзистора. Они делятся на npn и pnp типы. Материалом для них наиболее часто является кремний или германий. Поначалу транзисторы делались из германия, но они были очень чувствительны к температуре. Кремниевые приборы гораздо более стойки к ее колебаниям и дешевле в производстве.
Различные биполярные транзисторы показаны на фото ниже.
Как устроен биполярный транзистор?
Принципы работы транзистора нужно изучать, начиная с его устройства. Рассмотрим структуру npn-транзистора, которая изображена на рис.ниже.
Как видим, он содержит три слоя: два с проводимостью n-типа и один – p-типа. Тип проводимости слоев определяется степенью легирования специальными примесями различных частей кремниевого кристалла. Эмиттер n-типа очень сильно легирован, чтобы получить множество свободных электронов как основных носителей тока. Очень тонкая база p-типа слегка легирована примесями и имеет высокое сопротивление, а коллектор n- типа очень сильно легирован, чтобы придать ему низкое сопротивление.
Принципы работы транзистора
Лучшим способом познакомиться с ними является экспериментальный путь. Ниже приведена схема простой цепи.
Поверните движок потенциометра в крайнее нижнее положение. Это понизит напряжение на базе (между базой и землёй) до нуля вольт (UBE = 0). Лампа не светится, что означает отсутствие тока через транзистор.
Если теперь поворачивать рукоятку от ее нижней позиции, то UBE постепенно увеличивается. Когда оно достигает 0,6 В, ток начинает втекать в базу транзистора, и лампа начинает светиться. Когда рукоятка сдвигается дальше, напряжение UBE остается на уровне 0,6 В, но ток базы увеличивается и это увеличивает ток через цепь коллектор-эмиттер. Если рукоятка сдвинута в верхнее положение, напряжение на базе будет немного увеличено до 0,75 В, но ток значительно возрастет и лампа будет светиться ярко.
А если измерить токи транзистора?
Если мы включим амперметр между коллектором (C) и лампой (для измерения IC), другой амперметр между базой (B) и потенциометром (для измерения IB), а также вольтметр между общим проводом и базой и повторим весь эксперимент, мы сможем получить некоторые интересные данные. Когда рукоятка потенциометра находится в его низшей позиции, UBE равно 0 В, также как и токи IC и IB. Когда рукоятку сдвигают, эти значения растут до тех пор, пока лампочка не начинает светиться, когда они равны: UBE = 0.6 В, IB = 0,8 мА и IC = 36 мА.
В итоге мы получаем от этого эксперимента следующие принципы работы транзистора: при отсутствии положительного (для npn-типа) напряжения смещения на базе токи через его выводы равны нулю, а при наличии напряжения и тока базы их изменения влияют на ток в цепи коллектор — эмиттер.
Что происходит при включении питания транзистора
Во время нормальной работы, напряжение, приложенное к переходу база-эмиттер, распределяется так, что потенциал базы (p-типа) приблизительно на 0,6 В выше, чем у эмиттера (n-типа). При этом к данному переходу приложено прямое напряжение, он смещен в прямом направлении и открыт для протекания тока из базы в эмиттер.
Гораздо более высокое напряжение приложено к переходу база-коллектор, причем потенциал коллектора (n-типа) оказывается более высоким, чем у базы (p-типа). Так что к переходу приложено обратное напряжение и он смещен в обратном направлении. Это приводит к образованию довольно толстого обедненного электронами слоя в коллекторе вблизи базы, когда к транзистору прикладывается напряжение питания. В результате ток через цепь коллектор-эмиттер не проходит. Распределение зарядов в зонах переходов npn-транзистора показан на рисунке ниже.
Какова роль тока базы?
Как же заставить работать наш электронный прибор? Принцип действия транзистора заключается во влиянии тока базы на состояние закрытого перехода база-коллектор. Когда переход база-эмиттер смещен в прямом направлении, небольшой ток будет поступать в базу. Здесь его носителями являются положительно заряженные дырки. Они комбинируются с электронами, поступающими из эмиттера, обеспечивая ток IBE. Однако вследствие того, что эмиттер очень сильно легирован, гораздо больше электронов поступает из него в базу, чем способно соединиться с дырками. Это означает, что возникает большая концентрация электронов в базе, и большинство из них пересекает ее и попадает в обедненный электронами слой коллектора. Здесь они попадают под влияние сильного электрического поля, приложенного к переходу база-коллектор, проходят через обедненный электронами слой и основной объем коллектора к его выводу.
Изменения тока, втекающего в базу, влияют на количество привлеченных от эмиттера электронов. Таким образом, принципы работы транзистора могут быть дополнены следующим утверждением: очень небольшие изменения в базовом токе вызывают очень большие изменения в токе, протекающем от эмиттера к коллектору, т.е. происходит усиление тока.
Типы полевых транзисторов
По английски они обозначаются FETs — Field Effect Transistors, что можно перевести как «транзисторы с полевым эффектом». Хотя есть много путаницы в названиях для них, но встречаются в основном два основных их типа:
1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.
2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.
Внешне они очень похожи на биполярные, что подтверждает фото ниже.
Устройство полевого транзистора
Все полевые транзисторы могут быть названы УНИПОЛЯРНЫМИ приборами, потому что носители заряда, которые образуют ток через них, относятся к единственному для данного транзистора типу – либо электроны, либо «дырки», но не оба одновременно. Это отличает принцип работы транзистора полевого от биполярного, в котором ток образуется одновременно обоими этими типами носителей.
Носители тока протекают в полевых транзисторах с управляющим pn-переходом по слою кремния без pn-переходов, называемому каналом, с проводимостью либо n-, либо p-типа между двумя выводами, именуемыми «истоком» и «стоком» – аналогами эмиттера и коллектора или, точнее ,катода и анода вакуумного триода. Третий вывод – затвор (аналог сетки триода) – присоединен к слою кремния с другим типом проводимости, чем у канала исток-сток. Структура такого прибора показана на рисунке ниже.
Как же работает полевой транзистор? Принцип работы его заключается в управлении поперечным сечением канала путем приложения напряжения к переходу затвор-канал. Его всегда смещают в обратном направлении, поэтому транзистор практически не потребляет тока по цепи затвора, тогда как биполярному прибору для работы нужен определенный ток базы. При изменении входного напряжения область затвора может расширяться, перекрывая канал исток-сток вплоть до полного его закрытия, управляя таким образом током стока.
Транзистор: виды, применение и принципы работы
Что такое транзистор? Наверняка каждый человек хотя бы раз в жизни слышал это слово. Однако далеко не каждый знаком с его значением, а тем более с устройством и назначением транзистора. Это понятие подробно изучают студенты технических ВУЗов. При этом довольно часто технические знания пригождаются в жизни людям, не имеющим ничего общего с инженерной деятельностью. В этой статье мы рассмотрим в каких областях они применяются.Принцип работы прибора
Транзистор — полупроводниковый прибор, предназначенный для усиления электрического сигнала. Благодаря особому строению кристаллических решёток и полупроводниковым свойствам, этот прибор способен увеличивать амплитуду протекающего тока.Полупроводники — вещества, которые способны проводить ток, а также препятствовать его прохождению. Самыми яркими их представителями являются кремний и германий. Существует два вида полупроводников:
В полупроводниках электрический ток возникает из-за недостатка или переизбытка свободных электронов. Например, кристаллическая решётка атома состоит из трёх электронов. Однако если ввести в это вещество атом, состоящий из четырёх электронов, один будет лишним. Он является свободным электроном. Соответственно, чем больше таких электронов, тем ближе это вещество по своим свойствам к металлу. А значит, и проводимость тока больше. Такие полупроводники называются электронными.
Теперь поговорим о дырочных. Для их создания в вещество вводятся атомы другого вещества, кристаллическая решётка которого содержит больше атомов. Соответственно, в нашем полупроводнике становится меньше электронов. Образуются вакантные места для электронов. Валентные связи будут разрушаться, так как электроны будут стремиться занять эти вакантные места. Далее, мы будем называть их дырками.Электроны постоянно стремятся занять дырку и, начиная движение, образуют новую дырку. Таким поведением обладают абсолютно все электроны. В полупроводнике происходит их движение, а значит, начинает проводиться ток. Такие полупроводники называются дырочными.
Таким образом, вводя недостаток или избыток электронов в кремний или германий, мы способствуем их движению. Получается ток. Транзисторы состоят из соединений этих полупроводников по определённому принципу. С их помощью можно управлять протекающими токами и другими параметрами электрических сигналов.
Виды транзисторов
Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:
Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.
Полевые
Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:
- Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
- Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
- Исток — вывод, через который в канал приходят электроны и дырки.
Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.
Существует два вида приборов с изолированным затвором:
- Со встроенным каналом.
- С индуцированным каналом.
Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.
Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:
- Входное сопротивление.
- Амплитуда напряжения, которое необходимо подать на затвор.
- Полярность.
Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.
Биполярные
Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:- Электронная, далее n.
- Дырочная, далее p.
Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:
Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:
- База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
- Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
- Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.
Существует три схемы подключения биполярных транзисторов:
- С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
- С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
- С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.
Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.
Применение транзисторов в жизни
Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:
- Усилительные схемы.
- Генераторы сигналов.
- Электронные ключи.
Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.
Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.
Литература по электронике
Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:
- Цифровая схемотехника и архитектура компьютера — Дэвид М.
- Операционные системы. Разработка и реализация — Эндрю Т.
- Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .
В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.
Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются. В этом деле очень важно идти в ногу со временем. Успехов вам!
Как работает транзистор?
- Подробности
- Категория: Начинающим
- Опубликовано 29.11.2013 14:41
- Автор: Admin
- Просмотров: 35524
Транзисторы – это радиоэлектронные компоненты из полупроводникового материала, которые предназначены для преобразований, усилений и генерации электрических колебаний.
Но всё же, как работает транзистор? Говоря простым языком с помощью транзистора можно управлять током. Транзисторами называются любые устройства, которое способно имитировать главные его свойства, а именно – изменять сигнал между двумя разными типами состояний при изменениях сигнала на управляющем электроде.
Транзисторы бывают двух типов:
- полевые;
- биполярные.
Материалами изготовления служат германий и кремний, но при добавлении примесей способность проводить ток возрастает. Нужно рассмотреть оба типа транзисторов, для того чтобы понять как работает транзистор? На рисунке представлены три области p-n-p или n-p-n из которых состоит любой биполярный транзистор.
Структура транзистора
В биполярных транзисторах носители зарядов двигаются от эмиттера к коллектору. База отделяется от коллектора и эмиттера p-n переходами. Протекает ток через транзистор лишь при инжектировании носителей заряда через p-n переход из эмиттера в базу. Находясь в базе, они начинают становиться неосновными носителями заряда и достаточно легко проникают через p-n переходы. Управление током между коллектором и эмиттером осуществляется за счет изменения напряжения между базой и эмиттером.
Конструкция транзистора
Как работает транзистор в цепи электрического тока?
Основной принцип работы транзистора заключается в управлении электрическим током с помощью незначительного тока являющегося своего рода управляющим током. В полевых транзисторах носители зарядов движутся к коллектору от эмиттера через базу. Существует канал, в легированном проводнике находясь в промежутке между нелегированной подложкой и затвором. В подложке отсутствует заряд, и она не проводит ток. Перед затвором есть область обеднения с отсутствием носителей заряда.
Таким образом, вся ширина канала ограничивается пространством между областью обеднения и пространством между подложкой. Напряжение, прикладываемое к затвору, уменьшает или увеличивает область обеднения, и тем самым ширину самого канала, контролируя при этом ток.
Многие начинающие радиолюбители не так представляют себе принцип работы транзистора. Они думают, что транзистор способен усилить мощность источника питания, но это далеко не так. Важно понимать, что транзистор управляет большим током коллектора с помощью маленького тока протекающего через базу. Здесь речь идет скорее всего об управлении чем об усилении.
Схема подключение транзистора
Схема состоит из двух электрических цепей :
- цепь эмиттера;
- цепь коллектора;
В цепи эмиттера протекает незначительный ток, который управляет током коллектора. На выходе мы получаем «копию» тока эммитера но усиленного в несколько раз.
Интересное видео о принципе действия транзистора
- < Назад
- Вперёд >
Добавить комментарий
Почему два последовательно соединенных диода не могут работать как BJT?
Многие думают, что ответ на этот вопрос связан с шириной базовой области в транзисторах BJT — это неверно. Ответ получил довольно долго. Вы можете прочитать, начиная с раздела «Хитрый вопрос», если хотите, чтобы в нижней строке.
Я считаю, что вы были вынуждены задать этот вопрос из-за чего-то вроде этой картины:
Это стандартная практика преподавания основ BJT, но она может сбить с толку тех, кто не знаком с теорией полупроводников в деталях.
Чтобы ответить на ваш вопрос на приемлемом уровне, я должен предположить, что вы знакомы с принципами работы PN диода. Эта ссылка содержит подробное обсуждение PN-переходов.
Ответ касается NPN-транзистора, но он также применим к PNP-транзисторам после соответствующего изменения полярности.
NPN в форвард-активном режиме работы:
Наиболее «полезный» режим работы BJT-транзистора называется «прямой-активный»:
NPN находится в прямом активном режиме, когда:
- ВB E≈ 0,6 ВVBE≈0.6V
- ВСВ> 0VCB>0
яЕNIEnяБ 1= ЯЕпIB1=IEpN+ +n++пp
Обратите внимание, что отверстия, впрыскиваемые в эмиттер, питаются от базового электрода (ток базы), тогда как электроны, впрыскиваемые в базу, подаются от эмиттерного электрода (ток эмиттера). Соотношение между этими токами делает BJT усилителем тока — малый ток на базовой клемме может вызвать гораздо более высокий ток на клемме эмиттера. Обычное усиление тока определяется как отношение токов коллектора к основанию, но это соотношение между вышеупомянутыми токами, которое делает возможным любое усиление тока.
яСIC
Теперь, если бы все эти электроны, инжектированные из эмиттера, могли диффундировать к обратному смещенному соединению база-коллектор, не подвергаясь другим эффектам — не было бы никакого значения для ширины базовой области. Однако на базе происходит рекомбинация.
IB2IB2
Вышеуказанное означает, что чем больше электронов рекомбинирует во время диффузии через базовую область, тем ниже коэффициент усиления по току транзистора. Это зависит от производителя, чтобы минимизировать рекомбинацию для обеспечения функционального транзистора.
Существует множество факторов, влияющих на скорость рекомбинации, но одним из наиболее важных является ширина базы. Очевидно, что чем шире основание, тем больше времени потребуется, чтобы инжектированный электрон диффундировал через основание, тем выше вероятность того, что он встретит дыру и рекомбинирует. Производители, как правило, делают BJT с очень короткой базой.
Итак, почему два PN диода не могут работать как один NPN:
Приведенное выше обсуждение объясняет, почему база должна быть короткой. PN диоды (обычно) не имеют этих коротких областей, поэтому скорость рекомбинации будет очень высокой, а коэффициент усиления по току будет примерно равен единице. Что это значит? Это означает, что ток на клемме «Эмиттер» будет равен току на клемме «База», а ток на «Коллектор» будет равен нулю:
смоделировать эту схему — схема, созданная с использованием CircuitLab
Диоды функционируют как автономные устройства, а не один BJT!
Каверзный вопрос:
pp
На этот вопрос сложнее ответить, потому что прямой ответ «нет, база BJT очень короткая» больше не применима.
Оказывается, что при таком подходе два диода не будут похожи по поведению на один NPN-транзистор. Причина в том, что на металлическом контакте диода, где металл и полупроводник соприкасаются, все избыточные электроны «рекомбинируют» с «дырками», создаваемыми контактом. Это не обычная рекомбинация, так как металлы не имеют дыр, но тонкое различие не столь важно — как только электроны попадают в металл, транзисторная функциональность невозможна.
Альтернативный способ осмысления вышеизложенного состоит в том, чтобы понять, что диод Collector-Base имеет обратное смещение, но все еще проводит большой ток. Этот режим работы не может быть достигнут с автономными диодами PN, которые проводят незначительные токи под обратным смещением. Причина этого ограничения та же — избыточные электроны со стороны P диода с прямым смещением не могут быть проложены к стороне P диода с обратным смещением через металлический провод в «BJT-подобной диодной конфигурации». Вместо этого они поступают на источник питания, обеспечивая смещение напряжения на общей клемме диодов.
Был задан дополнительный вопрос, в котором предлагалось более строгое обоснование двух вышеупомянутых пунктов. Ответ касается интерфейсов металл-полупроводник и может быть найден здесь .
Вышеизложенное означает, что обсуждение ширины базовой области связано с обсуждением эффективности транзисторов BJT и совершенно не имеет отношения к обсуждению двух параллельных PN-диодов в качестве замены BJT.
Резюме:
Два параллельных PN-диода не могут функционировать как один BJT, потому что для функционирования транзистора требуется только полупроводниковая базовая область. Как только металл введен в этот путь (то, что представляют собой два диода спина к спине), функциональность BJT невозможна.
LDMOS RF транзисторы для передатчиков / Ampleon / Каталог продукции
Компания Ampleon – бесспорный лидер в производстве компонентов для рынка широкополосного вещания. В свое время мы обеспечили широкое применение LDMOS-транзисторов в вещании и продолжаем совершенствование этой технологии. Мы также продолжаем поддержку ранней продукции на протяжении срока службы изделия заказчика. Недавно мы расширили перечень предлагаемой продукции за счет разработки серии чрезвычайно устойчивых (XR) изделий. Мы также разрабатываем серию транзисторов из пластика (OMP) для систем с более низким потреблением энергии и меньшей затратностью.
Диапазоны: HF / FM / DAB VHF UHF |
BLF989 Мощный ВЧ-транзистор LDMOS мощностью 900 Вт для усилителей мощности телевизионных передатчиков и промышленного применения. Подходит для применения как в Догерти усилителях, так и в усилителях класса AB. Превосходная надежность этого устройства делает его идеальным для цифровых и аналоговых передатчиков в диапазоне частот от 400 МГц до 860 МГц. |
BLF989E Мощный ВЧ-транзистор LDMOS мощностью 1000 Вт для асимметричных усилителей по схеме Догерти для передатчиков цифрового телевещания. Транзистор позволяет получить 180 Вт средней мощности DVB-T. Превосходная прочность этого устройства делает его идеальным для применения в цифровых и аналоговых передатчиках. |
BLP15H9S100 Драйверный LDMOS-транзистор мощностью 100 Вт для вещательных и промышленных приложений. Превосходная прочность этого устройства делает его идеальным для цифровых и аналоговых передатчиков в диапазоне частот от ВЧ до 2 ГГц. |
ART2K0FE На основе Advanced Rugged Technology (ART) был разработан мощный LDMOS-транзистор мощностью 2000 Вт для приложений ISM. Транзистор предназначен для работы в диапазоне частот от 1 до 400 МГц. |
ART150FE Созданный на основе передовой технологии Advanced Rugged Technology (ART), этот LDMOS ВЧ-транзистор мощностью 150 Вт был разработан для охвата широкого спектра приложений ISM, вещания и связи. Транзистор предназначен для работы в диапазоне частот от 1 до 650 МГц. |
ART35FE Созданный на основе передовой технологии Advanced Rugged Technology (ART), этот LDMOS ВЧ-транзистор мощностью 35 Вт был разработан для охвата широкого спектра приложений ия и связи. Транзистор предназначен для работы в диапазоне частот от 1 до 650 МГц. |
Транзистор затвор — Справочник химика 21
Существуют три основных вида полевых транзисторов, различающихся способом управления проводимостью канала. В транзисторах с управляемым р- -переходом (рис. 1.5, а) на слаболегированной полупроводниковой монокристаллической подложке исток, канал и сток образованы областью проводимости -типа. В средней части этой области между истоком и стоком создается область с противоположным типом проводимости и высокой концентрацией примеси (р -область). Под образовавшимся / — -переходом находится канал -типа. Для функционирования транзистора к затвору относительно истока прикладывается управляющее напряжение (рис. 1.4, в), смещающее р — -переход в обратном направлении (при канале -типа СЛ сток-исток [/с, создающее ток через канал, должно обеспечивать обратное смещение всего р — -перехода ([/ > О для -канала). При этом обедненный носителями тока и выполняющий роль изоляционного слоя р» — -переход располагается в основном в области канала, поскольку толщина перехода с каждой стороны от границы раздела р — и -областей обратно пропорциональна концентрации в них примесей. В то же время толщина перехода, а значит, и проводимость канала, и ток через него зависят от величины С/,. Так происходит эффективное управление током стока с, протекающего через канал, с помощью малых изменений напряжения на затворе. Поскольку / — -переход остается закрытым, входное сопротивление между затвором и истоком полевого транзистора в отличие от биполярного, оказывается весьма большим (10 … 10 Ом). [c.30]Полевые транзисторы (как и биполярные) находят применение в различных аналоговых и цифровых схемах — как с дискретными элементами, так и в интегральных. В последних наиболее широко применяются МДП-транзисторы с индуцированным каналом. Высокое входное сопротивление таких транзисторов является ценным качеством при создании электронных средств для потенциометрических измерений. На основе МДП-транзисторов созданы рН-метрические, ионоселективные и биосенсоры, используемые в биологии и медицине, а также для контроля за содержанием загрязнителей в объектах окружающей среды. В таких сенсорах затвор транзистора выполняет роль индикаторного электрода. [c.34]
Кроме биполярных транзисторов существуют и находят применение полевые (униполярные) транзисторы (рис. 1.5, в). В таких транзисторах управляемый ток через канал между стоком (с) и истоком (и) создается носителями заряда только одного типа (электронами или дырками), а управление током осуществляется электрическим полем, создаваемым управляющим напряжением между затвором (з) и истоком (п — подложка). [c.30]
Промышленность начала выпускать. полупроводниковые приборы нового вида — полевые транзисторы. Входное сопротивление такого транзистора с изолированным затвором до 10 Ом [12]. Их преимущество перед электронными лампами — малые габариты и низкое потребление энергии. Однако параметры полевых транзисторов зависят от температуры окружающей среды. Максимальное изменение тока насыщения у кремниевых полевых приборов составляет приблизительно [c.37]
При разомкнутой цепи затвора или при напряжении затвор-исток и,= О между истоком и стоком расположены два встречно включенных р-п-перехода, один из которых находится под обратным напряжением при любой полярности напряжения сток-исток Не. При этом ток стока /с практически равен нулю, т.е. канал отсутствует. Таким образом, МДП-транзистор с индуцированным каналом является нормально закрытым прибором. [c.32]
МДП-транзисторы со встроенным каналом (рис. 1.5, в) и-типа отличаются от предыдущего типа лишь тем, что под затвором поверхностный слой полупроводника изначально имеет тот же тип 32 [c.32]
Как было показано выше (см. раздел 1.2.2), полупроводниковой основой полевых транзисторов служит подложка из кристаллического кремния /7-типа, отделенная от металлического проводника (затвора) слоем тонкого ( 100 нм) диэлектрика (обычно БЮг). Эта конструкция усложнена двумя дополнительными кремниевыми элементами w-типа, называемыми истоком и стоком. Электрическая цепь создается за счет металлических контактов со стоком и истоком и позволяет измерять электропроводность поверхностного слоя кремниевой подложки. [c.218]
Если приложить дополнительное напряжение 11з между затвором и подложкой, то в п-канале между п-областями кремния образуется электрическое поле, так что между стоком и истоком протекает ток /си- Величина тока определяется напряжением. Конечно, чтобы получить ток, необходимо минимальное напряжение. Благодаря высокому сопротивлению между затвором и подложкой входной ток пренебрежимо мал. Высокое сопротивление полевого транзистора делает его подходящим входным устройством для pH- и иономе-ров, а также для усиления сигнала в обычных вольтметрах. Влияние напряжения сток-исток существует из-за изменений электрических характеристик транзистора (рис. 7.7-5). [c.501]
Этот прибор работает на совершенно иной основе, чем биполярный транзистор, рассмотренный выше. Обсудим схему на рис. 27-6. Полоска кремния я-типа, называемая каналом, соединена с двух сторон с истоком 5 и стоком О. Канал находится между слоями р-материала (соединенными вместе), называемого затвором О. В некоторых моделях затвор полностью окружает канал. Существуют ПТ с каналами п- и р-типа. [c.557]
ПТ с изолированным затвором, часто называемые МДП-транзисторами (ПТ со структурой металл — диэлектрик — полупроводник), представляют собой модификацию ПТ, в которой тонкая пленка изолирующего материала, обычно диоксида кремния, отделяет затвор от канала. Это устраняет выпрямляющий переход, так что затвору можно придать любую полярность без управляющего тока. Электростатическое поле между затвором и каналом может менять распределение дырок или электронов в канале, определяя таким образом его сопротивление. МДП-транзистор имеет самый высокий входной импеданс среди всех ти—7 даны общепринятые обозначе- [c.558]
В настоящее время существуют три типа тонкопленочных полупроводниковых приборов тонкопленочные полевые транзисторы с изолированным затвором (ТПТ), транзисторы на горячих электронах и полупроводниковые транзисторы и диоды с р-п переходом. Тонкопленочные транзисторы изготавливаются последовательным осаждением различных материалов с применением металлических масок. [c.69]
Наличие изолированного затвора обусловливает еще одно важное преимущество полевого триода по сравнению с обычными биполярными транзисторами — его большое входное сопротивление (порядка 10 ом). [c.167]
Планарная технология удобна для формирования полевого транзистора на полупроводниковой подложке. На рис. 75 представлен прибор, изготовленный путем формирования в подложке из монокристалла кремния сильно легированных контактов катода и анода, выращивания между ними термической пассивацией слоя из двуокиси кремния с последующей металлизацией контактов и осаждением в вакууме, поверх слоя изолятора, металлической пленки в качестве затвора. [c.188]
Для согласования ДИ с исполнительными устройствами используются как транзисторные, так и тиристорные пороговые усилители. Такие реле времени отличаются высокой экономичностью, потребляемая мощность в процессе выдержки времени находится в пределах нескольких милливатт [59—61]. Однако используемые тиристорные усилители имеют сравнительно небольшое входное сопротивление. Это приводит к дополнительной погрешности выдержки времени. Для уменьшения ее и осуществления регулировки напряжения отсечки в широком диапазоне (от 100 мВ до 1 В) целесообразно использовать согласующие усилители на полевых транзисторах, обладающих более высоким входным сопротивлением. Большое входное сопротивление полевого транзистора и малый ток затвора (менее 10 А) позволяют снизить допустимые токи инте- [c.149]
Для обеспечения минимального температурного дрейфа транзисторы Т1 и Т2 подбирают в пары по напряжению исток-затвор при токах истока 0,2 мА. Это обеспечивает температурный дрейф усилителя на уровне приблизительно 20 мкВ/градус. Точная настройка нуля выходного напряжения усилителя осуществляется резистором Лг- ак видно из рис. 40, элементы смещения баз источников тока на транзисторах Т3 и Тб идентичны. [c.52]
В. При выбранном сопротивлении резистора Л5 ток короткого замыкания составляет примерно 20 мА. Для ограничения тока стока транзистора Тд на уровне приблизительно 20 мА при перегрузках напряжения на его затворе служат резистор и диод Д5. Напряжение между точками А и Б резистором устанавливаются такими, чтобы при отпирании диода Д5 напряжение затвор-исток ограничивался на уровне, при котором ток стока Т5 не превышает приблизительно 20 мА. Это напряжение устанавливается для каждого усилителя индивидуально. [c.52]
Увеличивается диффузионное проникновение бора из высоколегированных поликремниевых затворов р-МОП транзисторов в область канала, которое приводит к нежелательному сдвигу порогового напряжения этих транзисторов в положительную область. [c.142]
Препятствовать проникновению бора из высоколегированных поликремниевых затворов р-МОП транзисторов в область канала. [c.143]
Еще большее входное сопротивление порядка. Ом (на постоянном токе и на низких частотах) имеют полевые транзисторы с изолированным затвором — с индуцированным или встроенным каналом (рис. 1.5, б и в). В таких полупроводниковых приборах, называемых МДП анзисторами, используется структура металл-диэлектрик-полупроводник, в которой металлическая контактная площадка затвора отделена от полупроводниковой пластины тонким слоем диэлектрика. Поскольку чаще всего в качестве полупроводникового материала применяется кремний, а диэлектриком является оксид кремния 8102, МДП-транзисторы называют еще МОП-транзисторами. [c.31]
Если к затвору относительно истока приложить напряжение fЛ, противоположное по знаку основным носителям полупроводника под затвором ( 7, поверхностном слое под диэлектриком будет индуцироваться заряд носителей тока того же типа, что и основные носители в данной области полупроводника (на рис. 1.5, б — дырки). Это приводит к увеличению поверхностной концентрации основных носителей, т.е. к обогащению ими поверхностного подзатворного слоя. При этом один из р-п-переходов, а следовательно, и транзистор остаются закрытыми. При подаче малого и, другой полярности ( 7з > 0) в поверхностном слое под затвором индуцируется сравнительно небольшой заряд неосновных носителей тока (электронов) для данной области полупроводника, а основные носители частично смещаются в глубь полупроводника. В итоге их поверхностная концентрация уменьшается, но остается большей, чем у неосновных носителей. В этом случае происходит обеднение поверхностного слоя основными носителями. Транзистор по-прежнему остается закрытым. При значениях 7,, больших некоторого порогового значения ( Щ > 1С ор1), поверхностная концентрация неосновных носителей становится больше концентрации ионов примеси (акцепторов). По этой причине поверхностный слой приобретает инверсное состояние — его тип проводимости становится противоположным проводимости остальной части подложки. Следовательно, между истоком и стоком индуцируется поверхностный канал и транзистор открывается. Чем больше 1 7,1 превышает 7пор1, тем больше ток стока / с- При этом напряжение затвора управляет током стока. [c.32]
Описанный полевой транзистор можно трансформировать в ИСПТ, заменив металлический затвор ионоселективной мембраной. В этом случае величина f/ будет зависеть не только от i/n и потенциала электрода сравнения, но и от потенциала на границе раздела раствор/мембрана, С помощью мембран, потенциал которых зависит от концентрации ионов в растворе, ИСПТ приобретают химическую селективность, В ИСПТ применяют те же мембраны, которые разработаны для ИСЭ и описаны выше. Из неорганических материалов наилучшими х актеристиками обладают АЬОз и ТагОз, обеспечивающие наклон зависимости 7, от pH, равный 52-58 мВ/рН при времени срабатывания не более нескольких секунд, В настоящее время ИСПТ для измерения pH коммерчески доступны. Разработаны ИСПТ на основе бромида серебра, селективные к бромид-ионам, алюмосиликатного и боросиликатного [c.218]
Эти типы электродов — гибриды ион-селективных электродов и полевых транзисторов из оксвдов металлов МИСПТ. В ИСПТ металлический затвор МИСПТ заменен или контактирует с твердой или жидкой ион-селективной мембраной. Откликом таких миниатюрных датчиков является сила тока (разд. 7.7). [c.399]
Из всех перечисленных выше типов пленочных активных элементов особое место занимают полевые транзисторы с изолированным управляющим электродом. Приборы этого типа, с одной стороны, обладают всеми преимуществами полупроводниковых приборов, как-то экономичность, отсутствие подогревного катода, малые размеры и др. С другой стороны, они обладают высоким входным сопротивлением, достигающим благодаря изоляции управляющего электрода 10 ом, что характерно только для электронных ламп. Но этим неограничива-ются преимущества приборов этого типа. Способность ТПТ работать как при положительном, так и при отрицательном смещении на управляющем затворе без заметных токов в цепи управляющего электрода позволяет использовать их в схемах с непосредственной связью, [c.69]
Представляет интерес схема усилительного тракта полярографов для ВПТ-С с ФС, в которую вводят фазовращатель. В управляющий вход фазовращателя последовательно с резисторами включают полевой транзистор (рис. 55, д). Переменная составляющая тока ячейки усиливается усилителем 7 и подается на фазовый детектор 8, на входе которого подключен сглаживающий фильтр 9. С запуском PH затвор полевого транзистора подключается контактами 14 к выходу усилителя 16, замьпсая цепь автоматического регулирования фазового угла ф. При этом напряжение активной составляющей помехи os ф после усиления усилителем, поступая на затвор транзистора 11, начинает изменять его сопротивление. Изменение активного сопротивления в плече фазовращателя приводит к появлению фазового сдвига ф, полярность которого зависит от того, увеличивается или уменьшается сопротивление транзистора [c.92]
Ртутные термометры заменяют транзисторами, термометрами сопротир-ления и термопарами манометры и вакуумметры — диафрагменными, силь-4)онными приборами ртутные затворы мешалок — механическими сальниками из фторопласта и полиэтилена или бесконтактным магнитным приводом (см. гл. XIII) вместо каломелевых стандартных электродов, в которых применяется ртуть, с успехом используют хлорсеребряные, не содержащие ртути. [c.389]
Несмотря на высокое легирование поликремниевых затворов сильное электрическое поле, прикладываемое к тонкому подзатвор-ному окислу для того, чтобы обеднить, а затем и инвертировать каналы транзисторов, также обедняет область поликремния рядом с гра- [c.142]
Фирма Servomex недавно ввела в регулятор чувствительности цепь точного контроля усиления с использованием трансформатора. Сигнал постоянного или переменного с частотой до 1 Гц тока h модулируется с помощью переключателя Кл.1 (обычно полевой транзистор с изолированным затвором, работающий на частоте 200 Гц) и проходит через Л 1 витков трансформатора. Выходной ток модулируется ключом Кл2 (работающим в фазе [c.93]
В последние годы все большее внимание уделяют закреплению сложных, но более специфичных органических молекул на поверхности чувствительных элементов. Особенный интерес для модифицирования в этом случае представляют контакты затвора полевых транзисторов (FET, field-effe t transistor или ПТ-транзисторов), изготовленные из металлов или оксидов, нитридов, силицидов металлов. Взаимодействие селективных функциональных групп на поверхности затвора ПТ с определяемым компонентом в растворе вызывает его адсорбцию и приводит к изменению напряженности и (или) конфигурации электрического поля на поверхности затвора [c.470]ЧТО ТАКОЕ ТРАНЗИСТОР
Транзистор — главный компонент в любой электрической схеме. Эта статья именно о них и написана для начинающих радиолюбителей. Транзистор — своего рода усилительный ключ, принцип работы похож на тиристора. Без транзисторов в электронике никак не обойтись, на них собирают буквально все — простейшие мигалки, транзисторные усилители мощности низкой частоты, радиоприемники и передатчики, телевизионная и видео аппаратура и многие другие устройства. Транзисторами можно увеличить или снизить первоначальное напряжения источника питания, если они используются в схемах преобразователей.Сам транзистор — полупроводниковый прибор, в основном кристалл транзистора делают из кремния или германия. Транзисторы бывают двух видов — однополярные и двухполярные, соответственно полевые и биполярные. По проводимости тоже бывают двух видов — транзисторы прямой проводимости (п — н — п) и транзисторы обратной проводимости (н — п — н). Н -П — от латыни негатив и позитив. На схемах легко можно отличить какой проводимости транзистор использован — если стрелка эмиттера входит в транзистор, значит он прямой проводимости, если же выходит из транзистора, значит транзистор имеет обратную проводимость тока.
Для работы транзистора на базу подают маленький ток, впоследствии которого транзистор открывается и может пропустить более большой ток через эмиттер — коллектор, то есть подавая сравнительно маленький ток на базу мы можем управлять более большим токам. Иными словами, прилагая лёгкое усилие поворачивая водопроводный кран, мы управляем мощным потоком воды. Транзистор может находится в двух состояниях, он открыт — когда на базу подано напряжение (рабочее состояние транзистора) и закрыт, когда ток не течет на базу (состояние покоя транзистора).
По рабочей частоте часто всего используют низкочастотные и высокочастотные транзисторы. Низкочастотные транзисторы применяют для силовых цепей преобразователей напряжения, усилителей мощности в блоках питания и так далее. Низкочастотные транзисторы как правило бывают большей мощности. Высокочастотные транзисторы работающие на частотах в несколько гигагерц тоже применяются очень часто. В основном они нашли широкое применения в радиоприёмной и передающей аппаратуре, в усилителях высокой частоты и во многих других приборах. Такие транзисторы имеют сравнительно маленькую мощность, они незаменимы в области радиоприема и передачи.
Транзисторы бывают самых разных форм и размеров — от невидимого для человеческих глаз чип элементов для поверхностного монтажа, до мегамощных транзисторов размером с дом.
Последние могут иметь мощность до сотни мегаватт, их в основном используют в электростанциях и на заводах. Для лучшей проводимости тока по контактам транзистора высокой частоты часто наносят тонкий слой золота или серебра, но в последнее время такие транзисторы встречаются очень редко, в основном такие транзисторы использовались в радиоаппаратуре времен советского союза. Новичкам уверен данный материал помог разобраться что к чему и прояснить вопросы по транзисторам — Артур Касьян (АКА).
Форум по теории
Форум по обсуждению материала ЧТО ТАКОЕ ТРАНЗИСТОР
Как работают транзисторы? — Объясни, что материал
Криса Вудфорда. Последнее изменение: 21 сентября 2020 г.
Ваш мозг содержит около 100 миллиардов клеток, называемых нейронами, — крошечных переключателей, которые позволяют вам думать и запоминать вещи. Компьютеры содержат миллиарды миниатюрных «клеток мозга». Их называют транзисторами и они сделаны из кремния, химического элемента, обычно встречающегося в песке. Транзисторы произвели революцию в электронике с момента их появления изобретен более полувека назад Джоном Бардином, Уолтером Браттейном и Уильям Шокли.Но что это такое и как они работают?
Фото: Насекомое с тремя ногами? Нет, типичный транзистор на электронной плате. Хотя простые схемы содержат отдельные транзисторы, подобные этому, сложные схемы внутри компьютеров также содержат микрочипы, каждый из которых может иметь тысячи, миллионы или сотни миллионов транзисторов, упакованных внутри. (Технически, если вас интересуют более интересные элементы, это кремниевый транзистор усилителя PNP 5401B. Я объясню, что все это означает сейчас.)
Что на самом деле делает транзистор?
Фото: Компактные слуховые аппараты были одними из первых применений транзисторов, а этот датируется концом 1950-х или 1960-х годов. Он был размером с колоду игральных карт, поэтому его можно было носить в кармане пиджака или на нем. С другой стороны корпуса есть микрофон, который улавливает окружающие звуки. Вы можете ясно видеть четыре маленьких черных транзистора внутри, усиливающих эти звуки, а затем выстреливающих их в маленький громкоговоритель, который находится у вас в ухе.
Транзистор действительно прост — и действительно сложен. Давайте начнем с простая часть. Транзистор — это миниатюрный электронный компонент, который может выполнять две разные работы. Может работать как усилитель или как переключатель:
- Когда работает как усилитель, нужно в крошечном электрическом токе на одном конце ( входной ток) и производит гораздо больший электрический ток (выходной ток) на другой. Другими словами, это своего рода усилитель тока. Это входит действительно полезно в таких вещах, как слуховые аппараты, одна из первых вещей люди использовали транзисторы для.В слуховом аппарате есть крошечный микрофон. который улавливает звуки из окружающего вас мира и превращает их в колеблющиеся электрические токи. Они подаются на транзистор, который усиливает их и приводит в действие крошечный громкоговоритель, так что вы слышите гораздо более громкую версию окружающих вас звуков. Уильям Шокли, один из изобретателей транзистора, однажды объяснил студенту транзисторные усилители в более подробном виде. юмористический способ: «Если взять тюк сена и привязать его к хвост мула, а затем чиркнуть спичкой и поджечь тюк сена, и если вы затем сравните энергию, израсходованную вскоре после этого, мул с энергией, затраченной вами на зажигание спички, вы поймете концепцию усиления.« Транзисторы
- также могут работать как переключатели. А крошечный электрический ток, протекающий через одну часть транзистора, может значительно увеличить ток течет через другую его часть. Другими словами, маленький ток переключается на больший. По сути, так работают все компьютерные микросхемы. Для например, микросхема памяти содержит сотни миллионов или даже миллиарды транзисторов, каждый из которых можно включать или выключать индивидуально. Поскольку каждый транзистор может находиться в двух различных состояниях, он может хранить два разных числа, ноль и единицу.С миллиардами транзисторов микросхема может хранить миллиарды нулей и единиц, и почти столько же обычных цифр и букв (или символов, как мы их называем). Подробнее об этом чуть позже.
Самое замечательное в машинах старого образца было то, что вы могли их отдельно, чтобы понять, как они работают. Это никогда не было слишком сложно, с немного толкать и тыкать, чтобы узнать, какой бит сделал что и как один вещь привела к другому. Но электроника совсем другая. Это все об использовании электронов для управления электричеством.Электрон — это минута частица внутри атома. Он такой маленький, весит чуть меньше 0.000000000000000000000000000001 кг! Самые современные транзисторы работают контролируя движения отдельных электронов, чтобы вы могли представьте, насколько они маленькие. В современном компьютерном чипе размер ноготь, вы, вероятно, найдете от 500 миллионов и два миллиарда отдельных транзисторов. Нет шанса разобрать транзистор, чтобы узнать, как он работает, поэтому мы должны понять это с помощью теории и воображения.Во-первых, это помогает, если мы знаем, из чего сделан транзистор.
Как делается транзистор?
Фото: Кремниевая пластина. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).
Транзисторы изготовлены из кремния, химического элемента, содержащегося в песке, который обычно не проводит электричество (оно не позволяет электронам легко проходить через него). Кремний — это полупроводник, а это значит, что он ни на самом деле проводник (что-то вроде металла, пропускающий электричество), ни изолятор (что-то вроде пластика, не пропускающего электричество).Если мы обрабатываем кремний примесями (процесс, известный как легирование), мы можем заставить его вести себя по-другому способ. Если мы добавим в кремний химические элементы мышьяк, фосфор, или сурьмы, кремний получает дополнительные «свободные» электроны — те, которые может проводить электрический ток, поэтому электроны будут вытекать об этом более естественно. Поскольку электроны имеют отрицательный заряд, кремний обработанный таким образом, называется n-типом (отрицательный тип). Мы также можем легировать кремний другими примесями, такими как бор, галлий и алюминий.Кремний, обработанный таким образом, имеет меньше «свободные» электроны, поэтому электроны в соседних материалах будут стремиться втекать в него. Мы называем этот кремний p-типом (положительным типом).
Вкратце, мимоходом, важно отметить, что ни кремний n-типа, ни p-типа на самом деле не имеет заряда сам по себе : оба электрически нейтральны. Это правда, что кремний n-типа имеет дополнительные «свободные» электроны, которые увеличивают его проводимость, в то время как кремний p-типа имеет меньше этих свободных электронов, что помогает увеличить его проводимость противоположным образом.В каждом случае дополнительная проводимость возникает из-за добавления нейтральных (незаряженных) атомов примесей к кремнию, что изначально было нейтральным — и мы не можем создавать электрические заряды из воздуха! Для более подробного объяснения мне потребуется представить идею под названием ленточная теория, что немного выходит за рамки данной статьи. Все, что нам нужно помнить, это то, что «лишние электроны» означают лишние свободных электронов — те, которые могут свободно перемещаться и помогать переносить электрический ток.
Кремниевые бутерброды
Теперь у нас есть два разных типа кремния. Если мы сложим их вместе слоями, делая бутерброды из материала p-типа и n-типа, мы можем сделать различные виды электронных компонентов, которые работают во всех видах способами.
Предположим, мы присоединяем кусок кремния n-типа к куску p-типа. кремний и поместите электрические контакты с обеих сторон. Увлекательно и полезно вещи начинают происходить на стыке двух материалы. Если мы обратимся по току, мы можем заставить электроны течь через переход от сторона n-типа к стороне p-типа и наружу через цепь.Этот происходит из-за отсутствия электронов на стороне p-типа переход притягивает электроны со стороны n-типа и наоборот. Но если мы меняем направление тока, электроны вообще не текут. Что мы сделанный здесь называется диодом (или выпрямителем). Это электронный компонент, который позволяет току течь через него только в одном направлении. Это полезно, если вы хотите превратить переменный (двусторонний) электрический ток в постоянный (односторонний) ток. Диоды тоже можно сделать так, чтобы они испускали светится, когда через них проходит электричество.Вы могли видеть эти светодиоды на карманных калькуляторах и электронных дисплеи на стереооборудовании Hi-Fi.
Как работает переходной транзистор
Фотография: Типичный кремниевый PNP-транзистор (A1048, разработанный как усилитель звуковой частоты).
Теперь предположим, что вместо этого мы используем три слоя кремния в нашем сэндвиче. из двух. Мы можем сделать бутерброд p-n-p (с ломтиком n-типа кремний в качестве заполнения между двумя пластинами p-типа) или n-p-n сэндвич (с p-типом между двумя плитами n-типа).Если мы присоединить электрические контакты ко всем трем слоям сэндвича, мы можем сделать компонент, который будет либо усиливать ток, либо включать его, либо выключен — другими словами, транзистор. Посмотрим, как это работает в случае n-p-n транзистор.
Итак, мы знаем, о чем говорим, давайте дадим имена трем электрические контакты. Мы назовем два контакта, соединенных с двумя кусочки кремния n-типа эмиттер и коллектор, и контакт соединенный с кремнием p-типа, который мы будем называть базой.Когда нет ток протекает в транзисторе, мы знаем, что кремний p-типа не хватает электроны (показаны здесь маленькими знаками плюс, обозначающими положительные зарядов) и два куска кремния n-типа имеют лишние электроны (показаны маленькими знаками минус, обозначающими отрицательные заряды).
Другой способ взглянуть на это — сказать, что в то время как n-тип имеет избыток электронов, p-тип имеет дырки, где электроны должно быть. Обычно отверстия в основании действуют как барьер, предотвращающий любые значительный ток от эмиттера к коллектору при транзистор находится в выключенном состоянии.
Транзистор работает, когда электроны и дырки начинают двигаться
через два перехода между кремнием n-типа и p-типа.
Давай подключить транзистор к некоторой мощности. Допустим, мы прикрепляем небольшой положительное напряжение на базу, сделать эмиттер отрицательно заряженным и сделать коллектор положительно заряженным. Электроны вытягиваются из эмиттер в базу, а затем из базы в коллектор. А также транзистор переходит в состояние «включено»:
Малый ток, который мы включаем на базе, создает большой ток. поток между эмиттером и коллектором.Повернув небольшой вход ток в большой выходной ток, транзистор действует как усилитель. Но в то же время он действует как переключатель. Когда нет тока база, ток между коллектором и эмиттер. Включите базовый ток, и течет большой ток. Итак, база ток включает и выключает весь транзистор. Технически это тип транзистора называется биполярным, потому что два разных вида (или «полярностей») электрического заряда (отрицательные электроны и положительные отверстия) участвуют в протекании тока.
Мы также можем понять транзистор, представив его как пару диодов. С база положительная, а эмиттер отрицательная, переход база-эмиттер похож на прямое смещение диод, с электронами, движущимися в одном направлении через переход (слева направо в диаграмму) и отверстия, идущие в противоположную сторону (справа налево). База-коллектор переход похож на диод с обратным смещением. Положительное напряжение коллектора тянет большая часть электронов проходит через внешнюю цепь (хотя некоторые электроны рекомбинируют с дырками в основании).
Как работает полевой транзистор (FET)
Все транзисторы работают, управляя движением электронов, но не все из них делают это одинаково. Подобно переходному транзистору, полевой транзистор (полевой транзистор) имеет три разных контакта, но они иметь названия источник (аналог эмиттера), сток (аналог коллектор), и затвор (аналог цоколя). В полевом транзисторе слои Кремний n-типа и p-типа устроен несколько иначе и покрытый слоями металла и оксида.Это дает нам устройство под названием MOSFET (Металлооксидное полупроводниковое поле) Эффектный транзистор).
Хотя в истоке и стоке n-типа есть лишние электроны, они не могут перетекать от одного к другому из-за дыр в ворота p-типа между ними. Однако если приложить положительный напряжение на затвор, там создается электрическое поле, позволяющее электроны перетекают по тонкому каналу от истока к стоку. Этот «полевой эффект» позволяет току течь и включает транзистор:
Для полноты картины отметим, что полевой МОП-транзистор является униполярным. транзистор потому что только один («полярность») электрического заряда участвует в его работе.
Как работают транзисторы в калькуляторах и компьютерах?
На практике вам не нужно ничего знать об этом электроны и дыры, если вы не собираетесь разрабатывать компьютерные чипы для заработка! Все, что вам нужно знать, это то, что транзистор работает как усилитель или переключатель, используя небольшой ток включить более крупный. Но есть еще одна вещь, которую стоит знать: как все это помогает компьютерам хранить информацию и принимать решения?
Мы можем соединить несколько транзисторных ключей, чтобы что-то сделать. называется логическим вентилем, который сравнивает несколько входные токи и в результате дает другой выход.Логические ворота позволяют компьютерам создавать очень простые решения с использованием математической техники, называемой булевой алгеброй. Точно так же и ваш мозг принимает решения. Например, используя «входные данные» (то, что вы знаете) о погоде и о том, что у вас есть в коридоре, вы можете принять такое решение: «Если идет дождь И я есть зонтик, я пойду в магазины «. Это пример булевой алгебры, в которой используется так называемое И «оператор» (слово «оператор» — это просто математический жаргон, заставляют вещи казаться более сложными, чем они есть на самом деле).Ты можешь сделать аналогичные решения с другими операторами. «Если ветрено ИЛИ идет снег, тогда я надену пальто «- это пример использования оператора ИЛИ. Или как насчет «Если идет дождь, И я есть зонтик ИЛИ у меня есть пальто, тогда можно выйти на улицу «. Используя AND, ИЛИ и другие операторы, вызываемые Компьютеры NOR, XOR, NOT и NAND могут складывать или сравнивать двоичные числа. Эта идея является краеугольным камнем компьютерных программ: логическая серия инструкций, которые заставляют компьютеры действовать.
Обычно переходной транзистор выключен, когда нет базы. ток и переключается в положение «включено», когда течет базовый ток.Это значит требует электрического тока для включения или выключения транзистора. Но такие транзисторы могут быть подключены к логическим элементам, чтобы их выход соединения возвращаются на свои входы. Транзистор затем остается включенным, даже если базовый ток отключен. Каждый раз новый база ток течет, транзистор «переключается» или выключается. Остается в одном из эти стабильные состояния (включены или выключены) до тех пор, пока не появится другой ток приходит и переворачивает его в другую сторону. Такая аранжировка известен как триггер, и это превращает транзистор в простой запоминающее устройство, в котором хранится ноль (когда он выключен) или один (когда он на).Шлепанцы — это основная технология, лежащая в основе компьютерных микросхем памяти.
Кто изобрел транзистор?
Изображение: Оригинальный дизайн точечного транзистора, как изложено в Патент Джона Бардина и Уолтера Браттейна в США (2 524 035), поданный в июне 1948 г. (примерно через шесть месяцев после оригинальное открытие) и награжден 3 октября 1950 года. Это простой PN-транзистор с тонкий верхний слой германия P-типа (желтый) на нижнем слое германия N-типа (оранжевый).Три контакта: эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый). Вы можете прочитать больше в оригинальном патентном документе, который указан в ссылках ниже. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.
транзисторов были изобретены в Bell Laboratories в Нью-Джерси в 1947 году. трех блестящих физиков США: Джона Бардина (1908–1991), Уолтера Браттейн (1902–1987) и Уильям Шокли (1910–1989).
Команда, возглавляемая Шокли, пыталась разработать новый тип усилителя для телефонной системы США — но что собственно изобретенные они оказались гораздо более распространенными Приложения.Бардин и Браттейн создали первый практический транзистор (известный как точечный транзистор) во вторник, 16 декабря 1947 года. Хотя Шокли сыграл большую роль в этом проекте, он был разъяренный и взволнованный из-за того, что его оставили в стороне. Вскоре после этого во время остановиться в отеле на конференции по физике, единолично выяснил он теория переходного транзистора — устройство гораздо лучше, чем точечный транзистор.
В то время как Бардин ушел из Bell Labs, чтобы стать академиком (он продолжил пользуются еще большим успехом при изучении сверхпроводников в Университете Иллинойса), Браттейн остался на некоторое время, прежде чем уйти на пенсию, чтобы стать учителем.Шокли основал собственную компанию по производству транзисторов и помог вдохновить современный феномен «Силиконовая долина» (процветающий район вокруг Пало-Альто, Калифорния, где корпорации электроники собраны). Двое его сотрудников, Роберт Нойс и Гордон Мур, ушли чтобы основать Intel, крупнейшего в мире производителя микрочипов.
Бардин, Браттейн и Шокли ненадолго воссоединились несколько лет спустя, когда они поделились лучшими научными достижениями мира награда, Нобелевская премия по физике 1956 г., за их открытие.Их история захватывающий рассказ о интеллектуальный талант борется с мелкой ревностью, и это хорошо стоит прочтения больше о. Вы можете найти отличные отчеты об этом среди книг и веб-сайты, перечисленные ниже.
Как работают транзисторы? — Объясни, что материал
Криса Вудфорда. Последнее изменение: 21 сентября 2020 г.
Ваш мозг содержит около 100 миллиардов клеток, называемых нейронами, — крошечных переключателей, которые позволяют вам думать и запоминать вещи. Компьютеры содержат миллиарды миниатюрных «клеток мозга».Их называют транзисторами и они сделаны из кремния, химического элемента, обычно встречающегося в песке. Транзисторы произвели революцию в электронике с момента их появления изобретен более полувека назад Джоном Бардином, Уолтером Браттейном и Уильям Шокли. Но что это такое и как они работают?
Фото: Насекомое с тремя ногами? Нет, типичный транзистор на электронной плате. Хотя простые схемы содержат отдельные транзисторы, подобные этому, сложные схемы внутри компьютеров также содержат микрочипы, каждый из которых может иметь тысячи, миллионы или сотни миллионов транзисторов, упакованных внутри.(Технически, если вас интересуют более интересные элементы, это кремниевый транзистор усилителя PNP 5401B. Я объясню, что все это означает сейчас.)
Что на самом деле делает транзистор?
Фото: Компактные слуховые аппараты были одними из первых применений транзисторов, а этот датируется концом 1950-х или 1960-х годов. Он был размером с колоду игральных карт, поэтому его можно было носить в кармане пиджака или на нем. С другой стороны корпуса есть микрофон, который улавливает окружающие звуки.Вы можете ясно видеть четыре маленьких черных транзистора внутри, усиливающих эти звуки, а затем выстреливающих их в маленький громкоговоритель, который находится у вас в ухе.
Транзистор действительно прост — и действительно сложен. Давайте начнем с простая часть. Транзистор — это миниатюрный электронный компонент, который может выполнять две разные работы. Может работать как усилитель или как переключатель:
- Когда работает как усилитель, нужно в крошечном электрическом токе на одном конце ( входной ток) и производит гораздо больший электрический ток (выходной ток) на другой.Другими словами, это своего рода усилитель тока. Это входит действительно полезно в таких вещах, как слуховые аппараты, одна из первых вещей люди использовали транзисторы для. В слуховом аппарате есть крошечный микрофон. который улавливает звуки из окружающего вас мира и превращает их в колеблющиеся электрические токи. Они подаются на транзистор, который усиливает их и приводит в действие крошечный громкоговоритель, так что вы слышите гораздо более громкую версию окружающих вас звуков. Уильям Шокли, один из изобретателей транзистора, однажды объяснил студенту транзисторные усилители в более подробном виде. юмористический способ: «Если взять тюк сена и привязать его к хвост мула, а затем чиркнуть спичкой и поджечь тюк сена, и если вы затем сравните энергию, израсходованную вскоре после этого, мул с энергией, затраченной вами на зажигание спички, вы поймете концепцию усиления.« Транзисторы
- также могут работать как переключатели. А крошечный электрический ток, протекающий через одну часть транзистора, может значительно увеличить ток течет через другую его часть. Другими словами, маленький ток переключается на больший. По сути, так работают все компьютерные микросхемы. Для например, микросхема памяти содержит сотни миллионов или даже миллиарды транзисторов, каждый из которых можно включать или выключать индивидуально. Поскольку каждый транзистор может находиться в двух различных состояниях, он может хранить два разных числа, ноль и единицу.С миллиардами транзисторов микросхема может хранить миллиарды нулей и единиц, и почти столько же обычных цифр и букв (или символов, как мы их называем). Подробнее об этом чуть позже.
Самое замечательное в машинах старого образца было то, что вы могли их отдельно, чтобы понять, как они работают. Это никогда не было слишком сложно, с немного толкать и тыкать, чтобы узнать, какой бит сделал что и как один вещь привела к другому. Но электроника совсем другая. Это все об использовании электронов для управления электричеством.Электрон — это минута частица внутри атома. Он такой маленький, весит чуть меньше 0.000000000000000000000000000001 кг! Самые современные транзисторы работают контролируя движения отдельных электронов, чтобы вы могли представьте, насколько они маленькие. В современном компьютерном чипе размер ноготь, вы, вероятно, найдете от 500 миллионов и два миллиарда отдельных транзисторов. Нет шанса разобрать транзистор, чтобы узнать, как он работает, поэтому мы должны понять это с помощью теории и воображения.Во-первых, это помогает, если мы знаем, из чего сделан транзистор.
Как делается транзистор?
Фото: Кремниевая пластина. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).
Транзисторы изготовлены из кремния, химического элемента, содержащегося в песке, который обычно не проводит электричество (оно не позволяет электронам легко проходить через него). Кремний — это полупроводник, а это значит, что он ни на самом деле проводник (что-то вроде металла, пропускающий электричество), ни изолятор (что-то вроде пластика, не пропускающего электричество).Если мы обрабатываем кремний примесями (процесс, известный как легирование), мы можем заставить его вести себя по-другому способ. Если мы добавим в кремний химические элементы мышьяк, фосфор, или сурьмы, кремний получает дополнительные «свободные» электроны — те, которые может проводить электрический ток, поэтому электроны будут вытекать об этом более естественно. Поскольку электроны имеют отрицательный заряд, кремний обработанный таким образом, называется n-типом (отрицательный тип). Мы также можем легировать кремний другими примесями, такими как бор, галлий и алюминий.Кремний, обработанный таким образом, имеет меньше «свободные» электроны, поэтому электроны в соседних материалах будут стремиться втекать в него. Мы называем этот кремний p-типом (положительным типом).
Вкратце, мимоходом, важно отметить, что ни кремний n-типа, ни p-типа на самом деле не имеет заряда сам по себе : оба электрически нейтральны. Это правда, что кремний n-типа имеет дополнительные «свободные» электроны, которые увеличивают его проводимость, в то время как кремний p-типа имеет меньше этих свободных электронов, что помогает увеличить его проводимость противоположным образом.В каждом случае дополнительная проводимость возникает из-за добавления нейтральных (незаряженных) атомов примесей к кремнию, что изначально было нейтральным — и мы не можем создавать электрические заряды из воздуха! Для более подробного объяснения мне потребуется представить идею под названием ленточная теория, что немного выходит за рамки данной статьи. Все, что нам нужно помнить, это то, что «лишние электроны» означают лишние свободных электронов — те, которые могут свободно перемещаться и помогать переносить электрический ток.
Кремниевые бутерброды
Теперь у нас есть два разных типа кремния. Если мы сложим их вместе слоями, делая бутерброды из материала p-типа и n-типа, мы можем сделать различные виды электронных компонентов, которые работают во всех видах способами.
Предположим, мы присоединяем кусок кремния n-типа к куску p-типа. кремний и поместите электрические контакты с обеих сторон. Увлекательно и полезно вещи начинают происходить на стыке двух материалы. Если мы обратимся по току, мы можем заставить электроны течь через переход от сторона n-типа к стороне p-типа и наружу через цепь.Этот происходит из-за отсутствия электронов на стороне p-типа переход притягивает электроны со стороны n-типа и наоборот. Но если мы меняем направление тока, электроны вообще не текут. Что мы сделанный здесь называется диодом (или выпрямителем). Это электронный компонент, который позволяет току течь через него только в одном направлении. Это полезно, если вы хотите превратить переменный (двусторонний) электрический ток в постоянный (односторонний) ток. Диоды тоже можно сделать так, чтобы они испускали светится, когда через них проходит электричество.Вы могли видеть эти светодиоды на карманных калькуляторах и электронных дисплеи на стереооборудовании Hi-Fi.
Как работает переходной транзистор
Фотография: Типичный кремниевый PNP-транзистор (A1048, разработанный как усилитель звуковой частоты).
Теперь предположим, что вместо этого мы используем три слоя кремния в нашем сэндвиче. из двух. Мы можем сделать бутерброд p-n-p (с ломтиком n-типа кремний в качестве заполнения между двумя пластинами p-типа) или n-p-n сэндвич (с p-типом между двумя плитами n-типа).Если мы присоединить электрические контакты ко всем трем слоям сэндвича, мы можем сделать компонент, который будет либо усиливать ток, либо включать его, либо выключен — другими словами, транзистор. Посмотрим, как это работает в случае n-p-n транзистор.
Итак, мы знаем, о чем говорим, давайте дадим имена трем электрические контакты. Мы назовем два контакта, соединенных с двумя кусочки кремния n-типа эмиттер и коллектор, и контакт соединенный с кремнием p-типа, который мы будем называть базой.Когда нет ток протекает в транзисторе, мы знаем, что кремний p-типа не хватает электроны (показаны здесь маленькими знаками плюс, обозначающими положительные зарядов) и два куска кремния n-типа имеют лишние электроны (показаны маленькими знаками минус, обозначающими отрицательные заряды).
Другой способ взглянуть на это — сказать, что в то время как n-тип имеет избыток электронов, p-тип имеет дырки, где электроны должно быть. Обычно отверстия в основании действуют как барьер, предотвращающий любые значительный ток от эмиттера к коллектору при транзистор находится в выключенном состоянии.
Транзистор работает, когда электроны и дырки начинают двигаться
через два перехода между кремнием n-типа и p-типа.
Давай подключить транзистор к некоторой мощности. Допустим, мы прикрепляем небольшой положительное напряжение на базу, сделать эмиттер отрицательно заряженным и сделать коллектор положительно заряженным. Электроны вытягиваются из эмиттер в базу, а затем из базы в коллектор. А также транзистор переходит в состояние «включено»:
Малый ток, который мы включаем на базе, создает большой ток. поток между эмиттером и коллектором.Повернув небольшой вход ток в большой выходной ток, транзистор действует как усилитель. Но в то же время он действует как переключатель. Когда нет тока база, ток между коллектором и эмиттер. Включите базовый ток, и течет большой ток. Итак, база ток включает и выключает весь транзистор. Технически это тип транзистора называется биполярным, потому что два разных вида (или «полярностей») электрического заряда (отрицательные электроны и положительные отверстия) участвуют в протекании тока.
Мы также можем понять транзистор, представив его как пару диодов. С база положительная, а эмиттер отрицательная, переход база-эмиттер похож на прямое смещение диод, с электронами, движущимися в одном направлении через переход (слева направо в диаграмму) и отверстия, идущие в противоположную сторону (справа налево). База-коллектор переход похож на диод с обратным смещением. Положительное напряжение коллектора тянет большая часть электронов проходит через внешнюю цепь (хотя некоторые электроны рекомбинируют с дырками в основании).
Как работает полевой транзистор (FET)
Все транзисторы работают, управляя движением электронов, но не все из них делают это одинаково. Подобно переходному транзистору, полевой транзистор (полевой транзистор) имеет три разных контакта, но они иметь названия источник (аналог эмиттера), сток (аналог коллектор), и затвор (аналог цоколя). В полевом транзисторе слои Кремний n-типа и p-типа устроен несколько иначе и покрытый слоями металла и оксида.Это дает нам устройство под названием MOSFET (Металлооксидное полупроводниковое поле) Эффектный транзистор).
Хотя в истоке и стоке n-типа есть лишние электроны, они не могут перетекать от одного к другому из-за дыр в ворота p-типа между ними. Однако если приложить положительный напряжение на затвор, там создается электрическое поле, позволяющее электроны перетекают по тонкому каналу от истока к стоку. Этот «полевой эффект» позволяет току течь и включает транзистор:
Для полноты картины отметим, что полевой МОП-транзистор является униполярным. транзистор потому что только один («полярность») электрического заряда участвует в его работе.
Как работают транзисторы в калькуляторах и компьютерах?
На практике вам не нужно ничего знать об этом электроны и дыры, если вы не собираетесь разрабатывать компьютерные чипы для заработка! Все, что вам нужно знать, это то, что транзистор работает как усилитель или переключатель, используя небольшой ток включить более крупный. Но есть еще одна вещь, которую стоит знать: как все это помогает компьютерам хранить информацию и принимать решения?
Мы можем соединить несколько транзисторных ключей, чтобы что-то сделать. называется логическим вентилем, который сравнивает несколько входные токи и в результате дает другой выход.Логические ворота позволяют компьютерам создавать очень простые решения с использованием математической техники, называемой булевой алгеброй. Точно так же и ваш мозг принимает решения. Например, используя «входные данные» (то, что вы знаете) о погоде и о том, что у вас есть в коридоре, вы можете принять такое решение: «Если идет дождь И я есть зонтик, я пойду в магазины «. Это пример булевой алгебры, в которой используется так называемое И «оператор» (слово «оператор» — это просто математический жаргон, заставляют вещи казаться более сложными, чем они есть на самом деле).Ты можешь сделать аналогичные решения с другими операторами. «Если ветрено ИЛИ идет снег, тогда я надену пальто «- это пример использования оператора ИЛИ. Или как насчет «Если идет дождь, И я есть зонтик ИЛИ у меня есть пальто, тогда можно выйти на улицу «. Используя AND, ИЛИ и другие операторы, вызываемые Компьютеры NOR, XOR, NOT и NAND могут складывать или сравнивать двоичные числа. Эта идея является краеугольным камнем компьютерных программ: логическая серия инструкций, которые заставляют компьютеры действовать.
Обычно переходной транзистор выключен, когда нет базы. ток и переключается в положение «включено», когда течет базовый ток.Это значит требует электрического тока для включения или выключения транзистора. Но такие транзисторы могут быть подключены к логическим элементам, чтобы их выход соединения возвращаются на свои входы. Транзистор затем остается включенным, даже если базовый ток отключен. Каждый раз новый база ток течет, транзистор «переключается» или выключается. Остается в одном из эти стабильные состояния (включены или выключены) до тех пор, пока не появится другой ток приходит и переворачивает его в другую сторону. Такая аранжировка известен как триггер, и это превращает транзистор в простой запоминающее устройство, в котором хранится ноль (когда он выключен) или один (когда он на).Шлепанцы — это основная технология, лежащая в основе компьютерных микросхем памяти.
Кто изобрел транзистор?
Изображение: Оригинальный дизайн точечного транзистора, как изложено в Патент Джона Бардина и Уолтера Браттейна в США (2 524 035), поданный в июне 1948 г. (примерно через шесть месяцев после оригинальное открытие) и награжден 3 октября 1950 года. Это простой PN-транзистор с тонкий верхний слой германия P-типа (желтый) на нижнем слое германия N-типа (оранжевый).Три контакта: эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый). Вы можете прочитать больше в оригинальном патентном документе, который указан в ссылках ниже. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.
транзисторов были изобретены в Bell Laboratories в Нью-Джерси в 1947 году. трех блестящих физиков США: Джона Бардина (1908–1991), Уолтера Браттейн (1902–1987) и Уильям Шокли (1910–1989).
Команда, возглавляемая Шокли, пыталась разработать новый тип усилителя для телефонной системы США — но что собственно изобретенные они оказались гораздо более распространенными Приложения.Бардин и Браттейн создали первый практический транзистор (известный как точечный транзистор) во вторник, 16 декабря 1947 года. Хотя Шокли сыграл большую роль в этом проекте, он был разъяренный и взволнованный из-за того, что его оставили в стороне. Вскоре после этого во время остановиться в отеле на конференции по физике, единолично выяснил он теория переходного транзистора — устройство гораздо лучше, чем точечный транзистор.
В то время как Бардин ушел из Bell Labs, чтобы стать академиком (он продолжил пользуются еще большим успехом при изучении сверхпроводников в Университете Иллинойса), Браттейн остался на некоторое время, прежде чем уйти на пенсию, чтобы стать учителем.Шокли основал собственную компанию по производству транзисторов и помог вдохновить современный феномен «Силиконовая долина» (процветающий район вокруг Пало-Альто, Калифорния, где корпорации электроники собраны). Двое его сотрудников, Роберт Нойс и Гордон Мур, ушли чтобы основать Intel, крупнейшего в мире производителя микрочипов.
Бардин, Браттейн и Шокли ненадолго воссоединились несколько лет спустя, когда они поделились лучшими научными достижениями мира награда, Нобелевская премия по физике 1956 г., за их открытие.Их история захватывающий рассказ о интеллектуальный талант борется с мелкой ревностью, и это хорошо стоит прочтения больше о. Вы можете найти отличные отчеты об этом среди книг и веб-сайты, перечисленные ниже.
Как работают транзисторы? — Utmel
Транзистор — это разновидность полупроводникового устройства, регулирующего ток. Его функция состоит в том, чтобы преобразовать слабый сигнал в электрический сигнал с большим значением амплитуды, и он также используется в качестве бесконтактного переключателя. Транзистор является одним из основных полупроводниковых компонентов, который выполняет функцию усиления тока и является основным компонентом электронной схемы.Транзистор состоит из двух PN-переходов, очень близко расположенных друг к другу на полупроводниковой подложке. Два PN-перехода делят весь полупроводник на три части. Средняя часть — это базовая область, а две стороны — области эмиттера и коллектора. PNP и NPN — это два типа договоренностей.
Каталог
Ⅰ Структура ядра транзисторов
транзистор
Ядром транзистора является переход « PN », который представляет собой два соединенных друг с другом PN перехода.PN-переход может быть комбинацией NPN или комбинацией PNP. Поскольку кремниевый тип NPN является основным потоком транзисторов, в следующем материале в качестве примера в основном используется кремниевый транзистор типа NPN.
Принципиальная схема структуры транзистора NPN
Процесс производства кремниевого транзистора NPN:
Вид структуры кристалла в разрезе:
Ⅱ Рабочее состояние транзисторов
1 Состояние отсечкиКогда напряжение, приложенное к эмиттерному переходу транзистора, меньше, чем напряжение проводимости PN перехода, ток базы, ток коллектора и ток эмиттера равны нулю.Транзистор теряет эффект усиления тока, а коллектор и эмиттер равны в выключенном состоянии переключателя, мы называем транзистор в состоянии отсечки.
2 Активное состояниеТранзистор работает в активной области, когда эмиттерный переход транзистора смещен в прямом направлении, а коллекторный переход смещен в обратном направлении. В активной области напряжение, приложенное к эмиттерному переходу транзистора, больше, чем напряжение включения PN перехода.И базовый ток управляет током коллектора, так что транзистор действует как усилитель, а его коэффициент усиления тока β = ΔIc / ΔIb. Мы называем транзистор в активном состоянии.
3 Состояние насыщенияКогда напряжение, приложенное к эмиттерному переходу транзистора, больше, чем напряжение проводимости PN-перехода, и когда ток базы увеличивается до определенной степени, ток коллектора больше не увеличивается с увеличение базового тока.В это время транзистор теряет эффект усиления тока. Напряжение между коллектором и эмиттером очень мало, а коллектор и эмиттер эквивалентны включенному состоянию переключателя. Это состояние транзистора называется состоянием насыщенной проводимости.
По уровню напряжения каждого электрода, когда транзистор работает, можно судить о рабочем состоянии транзистора. Персонал по обслуживанию электроники часто использует мультиметр для измерения напряжения на каждом выводе транзистора в процессе обслуживания, чтобы определить рабочее состояние и рабочее состояние транзистора.
Ⅲ Теоретический принцип работы транзисторов
Существует два типа транзисторов по материалам: германиевые трубки и кремниевые трубки. Каждый из них имеет две структурные формы, NPN и PNP, но наиболее часто используются кремниевые NPN и германиевые транзисторы PNP. Полупроводники N-типа добавляют фосфор в кремний высокой чистоты, чтобы заменить некоторые атомы кремния, чтобы создать стимуляцию свободной электронной проводимости под напряжением. P означает положительный. В полупроводниках P-типа вместо кремния добавляется бор, который создает большое количество дырок для облегчения проводимости.За исключением разницы в полярности источника питания, два принципа работы одинаковы. Следующее только знакомит с принципом усиления тока кремниевых трубок NPN.
Транзистор NPN и транзистор PNP
Транзистор NPN, он состоит из двух полупроводников N-типа и полупроводника P-типа посередине. PN-переход, сформированный между эмиттерной областью и базовой областью, называется эмиттерным переходом, а PN-переход, образованный коллекторной областью и базовой областью, называется коллекторным переходом.Эти три вывода называются эмиттер e, база b и коллектор c.
Когда потенциал в точке b выше потенциала в точке e на несколько вольт, эмиттерный переход находится в прямом смещенном состоянии. Когда потенциал в точке C на несколько вольт выше, чем потенциал в точке b, коллекторный переход находится в состоянии обратного смещения, и коллекторная мощность Ec выше, чем базовая мощность Eb.
При изготовлении транзистора основная концентрация носителей в области эмиттера сознательно делается больше, чем в базовой области.При этом базовая область делается очень тонкой, а содержание примесей необходимо строго контролировать. Таким образом, после включения питания эмиттерный переход смещается положительно. Основные носители (электроны) в эмиттерной области и основные носители (дырки) в базовой области легко диффундируют друг к другу через эмиттерный переход. Концентрационная база первого больше, чем второго, поэтому ток через эмиттерный переход в основном представляет собой поток электронов, который называется потоком электронов эмиттера.
Из-за тонкой области базы и обратного смещения коллекторного перехода большая часть электронов, инжектированных в область базы, пересекает коллекторный переход и попадает в область коллектора, образуя ток коллектора Ic, оставляя только несколько (1-10 %) электроны. Эти электроны рекомбинируются в отверстиях базовой области, и рекомбинированные дырки в базовой области перезаряжаются базовым источником питания Eb, таким образом формируя базовый ток Ibo. По принципу непрерывности тока:
Ie = Ib + Ic
Это означает, что добавлением небольшого Ib к базе можно получить больший Ic на коллекторе.Это так называемое усиление тока. Ic и Ib поддерживают определенное пропорциональное соотношение, а именно:
β1 = Ic / Ib
В формуле: β1 — коэффициент усиления постоянного тока,
Отношение изменения тока коллектора △ Ic к изменению тока базы. △ Ib:
β = △ Ic / △ Ib
В формуле β называется коэффициентом усиления переменного тока. Поскольку значения β1 и β не сильно различаются на низких частотах, иногда для удобства их не различают строго, и значение β составляет от десятков до более чем сотни.
α1 = Ic / Ie (Ic и Ie — токи в цепи постоянного тока)
Формула: α1 также называется коэффициентом усиления постоянного тока, который обычно используется в схеме усилителя общей базовой конфигурации для описания соотношения между током эмиттера и током коллектора.
α = △ Ic / △ Ie
α в выражении — это увеличение переменного тока общей базы. Точно так же нет большой разницы между α и α1, когда на вход подается слабый сигнал.
Для двух увеличений, описывающих соотношение токов, соотношение следующее:
Эффект усиления тока транзистора заключается в использовании небольшого изменения тока базы для управления огромным изменением тока коллектора. Транзистор является своего рода устройством усилителя тока, но на практике эффект усилителя тока транзистора часто преобразуется в эффект усилителя напряжения через резистор.
Ⅳ Принцип усиления транзисторов
1 Эмиттер излучает электроны на базуИсточник питания Ub добавлен к эмиссионному переходу через резистор Rb.Эмиссионный переход смещен в прямом направлении, и большинство носителей (свободных электронов) в эмиссионной области непрерывно пересекают эмиссионный переход и входят в базовую зону, образуя эмиттерный ток Ie. В то же время основные носители в базовой области диффундируют в область излучения, но поскольку концентрация основных носителей намного ниже, чем концентрация носителей в области излучения, этим током можно пренебречь, поэтому можно считать, что излучение переход представляет собой в основном поток электронов.
2 Диффузия и рекомбинация электронов в базеПосле того, как электроны попадают в область базы, они сначала концентрируются около эмиттерного перехода, постепенно образуя разность концентраций электронов. Из-за разницы концентраций поток электронов продвигается к диффузии в основании к коллекторному переходу и втягивается в коллектор электрическим полем коллекторного перехода. Он называется коллекторным током Ic. Также существует небольшая часть электронов (поскольку базовая область очень тонкая) рекомбинирована с дырками в базовой области, и отношение диффузного электронного потока к составному электронному потоку определяет усилительную способность транзистора.
3 Собирать электроны в коллектореПоскольку обратное напряжение, приложенное к коллекторному переходу, очень велико, сила электрического поля, создаваемая этим обратным напряжением, будет препятствовать диффузии электронов в коллекторной области в базовую область. В то же время электроны, диффундирующие около коллекторного перехода, будут втягиваться в коллекторную область, чтобы сформировать основной ток коллектора Icn. Кроме того, неосновные носители (дырки) в области коллектора также будут дрейфовать и течь в базовую область, образуя обратный ток насыщения, который представлен Icbo.Его величина очень мала, но он чрезвычайно чувствителен к температуре.
Ⅴ Схема усилителя на транзисторах
1 Базовая структураБазовая схема усилителя — это базовый блок, который составляет сложную схему усилителя. Он использует характеристики входного тока биполярного полупроводникового транзистора для управления выходным током или характеристики входного напряжения полевого полупроводникового транзистора для управления выходным током для реализации усиления сигнала.
Базовая схема усилителя
Базовая схема усилителя обычно относится к схеме усилителя, состоящей из транзистора или полевой трубки. С точки зрения схемы, базовая схема усилителя может рассматриваться как двухпортовая сеть. Роль усиления отражается в следующих аспектах:
1) Схема усилителя в основном использует функцию управления транзистора или полевой трубки для усиления слабого сигнала. Выходной сигнал усиливается по амплитуде напряжения или тока, а энергия выходного сигнала усиливается.
2) Энергия выходного сигнала фактически обеспечивается источником питания постоянного тока, но она преобразуется в энергию сигнала посредством управления транзистором и подается на нагрузку.
2 Состав схемыСуществует три различных конфигурации схемы транзистора: общий эмиттер, общая база и общий коллектор. Эти три схемы конфигурации имеют разные характеристики. Возможны различные конфигурации одиночного транзисторного усилителя.
Схема с общим эмиттером, входной контур и выходной контур прошли эмиттер транзистора
Цепь с общей базой, входной контур и выходной контур прошли базу транзистора
Цепь общего коллектора, входная цепь и выходная цепь прошли коллектор транзистора. эмиттер, а разделительные конденсаторы C1 и Ce считаются закорачивающими сигнал переменного тока.Выходной сигнал выводится с коллектора на землю, постоянный ток отделяется разделительным конденсатором C2, и только сигнал переменного тока добавляется к сопротивлению нагрузки RL. Общая конфигурация излучения схемы усилителя фактически относится к общей конфигурации излучения транзистора в схеме усилителя.
Схема усилителя с общим эмиттером
Когда входной сигнал равен нулю, источник постоянного тока обеспечивает постоянный ток базы и постоянный ток коллектора для транзистора через каждый резистор смещения и формирует определенное постоянное напряжение между тремя полюсами транзистор.Из-за блокирующего действия конденсатора связи постоянного тока напряжение постоянного тока не может достигать входных и выходных клемм схемы усилителя.
Когда входной сигнал переменного тока добавляется к переходу передатчика транзистора через разделительные конденсаторы C1 и Ce, напряжение на переходе передатчика становится суперпозицией переменного и постоянного тока. Ситуация с сигналом в схеме усилителя более сложная. Обозначения каждого сигнала обозначены следующим образом: из-за эффекта усиления тока транзистора ic в десятки раз больше, чем ib.Вообще говоря, если параметры схемы установлены правильно, выходное напряжение может быть намного выше входного. Часть входного переменного тока достигает сопротивления нагрузки через конденсатор связи и формирует выходное напряжение.
Можно видеть, что сигнал постоянного тока коллектора транзистора в схеме усилителя не изменяется с входным сигналом, а сигнал переменного тока изменяется с входным сигналом. В процессе усиления сигнал переменного тока коллектора накладывается на сигнал постоянного тока, и только сигнал переменного тока извлекается с выходного контакта через разделительный конденсатор.Следовательно, при анализе схемы усилителя можно использовать метод разделения сигналов переменного и постоянного тока, которые можно разделить на путь постоянного и переменного тока для анализа.
Статьи по теме:
Структура и принцип работы полевых транзисторов
Характеристики и принцип работы IGBT
транзисторов — обзор | Темы ScienceDirect
8.4.3 Силовые транзисторы
Транзистор представляет собой трехслойное трехполюсное устройство.Это может быть биполярный переходной транзистор (BJT) или металлооксидный полупроводниковый полевой транзистор (MOSFET). Обычно производители классифицируют транзисторы в соответствии с их областью применения:
- •
Малосигнальные транзисторы общего назначения предназначены для работы с малой и средней мощностью (менее 1 Вт) или для коммутации.
- •
Силовые транзисторы предназначены для работы с большими токами и / или большими напряжениями.
- •
RF (радиочастотные) транзисторы предназначены для высокочастотной работы, например, в системах связи.
BJT представляет собой транзистор NPN или PNP, показанный на рис. 8.40, с тремя выводами: базой, коллектором и эмиттером. BJT иногда считают двумя диодами, соединенными последовательно, чтобы получить структуру n-p-n или p-n-p.
Рисунок 8.40. BJT: структура (вверху) и символ схемы (внизу), транзистор NPN (слева) и транзистор PNP (справа)
Протекание тока базы (I B ) позволяет увеличить ток коллектора (I C ) для поток.Ток эмиттера — это сумма токов базы и коллектора. BJT действует как усилитель тока, хотя во многих случаях этот ток пропускается через резистор для создания напряжения. Соединяя BJT с резисторами (и конденсаторами), результирующие схемы могут обеспечивать усиление как тока, так и напряжения.
MOSFET представляет собой транзистор nMOS или pMOS, показанный на рис. 8.41, с тремя выводами: затвор, сток и исток. Некоторые полевые МОП-транзисторы также имеют четвертое соединение, основную часть или подложку, но с трехконтактным устройством основная часть внутренне соединена с истоком транзистора.
Рисунок 8.41. MOSFET: структура (вверху) и обозначение схемы (внизу), nMOS-транзистор (слева) и pMOS-транзистор (справа)
Приложение напряжения между затвором и истоком (V GS ) MOS-транзистора (напряжение больше чем пороговое напряжение для транзистора) позволяет протекать току стока (I D ). Вход затвора в транзистор является емкостным, и в устройстве протекает только небольшой ток затвора (ток утечки в неидеальном конденсаторе). (В простом анализе предполагается, что этот ток затвора равен нулю для идеального конденсатора.) МОП-транзистор использует входное напряжение для управления выходным током. Во многих случаях этот ток пропускается через резистор для создания напряжения. Соединяя полевой МОП-транзистор с резисторами (и конденсаторами), полученные схемы могут обеспечивать выход напряжения и тока.
И BJT, и MOSFET могут использоваться для создания схем усилителя или аналоговых фильтров (линейные приложения) или коммутационных приложений (нелинейные приложения). Примеры применения силовых транзисторов:
- •
Управление двигателем постоянного тока
- •
Управление двигателем переменного тока
- •
Управление шаговым двигателем
- •
выходной каскад усилителя усилителя, управляющего динамиками)
- •
импульсных источников питания
Для силового транзистора безопасная рабочая область (SOAR) определяет безопасные пределы работы транзистора с точки зрения рабочих напряжений и токи для непрерывной работы (уровни постоянного тока и напряжения), а также для уровней, которые превышают область непрерывной работы в течение ограниченного периода времени.При использовании в качестве переключателя (особенно применимо для управления двигателем) время включения и выключения также необходимо учитывать, чтобы гарантировать правильную работу схемы, в которой используется транзистор. Если схема пытается слишком быстро включать и выключать транзистор, транзистор не может реагировать достаточно быстро, и результатом будет неправильная работа схемы.
Выбор силового транзистора для использования зависит от ряда факторов:
- •
наличие транзистора, способного работать до требуемых уровней напряжения, тока и температуры
- •
максимум транзистора рассеиваемая мощность
- •
подходящий корпус — корпус транзистора (два примера показаны на рисунке 8.42) требуется для крепления транзистора к печатной плате или корпусу и для отвода тепла, выделяемого внутри корпуса.
Рис. 8.42. Примеры корпусов силовых транзисторов
- •
размер транзистора
- •
материал корпуса (пластик, керамика или металл) — когда в корпусе корпуса используется металл, одна из клемм устройства должна быть электрически подключен к корпусу
- •
Сопротивление включения и выключения — когда полевой МОП-транзистор используется в качестве переключателя
- •
стоимость
Когда транзистор используется в качестве усилителя, создается схема усилителя. один из пяти классов усилителя (Таблица 8.13). Каждый класс имеет рейтинг эффективности, который описывает количество мощности, подаваемой на нагрузку схемы (например, электродвигателя), в процентах от мощности, подаваемой на усилитель. 100-процентный КПД означает, что усилитель не рассеивает мощность (в виде тепла), но 100-процентный КПД недостижим.
Таблица 8.13. Классы усилителя
Класс усилителя | Описание |
---|---|
Класс A | Транзистор проводит в течение всего периода входного сигнала.КПД низкий, максимум 25%. |
Класс B | Транзистор проводит в течение одной половины периода входного сигнала. КПД выше, максимум около 78%. |
Класс AB | Усилитель работает где-то между классом A и классом B. |
Класс C | Транзистор проводит менее половины периода входного сигнала. КПД приближается к 100%, но дает большие искажения входного сигнала. |
Класс D | Транзистор используется в качестве переключателя (ВКЛ или ВЫКЛ) и производит усилитель с хорошим КПД. Их часто называют переключающими усилителями или переключаемыми усилителями. |
Силовые транзисторы могут использоваться в управлении двигателем, чтобы обеспечить управление скоростью, положением или крутящим моментом двигателя. Пример схемы транзисторного усилителя для управления скоростью электродвигателя постоянного тока показан на рисунке 8.43:
Рисунок 8.43. Управление скоростью двигателя без обратной связи
- •
Схема работает от двухканального источника питания, где + V S — положительное напряжение источника питания, а –V S — отрицательное напряжение источника питания.
- •
Пользователь устанавливает положение потенциометра для получения напряжения, которое представляет требуемую скорость двигателя.
- •
Выход потенциометра буферизируется с помощью операционного усилителя.
- •
Выход операционного усилителя управляет усилителем класса B.
- •
Усилитель класса B управляет двигателем постоянного тока.
В усилителе класса B используются один транзистор NPN и один транзистор PNP.Когда входное напряжение (выходное напряжение операционного усилителя) положительно (относительно общего узла), NPN-транзистор проводит. Ток течет от положительного источника питания к общему узлу через двигатель, и двигатель вращается в одном направлении. Когда входное напряжение (выходное напряжение операционного усилителя) отрицательное (по отношению к общему узлу), транзистор PNP проводит. Ток течет от общего узла к отрицательному источнику питания через двигатель, и двигатель вращается в другом направлении.Два диода с обратным смещением подключены через узлы коллектор-эмиттер транзистора и используются для защиты транзисторов от высоких напряжений, которые могут возникать из-за быстро меняющихся токов в индуктивных катушках двигателя.
Это пример системы без обратной связи, в которой напряжение, приложенное к двигателю от схемы контроллера, заставляет двигатель вращаться. Изменение напряжения двигателя приведет к тому, что двигатель будет вращаться с другой скоростью. Одна потенциальная проблема с этой компоновкой заключается в том, что скорость двигателя изменяется в зависимости от различных нагрузок, подключенных к выходному валу двигателя, даже когда приложенное напряжение является постоянным.
Если скорость вала двигателя измеряется с помощью тахогенератора, напряжение генерируется в соответствии с фактической скоростью двигателя. Если это напряжение затем подается обратно в схему контроллера, как показано на рисунке 8.44, создается замкнутая система, и этот сигнал обратной связи может использоваться для автоматической регулировки скорости двигателя вверх или вниз. Здесь усилитель мощности (символ треугольника) представляет собой схему транзисторного усилителя. Пользовательский ввод устанавливает требуемую скорость, и схема контроллера автоматически регулирует скорость двигателя до правильного значения.Динамика результирующей системы управления зависит от динамики двигателя и используемого алгоритма управления.
Рисунок 8.44. Управление скоростью двигателя с обратной связью
Система управления, показанная на рисунке 8.44, может быть реализована путем разработки цифровой схемы управления с аналоговым входом и выходом. Базовая компоновка показана на Рисунке 8.45. Здесь CPLD реализует алгоритм цифрового управления, такой как пропорционально-интегральное (PI) управление. Скорость двигателя устанавливается пользователем с помощью аналогового напряжения.Полярность вводимой команды определяет направление вращения вала двигателя, а величина определяет скорость вращения вала двигателя.
Рисунок 8.45. Пример управления двигателем постоянного тока через CPLD
Цифровой выход контроллера обеспечивает ввод данных в n-разрядный ЦАП. Выходное напряжение ЦАП подается через схему преобразования сигнала на базе операционного усилителя, которая обеспечивает вход для усилителя класса B. Схема преобразования сигнала на базе операционного усилителя создает выходное напряжение в диапазоне, требуемом для каскада усилителя мощности.Выход усилителя обеспечивает напряжение и ток, необходимые для вращения двигателя в любом направлении.
Тахогенератор вырабатывает напряжение постоянного тока с полярностью, определяемой направлением вращения вала двигателя, и величиной, определяемой скоростью вращения вала двигателя. Это напряжение является входом для схемы преобразования сигнала на базе операционного усилителя, которая изменяет уровни напряжения тахогенератора до уровней, требуемых n-разрядным АЦП. АЦП преобразует напряжение обратно в цифровое значение, которое обеспечивает цифровое представление напряжения аналогового тахогенератора.
Схема в CPLD обеспечивает функции цифрового алгоритма управления, который управляет напряжением, подаваемым на двигатель.
Каждый АЦП и ЦАП в конструкции требует своего собственного опорного сигнала (обычно напряжения).
Последней частью схемы является источник питания, который получает доступное напряжение источника питания и выдает уровни напряжения источника питания, необходимые для каждой части конструкции.
Примером коммерческого биполярного силового транзистора является транзистор 2N3772 NPN от ST Microelectronics.Это мощный кремниевый транзистор, помещенный в металлический корпус TO-3, и находит применение в таких областях, как линейные усилители и устройства индуктивной коммутации. В Таблице 8.14 приведены типичные абсолютные максимальные номинальные значения для силового транзистора в различных условиях эксплуатации.
Таблица 8.14. Типовой лист технических данных Абсолютные максимальные характеристики
Символ | Параметр | Единицы | |
---|---|---|---|
В CE0 | Напряжение коллектора-эмиттера (I E = 075 В | 9057 9057 CEVНапряжение коллектор-эмиттер (для установленного ненулевого значения V BE ) | В |
В CB0 | Напряжение коллектор-база (I B = 0) | В | |
В EB0 | Напряжение эмиттер-база (I C = 0) | В | |
I c | Ток коллектора | A | |
A | |||
I b | Базовый ток | A | |
I bm | Базовый пиковый ток | A | |
P tot | Полная рассеиваемая мощность при заданных температурных условиях (T C ) | W | |
T stg | Температура хранения |