Site Loader

Содержание

Схема простого усилителя звука на транзисторах

Содержание

  1. Схема простого усилителя звука на транзисторах от 100 до 200 Вт
  2. Конструкция и компоненты усилителя звука
  3. Перечень электронных компонентов для усилителя

Схема простого усилителя звука на транзисторах, которая реализована на двух мощных составных транзисторах TIP142-TIP147 установленных в выходном каскаде, двух маломощных BC556B в дифференциальном тракте и один BD241C в цепи предварительного усиления сигнала — всего пять транзисторов на всю схему! Такая конструкция УМЗЧ свободно может быть использована например в составе домашнего музыкального центра или для раскачки сабвуфера установленного в автомобиле, на дискотеке.

Главная привлекательность данного усилителя мощности звука заключается в легкости его сборки даже начинающими радиолюбителями, нет необходимости в какой либо специальной его настройке, не возникает проблем в приобретении комплектующих по доступной цене. Представленная здесь схема УМ обладает электрическими характеристиками с высокой линейностью работы в частотном диапазоне от 20Гц до 20000Гц.


Принципиальная схема простого усилителя звука

Показанная ниже схема простого усилителя звука на транзисторах способна обеспечить акустику мощностью примерно 200 Вт, при желании можно увеличить выходную мощность — поднять напряжение питания до ± 48v. Есть и другой вариант получения еще большей мощности на выходе, это например: — включить два таких УМЗЧ по мостовой схеме, то тогда естественно на выходе мы получим более 400 Вт.

Для обеспечения схемы устройства нужным питанием, потребуется собрать не сложный двух-полярный блок питания с выпрямителем переменного напряжения.


Схема простого двух-полярного выпрямителя

Конструкция и компоненты усилителя звука

Для надежности работы устройства, полярные конденсаторы в схемах как усилителя так и блока питания лучше будет установить с номинальным напряжением на 50v-63v.

В случае отсутствия в наличии выходных ключей TIP142-TIP147 можно применить другие комплементарные пары транзисторов с аналогичным коэффициентом передачи тока. Например из советских можно использовать пару КТ825-КТ827, только при этом выходную мощность нельзя повышать более 120 Вт.


Составные транзисторы TIP142, TIP147


Печатная плата с расположением на ней элементов

Чтобы обеспечить комфортные условия для работы мощных транзисторов их обязательно нужно устанавливать на теплоотводы с достаточной площадью рассеивания тепла, а также желательно установить в корпусе аппарата систему принудительного охлаждения с использованием вентилятора.


Компоновка печатных плат на радиаторах

Практическое тестирование данной конструкции выявило некоторый нагрев выпрямительных диодов 1N4001, поэтому их тоже бы желательно разместить на небольшом радиаторе.

При выборе или самостоятельном изготовлении трансформатора для блока питания нужно учитывать такой фактор: — трансформатор должен иметь достаточный запас по мощности, например: 300 Вт из расчета на один канал, в случае двухканального варианта, то естественно и мощность удваивается. Можно применить для каждого свой отдельный трансформатор, а если использовать стерео вариант усилителя, то тогда вообще получится аппарат типа «двойное моно», что естественно повысит эффективность усиления звука.

Действующее напряжение во вторичных обмотках трансформатора должно составлять ~34v переменки, тогда постоянное напряжение после выпрямителя получится в районе 48v — 50v. В каждом плече по питанию необходимо установить плавкий предохранитель рассчитанный на рабочий ток 6А, соответственно для стерео при работе на одном блоке питания — 12А.

Перечень электронных компонентов для усилителя

виды, схемы, простые и сложные :: SYL.ru

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах – музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.


Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин – практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» – ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно – чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД – свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД – менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.


Для повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток – полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Понадобится

Транзисторы мощности и операционный усилитель:

  • 2SC5200 Транзисторы х 5 — https://ali.pub/4xjey2
  • 2SA1943 Транзисторы х 5 — https://ali.pub/4xjf1k
  • ОУ HA17741 x 1 — https://ali.pub/4xjf4h

Остальные компоненты: Показать / Скрыть текст

  • SC 2SC2073 Транзисторы х 2.
  • S 2SA940 Транзисторы х 2.
  • 3 0,33 / 5 Вт резисторы х 10.
  • 4.7 / 1W резисторы x 10.
  • резисторы 10/2 Вт x 2.
  • резисторы 100/1 Вт х 6.
  • резисторы 330/1 Вт х 2.
  • 10 резисторов х 1.
  • 100 резисторов х 1.
  • 1K резисторы х 1.
  • 5K6 резисторов х 2.
  • резисторы 10К х 2.
  • 47К резисторов х 1.
  • резисторы 100К х 1.
  • 33P конденсаторы х 1.
  • конденсаторы 220P x 4.
  • 680P конденсаторы х 1.
  • 0.1 мкФ конденсаторы х 1.
  • 10 мкФ / 50 В конденсаторы х 2.
  • 100 мкФ / 25 В конденсаторы х 3.
  • 10.000 мкФ / 80 В конденсаторы х 2 или х 4.
  • Диод 4148 х 2.
  • Диодный мост 35A X 1.
  • Стабилитрон 15V X 2.
  • Катушка 16 витков (медная проволока диаметром 1,5мм).
  • 50 К Потенциометры х 1.
  • Слюдяная изоляция транзисторов x 10.
  • Алюминиевый радиатор х 1.
  • Трансформатор 45 — 50 В переменного тока 2 x 30A.

Советуем к прочтению: Доработка китайского супер яркого фонарика UltraFire XML-T6

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений – не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше – до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется – характерный металлический звук.

Стабилизация работы схемы

Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.

При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.

Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.


Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.

Благодаря этому транзистор:

  • не закрывается;
  • не переходит в режим насыщения;
  • не искажает сигнал;
  • и не перегревается.

Это называется термостабилизация работы усилителя.

А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.

«Альтернативные» конструкции


Нельзя сказать, что они альтернативные, просто некоторые специалисты, занимающиеся проектировкой и сборкой усилителей для качественного воспроизведения звука, все чаще отдают предпочтение ламповым конструкциям. У ламповых усилителей такие преимущества:

  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, – обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление – несколько тысяч Ом. Но сопротивление обмотки динамиков – 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток – существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная – в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Причем КПД у таких устройств достаточно высокий – порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности – они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Содержание / Contents

  • 1 Принципиальная схема усилителя
  • 2 Конструкция усилителя
  • 3 Детали усилителя
  • 4 Налаживание усилителя
  • 5 Оценка звучания
  • 6 Ссылки и файлы

Данный усилитель мощности я разрабатывал и делал в прошлом веке из того, что возможно было приобрести без затруднений. Хотелось сделать конструкцию с максимально возможным соотношением цены и качества. Это не High-End, но и не третий сорт. Усилитель имеет качественное звучание, отличную повторяемость и прост в наладке.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная – с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм – наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h31 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.


При этом напряжение эмиттера равно 9 В и падение на участке цепи «Э-Б» 0,7 В (что характерно для транзисторов на кристаллах кремния). Если рассмотреть усилитель на германиевых транзисторах, то в этом случае падение напряжения на участке «Э-Б» будет равно 0,3 В. Ток в цепи коллектора будет равен тому, который протекает в эмиттере. Вычислить можно, разделив напряжение эмиттера на сопротивление R2 – 9В/1 кОм=9 мА. Для вычисления значения тока базы необходимо 9 мА разделить на коэффициент усиления h31 – 9мА/150=60 мкА. В конструкциях УНЧ обычно используются биполярные транзисторы. Принцип работы у него отличается от полевых.

На резисторе R1 теперь можно вычислить значение падения – это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле – сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 – 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h31. Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.


Но нужно учитывать, что по цепи базы абсолютно всегда, независимо от наличия смещения, обязательно протекает ток утечки коллектора. В схемах с общим эмиттером ток утечки усиливается не менее чем в 150 раз. Но обычно это значение учитывается только при расчете усилителей на германиевых транзисторах. В случае использования кремниевых, у которых ток цепи «К-Б» очень мал, этим значением просто пренебрегают.

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.


Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений. В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое – обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.


Это сопротивление почти не пропускает электрический ток, вследствие чего у затвора потенциал (в случае отсутствия сигнала на входе) такой же, как у земли. На истоке же потенциал оказывается выше, чем у земли, только благодаря падению напряжения на сопротивлении R2. Отсюда ясно, что у затвора потенциал ниже, чем у истока. А именно это и требуется для нормального функционирования транзистора. Нужно обратить внимание на то, что С2 и R3 в этой схеме усилителя имеют такое же предназначение, как и в рассмотренной выше конструкции. А входной сигнал сдвинут относительно выходного на 180 градусов.

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

К тому же, электролитические конденсаторы должны разряжаться после выключения. Тем более, есть предел для увеличения емкости для схемы. Если в эту схему подключить конденсатор емкостью 1 фарад (1 000 000 мкФ), то уровень шума на выходе усилителя будет такой же, как и при 1000 мкФ. Это связано с тем, что у транзистора так же есть и свои «шумы», отсутствие экранировки на входе, динамические искажения и другие параметры.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

УНЧ с трансформатором на выходе


Можно изготовить такой усилитель своими руками для домашнего использования. Выполняется он по схеме, работающей в классе «А». Конструкция такая же, как и рассмотренные выше, – с общим эмиттером. Одна особенность – необходимо использовать трансформатор для согласования. Это является недостатком подобного усилителя звука на транзисторах.


Коллекторная цепь транзистора нагружается первичной обмоткой, которая развивает выходной сигнал, передаваемый через вторичную на динамики. На резисторах R1 и R3 собран делитель напряжения, который позволяет выбрать рабочую точку транзистора. С помощью этой цепочки обеспечивается подача напряжения смещения в базу. Все остальные компоненты имеют такое же назначение, как и у рассмотренных выше схем.

Схема аудио усилителя

Интегральные микросхемы постепенно вытесняют транзисторы из схем усилителей низкой частоты. Распространение получили приборы TDA2005-2052. Они выдают достаточную выходную мощность для озвучивания салона автомобиля или жилой комнаты. Простой аудио стерео усилитель звука своими руками можно собрать на одной микросхеме TDA2005.

Конденсаторы С8 и С12 лучше ставить плёночные. Если напряжение питания не превышает 12 В, то все электролитические конденсаторы должны быть на 16 В. При большем напряжении питания рабочее напряжение ёмкостей должно быть увеличено. Собранный своими руками усилитель используется для колонок с сопротивлением от 2 до 4 Ом.

Двухтактный усилитель звука

Нельзя сказать, что это простой усилитель на транзисторах, так как его работа немного сложнее, чем у рассмотренных ранее. В двухтактных УНЧ входной сигнал расщепляется на две полуволны, различные по фазе. И каждая из этих полуволн усиливается своим каскадом, выполненном на транзисторе. После того, как произошло усиление каждой полуволны, оба сигнала соединяются и поступают на динамики. Такие сложные преобразования способны вызвать искажения сигнала, так как динамические и частотные свойства двух, даже одинаковых по типу, транзисторов будут отличны.


В результате на выходе усилителя существенно снижается качество звучания. При работе двухтактного усилителя в классе «А» не получается качественно воспроизвести сложный сигнал. Причина – повышенный ток протекает по плечам усилителя постоянно, полуволны несимметричные, возникают фазовые искажения. Звук становится менее разборчивым, а при нагреве искажения сигнала еще больше усиливаются, особенно на низких и сверхнизких частотах.

Настройка и испытания усилителя

После завершения сборки можно подавать питание на плату усилителя. В разрыв одного из питающих проводов нужно включить амперметр, для контроля потребляемого тока. Подаём питание и смотрим на показания амперметра, без подачи на вход сигнала усилитель должен потреблять примерно 15-20 мА. Ток покоя задаётся резистором R6, для его увеличения нужно уменьшить сопротивление этого резистора. Слишком сильно поднимать ток покоя не следует, т.к. увеличится выделение тепла на выходных транзисторах. Если ток покоя в норме, можно подавать на вход сигнал, например, музыку с компьютера, телефона или плеера, подключать на выход динамик и приступать к прослушиванию. Хоть усилитель и прост в исполнении, он обеспечивает весьма приемлемое качество звука. Для воспроизведения одновременно двух каналов, левого и правого, схему нужно собрать дважды. Обратите внимание, что если источник сигнала находится далеко от платы, подключать его нужно экранированным проводом, иначе не избежать помех и наводок. Таким образом, данный усилитель получился полностью универсальным благодаря небольшому потреблению тока и компактным размерам платы. Его можно использовать как в составе компьютерных колонок, так и при создании небольшого стационарного музыкального центра. Удачной сборки.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.


Следовательно, через нагрузку способны пройти только положительные полуволны. Но отрицательные открывают второй транзистор и полностью запирают первый. При этом в нагрузке оказываются только отрицательные полуволны. В результате усиленный по мощности сигнал оказывается на выходе устройства. Подобная схема усилителя на транзисторах достаточно эффективная и способна обеспечить стабильную работу, качественное воспроизведение звука.

ФНЧ И БЛОК СТАБИЛИЗАЦИИ


Фильтр низкой частоты и сумматора построен на двух микросхемах. Он предназначен для плавной регулировки фазы, громкости и частоты. Сумматор предназначен для суммирования сигналов обеих каналов, для получения более мощного сигнала. В промышленных автоусилителях высокой мощности используется именно такой принцип фильтрации и суммирования сигнала, но сумматор можно при желании исключить из схемы и обойтись только фильтром низких частот. Фильтр срезает все частоты, оставляя только предел в пределах 35-150 Гц.


Регулировка фазы позволяет согласовать сабвуфер с акустическими системами, в некоторых случаях её тоже исключают.

Этот блок питается от стабилизированного источника двухполярного напряжения +/-15 Вольт. Питание можно организовать с помощью дополнительной вторичной обмотки или же использовать двухполярный стабилизатор напряжения для понижения напряжения от основной обмотки.

Для этого собран двухполярный стабилизатор. Первоначально напряжение снижается диодами зенера, затем усиливается биполярными транзисторами и подается на линейные стабилизаторы напряжения типа 7815 и 7915. На выходе стабилизатора образуется стабильное двухполярное питание, которым и питается блок сумматора и ФНЧ.


Стабилизаторы и транзисторы могут греться, но это вполне нормально, при желании их можно укрепить на теплоотводы, но в моем случае имеется активное охлаждение кулером, поэтому теплоотводы не пригодились, к тому же тепловыделение в пределах нормы, поскольку сам блок ФНЧ потребляет очень мало.

Схема УНЧ на одном транзисторе

Изучив все вышеописанные особенности, можно собрать усилитель своими руками на простой элементной базе. Транзистор можно использовать отечественный КТ315 или любой его зарубежный аналог – например ВС107. В качестве нагрузки нужно использовать наушники, сопротивление которых 2000-3000 Ом. На базу транзистора необходимо подать напряжение смещения через резистор сопротивлением 1 Мом и конденсатор развязки 10 мкФ. Питание схемы можно осуществить от источника напряжением 4,5-9 Вольт, ток — 0,3-0,5 А.


Если сопротивление R1 не подключить, то в базе и коллекторе не будет тока. Но при подключении напряжение достигает уровня в 0,7 В и позволяет протекать току около 4 мкА. При этом по току коэффициент усиления окажется около 250. Отсюда можно сделать простой расчет усилителя на транзисторах и узнать ток коллектора – он оказывается равен 1 мА. Собрав эту схему усилителя на транзисторе, можно провести ее проверку. К выходу подключите нагрузку – наушники.

Коснитесь входа усилителя пальцем – должен появиться характерный шум. Если его нет, то, скорее всего, конструкция собрана неправильно. Перепроверьте все соединения и номиналы элементов. Чтобы нагляднее была демонстрация, подключите к входу УНЧ источник звука – выход от плеера или телефона. Прослушайте музыку и оцените качество звучания.

От чего зависит мощность схемы

У этой схемы есть ограничения. Можно поменять VT1 КТ315 на более мощный, у которого коэффициент усиления будет выше, но этот лимит усиления не бесконечный.

В первую очередь, все зависит от используемого транзистора. Если поменять его на более мощный, то и усиление будет выше. Но следует помнить, что чем мощнее транзистор, тем мощнее нужен входной сигнал. К тому же, придется сделать перерасчет всех компонентов. И подключать предусилитель, собирать схему блока питания, а это уже будет совсем другая схема.

У транзисторов есть ряд параметров, которые влияют на схему. Это коэффициент усиления по току (h31э), напряжению, мощности. А также важный параметр — это рассеиваемая мощность на коллекторе. С повышением мощности потребуется радиатор для отвода тепла.

Схема однотранзисторного усилителя

Фарва Навази 17 878 ​​просмотров

Введение

Под схемами однотранзисторного усилителя обычно понимают базовые усилители и их различные конфигурации. Схема проще сделать, но сложнее понять. Потому что усилитель на одном транзисторе может быть выполнен с тремя различными конфигурациями: с общей базой, общим коллектором и наиболее широко используемым общим эмиттером. Поскольку общий эмиттер широко популярен, поэтому в этой статье мы создадим конфигурацию общего эмиттера.

В этой схеме вход осуществляется на базе, выход — на коллекторе, а эмиттер остается на земле, или можно общим. Знайте, что схема усилителя также имеет разные классы, такие как классы A, B, AB, C, D и т. д. В этом уроке мы создаем однотранзисторный усилитель класса A.

Купить на Amazon

Аппаратные компоненты

Следующие компоненты необходимы для изготовления схемы аудиоусилителя

S.No Components Value Qty
1 Electrolytic Capacitor 22uF 1
2 Resistor 2. 2k 1
3 Transistor 2N3904 1
4 Батарея 4V 1
5
5.0036 1

2N3904 Распиновка

Подробное описание цоколевки, размерных характеристик и спецификаций загрузите в техпаспорт 2N3904

Схема усилителя

Работает очень просто. . Он использует простой транзистор BC547. Резистор 2,2 кОм является базовым резистором для этого транзистора, обеспечивает звуковой сигнал на базе транзистора, который позволяет протекать току между коллектором и эмиттером. Конденсатор, включенный в эту схему, изолирует базу транзистора от источника входного сигнала.

Теперь, когда базовый ток или напряжение не могут влиять на входной звук. Когда входной звук подается на базу транзистора, он переходит в прямой каскад. В течение всего аудиоцикла, подаваемого на транзистор, он генерирует максимальную амплитуду на выходе.

Применение и использование

  • Может использоваться в детских игрушках.
  • могут быть адаптированы для различных аудио электронных устройств.
  • Для портативных устройств.
  • В схемах, не требующих значительно большего усиления.

Похожие сообщения:

DIY стереоусилитель на транзисторе TIP41 с регулятором громкости | от Лео | utsource

В этой статье мы узнаем, как сделать стереоусилитель на транзисторе T1P41 с регулятором громкости. Существует множество электронных схем аудиоусилителей, использующих транзисторы из-за их удобства, которые демонстрируют множество преимуществ в виде легкой замены, совместимости, удобства для печатных плат и упрощения схем по сравнению со сложными микросхемами. Что ж, стереоусилитель DIY (сделай сам) — это, по сути, усилитель мощности, который усиливает и модулирует генерируемые аудиосигналы малой мощности в высокочастотные сигналы мощности с наилучшей четкостью и свойствами передачи. Стереоусилители создают более чистый звук, чем DVD, CD, USB-накопитель или любое другое электронное устройство, генерирующее звук.

В этом эксперименте со стереоусилителями на транзисторах T1P41 мы также используем регуляторы громкости для модуляции частоты и сигнала. Итак, давайте углубимся в тему и изучим ее глубже.

Принцип :

Принцип работы любого усилителя одинаков, сначала он получает входной сигнал от источника. Источником может быть любое электронное устройство, способное генерировать аудиосигнал для частотной модуляции, например, ноутбуки, смартфоны, телевизоры и т. д. Затем сигнал увеличивается или модулируется от исходного размера до аудиосигнала другой наилучшей четкости. Это основная операция и работа стереоусилителей, использующих T1P41.

Для модуляции сигнала мы также использовали регулятор переменной громкости (потенциометр).

Требуется компоненты:

  1. 2 Транзистор T1P41
  2. 1K OHM Резистор
  3. 100 UF/50 В. источник питания
  4. Соединительные провода

Пошаговая процедура:

  1. Прикрепите наш транзистор T1P41 к радиатору

Вставьте оба транзистора на плату и соедините клеммы эмиттера друг с другом (связаны)

Теперь соедините клеммы коллектора и базы T1P41 с резистором 1 кОм для обоих транзисторов.

Поместите клеммные колодки на плату и соедините клемму коллектора с клеммной колодкой. То же самое для обоих транзисторов

Подсоедините медный провод к другим выводам клеммных колодок, как показано на рисунке ниже (короткое замыкание) как показано ниже, закоротите другие оставшиеся клеммы

Возьмите 50k Потенциометр, используемый для регулировки громкости нашего электронного проекта

Подключите внешние клеммы потенциометра к соединительному проводу (короткое замыкание)

Подключите конденсатор 100 мкФ/50В ко второй клемме обоих транзисторов, как показано на рисунке ниже

Теперь подключите вход аудиоразъема к клеммам потенциометра

Возьмите 4-дюймовые 2 динамика, как показано на рисунке ниже

Вставьте входные провода динамиков в клеммные колодки и подключите их

Возьмите один соединительный провод USB (универсальной последовательной шины), как показано на рисунке ниже

Подсоедините его и подключите к плате питания (подключите) устройства)

Теперь мы успешно создали стереоусилитель своими руками, используя T1P41 с регулятором громкости.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *