Site Loader

Содержание

Транзисторы: виды, особенности, сферы применения

Предыдущая статья Следующая статья

25.09.2019

В начале ХХ века был обнародован принцип работы полупроводников. Немного позже эти приборы были применены в производстве различной техники (преимущественно радио). Именно в радиотехнике на смену вакуумным лампам пришли транзисторы. Стоит более детально разобраться в их устройстве, видах и особенностях использования.

Основная характеристика

Под словом «транзистор» понимают термин, который образовался от двух слов английского происхождения – «transfer» и «resistor». Первое составное слово – transfer – имеет перевод «передача», а второе – resistor – понимается как «сопротивление». Поэтому можно сказать, что транзистор – это устройство, которое передает электрический ток с определенным уровнем сопротивления.

При изобретении полупроводникового прибора было предложено несколько альтернативных вариантов названий от разных изобретателей:

  • стандартный полупроводниковый триод;
  • триод кристаллического вида;
  • лотатрон.

Но прижилось именно известное сегодня название. Этот термин был предложен Джоном Пирсом – это инженер, писатель. Вместе со своим другом и соратником по деятельности Уильямом Шокли они проводили исследования и наблюдения. В этих исследованиях также участвовали Уолтер Браттейн и Джон Бардин, а проводились они в лаборатории Bell Labs. Их трудом стал первый в истории пригодный к работе биполярный точечный транзистор – открытие случилось в декабре 1947 года. А для широкого круга презентация изобретения и самого термина состоялась 23 декабря того же 1947 года. Труды команды ученых не прошли зря – в 1956 году состоялось вручение изобретателям Нобелевской премии по физике.

Но не только эти имена достойны быть упомянуты на страницах истории изобретения транзисторных приборов. В 1958 году компанией Texas Instruments был запущен в массовое производство первый в мире кремниевый транзистор. Через год Жан Эрни сконструировал кремниевый транзистор, который имел планарную конструкцию. После этого открытия разработанная им технология стала основной в производстве транзисторных приборов.

Относительно принципа функционирования транзистора полевого типа, то на него был получен патент еще в 1928 году ученым из Германии Юлием Эдгаром Лилиенфельдом. А сама полевая конструкция транзистора была предложена и запатентована также немцем, физиком Оскаром Хайлом, это состоялось 1934 году. А изготовили такое устройство только в 90-х годах ХХ столетия. В основу этого производства была положена металл-оксид-полупроводниковая технология (сокращенно МОП-технология). Транзистор, изготовленный по данной технологии – это то устройство, которое используется практически во всех отраслях – от сложной спецтехники до компьютеров.

Транзисторы: виды и основные отличия

Существует два основных типа транзисторов:

  1. Полевые, которые бывают двух видов по разновидности канала: n-тип и p-тип.
  2. Биполярные, среди которых различают виды n-p-n (то есть с обратной проводимостью) или p-n-p (характеризуются прямой проводимостью).

Принципы работы, отличия и конкретные особенности можно разобрать только на примерах. Поэтому стоит ознакомиться со следующей информацией:

  1. Биполярный транзистор n-p-n (обратной) полярности, изготовленный в корпусе ТО-3 (2N3055). Используется как элемент для изготовления выходного каскада для мощных усилителей звука. В такой технике он работает в динамическом режиме. Благодаря корпусу ТО-3 этот прибор можно удобно и достаточно просто закрепить. Транзистор этого типа может успешно функционировать при частоте до 3 МГц.
  2. Транзистор биполярного вида n-p-n-типа (то есть обратной полярности), который имеет маркировку КТ315. Устанавливается обычно в паре с КТ361, производится с 1967 года. Может работать в динамическом или ключевом режиме, однако характеризуется малой мощностью.
  3. Транзистор полевой с каналом n-типа и изолированным затвором (КП501). Характеризуется малой мощностью. Может обеспечить сопротивление 10-15 Ом. Различаются модификации А, Б и В, которые и определяют уровень сопротивления.
    Чаще всего используется в аппаратуре для связи, телефонах и радиотехнике. Поэтому за ним закрепилось другое название – сигнальный. Выпускается в корпусе типа ТО-92. Основная его задача состоит в усилении поступающего сигнала.
  4. Полевой транзистор n-канальный, который изготавливается в соответствии с технологией HEXFET (irf3205). Чаще всего используется как силовой ключ при изготовлении высокочастотного инвертора (к примеру, в автомобилестроении). Выпускается в различного типа корпусах, что обусловлено разными показателями тока.
  5. Биполярный транзистор или IGBT-транзистор с изолированным затвором (GA25N120ANTD). Характеризуется высокой мощностью (поэтому его называют высоковольтным) и изготавливается в корпусе типа ТО-3Р. Чаще всего применяют в изготовлении преобразователей инверторного типа (например, сварочные аппараты или нагреватели).

Рассмотренные виды транзисторных приборов – это только небольшая часть подобных устройств, которые часто используются в разной технике. Транзисторы производятся в разных корпусах и разных моделей. Кроме того, один и тот же вид изготавливается в разных корпусах, что значительно расширяет модельный ряд и применение транзисторов.

Стоит заметить, что типы корпусов транзисторов отечественных и иностранного производства отличаются. Это следует учитывать при покупке этих деталей и использовании их в ремонте техники.

Особенности цифровых транзисторов

Впервые транзисторы для цифровых устройств были изготовлены фирмой ROHM. Основное применение этих приборов состоит в следующих сферах:

  • аудиоаппаратура;
  • видеотехника;
  • микроконтролерная техника.

По своей конструкции представляют биполярный транзистор и один-пара резисторов (один из пары может заменяться стабилитроном). Узнать параметры цифрового транзистора можно по маркировке, которая есть на корпусе. Ассортимент очень широк, разнообразны и цены на них. Все зависит от типа транзистора и компании-производителя.

Советы по подбору транзисторов

Если вы затрудняетесь, как подобрать транзистор, то стоит ознакомиться со следующими советами:

  1. Помните, что главный параметр такого устройства – это мощность. Есть такие понятия, как структурная, максимальная и рассеиваемая мощность. Также стоит учесть напряжение в открытом и закрытом состоянии.
  2. При положительном напряжении между блоком питания и коллектором необходим транзистор n-p-n-типа. Соответственно при отрицательном значении данного параметра используется p-n-p-тип.
  3. При максимальном токе нужно выбирать полупроводниковый транзистор с показателями, минимум в полтора раза превышающими максимум.
  4. Перед покупкой определенного вида транзисторного прибора стоит заранее поинтересоваться его характеристиками и сферой применения.

Итоги

Если вы хотите понять, для чего нужен транзистор, представьте его отдельным элементом системы или цепочки. Без него не будет исходной совокупности и потеряются все ее свойства.

Если бы этого изобретения не было, человечество не смогло бы создать все технические устройства, которые уже давно вошли в нашу жизнь. Транзисторы – это незаменимый компонент мобильных телефонов, радиотехники, транспорта и многого другого, чем мы пользуемся практически каждый день. Все эти приборы – бытовые и специальные – не были бы изобретены. Вероятнее всего, мы по сей день пользовались бы ламповыми приемниками и телевизорами.

Благодаря транзисторам человечество сделало столь большой скачок в технике и приборостроении. С их помощью мы облегчили свою жизнь и сделали возможности технологии практически безграничными.

Транзистор является уникальным и универсальным устройством, которое может одновременно являться и выключателем, и усилителем. За счет контроля потока электронов данные функции становятся возможными, то есть электрический ток при использовании транзисторов полностью контролируемый.

Это дает большие возможности для производства и введения новых изобретений в нашу жизнь. Поэтому разумно считать транзистор – независимо от вида – самым весомым и значимым открытием науки, которое принесло огромную пользу человечеству.


Возврат к списку

Обратная связь

Похожие статьи


Применение транзисторов на нитриде галлия в электроэнергетике | Публикации

Нитрид галлия — полупроводниковый материал, из которого изготавливается большинство типов современных светодиодов. Также изделия из него применяются в базовых станциях мобильной связи. Но недавно для нитрида галлия открылось новое применение — из него изготавливают силовые транзисторы, применяемые в альтернативной энергетике, электротранспорте и даже в бытовых зарядных устройствах.

Важной характеристикой любого полупроводника является ширина запрещенной зоны. Что означает этот показатель и как он связан с применением приборов из данного материала в энергетике?

Различают две зоны, в которых могут находиться энергетические уровни электронов в полупроводниковых материалах, — валентную или проводимости. Эти зоны не пересекаются, промежуток между ними именуется запрещенной зоной. Энергетические уровни, находящиеся там, не могут заниматься электронами. Наличие запрещенной зоны — характерная особенность не только полупроводников, но и диэлектриков (у проводников зоны валентности и проводимости смыкаются). Ширина запрещенной зоны измеряется в электрон-вольтах (эВ). Принято считать, что, если данный показатель у материала меньше 5 эВ, то перед нами полупроводник, в противном случае — диэлектрик.

Самый распространенный на сегодняшний день полупроводник из используемых в электронике — кремний. У него ширина запрещенной зоны составляет 1,12 эВ. Но сейчас специалистов больше интересуют полупроводники с шириной запрещенной зоны более 2 эВ (иначе именуемые широкозонными), они лучше подходят для применений, связанных с коммутацией больших токов и напряжений. Причина такого интереса заключается в следующем. Чем выше температура, тем активнее электроны самопроизвольно переходят с одного энергетического уровня на другой. При этом чем шире запрещенная зона, тем ниже вероятность такого перехода. В итоге чем больше ширина запрещенной зоны полупроводника, тем, в общем случае, больше максимально допустимая температура для изделий на его основе и тем меньше ток утечки.

Если представить МОП-транзистор в виде коммутатора (а именно в таком качестве он применяется в электроэнергетике), то при использовании для его изготовления широкозонных полупроводников сопротивление ключа в разомкнутом состоянии будет очень большим (порядка десятков МОм). И это сопротивление будет слабо зависеть от нагрева, неизбежного при коммутации значительных токов. Параметры наиболее часто используемых сейчас в электронике полупроводниковых материалов приведены в таблице.

Параметры полупроводников, используемых для производства транзисторов

В [Л] мы уже рассказывали о транзисторах, изготавливаемых из карбида кремния (SiC), относящегося к категории широкозонных полупроводников. В то же время наряду с ним в силовое оборудование стали внедрять транзисторы на нитриде галлия (GaN). В чем-то эти транзисторы конкурируют с решениями на основе SiC, в чем-то эти две ветви развития электроники занимают свои ниши.

В качестве материала для изготовления транзисторов нитрид галлия известен с 90-х годов. Но для транзисторов, применяемых в электро-энергетическом оборудовании, его интенсивное внедрение началось примерно в 2018 г. Это связано с развитием электромобилей и солнечной генерации. Среди компаний, выпускающих силовые транзисторы на нитриде галлия, — GaN Systems (Канада), EPC (Тайвань), Infineon (Германия), Nexperia (Нидерланды) и многие другие.

Работа в режиме насыщения

В установках электропитания обычно применяют МОП-транзисторы (аббревиатура расшифровывается как «металл-окисел-полупроводник», за рубежом применяется термин MOSFET), работающие в качестве ключей, прерывающих ток. При этом транзистор в процессе работы в идеале должен находиться только в одном из двух режимов — отсечки или насыщения.

Корпус транзистора GaN Systems GS66516T, способного выдерживать напряжение до 650 В и ток до 60 А, в сравнении с корпусом кремниевого прибораКомпактное зарядное устройство мощностью 100 Вт на GaN-транзисторах

В режиме отсечки ток прерывается, сопротивление между истоком и стоком составляет десятки МОм. При этом транзистор подобен выключателю с разомкнутыми контактами. Режим насыщения — это когда напряжение между истоком и стоком практически не зависит от силы тока, протекающего через транзистор. Сопротивление при этом можно считать близким к нулю, то есть транзистор в режиме насыщения подобен выключателю с замкнутыми контактами. В обоих указанных режимах мощность, рассеиваемая на транзисторе, очень мала и не вызывает его значительного нагрева.

Помимо режимов отсечки и насыщения у МОП-транзистора есть еще и третий режим — активный (иначе называемый линейным). В этом режиме наблюдается зависимость между напряжением сток-исток и током через канал транзистора, близкая к линейной. В активном режиме происходит рассеивание мощности, сопоставимое с мощностью нагрузки, в результате происходит нагрев полупроводникового прибора и потери электроэнергии.

Переход из режима отсечки в режим насыщения и обратно у реально существующих МОП-транзисторов всегда происходит через активный режим. Это связано с конечным быстродействием полупроводниковых приборов. После того, как транзистор «получил команду» выйти из режима насыщения, какое-то время требуется на рассасывание носителей заряда из канала.

Задача заключается в увеличении скорости рассасывания зарядов. Чем она выше, тем короче промежуток, в течение которого транзистор работает в активном режиме, нерационально тратя электроэнергию на нагрев. Уменьшить данный параметр можно двумя способами. Во-первых, уменьшить размеры кристалла. И во-вторых, применить полупроводниковый материал с большей подвижностью электронов. Оба способа можно применять как по отдельности, так и вместе. Например, силовые транзисторы на основе SiC могут иметь меньшее время рассасывания по сравнению с аналогичными кремниевыми, хотя подвижность зарядов в карбиде кремния ниже, чем в чистом кремнии. Дело в том, что высокая тепловая устойчивость SiC позволяет изготавливать кристаллы меньших размеров, чем у приборов из чистого кремния, при той же номинальной мощности.

А если выбрать материал с большей подвижностью зарядов? Обратимся к таблице, где сравниваются параметры полупроводниковых материалов. Рекордсменом по подвижности электронов является арсенид галлия (GaAs). Но он для силовой электроники неприменим из-за низкой теплопроводности (почти в 3 раза ниже, чем у кремния), что затрудняет отвод тепла от кристалла. К тому же GaAs не является широкозонным полупроводником.

Инвертер компании Transphorm на GaN мощностью 3,5 кВт, работающий на частоте 100 кГц

В то же время GaN сочетает в себе как высокую подвижность электронов, так и хорошую устойчивость к нагреву. По ширине запрещенной зоны этот материал даже немного превосходит карбид кремния. Таким образом, уменьшить время насыщения можно как за счет увеличения подвижности зарядов, так и за счет уменьшения размеров кристалла.

Скорость рассасывания зарядов для мощного GaN-транзистора, изготовленного по технологии E-HEMТ, составляет около 6 Кл/с против 0,6 Кл/с у SiC-транзистора и примерно 0,2 Кл/с у типичного кремниевого IGBT.

Управление GaN-транзисторами

Подобно кремниевым собратьям, МОП-транзисторы из нитрида галлия бывают нормально открытыми и нормально закрытыми. Нормально открытый вариант — когда при нулевом напряжении на затворе транзистора он полностью открыт, а для закрытия требуется подать отрицательное управляющее напряжение. Нормально закрытый вариант — при нулевом напряжении на затворе транзистор закрыт, для открытия подается положительное напряжение. Применительно к GaN нормально закрытые приборы считаются более продвинутым вариантом. Напряжение открытия для GaN-транзисторов составляет 6 В.

Российское производство
В России госкорпорация «Ростех» серийно выпускает мощные GaN-транзисторы, но они предназначены не для электроэнергетики, а для передатчиков базовых станций мобильной связи. Силовые транзисторы на нитриде галлия имеют иную конструкцию, такие отечественные изделия еще находятся в стадии разработки, которыми занимаются НИИ Микроэлектроники, г. Воронеж (входит в состав «Ростеха»), а также компания «Миландр», г. Москва

Для сравнения, большинство транзисторов на основе SiC требуют сигналы как положительной, так и отрицательной полярностей. Для открытия такого транзистора на затвор требуется подать напряжение от 20 до 25 В относительно истока. А вот закрытие, т. е. переход в режим отсечки, потребует подать на затвор напряжение -5 В. В итоге драйвер — узел, управляющий мощным транзистором, — для SiC получается сложным, дорогим и громоздким. В ноябре 2020 г. американская компания UnitedSiC начала серийный выпуск четвертого поколения МОП-транзисторов из карбида кремния, у которых напряжение открытия составляет +12 В, а напряжение закрытия равно нулю. Но такие транзисторы по ряду причин на момент написания статьи все еще не получили широкого распространения. Заметим, что даже силовые МОП-транзисторы из кремния требуют для открытия напряжения не менее 10 В, а у GaN-транзисторов это значение меньше. В итоге драйвер получается более дешевым и компактным, что является важным преимуществом по сравнению с SiC. Еще одна особенность — в отличие от МОП-транзисторов, выполненных из других материалов, напряжение открытия приборов из GaN очень слабо зависит от температуры кристалла. Поэтому сложные цепи температурной компенсации в драйвере не требуются.

Преимущества и недостатки GaN

Помимо более простого принципа управления, силовые GaN-транзисторы при развертывании их массового производства могут оказаться более технологичными по сравнению с SiC-приборами. Производство самого нитрида галлия уже хорошо освоено на примере светодиодов. Кроме этого, подложка SiC-транзисторов выполнена, как правило, из искусственного сапфира. А для GaN-приборов в качестве подложки используется обычный кремний.

К недостаткам транзисторов на GaN можно отнести меньшее рабочее напряжение. Так, массово выпускаемые транзисторы из нитрида галлия могут переключать напряжение до 650 В. Небольшими партиями выпускаются приборы на 1200 В. В то же время SiC-транзисторы массово производятся на напряжение до 3000 В, опытные образцы могут выдерживать до 15 кВ.

Теплопроводность GaN на 15 % меньше, чем у кремния, и почти в 4 раза ниже, чем у карбида кремния. Это означает, что в случае перегрева быстро отвести лишнее тепло от кристалла становится проблематичным.

Перспективным приложением для нитрид-галлиевых транзисторов являются электромобили

Поэтому транзисторы на основе GaN хуже выдерживают перегрузки, чем конкуренты, изготовленные из карбида кремния.

Применение

Основное использование GaN-транзисторов — всевозможные инверторы, а также преобразователи напряжения (в том числе типа DC-DC). Высокое быстродействие позволяет серийно производить мощные инверторы, работающие на частоте до 250 кГц. Известны опытные образцы таких инверторов, работающих на частоте 1 МГц. Для сравнения, инверторы на кремниевых транзисторах работают на частотах до 50 кГц, SiC — до 150 кГц. Чем выше частота, тем компактнее инвертор, поскольку уменьшаются размеры трансформаторов и дросселей. Поэтому GaN-транзисторам прогнозируют большое будущее в электромобилях.

Также GaN-приборы удобны для использования в солнечных электростанциях, устанавливаемых в частных домах. Компактный инвертор может быть размещен в непосредственной близости от солнечных панелей, установленных на крыше.

Наиболее известное бытовое применение силовых GaN-транзисторов — зарядное устройство, по размерам похожее на такой прибор для смартфонов, мощности которого (до 100 Вт) хватает и для зарядки ноутбука.

Уменьшение размеров преобразователя напряжения при использовании GaN относительно решений на SiC можно оценить в 1,5–2 раза, относительно чистого кремния — в 2–3 раза.

Выводы

Главное преимущество GaN-транзисторов — компактность аппаратуры, построенной с их использованием. Поэтому они найдут свое применение в электромобилях и устройствах индивидуального пользования (солнечные панели, накопители энергии, зарядные устройства). Также возможны корпоративные применения там, где оборудование для электропитания должно быть встроено в жестко заданные объемы (базовые станции мобильной связи, зарядные станции для электромобилей, системы управления трехфазными электродвигателями).

На объектах сетевой инфраструктуры, на крупных электростанциях, работающих от солнца и ветра, все же более подходящими являются транзисторы на карбиде кремния из-за их лучшей устойчивости к перегрузкам. Это разделение областей применения между двумя полупроводниковыми материалами вряд ли изменится под действием технического прогресса, поскольку в основе его лежат физические свойства материалов. При этом более простые в управлении GaN-транзисторы потенциально смогут найти применение и в нише, занимаемой сейчас кремниевой электроникой.

#GaNтранзистор #полупроводник #СиловойТранзистор #АльтернативнаяЭнергетика #микроэлектроника #ЭР

Источник: Алексей Дубневский, журнал «Электротехнический рынок» № 2 (104), 2022 год

Использование транзистора — принцип, области применения, примеры и часто задаваемые вопросы

Если мы почитаем историю электронных устройств, то увидим, что одним из наиболее важных компонентов этих устройств была вакуумная лампа (электронная лампа). Эта трубка использовалась для управления электрическим током. Эти лампы были больше, требовали более высокого рабочего напряжения, высокое энергопотребление означало высокое тепловыделение, что, в свою очередь, влияло на срок службы лампы из-за ее низкого КПД.


На этой странице мы узнаем о следующем:

Чтобы решить эту проблему, трое американских физиков Джон Бардин, Уолтер Браттейн и Уильям Шокли изобрели компактное и эффективное полупроводниковое устройство под названием точечный транзистор в Bell Labs в декабре.

Транзистор

Транзистор представляет собой разновидность полупроводника, который используется в качестве проводника и изоляции электрического тока или напряжения. Проще говоря, транзистор — это регулятор потока электрических сигналов. Прочтите следующие пункты, чтобы узнать больше о транзисторе:

  • Транзисторы являются мощными устройствами из-за их способности управлять током, протекающим по цепи (устройство управления током), который генерируется потоком электронов и дырок. Существует два типа: NPN (отрицательный-положительный-отрицательный) и PNP (положительный-отрицательный-положительный).

  • Наиболее широко используемыми транзисторами являются NPN-транзисторы, поскольку большинство носителей заряда представляют собой электроны, которые являются более мобильными частицами заряда с меньшей массой, благодаря чему они могут легко ускоряться.

  • Это полупроводниковое устройство, которое действует как переключатель и усилитель. Транзисторы могут работать от низковольтного источника питания для большей безопасности, что означает, что они обеспечивают более высокий КПД и очень долгий срок службы.

  • Транзисторы используют полупроводниковые переходы вместо нагревательных электродов, но выполняют ту же функцию, что и вакуумный триод.

  • Транзисторы могут управлять потоком тока через один канал, изменяя интенсивность небольшого количества тока, протекающего через второй канал. Вот почему они называются устройством управления током.

Детали транзистора

Транзистор представляет собой комбинацию трех выводов, изготовленных из полупроводниковых материалов, которые помогают выполнить соединение с внешней цепью и обеспечивают протекание тока. Три клеммы:

  1. База: База активирует транзистор. Он тонкий и слегка легированный. Он расположен в центре транзистора.

  2. Эмиттер: Эмиттер представляет собой отрицательный вывод транзистора. Он сильно легирован и имеет умеренный размер.

  3. Коллектор: Коллектор — это отрицательный вывод транзистора. Он расположен на правой стороне транзистора и умеренно легирован. Он больше излучателя.

Как работает транзистор?

Биполярный переходной транзистор или BJT состоит из трех выводов: базы, эмиттера и коллектора. Между базой и эмиттером существует p-n переход, а между базой и коллектором существует еще один переход. Обычно в BJT, когда ток протекает через переход база-эмиттер, ток будет течь в цепи коллектора. Это называется смещением, и переход база-эмиттер смещен в прямом направлении, тогда как переход база-коллектор смещен в обратном направлении.

Основы транзисторов с биполярным переходом

Поскольку контролируемый ток должен проходить через два типа полупроводниковых материалов, ток состоит как из потока электронов, так и из потока дырок в разных частях транзистора, и они бывают двух типов:

  1. n-p-n Транзистор с переходом

  2. Транзистор с переходом p-n-p

Биполярный транзистор с изолированным затвором (IGBT): IGBT — силовой полупроводниковый прибор, используемый в качестве электронного переключателя во многих мощных и современных устройствах, таких как электромобили, поезда, холодильники с регулируемой скоростью, системы кондиционирования воздуха.

Каковы характеристики транзистора?

Характеристика транзистора представляет собой график, построенный для каждого типа конфигурации, который показывает зависимость между током и напряжением транзистора.

В основном существует два типа характеристик:

  1. Входные характеристики: Показывает изменение входного тока при изменении выходного тока при постоянном выходном напряжении.

  2. Выходные характеристики: На этом графике показан график изменения выходного тока по отношению к изменению выходного напряжения при постоянном входном токе.

Преимущества использования транзисторов

Было доказано, что транзистор является очень важным изобретением в науке. Он имеет множество применений и преимуществ:

  • Он небольшого размера и очень экономичен.

  • Для работы требуется очень низкое напряжение.

  • Он имеет долгий срок службы и не требует питания для работы.

  • С помощью транзистора можно разработать одну интегральную схему.

  • Быстрое переключение тока на клеммах.

Ограничения на использование транзисторов

Несмотря на то, что транзисторы чрезвычайно эффективны, существуют некоторые ограничения на их использование:

  • Транзисторы очень легко выходят из строя из-за изменений электрических и температурных условий.

  • Им не хватает более высокой подвижности электронов.

  • Они могут пострадать от радиации.

Узнайте больше о транзисторах, посетив наш веб-сайт, где вы найдете примечания, вопросы, ответы, решения и многое другое! Вы можете скачать все, что вам нужно бесплатно!

Использование транзистора

Напряжение смещения Vbe, создаваемое в переходе база-эмиттер. Из-за прямого смещения перехода база-эмиттер электроны начинают течь от эмиттера для рекомбинации с дырками в базе, база становится отрицательно заряженной. Если ток базы Ib увеличить на небольшую величину, рекомбинация дырочных электронов будет нейтрализована, ток коллектора Ic увеличится. Поэтому небольшое изменение тока Iб в базе.

  • Микрофон: Микрофон — это преобразователь, который преобразует наш голос или звуковую волну в электронный сигнал. Поскольку звуковая волна не имеет постоянной величины, величина звуковой волны меняется со временем в зависимости от нашего голоса.

Электрический выход микрофона изменяется в зависимости от звуковых волн, поскольку базовый ток Ib изменяется из-за небольшого переменного напряжения, создаваемого микрофоном, что означает, что небольшое изменение Ib может вызвать большое изменение Ic.

При этом выход микрофона подается на транзистор как на вход. Изменяющийся ток коллектора Ic течет в громкоговоритель, и мы знаем, что если есть изменения на входе транзистора, это приведет к большим изменениям на выходе транзистора. Таким образом, транзистор усиливает электронный сигнал микрофона.

Частота остается постоянной, но амплитуда звуковой волны из громкоговорителя выше, чем звуковые волны, поступающие в микрофон.

Электронный генератор представляет собой устройство, генерирующее непрерывные электрические колебания. В простой схеме генератора параллельный LC-контур используется в качестве резонансного контура, а усилитель используется для подачи энергии в резонансный контур.


Частота резонансно усиливается, и выход действует как источник переменного напряжения этой частоты.

Резюме

  • При нормальной работе транзистора переход эмиттер-база всегда смещен в прямом направлении, тогда как переход коллектор-база смещен в обратном направлении.

  • В транзисторах с n-p-n переходом большое количество электронов в эмиттере и большое количество дырок в базе.

  • В реальной конструкции транзисторов n-p-n средний слой очень тонкий (микрометр) по сравнению с шириной двух боковых слоев.

Использование транзистора и его практическое применение

В нашем современном обществе широкое использование электричества позволило по-разному использовать транзисторы в каждой электронной схеме.

Транзисторы используются в нашей повседневной жизни во многих формах, которые мы знаем как усилители и переключающие устройства. В качестве усилителей они используются в различных генераторах, модуляторах, детекторах и почти в любых схемах для выполнения определенной функции.

В цифровой схеме в качестве переключателей используются транзисторы. По разным функциональным возможностям существуют транзисторы разных типов как для работы на низких, так и на высоких частотах. Различают транзисторы малой, средней и большой мощности.

Различные применения и использование транзистора

  • В основном транзисторы используются для коммутации или как для усиления, так и для коммутации.
  • Существует разновидность транзисторов, которые производят ток в зависимости от количества падающего на них света; они известны как фототранзисторы.
  • Транзисторы с биполярным соединением (BJT) могут вызывать больший ток от эмиттера к коллектору, когда через базу проходит небольшой ток.
  • Полевые транзисторы действуют как устройства, управляемые напряжением. Полевые транзисторы (FET) имеют очень высокий входной импеданс, что позволяет пропускать через них очень небольшой ток. Это полезно для того, чтобы не вызывать перегрузку источника питания, поскольку они не мешают силовым элементам исходной цепи, к которым они подключены. Полевые транзисторы дешевле и проще в производстве и вызывают меньшую нагрузку.
  • Биполярные транзисторы с гетеропереходом (HBT) обеспечивают более высокую скорость переключения и используются в аналоговых и цифровых микроволновых устройствах. Они бесценны в изготовлении и могут обеспечить лучший литографический выход. Они используются в мобильных и лазерных драйверах в качестве усилителей мощности.
  • Транзисторы Дарлингтона имеют гораздо более высокую способность усиления по току. Из-за своей чувствительности он может снимать токи с кожи человека, поэтому он используется для создания сенсорной кнопки.
  • Транзисторы Шоттки отводят высокие входные токи и предотвращают насыщение транзисторов.
  • Транзисторы с несколькими эмиттерами используются в транзисторно-транзисторной логике (TTL) и логических вентилях И-НЕ.
  • МОП-транзисторы с двойным затвором используются в ВЧ-смесителях/умножителях и ВЧ-усилителях, где требуется последовательное подключение двух управляемых затворов.
  • Лавинные транзисторы могут переключать большие токи за время перехода менее наносекунды.

Связанные статьи:

Часто задаваемые вопросы – Часто задаваемые вопросы

Что такое биполярный транзистор?

Транзистор с биполярным переходом представляет собой полупроводниковый прибор с тремя выводами, состоящий из двух p-n переходов, способных усиливать или усиливать сигнал.

Что такое полевой транзистор?

Полевой транзистор (FET) представляет собой тип транзистора, который использует электрическое поле для управления током, протекающим в полупроводнике.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *