Полевые транзисторы. Характеристики. Основные типы.| Elektrolife
MOSFET — (Metal–Oxide–Semiconductor Field-Effect Transistor) использует изолятор обычно SiO2 между затвором и каналом.
JFET — полевой транзисторе с управляющим p-n переходом
MESFET — (Metal–Semiconductor Field-Effect Transistor) разновидность p-n перехода JFET с барьером Schottky; используются с GaAs и др. III-V полупроводниками.
ISFET — ion-sensitive field-effect transistor – ионно-чувствительный полевой транзистор.
ChemFET — chemical field-effect transistor — МОСФЕТ транзисторы, заряд на затворе которых определяется химическими процессами.
EOSFET — electrolyte-oxide-semiconductor field effect transistor вместо металла в качестве затвора используется электролит.
CNTFET — Carbon nanotube field-effect transistor — полевой транзистор с углеродными нанотрубками.
DEPFET – полевой транзистор с полностью обедненной подложкой, используются как сенсоры, усилители и ячейки памяти одновременно. Может быть использован как датчик фотонов.
DGMOSFET — с двумя затворами.
DNAFET — специальный FET используемый как биосенсор, с затвором из 1-й ДНК молекулы чтобы определять соответствующую нить ДНК.
FREDFET — (Fast Reverse or Fast Recovery Epitaxial Diode FET) специальный полевой транзистор, разработанный для обеспечения сверхбыстрого закрытия встроенного диода (is a specialized FET designed to provide a very fast recovery (turn-off) of the body diode)
HEMT — (high electron mobility transistor) или HFET(heterostructure FET) полевой транзистор с высокой подвижностью зарядов, гетероструктурные (шестигранные) FET. Изолятор затвора формируется из полностью обедненного материала с большой шириной запрещенной зоны.
HIGFET — (heterostructure insulated gate field effect transisitor), гетероструктурные MISFET используются в основном в исследовательских целях.
MODFET — (Modulation-Doped Field Effect Transistor) использует квантовую структуру, сформированную градиентным легированием активной области.
NOMFET – (Nanoparticle Organic Memory Field-Effect Transistor) — память на основе органических наночастиц.
OFET – (Organic Field-Effect Transistor) — канал из органического полупроводника.
GNRFET – (Field-Effect Transistor that uses a graphene nanoribbon for its channel). С каналом из графеновой пленки.
VFET – (Vertical Field-Effect Transistor), вертикальный полевой транзистор, полевой транзистор с вертикальной структурой, полевой транзистор с вертикальным каналом.
VeSFET — (Vertical-Slit Field-Effect Transistor) is a square-shaped junction-less FET with a narrow slit connecting the source and drain at opposite corners. Two gates occupy the other corners, and control the current through the slit… полевой транзистор квадратной формы, без перехода с близким расположением истока и стока на противоположных углах. Два других входа, занимающие другие углы — затворы, которые контролируют переход.
TFET — (Tunnel Field-Effect Transistor) — основан на эффекте тунеллирования … из полосы в полосу.
IGBT — (insulated-gate bipolar transistor) устройство для контроля мощности. Представляет из себя гибрид полевого транзистора с проводящим каналом, как у биполярного транзистора. Обычно используются для напряжений 200-3000V сток-исток. Мощные MOSFETs обычно используются до 200 V.
|
Полевые транзисторы IRFP250, обзор и немного о применении.
Не так давно я публиковал пару обзоров, где описывал усилитель сигнала с датчика тока и маленький блок питания.Этот обзор является логическим продолжением мой эпопеи по конструированию самодельной электронной нагрузки. Я уже описывал такое устройство, но данный вариант планировался еще до него и планировался мощнее, с электронным управлением и прочими фишками. Но сами «мозги» я опишу скорее всего уже в следующем месяце, а вот про силовую часть расскажу сегодня.
В устройстве используется нестандартное напряжение питания управляющей электроники в 8 Вольт. Так же напряжение сигнала управление в 0-250мВ. Это не моя прихоть, это то, что может давать блок управления, потому модуль я подстраивал под него.
Изначально конструкция подразумевала один канал с максимальным током в 5 Ампер и шунтом с сопротивлением 50мОм. Но в описании устройства была возможность навесить еще пару таких же каналов и перекалибровать устройство под ток 15 Ампер.
Я решил пойти немного по другому пути. Для начала я задумал не три, а восемь каналов.
Задумывалось 8 каналов, при этом получалось по 2 канала на плату, по 2 платы на радиатор и 2 радиатора на устройство.
Сначала приведу схему силовой части.
Номиналы многих деталей можно менять в широких пределах, так же можно применять разные полевые транзисторы.
У меня получалось что надо получить напряжение с шунта одного канала до 250мВ в полном диапазоне регулировки тока.
Значит выходило 15/8=1.875 Ампера на канал. Соответственно номинал шунта для получения 250мВ составляет 0.25/1.875=0.133(3) Ома. Лучше когда номинал шунта чуть чуть меньше, но не больше, иначе не хватит напряжения регулировки (макс 250мВ).
По схеме страссировал печатную плату, правда потом выяснилось что площадки для подключения силовых проводов немного мелковаты, лучше их увеличить.
При трассировке я старался делать силовую часть максимально симметричной в месте подключения земляного проводника и измерительного шунта.
После изготовил печатные платы, я сразу сделал 4 штуки на одной заготовке, описание процесса здесь.
Список примененных компонентов.
Резисторы:
1.33 Ома 1% — 80шт (1206)
22 Ома — 8шт (1206)
560 Ом — 4шт (0805)
6.2 КОм — 8шт (1206)
22 КОм — 8 шт (1206)
3 МОм — 8шт (0805)
Конденсатор 220мкФ х 16Вольт 105 градусов. Samwha RD.
Операционный усилитель LM358 — 4шт (SO-8)
Регулируемый стабилитрон TL431 — 4шт (SOT23)
Полевые транзисторы — IRFP250 — 8шт
Платы спаяны. Как я писал, резисторы шунта смонтированы в два слоя по 5 штук в слое.
С обратной стороны присутствует только электролитический конденсатор. Так как платы устанавливаются вблизи элементов с большим выделением тепла, то лучше применять конденсаторы рассчитанные на работу при температуре до 105 градусов.
Так как транзисторы при работе активно выделяют тепло (сама суть электронной нагрузки это переводить все в тепло), то я приготовил пару радиаторов. Эти радиаторы у меня уже мелькали в некоторых обзорах, например в этом, теперь придется искать им замену.
После этого радиаторы были очищены при помощи ватки и спирта 🙂
В конце я немного укоротил их, это был один из самых сложных этапов. Радиаторы имели в высоту 88мм, а корпус имел высоту 84мм. Чтобы удобно было использовать вентиляторы размером 80мм я отрезал по 3мм с каждой стороны. Вот самое сложное и было отрезать эти 3мм в длину и постараться сделать это ровно 🙂
Длина радиаторов 100мм, высота ребра 25мм, тело 4.5мм, радиаторы черненые и имеют 9 ребер.
Разметил крепежные отверстия под вентиляторы, думаю из этого фото уже понятная планируемая конструкция силового модуля.
Разметил и нарезал кучу резьб. Я не стал разбираться где будет верх, где низ, а просто нарезал все симметрично, чтобы потом при сборке не задумываться об этом. Т.е. модуль можно ставить хоть вверх ногами, закрепиться получится в любом случае и крепежные отверстия будут на тех же местах. Для сверления и нарезания резьбы я давно пользуюсь небольшим шуруповертом, очень удобно.
Платы подготовлены к установке. На фото понятен принцип установки. Я долго думал, ставить платы параллельно или перпендикулярно к радиатору, но решил остановиться на параллельном варианте установки как на более компактном.
Радиаторы и все что будет устанавливаться на них, ну или почти все. планируются еще элементы термоконтроля и т.п…
Кстати насчет термоконтроля. Так как устройство выделяет много тепла, то в целях безопасности я установил на каждый радиатор по биметаллическому размыкателю. Температура уставки 90 градусов, ток контактов 10 Ампер, но так как один размыкатель обслуживает только половину общего тока, то думаю что при 7.5 Ампера они будут работать нормально.
Выводы у терморазмыкателей разные, к одному можно припаяться нормально, ко второму нет, для меня это было новостью. Но так получилось, что я случайно разместил их одинаково, потому одноименные контакты припаяны, для вторых я использовал клеммы, к которым уже припаивал провод. Будьте внимательны.
Первая примерка. Еще без термопасты, просто посмотреть как оно получается вместе.
При креплении транзисторов я использовал родные отверстия оставшиеся от предыдущих элементов. у меня получилось так, что каждый транзистор стоит примерно в центре своей четверти радиатора, при повторении лучше стремиться именно к такому расположению транзисторов.
Для соединения я взял кучку разных проводов. попались даже какие то аудиофилские, вроде как посеребренные, но при этом мне было удобно то, что они свиты из очень большой кучи тоненьких жилок и соответственно очень мягкие и имеют при этом сечение в 2.5мм.
Этот кабель я использовал для соединения земляной цепи.
При соединении я использовал принцип «звезда», т.е. все земляные провода сводятся в одну точку, расположенную так, чтобы сопротивление до каждой из плат было идентичным, это позволит равномерно распределить ток между модулями.
Модуль почти собран. Для разводки проводов я использовал отверстия оставшиеся от старых элементов.
В качестве нагнетающего вентилятора использован вентилятор фирмы Sunon EE80251S1-A99, вентилятор подбирался исходя из небольшой цены и большой производительности.
Вытяжной вентилятор фирмы Thermaltake, S0801512M, был в наличии и используется потому, что требовалась небольшая толщина. Корпус очень маленький, потому с местом проблемы.
В работе планирую использовать питание до 15 Вольт, но проверял и при 20, работали нормально.
Соединение земляных проводников располагается между радиаторами. Это далеко не самое лучшее решение, как и размещение каких либо проводов там вообще. Но вариантов у меня не было, в обход пускать провода было слишком далеко. Снизу или сверху нереально вообще. Буду рад предложениям по улучшению конструкции.
Верхняя и нижняя щель между радиаторами будет конечно закрыта, опять же, еще не решил чем, думаю пока просто заклеить парой слове скотча.
Силовой модуль собран, спаян, осталось только проверить 🙂
На всякий случай (вдруг кто то решится повторить) более детальное фото.
Ну и как же без проверки 🙂
В эксперименте я настроил нагрузку на ток в 5 Ампер и подал 40 Вольт (на самом деле 41).
Рассеиваемая мощность составила 204 Ватта. Больше давать пока не стал так как в эксперименте работал всего один вентилятор (тот что виден на фото, кажется что он стоит), который был включен от 8 Вольт и не были закрыты щели между радиаторами.
Управляющее напряжение я подавал с переменного резистора.
Получилось по 25 Ватт на каждый из транзисторов. Кстати, пускай вас не вводит в заблуждение указанная в даташите максимальная рассеиваемая мощность транзисторов. В линейном режиме лучше стараться не превышать 25-30% от заявленной так как может начаться выход из строя ячеек кристалла транзистора (полевые транзисторы как бы набраны из большого количества мелких).
Я считаю что данный этап проекта закончился успешно, планирую в ближайшем времени продолжить или вернее полностью закончить данное устройство. Описание этого процесса будет в одном из обзоров следующего месяца.
справочник приборов ВЧ и СВЧ
Транзисторы высокочастотные и СВЧ отечественного и зарубежного производства
Основные параметры:
Uмакс. — Максимально допустимое постоянное напряжение коллектор — эмиттер
Iмакс. — Максимально допустимый постоянный ток коллектора
Pмакс. — Постоянная рассеиваемая мощность коллектора
fгран. — Граничная частота коэффициента передачи тока в схеме с ОЭ
h31э — Статический коэффициент передачи тока в схеме с ОЭ
Iкбо — Обратный ток коллектора
Kус. — Коэффициент усиления по мощности
Kш. — Коэффициент шума транзистора
Транзисторы малой мощности
Корпус SOT-23
Наименование | Структура | Uмакс., В | Iмакс., А | Pмакс., Вт | fгран., ГГц | Кш., дБ | h31э |
BFR92A | N-P-N | 15 | 25 | 0,3 | 5 | 2,1 | 40-90 |
BFR93A | N-P-N | 12 | 35 | 0,3 | 6 | 1,9 | 40-90 |
BFR193 | N-P-N | 12 | 80 | 0,58 | 8 | 1,3 | 50-200 |
BFS17A | N-P-N | 15 | 25 | 0,3 | 2,8 | 2,5 | 25-90 |
BFT92 | P-N-P | 15 | 25 | 0,3 | 5 | 2,5 | 20-50 |
BFT93 | P-N-P | 12 | 35 | 0,3 | 5 | 2,4 | 20-50 |
Корпус TO-50
Наименование | Структура | Uмакс., В | Iмакс., А | Pмакс., Вт | fгран., ГГц | Кш., дБ | h31э |
BF970 | P-N-P | 35 | 30 | 0,3 | 1 | 4,2 | 25-90 |
BF979 | P-N-P | 20 | 50 | 0,3 | 1,75 | 3,4 | 20-90 |
BFR90A | N-P-N | 15 | 30 | 0,3 | 6 | 1,8 | 50-150 |
BFR91A | N-P-N | 12 | 50 | 0,3 | 6 | 1,6 | 40-150 |
BFR96TS | N-P-N | 15 | 100 | 0,7 | 5 | 4 | 25-150 |
Корпус TO-92
Наименование | Структура | Uмакс., В | Iмакс., А | Pмакс., Вт | fгран., МГц | h31э |
BF199 | N-P-N | 25 | 25 | 0,5 | 550 | >38 |
BF240 | N-P-N | 40 | 25 | 0,3 | >150 | 60-220 |
BF324 | P-N-P | 30 | 25 | 0,3 | 450 | >25 |
BF450 | P-N-P | 40 | 25 | 0,3 | 375 | >50 |
BF494 | N-P-N | 20 | 30 | 0,3 | >260 | >30 |
BF959 | N-P-N | 20 | 100 | 0,625 | >600 | >35 |
Транзисторы в других типах корпусов
Наименование | Структура | Uмакс., В | Iмакс., А | Pмакс., Вт | fгран., ГГц | h31э | Корпус |
BFG425W | N-P-N | 4,5 | 30 | 0,135 | 25 | 50-120 | SOT343R |
BFP67 | N-P-N | 10 | 50 | 0,2 | 7,5 | 65-150 | SOT143 |
BFP450 | N-P-N | 4,5 | 100 | 0,45 | 24 | 50-150 | SOT343R |
BFP540 | N-P-N | 4,5 | 80 | 0,25 | 33 | 50-200 | SOT343R |
BFP620 | N-P-N | 2,3 | 80 | 0,185 | 65 | 100-320 | SOT343R |
Транзисторы высокочастотные советской разработки
Наименование | Структура | Pмакс., Вт | Iмакс., А | Uмакс., В | Iкбо., мкА | h31э | fгран., МГц | Корпус |
КТ3102А-Ж | N-P-N | 0,25 | 200 | 20-50 | < 0,05 | 100/250-400/1000 | 150 | КТ-1-7 |
КТ3102АМ-КМ | N-P-N | 0,25 | 200 | 20-50 | < 0,05 | 100/250-400/1000 | 150 | КТ-26 |
КТ3107 | P-N-P | 0,3 | 100 | 20-45 | < 0,1 | 70/140-380/800 | 250 | КТ-26 |
КТ3108 | P-N-P | 0,3 | 200 | 45-60 | < 0,2 | 50/150-100/300 | 250 | КТ-1-7 |
КТ3117А, Б | N-P-N | 0,3 | 400 | 50 | < 10 | 40/200 | 300 | КТ-1-7 |
КТ3117А1 | N-P-N | 0,3 | 400 | 50 | < 10 | 40/200 | 300 | КТ-26 |
КТ3129 | P-N-P | 0,15 | 100 | 20-40 | < 1,0 | 30/120-200/500 | 200 | КТ-46 |
КТ3130 | N-P-N | 0,1 | 100 | 15-40 | < 0,1 | 100/250-400/1000 | 150 | КТ-46 |
КТ315 | N-P-N | 0,15 | 50-100 | 25-60 | 0,5 | 20/90-50/350 | 200 | КТ-13 |
КТ3151А9, Д9 | N-P-N | 0,2 | 100 | 80 | < 1,0 | > 20 | 100 | КТ-46 |
КТ3153А9 | N-P-N | 0,3 | 400 | 50 | < 0,05 | 100/300 | 250 | КТ-46 |
КТ3157А | P-N-P | 0,2 | 30 | 250 | < 0,1 | > 50 | 60 | КТ-26 |
КТ3172А9 | N-P-N | 0,2 | 200 | 20 | < 0,4 | 40/150 | 500 | КТ-46 |
КТ339АМ | N-P-N | 0,26 | 25 | 25 | < 1,0 | > 25 | 550 | КТ-26 |
КТ342АМ, БМ, ВМ | N-P-N | 0,25 | 50 | 30 | < 30 | 100/250 | 250 | КТ-26 |
КТ361 | P-N-P | 0,15 | 50-100 | 10-45 | < 1 | 20/90-100/350 | 150 | КТ-13 |
СВЧ-транзисторы советской разработки
Наименование | Структура | Pмакс., Вт | Iмакс., А | Uмакс., В | Iкбо., мкА | h31э | fгран., МГц | Корпус |
КТ3101А-2 | N-P-N | 0,1 | 20 | 15 | 0,5 | 35/300 | 2250 | Н/С-1 |
КТ3101АМ | N-P-N | 0,1 | 20 | 15 | 0,5 | 35/300 | 1000 | КТ-14 |
КТ3115А-2(Б, Д) | N-P-N | 0,07 | 8,5 | 7-10 | 0,5 | 15/80 | 5800 | КТ-22 |
КТ3120А | N-P-N | 0,1 | 20 | 15 | 5 | > 40 | 1800 | КТ-14 |
КТ3126А,Б | P-N-P | 0,15 | 30 | 30 | 0,5 | 25/100-60/180 | 500 | КТ-26 |
КТ3128А1 | P-N-P | 0,3 | 30 | 35 | 0,1 | 35/150 | 800 | КТ-26 |
КТ3168А9 | N-P-N | 0,18 | 28 | 15 | < 0,5 | 60/180 | <3000 | КТ-46 |
КТ326А,Б | P-N-P | 0,2 | 50 | 15 | 0,5 | 20/70-45/160 | 250 | КТ-1-7 |
КТ326АМ,БМ | P-N-P | 0,2 | 50 | 15 | 0,5 | 20/70-45/160 | 250 | КТ-26 |
КТ368А,Б | N-P-N | 0,225 | 30 | 15 | 0,5 | 50/300 | 900 | КТ-1-12 |
КТ368АМ,БМ | N-P-N | 0,225 | 30 | 15 | 0,5 | 50/450 | 900 | КТ-26 |
КТ368А9, Б9 | N-P-N | 0,1 | 30 | 15 | 0,5 | 50/300 | 900 | КТ-46 |
КТ399АМ | N-P-N | 0,15 | 30 | 15 | 0,5 | 40/170 | 1800 | КТ-26 |
Транзисторы средней мощности
Зарубежные
Наименование | Структура | Uмакс., В | Iмакс., А | Pмакс., Вт | fгран., ГГц | h31э | Корпус |
BFG135 | N-P-N | 15 | 150 | 1 | 7 | 80-130 | SOT223 |
BFG540W | N-P-N | 15 | 120 | 0,5 | 9 | 100-250 | SOT343N |
BFG97 | N-P-N | 15 | 100 | 1 | 5,5 | 25-80 | SOT223 |
BFQ19 | N-P-N | 15 | 100 | 1 | 5,5 | 25-80 | SOT89 |
BLT50 | N-P-N | 10 | 500 | 2 | 0,47 | 25 | SOT223 |
BLT80 | N-P-N | 10 | 250 | 2 | 0,9 | 25 | SOT223 |
BLT81 | N-P-N | 9,5 | 500 | 2 | 0,9 | 25 | SOT223 |
Транзисторы высокочастотные советской разработки
Наименование | Структура | Pмакс., Вт | Iмакс., А | Uмакс., В | Iкбо., мкА | h31э | fгран., МГц | Корпус |
КТ626А-Д | P-N-P | 9 | 1,5 | 20-80 | 1 | 15/60-40/250 | 45 | КТ-27-2 |
КТ646А,Б | N-P-N | 3,5 | 1 | 40-50 | 10 | 40/200-150/300 | 250 | КТ-27-2 |
КТ683А-Е | N-P-N | 8 | 1 | 60-150 | 40/120-160/480 | 50 | КТ-27-2 | |
КТ6127А-К | P-N-P | 0,8 | 2 | 10-200 | < 20 | > 30 | 150 | КТ-26 |
КТ630А-Е | N-P-N | 0,8 | 1 | 60-150 | < 1 | 40/120-160/480 | 50 | КТ-2-7 |
КТ639А-И | P-N-P | 1 | 1,5 | 30-80 | < 0,1 | 40/100-180/400 | 80 | КТ-27-2 |
КТ644А-Г | P-N-P | 1 | 0,6 | 40-60 | < 0,1 | 40/120-100/300 | 200 | КТ-27-2 |
КТ645А | N-P-N | 0,5 | 0,3 | 50 | < 10 | 20/200 | 200 | КТ-26 |
КТ660А,Б | N-P-N | 0,5 | 0,8 | 30-45 | < 1 | 110/220-200/450 | 200 | КТ-26 |
КТ664А9 | P-N-P | 1 | 1 | 100 | < 10 | 40/250 | 50 | КТ-47 |
КТ665А9 | N-P-N | 1 | 1 | 100 | < 10 | 40/250 | 50 | КТ-47 |
КТ680А | N-P-N | 0,35 | 0,6 | 25 | < 10 | 85/300 | 120 | КТ-26 |
КТ681А | P-N-P | 0,35 | 0,6 | 25 | < 10 | 85/300 | 120 | КТ-26 |
КТ698 | N-P-N | 0,6 | 2 | 12-90 | < 20 | 20/118-50/649 | 100 | КТ-26 |
Транзисторы большой мощности
Зарубежные
Наименование | Структура | Uмакс., В | Iмакс., А | Pмакс., Вт | fгран., ГГц | h31э | Корпус |
BLT53 | N-P-N | 10 | 2500 | 35,5 | 3,9 | 25 | SOT122D |
ВЧ-транзисторы советской разработки
Наименование | Структура | Pмакс., Вт | Iмакс., А | Uмакс., В | fгран., МГц | Кус., дБ | Iкбо., мкА | Корпус |
КТ9115А | P-N-P | 1,2 | 0,1 | 300 | > 90 | < 0,05мкА | КТ-27-2 | |
КТ9180А-В | N-P-N | 12,5 | 3,0 | 40-80 | > 100 | КТ-27-2 | ||
КТ9181А-В | P-N-P | 12,5 | 3,0 | 40-80 | > 100 | КТ-27-2 | ||
КТ920А | N-P-N | 5,0 | 0,5 | 36 | 30/200 | 4 | 2 | КТ-17 |
КТ920Б | N-P-N | 10,0 | 1,0 | 36 | 30/200 | 4 | КТ-17 | |
КТ920В | N-P-N | 25,0 | 3,0 | 36 | 30/200 | 7,5 | КТ-17 | |
КТ920Г | N-P-N | 25,0 | 3,0 | 36 | 30/200 | 3,5 | 7,5 | КТ-17 |
КТ922А | N-P-N | 8,0 | 0,8 | 65 | 50/175 | 3 | 5 | КТ-17 |
КТ922Б | N-P-N | 20,0 | 1,5 | 65 | 50/175 | 3 | КТ-17 | |
КТ922В | N-P-N | 40,0 | 3,0 | 65 | 50/175 | 40 | КТ-17 | |
КТ922Г | N-P-N | 20,0 | 1,5 | 65 | 50/175 | 20 | КТ-17 | |
КТ929А | N-P-N | 6,0 | 0,8 | 30 | > 50 | 8 | 5 | КТ-17 |
КТ940А-В, A1 | N-P-N | 10,0 | 0,1 | 160-300 | > 90 | 0,5 | КТ-27-2, -26 | |
КТ961А-В | N-P-N | 12,5 | 1,5 | 60-100 | > 50 | 10 | КТ-27-2 | |
КТ969А | N-P-N | 6,0 | 0,1 | 250 | > 60 | 0,05 | КТ-27-2 | |
КТ972А,Б | N-P-N | 8,0 | 4,0 | 45-60 | > 200 | 1 | КТ-27-2 | |
КТ973А,Б | P-N-P | 8,0 | 4,0 | 45-60 | > 200 | 1 | КТ-27-2 |
СВЧ-транзисторы советской разработки
Наименование | Структура | Pмакс., Вт | Iмакс., А | Uмакс., В | fгран., МГц | Кус., дБ | Iкбо., мкА | Корпус |
КТ913А | N-P-N | 4,7 | 0,5 | 55 | 900/1500 | 2 | 10 | КТ-16-2 |
КТ913Б | N-P-N | 8 | 1 | 55 | 900/1500 | 2 | 50 | КТ-16-2 |
КТ913В | N-P-N | 12 | 1 | 55 | 900/1500 | 2 | 50 | КТ-16-2 |
КТ916А | N-P-N | 30 | 2 | 55 | 200/1800 | 2,5 | 25 | КТ-16-2 |
КТ925А | N-P-N | 5,5 | 0,5 | 36 | 500/1250 | 12 | 7 | КТ-17 |
КТ925Б | N-P-N | 11 | 1 | 36 | 375/1100 | 7 | 12 | КТ-17 |
КТ925В | N-P-N | 25 | 3,3 | 36 | 300/550 | 5,3 | 30 | КТ-17 |
КТ925Г | N-P-N | 25 | 3,3 | 36 | 300/550 | 5,3 | 30 | КТ-17 |
КТ934А | N-P-N | 7,5 | 0,5 | 60 | > 100 | 5 | КТ-17 | |
КТ934Б | N-P-N | 15 | 1 | 60 | > 100 | 10 | КТ-17 | |
КТ934В | N-P-N | 30 | 2 | 60 | > 100 | 20 | КТ-17 | |
КТ939А | N-P-N | 4 | 0,4 | 30 | > 100 | 1 | КТ-16-2 | |
КТ939Б | N-P-N | 4 | 0,4 | 30 | > 100 | 2 | КТ-16-2 |
Мощный стабилизатор напряжения на полевом транзисторе
Приветствую, радиолюбители-самоделкины!Очень часто для питания различных электронных устройств требуются напряжения разной величины — например, чувствительные микроконтроллеры могут питаться (в зависимости от конкретного экземпляра) только строго от 5В, другим микросхемам бывает нужно напряжение 9-12В, а есть и совсем низковольтные устройства, которые требуют уровня питания 3-3,3В. Для повышения напряжения, например, чтобы получить из 3,7В литий-ионного аккумулятора целых 9-12В используются импульсные источники питания — в них напряжение повышается за счёт использования явления самоиндукции в катушке индуктивности. Понижающие же преобразователи можно поделить на два типа: те же импульсные и линейные. Первые обладают высоким КПД, но имеют несколько более сложную схемотехнику с применением индуктивностей и специальных ШИМ-контроллеров. Линейные актуальны в том случае, если нужна простота, миниатюрность и отсутствие каких-либо помех на выходе — ведь линейные стабилизаторы, в отличие от импульсных, наоборот уменьшают пульсации напряжения, в отличие от импульсных, которые их наоборот генерируют за счёт высокой частоты работы. И если импульсные стабилизаторы, как повышающие, так и понижающие, очень удобно использовать в виде готовых модулей, которые по небольшим ценам продаются на Али, то вот линейные стабилизаторы имеет смысл изготавливать своими руками, под заданные параметры.
Существуют специальные микросхемы стабилизаторов, например, серия 78lхх, они имеют на выходе фиксированные значения напряжения, либо LM317, микросхема в корпусе ТО-220, которая позволяет регулировать напряжение на выходе в широких пределах. Казалось бы, зачем выдумывать что-то ещё, если можно просто взять готовую LM317 — но не так всё просто, ведь она имеет один недостаток — выходной ток всего 1,5А. Конечно, этого достаточно для большинства применений линейного стабилизатора, тем более, что уже даже на таком токе он будет сильно нагреваться, но всё же иногда может возникнуть использовать именно мощный линейный стабилизатор с током более 1,5А, например, для подачи стабилизированного питания на аудио-усилитель. Использовать для питания усилителей импульсные источники — не самый лучший вариант по той причине, что помехи от импульсного источника в последствии будут попадать и в звуковой тракт, что явится в виде постороннего шума в звуке. Сделать мощный линейный стабилизатор можно разными путями, например, по схеме, представленной ниже — и использованием мощного полевого транзистора в качестве силового элемента и микросхему TL431 в качестве регулирующего. Такая схема обеспечивает хорошую стабильность выходного напряжения — как пишет автор, напряжение на выходе изменяется лишь на доли вольта в течение большого промежутка времени, а мощный полевой транзистор обеспечивает максимальный ток через нагрузку в 10А и рассеиваемую мощность в 50Вт — при использовании радиатора соответствующих размеров. Схема такого стабилизатора представлена на картинке ниже.
На контакты в левой части схемы подаётся входное напряжение, оно может лежать в диапазоне 6-50 вольт, что, кстати, больше, чем диапазон входных напряжений у той же LM317. Плюс подаётся на верхний контакт, минус — на нижний, таким образом, минусовые контакты входного напряжения и нагрузки просто соединяются, а коммутация происходит через плюсовой контакт. Конденсатор С1 стоит параллельно питанию на входе, 22 мкФ — минимальная ёмкость, желательно взять побольше, хотя бы 100-470 мкФ, если от стабилизатора питается чувствительная к пульсациям напряжения нагрузка, например, усилитель, ёмкость конденсаторов можно поднять до уровня 2000-4000 мкФ. Далее по схеме в плюсовой цепи стоят контакты сток-исток полевого транзистора, а в цепи его затвора установлена микросхема TL431, которая и следит за напряжением на выходе стабилизатора, поддерживая его на заданном уровне. Купить эту микросхему можно за считанные рубли в магазинах радиодеталей, либо взять из неисправного сетевого импульсного блока питания — там они встречаются довольно часто.
Эта микросхема выпускается в корпусе ТО-92 и имеет три вывода, точно так же, как и транзисторов в этих корпусах, поэтому нужно читать маркировку и не перепутать. Три этих вывода являются катодом, который идёт непосредственно к затвору транзистора, анодом, он подключается к минусу всей схемы, а третий вывод — регулирующий, на него через делитель на резисторах поступает часть выходного напряжения стабилизатора. Соотношение сопротивлений в этом делителе определяет и выходное напряжение, поэтому один из резисторов делителя является постоянным, это R3 на схеме, а второй — переменным, его вращением можно будет регулировать напряжение, в данном случае это RV1 на схеме. Резистор R2, включенный последовательно с ним, нужен для ограничения крайнего положения и особой роли не играет.
Данные номиналы делителя, указанные на схеме, позволят регулировать напряжение на выходе в диапазоне от 3 до 27В, чего достаточно для большинства применений, но при необходимости этот диапазон можно менять в большую или меньшую сторону, подбирая общее сопротивление переменного резистора RV1. Здесь можно использовать либо полноценный переменный резистор с удобной ручкой для регулировки, либо небольшой подстроечный, например, такие, как на фото ниже. Также имеет смысл установить сюда многооборотный подстроечный резистор, он позволит устанавливать выходное напряжение с высокой точностью.
Конденсатор С3 служит для фильтрации помех в регулировочной части, для большей стабильности выходного напряжения, а С2 — фильтрующий на выходе. Его ёмкость на схеме указана как 22 мкФ, не стоит превышать это значение, слишком большая ёмкость на выходе может привести к неправильной работе схемы, для подавления пульсаций лучше установить большую ёмкость на входе стабилизатора. Для наглядности ниже приведено изображение все трёх электролитических конденсаторов, необходимых для сборки схемы. Обратите внимание, что все они имеют полярность и при впаивании их на плату важно её не перепутать, на схеме минусовые контакты конденсаторов помечены в виде заштрихованной обкладки, а на самих корпусах минусовой вывод отмечен в виде вертикальной полоски. Несоблюдение полярности электролитических конденсаторов обычно приводит к тому, что они начинают быстро разогреваться, а если вовремя не отключить питание от схемы, то вовсе взрываются, разбрасывая вокруг ошмётки бумаги.
Транзистор на схеме можно применить, например, один из следующих вариантов — IRLZ24/32/44, либо аналогичные им. Ключевыми параметрами здесь являются максимальное напряжение и ток через транзистор.
Схема собирается на небольшой печатной плате, рисунок которой для открытия в программе Sprint Layout представлен в архиве в конце статьи, изготовить плату можно методом ЛУТ.
Как можно увидеть, плата имеет довольно миниатюрные размеры, а потому её без труда можно встроить внутрь какого-либо устройства, того же усилителя. Транзистор не спроста стоит на краю плату спинкой в сторону — его необходимо установить на массивный радиатор. Чем больше будут токи, протекающие через стабилизатор, тем сильнее будет нагреваться транзистор, соответственно и большего размера потребуется радиатор. Не лишним будет и активное охлаждение с помощью кулера в особых случаях. Расчёт рассеиваемой на транзисторе мощности достаточно прост — нужно лишь умножить разницу в вольтах между входным напряжением и выходным и умножить её на ток, протекающий в цепи — в результате получится мощность в ваттах. Обратите внимание, что она не должна превышать 50Вт, иначе транзистор может не справится с таким большим тепловыделением.
Готовая плата будет иметь такой вид, как на картинках выше. Для подключения проводов весьма удобно использовать винтовые клеммники.
Таким образом, получился весьма простой и мощный стабилизатор, который обязательно найдёт себе применение в радиолюбительском деле. Удачной сборки! Все вопросы и дополнения пишите в комментариях.
Источник (Source)
Полевой транзистор »Электроника
Полевой транзистор, полевой транзистор, представляет собой трехконтактное активное устройство, которое использует электрическое поле для управления током и имеет высокий входной импеданс, который используется во многих схемах.
FET, Полевой транзистор, Учебное пособие включает:
FET основы
Характеристики полевого транзистора
JFET
МОП-транзистор
МОП-транзистор с двойным затвором
Силовой MOSFET
MESFET / GaAs полевой транзистор
HEMT & PHEMT
Технология FinFET
Полевой транзистор FET — ключевой электронный компонент, используемый во многих областях электронной промышленности.
Полевой транзистор, используемый во многих схемах, состоящих из дискретных электронных компонентов, в областях от ВЧ-технологий до управления мощностью и электронного переключения до общего усиления.
Однако в основном полевые транзисторы используются в интегральных схемах. В этом приложении схемы на полевых транзисторах потребляют гораздо меньше энергии, чем микросхемы, использующие технологию биполярных транзисторов. Это позволяет работать очень крупным интегральным схемам. Если бы использовалась биполярная технология, потребляемая мощность была бы на несколько порядков выше, а генерируемая мощность была бы слишком большой, чтобы рассеиваться на интегральной схеме.
Помимо использования в интегральных схемах, дискретные версии полевых транзисторов доступны как в виде выводных электронных компонентов, так и в качестве устройств для поверхностного монтажа.
Типичные полевые транзисторыПолевой транзистор, история полевых транзисторов
До того, как первые полевые транзисторы были представлены на рынке электронных компонентов, эта концепция была известна в течение ряда лет. Было много трудностей в реализации этого типа устройства и в том, чтобы заставить его работать.
Некоторые из первых концепций полевого транзистора были изложены в статье Лилиенфилда в 1926 году и в другой статье Хайля в 1935 году.
Следующие основы были заложены в 1940-х годах в Bell Laboratories, где была создана группа по исследованию полупроводников. Эта группа исследовала ряд областей, относящихся к полупроводникам и полупроводниковой технологии, одним из которых было устройство, которое могло бы модулировать ток, протекающий в полупроводниковом канале, путем размещения электрического поля рядом с ним.
Во время этих ранних экспериментов исследователи не смогли воплотить идею в жизнь, превратив свои идеи в другую идею и, в конечном итоге, изобрели другую форму компонента полупроводниковой электроники: биполярный транзистор.
После этого большая часть исследований в области полупроводников была сосредоточена на улучшении биполярного транзистора, и идея полевого транзистора некоторое время не была полностью исследована. Сейчас полевые транзисторы очень широко используются, обеспечивая основной активный элемент во многих интегральных схемах.Без этих электронных компонентов технология электроники сильно отличалась бы от нынешней.
Полевой транзистор — основы
Концепция полевого транзистора основана на концепции, согласно которой заряд на соседнем объекте может притягивать заряды в полупроводниковом канале. По сути, он работает с использованием эффекта электрического поля — отсюда и название.
Полевой транзистор состоит из полупроводникового канала с электродами на обоих концах, называемых стоком и истоком.
Управляющий электрод, называемый затвором, помещается в непосредственной близости от канала, так что его электрический заряд может влиять на канал.
Таким образом, затвор полевого транзистора контролирует поток носителей (электронов или дырок), текущий от истока к стоку. Это достигается за счет управления размером и формой проводящего канала.
Полупроводниковый канал, по которому протекает ток, может быть P-типа или N-типа. Это дает начало двум типам или категориям полевых транзисторов, известных как полевые транзисторы с P-каналом и N-каналом.
Кроме этого, есть еще две категории. Увеличение напряжения на затворе может либо истощить, либо увеличить количество носителей заряда, доступных в канале. В результате есть полевые транзисторы в режиме улучшения и полевые транзисторы в режиме истощения.
Обозначение схемы соединения FETПоскольку только электрическое поле управляет током, протекающим в канале, говорят, что устройство работает от напряжения и имеет высокое входное сопротивление, обычно много МОм. Это может быть явным преимуществом перед биполярным транзистором, работающим от тока и имеющим гораздо более низкий входной импеданс.
Переходный полевой транзистор, JFET работает ниже насыщенияЦепи на полевых транзисторах
Полевые транзисторы широко используются во всех схемах, от схем с дискретными электронными компонентами до интегральных схем.
Примечание по конструкции схемы полевого транзистора:
Полевые транзисторы могут использоваться во многих типах схем, хотя три основные конфигурации — это общий исток, общий сток (истоковый повторитель) и общий затвор.Сама схема довольно проста и может быть реализована довольно легко.
Подробнее о схеме Полевой транзистор
Поскольку полевой транзистор представляет собой устройство, работающее от напряжения, а не токовое устройство, такое как биполярный транзистор, это означает, что некоторые аспекты схемы сильно отличаются: в частности, устройства смещения. Однако проектировать электронную схему с полевыми транзисторами относительно просто — она немного отличается от схемы с биполярными транзисторами.
Используя полевые транзисторы, можно спроектировать такие схемы, как усилители напряжения, буферы или повторители тока, генераторы, фильтры и многое другое, а схемы очень похожи на схемы для биполярных транзисторов и даже термоэмиссионных клапанов / вакуумных ламп. Интересно, что клапаны / лампы также являются устройствами, работающими от напряжения, и поэтому их схемы очень похожи, даже с точки зрения устройств смещения.
Типы полевых транзисторов
Есть много способов определить различные типы доступных полевых транзисторов.Различные типы означают, что при проектировании электронной схемы необходимо выбрать правильный электронный компонент для схемы. Правильно подобрав устройство, можно получить наилучшие характеристики для данной схемы.
Полевые транзисторыможно разделить на несколько категорий, но некоторые из основных типов полевых транзисторов можно рассмотреть на древовидной диаграмме ниже.
Типы полевых транзисторовНа рынке существует множество различных типов полевых транзисторов, имеющих разные названия.Некоторые из основных категорий отложены ниже.
Junction FET, JFET: Junction FET, или JFET, использует диодный переход с обратным смещением для обеспечения соединения затвора. Структура состоит из полупроводникового канала, который может быть N-типа или P-типа. Затем в канале изготавливается полупроводниковый диод таким образом, чтобы напряжение на диоде влияло на канал полевого транзистора.
При работе он имеет обратное смещение, а это означает, что он эффективно изолирован от канала — только обратный ток диода может течь между ними.JFET — это самый базовый тип полевого транзистора, который был разработан впервые. Однако он по-прежнему обеспечивает отличный сервис во многих областях электроники.
Полевой транзистор с изолированным затвором / полевой транзистор на основе оксида металла и кремния МОП-транзистор: В МОП-транзисторе используется изолированный слой между затвором и каналом. Обычно он формируется из слоя оксида полупроводника.
Название IGFET относится к любому типу полевого транзистора с изолированным затвором.Наиболее распространенной формой IGFET является кремниевый МОП-транзистор — Metal Oxide Silicon FET. Здесь затвор сделан из слоя металла, нанесенного на оксид кремния, который, в свою очередь, находится на канале кремния. МОП-транзисторы широко используются во многих областях электроники, особенно в интегральных схемах.
Ключевым фактором IGFET / MOSFET является чрезвычайно высокий импеданс затвора, который могут обеспечить эти полевые транзисторы. Тем не менее, будет соответствующая емкость, и это уменьшит входной импеданс при повышении частоты.
МОП-транзистор с двумя затворами: Это специализированная форма МОП-транзистора с двумя затворами, последовательно расположенными вдоль канала. Это позволяет значительно улучшить производительность, особенно на ВЧ, по сравнению с устройствами с одним затвором.
Второй затвор полевого МОП-транзистора обеспечивает дополнительную изоляцию между входом и выходом, и в дополнение к этому его можно использовать в таких приложениях, как смешивание / умножение.
MESFET: Кремниевый полевой транзистор MEtal обычно изготавливается из арсенида галлия и часто называется полевым транзистором на основе GaAs. Часто GaAsFET используются в ВЧ-приложениях, где они могут обеспечить низкий уровень шума с высоким коэффициентом усиления. Одним из недостатков технологии GaAsFET является очень маленькая структура затвора, что делает ее очень чувствительной к повреждению статическим электричеством. При обращении с этими устройствами необходимо соблюдать особую осторожность.
HEMT / PHEMT: Транзистор с высокой подвижностью электронов и псевдоморфный транзистор с высокой подвижностью электронов являются развитием базовой концепции полевого транзистора, но разработаны для обеспечения работы на очень высоких частотах. Несмотря на свою дороговизну, они позволяют достичь очень высоких частот и высокого уровня производительности.
FinFET: Технология FinFET теперь используется в интегральных схемах, чтобы обеспечить более высокий уровень интеграции, позволяя использовать элементы меньшего размера.Поскольку требуются более высокие уровни плотности и становится все труднее реализовать все более мелкие размеры элементов, технология FinFET используется все более широко.
VMOS: Стандарт VMOS для вертикальной MOS. Это тип полевого транзистора, который использует вертикальный ток для улучшения коммутационных и токонесущих характеристик. Полевые транзисторы VMOS широко используются в энергетических приложениях.
Хотя есть и другие типы полевых транзисторов, которые можно увидеть в литературе, часто эти типы являются торговыми наименованиями для конкретной технологии и являются вариантами некоторых типов полевых транзисторов, перечисленных выше.
Характеристики полевого транзистора
Помимо выбора конкретного типа полевого транзистора для данной схемы, также необходимо понимать различные спецификации. Таким образом можно гарантировать, что полевой транзистор будет работать с требуемыми рабочими параметрами.
Спецификации полевого транзисторавключают все, от максимально допустимых напряжений и токов до уровней емкости и крутизны. Все они играют роль в определении того, подходит ли какой-либо конкретный полевой транзистор для данной схемы или приложения.
Технология полевых транзисторов может использоваться в ряде областей, где биполярные транзисторы не так подходят: каждое из этих полупроводниковых устройств имеет свои преимущества и недостатки и может использоваться с большим эффектом во многих схемах. Полевой транзистор имеет очень высокий входной импеданс и является устройством, управляемым напряжением, что позволяет использовать его во многих областях.
Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».. .
Транзистор полевой
Мощный N-канальный полевой транзисторПолевой транзистор (FET) — это транзистор, который использует электрическое поле для управления формой и, следовательно, проводимостью канала одного типа носителя заряда в полупроводниковом материале. Полевые транзисторы иногда называют униполярными транзисторами , чтобы противопоставить их работу с одной несущей и работу с двумя несущими биполярных (переходных) транзисторов (BJT). Концепция полевого транзистора предшествовала BJT, хотя физически он не был реализован до после BJT из-за ограничений полупроводниковых материалов и относительной простоты изготовления BJT по сравнению с полевыми транзисторами в то время.
История
Основная статья: История транзистораПринцип полевых транзисторов был впервые запатентован Джулиусом Эдгаром Лилиенфельдом в 1925 году и Оскаром Хейлом в 1934 году, но практические полупроводниковые устройства (JFET, полевой транзистор с переходным затвором) были разработаны гораздо позже, после появления транзисторного эффекта. был обнаружен и объяснен группой Уильяма Шокли в Bell Labs в 1947 году. MOSFET (полевой транзистор металл-оксид-полупроводник), который в значительной степени заменил JFET и оказал более сильное влияние на развитие электроники, был впервые предложен Давоном Канг в 1960 году. [1]
Основная информация
полевых транзисторов — это устройства с основным носителем заряда. Устройство состоит из активного канала, по которому основные носители заряда, электроны или дырки, проходят от истока к стоку. Проводники истока и стока подключены к полупроводнику через омические контакты. Проводимость канала является функцией потенциала, приложенного к затвору. [2] [3]
Три терминала полевого транзистора: [4]
- Источник (S), через который большинство носителей входят в канал.Обычный ток, поступающий в канал в точке S, обозначается I S .
- Дренаж (D), через который большинство носителей покидают канал. Обычный ток, поступающий в канал в точке D, обозначается I D . Напряжение от стока к источнику составляет В DS .
- Gate (G), клемма, которая модулирует проводимость канала. Подавая напряжение на G, можно управлять I D .
Подробнее о терминалах
Поперечное сечение полевого МОП-транзистора n-типаВсе полевые транзисторы имеют затвор , сток и исток клеммы, которые примерно соответствуют базовому , коллектору и эмиттеру BJT.Большинство полевых транзисторов также имеют четвертый вывод, называемый корпусом , основанием , массивом или подложкой . Этот четвертый вывод служит для смещения транзистора в работу; редко используется нетривиальный вывод на корпусе в схемотехнике, но его наличие важно при настройке физической схемы интегральной схемы. Размер затвора, длина L на схеме — это расстояние между истоком и стоком. Ширина — это расширение транзистора, на схеме перпендикулярно поперечному сечению.Обычно ширина намного больше, чем длина ворот. Длина затвора 1 мкм ограничивает верхнюю частоту примерно до 5 ГГц, от 0,2 мкм до примерно 30 ГГц. Кроме того, полевые транзисторы используются реже, чем биполярные транзисторы.
Названия терминалов относятся к их функциям. Терминал ворот можно рассматривать как управляющий открытием и закрытием физических ворот. Этот затвор позволяет электронам проходить через или блокирует их прохождение, создавая или устраняя канал между истоком и стоком.Электроны текут от вывода истока к выводу стока, если на них влияет приложенное напряжение. Тело просто относится к основной части полупроводника, в котором находятся затвор, исток и сток. Обычно клемма корпуса подключается к самому высокому или самому низкому напряжению в цепи, в зависимости от типа. Вывод на корпусе и вывод источника иногда соединяются вместе, поскольку источник также иногда подключается к наивысшему или наименьшему напряжению в цепи, однако есть несколько вариантов использования полевых транзисторов, которые не имеют такой конфигурации, например, затворы передачи и каскодные схемы. .
Работа полевого транзистора
ВАХ и выходной график n-канального JFET транзистора.Полевой транзистор управляет потоком электронов (или электронных дырок) от истока к стоку, влияя на размер и форму «проводящего канала», создаваемого напряжением (или отсутствием напряжения), приложенным к клеммам затвора и истока (для простота обсуждения, это предполагает, что тело и источник связаны). Этот проводящий канал представляет собой «поток», по которому электроны текут от истока к стоку.
В устройстве с n-канальным режимом обеднения отрицательное напряжение затвор-исток заставляет область обеднения расширяться по ширине и вторгаться в канал с боков, сужая канал. Если область истощения расширяется, чтобы полностью закрыть канал, сопротивление канала от истока до стока становится большим, и полевой транзистор фактически выключается, как переключатель. Точно так же положительное напряжение затвор-исток увеличивает размер канала и позволяет электронам легко течь.
И наоборот, в устройстве с n-канальным режимом расширения положительное напряжение затвор-исток необходимо для создания проводящего канала, поскольку он не существует естественным образом внутри транзистора. Положительное напряжение привлекает свободно плавающие электроны внутри тела к затвору, образуя проводящий канал. Но сначала необходимо привлечь достаточное количество электронов около затвора, чтобы противодействовать ионам легирующей примеси, добавленным в тело полевого транзистора; это формирует область, свободную от мобильных несущих, называемую областью истощения, и это явление упоминается как пороговое напряжение полевого транзистора.Дальнейшее увеличение напряжения затвор-исток привлечет к затвору еще больше электронов, которые смогут создать токопроводящий канал от истока к стоку; этот процесс называется инверсия .
Для устройств с режимом улучшения или истощения при напряжениях сток-исток, намного меньших, чем напряжения затвор-исток, изменение напряжения затвора приведет к изменению сопротивления канала, а ток стока будет пропорционален напряжению стока (относительно напряжение источника). В этом режиме полевой транзистор работает как переменный резистор, и говорят, что полевой транзистор работает в линейном режиме или в омическом режиме . [5] [6]
Если напряжение сток-исток увеличивается, это создает значительное асимметричное изменение формы канала из-за градиента потенциала напряжения от истока к стоку. Форма области инверсии становится «защемленной» около дренажного конца канала. При дальнейшем увеличении напряжения сток-исток точка отсечки канала начинает перемещаться от стока к истоку. Сообщается, что полевой транзистор находится в режиме насыщения ; [7] некоторые авторы называют его активным режимом , для лучшей аналогии с рабочими областями биполярного транзистора. [8] [9] Режим насыщения или область между омическим состоянием и насыщением используется, когда необходимо усиление. Промежуточная область иногда считается частью омической или линейной области, даже если ток стока не является приблизительно линейным с напряжением стока.
Даже несмотря на то, что проводящий канал, образованный напряжением затвор-исток, больше не соединяет исток со стоком во время режима насыщения, поток носителей не блокируется. Рассматривая снова n-канальное устройство, в корпусе p-типа существует обедненная область, окружающая проводящий канал и области стока и истока.Электроны, составляющие канал, могут свободно выходить из канала через область обеднения, если они притягиваются к стоку напряжением сток-исток. Область обеднения свободна от носителей и имеет сопротивление, подобное кремнию. Любое увеличение напряжения сток-исток увеличит расстояние от стока до точки отсечки, увеличивая сопротивление из-за области истощения пропорционально приложенному напряжению сток-исток. Это пропорциональное изменение приводит к тому, что ток сток-исток остается относительно постоянным независимо от изменений напряжения сток-исток и в отличие от работы в линейном режиме.Таким образом, в режиме насыщения полевой транзистор ведет себя как источник постоянного тока, а не как резистор, и может наиболее эффективно использоваться в качестве усилителя напряжения. В этом случае напряжение затвор-исток определяет уровень постоянного тока через канал.
Композиция
Полевой транзистор может быть сконструирован из ряда полупроводников, из которых кремний является наиболее распространенным. Большинство полевых транзисторов изготавливаются с использованием обычных методов обработки объемных полупроводников с использованием монокристаллической полупроводниковой пластины в качестве активной области или канала.
Среди наиболее необычных материалов корпуса — аморфный кремний, поликристаллический кремний или другие аморфные полупроводники в тонкопленочных транзисторах или полевые транзисторы с органическими эффектами, которые основаны на органических полупроводниках и часто используют органические изоляторы затвора и электроды. Полевые транзисторы производятся с использованием различных материалов, таких как карбид кремния (Sic), арсенид галлия (GaAs), нитрид галлия (GaN), арсенид индия-галлия (InGaAs). В июне 2011 года IBM объявила об успешном использовании полевых транзисторов на основе графена в интегральной схеме. [10] [11] Эти транзисторы имеют частоту отсечки 100 ГГц, что намного выше, чем у стандартных кремниевых полевых транзисторов [12] .
Типы полевых транзисторов
Полевые транзисторы истощенного типа при типичных напряжениях. JFET, поликремниевый MOSFET, MOSFET с двойным затвором, MOSFET с металлическим затвором, MESFET. обеднение, электроны, дырки, металл, изолятор. Вверху = источник, внизу = сток, слева = затвор, справа = масса. Напряжения, которые приводят к образованию каналов, не показаны.Канал полевого транзистора легирован для получения полупроводника N-типа или полупроводника P-типа.Сток и исток могут быть легированы легированием противоположного типа по отношению к каналу, в случае полевых транзисторов в режиме обеднения, или легированы легированием аналогичного типа по отношению к каналу, как в полевых транзисторах в режиме улучшения. Полевые транзисторы отличаются также методом изоляции между каналом и затвором. Типы полевых транзисторов:
- CNTFET (полевой транзистор из углеродных нанотрубок)
- DEPFET — это полевой транзистор, сформированный на полностью обедненной подложке, который одновременно действует как датчик, усилитель и узел памяти.Его можно использовать как датчик изображения (фотона).
- DGMOSFET — это полевой МОП-транзистор с двойным затвором.
- DNAFET — это специализированный полевой транзистор, который действует как биосенсор, используя ворота, сделанные из одноцепочечных молекул ДНК, для обнаружения совпадающих цепей ДНК.
- FREDFET (полевой транзистор с эпитаксиальным диодом с быстрым обратным или быстрым восстановлением) — это специализированный полевой транзистор, предназначенный для обеспечения очень быстрого восстановления (выключения) основного диода.
- HEMT (транзистор с высокой подвижностью электронов), также называемый HFET (гетероструктурный полевой транзистор), может быть изготовлен с использованием технологии запрещенной зоны в тройном полупроводнике, таком как AlGaAs.Полностью обедненный материал с широкой запрещенной зоной образует изоляцию между затвором и корпусом.
- IGBT (биполярный транзистор с изолированным затвором) — это устройство для управления мощностью. Он имеет структуру, похожую на полевой МОП-транзистор, связанный с биполярным основным проводящим каналом. Они обычно используются в диапазоне рабочего напряжения сток-исток 200–3000 В. Силовые МОП-транзисторы по-прежнему являются предпочтительным устройством для напряжений сток-исток от 1 до 200 В.
- ISFET (ионно-чувствительный полевой транзистор), используемый для измерения концентрации ионов в растворе; когда концентрация ионов (например, H + , см. pH-электрод) изменяется, ток через транзистор соответственно изменяется.
- JFET (полевой транзистор) использует обратносмещенный p-n переход для отделения затвора от корпуса.
- MESFET (полевой транзистор металл-полупроводник) заменяет p-n переход полевого транзистора с барьером Шоттки; используется в GaAs и других полупроводниковых материалах AIIIBV.
- В MODFET (полевой транзистор с модуляционным легированием) используется структура с квантовыми ямами, образованная градиентным легированием активной области.
- В полевом транзисторе MOSFET (полевой транзистор металл – оксид – полупроводник) используется изолятор (обычно SiO 2 ) между затвором и корпусом.
На подложке p-типа расположены два острова n-типа. Между этими двумя n регионами есть n-канал. Две n-области образуют терминалы истока и стока. Вывод затвора находится в изолированном слое SiO2. Есть проводимость без напряжения затвора.
D МОП-транзистор< [13] >
Аналогично типу истощения, но без n-канала.Следовательно, для проводимости требуется некоторое положительное напряжение затвора, которое привлекает электроны из p-области, которая проводит от источника к стоку.
E МОП-транзистор< [14] > [15]
- NOMFET — полевой транзистор с органической памятью в виде наночастиц. [1]
- OFET — это органический полевой транзистор, в канале которого используется органический полупроводник.
- GNRFET — это полевой транзистор, в канале которого используется графеновая нанолента.
- VeSFET (вертикально-щелевой полевой транзистор) представляет собой полевой транзистор квадратной формы без перехода с узкой щелью, соединяющей исток и сток в противоположных углах. Два затвора занимают другие углы и контролируют ток через щель. [2] [3]
Преимущества полевого транзистора
Основным преимуществом полевого транзистора является высокое входное сопротивление порядка 100 МОм или более. Таким образом, это устройство, управляемое напряжением, которое демонстрирует высокую степень изоляции между входом и выходом.Это униполярное устройство, зависящее только от тока большинства. Он менее шумный, поэтому его можно найти в FM-тюнерах для тихого приема. Он относительно невосприимчив к радиации. Он не показывает напряжения смещения при нулевом токе стока и, следовательно, представляет собой отличный прерыватель сигнала. Обычно он имеет лучшую термическую стабильность, чем BJT. [4]
Недостатки FET
Он имеет относительно низкое произведение коэффициента усиления и полосы пропускания по сравнению с BJT. Недостатком полевого МОП-транзистора является то, что он очень чувствителен к перегрузкам, что требует особого обращения во время установки. [16]
использует
БТИЗнаходят применение в переключении катушек зажигания двигателей внутреннего сгорания, где важны возможности быстрого переключения и блокировки напряжения.
Наиболее часто используемый полевой транзистор — это МОП-транзистор. Технологический процесс CMOS (дополнительный металлооксидный полупроводник) является основой для современных цифровых интегральных схем. В этом технологическом процессе используется схема, в которой (обычно «режим улучшения») p-канальный полевой МОП-транзистор и n-канальный полевой МОП-транзистор соединены последовательно, так что, когда один из них включен, другой выключен.
Хрупкий изолирующий слой полевого МОП-транзистора между затвором и каналом делает его уязвимым для электростатических повреждений во время работы. Обычно это не проблема после того, как устройство было установлено в правильно спроектированной цепи.
В полевых транзисторах электроны могут течь в любом направлении через канал при работе в линейном режиме, и соглашение об именах клемм стока и истока несколько произвольно, поскольку устройства обычно (но не всегда) построены симметрично от истока до стока.Это делает полевые транзисторы подходящими для переключения аналоговых сигналов между трактами (мультиплексирование). Используя эту концепцию, можно, например, сконструировать твердотельную микшерную панель.
Обычно полевой транзистор используется в качестве усилителя. Например, из-за большого входного сопротивления и низкого выходного сопротивления он эффективен в качестве буфера в конфигурации с общим стоком (истоковый повторитель).