Site Loader

Содержание

Как проверить мощный полевой транзистор

В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем. Транзисторами также называются дискретные электронные приборы, которые, выполняя функцию одиночного транзистора, имеют в своем составе много элементов, конструктивно являясь интегральной схемой, например составной транзистор или многие транзисторы большой мощности [2]. В биполярном транзисторе используются полупроводники с обоими типами проводимости, он работает за счет взаимодействия двух, близко расположенных на кристалле, p-n переходов и управляется изменением тока через база-эмиттерный переход, при этом вывод эмиттера всегда является общим для управляющего и выходного токов. В полевом транзисторе используется полупроводник только одного типа проводимости, расположенный в виде тонкого канала, на который воздействует электрическое поле изолированного от канала затвора [3] , управление осуществляется изменением напряжения между затвором и истоком.

Полевой транзистор, в отличие от биполярного, управляется напряжением, а не током.


Поиск данных по Вашему запросу:

Как проверить мощный полевой транзистор

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Что такое полевой транзистор и как его проверить
  • Биполярные транзисторы с изолированным затвором (IGBT или БТИЗ)
  • Как проверить полевой МОП (Mosfet) — транзистор цифровым мультиметром
  • N канальный полевик. Как проверить полевой транзистор. Проверка полевиков в схеме
  • Краткий курс: как проверить полевой транзистор мультиметром на исправность
  • Полезные товары
  • Проверка полевого транзистора с помощью мультиметра
  • Как проверить полевой транзистор
  • Как проверить МОП транзистор
  • Транзистор

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Полевой ТРАНЗИСТОР

Что такое полевой транзистор и как его проверить


В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем. Транзисторами также называются дискретные электронные приборы, которые, выполняя функцию одиночного транзистора, имеют в своем составе много элементов, конструктивно являясь интегральной схемой, например составной транзистор или многие транзисторы большой мощности [2].

В биполярном транзисторе используются полупроводники с обоими типами проводимости, он работает за счет взаимодействия двух, близко расположенных на кристалле, p-n переходов и управляется изменением тока через база-эмиттерный переход, при этом вывод эмиттера всегда является общим для управляющего и выходного токов.

В полевом транзисторе используется полупроводник только одного типа проводимости, расположенный в виде тонкого канала, на который воздействует электрическое поле изолированного от канала затвора [3] , управление осуществляется изменением напряжения между затвором и истоком.

Полевой транзистор, в отличие от биполярного, управляется напряжением, а не током. К м годам транзисторы, благодаря своей миниатюрности, экономичности, устойчивости к механическим воздействиям и невысокой стоимости практически полностью вытеснили электронные лампы из малосигнальной электроники.

Благодаря своей способности работать при низких напряжениях и значительных токах, транзисторы позволили уменьшить потребность в электромагнитных реле и механических переключателях в оборудовании, а благодаря способности к миниатюризации и интеграции позволили создать интегральные схемы , заложив основы микроэлектроники.

С х в связи с появлением новых мощных транзисторов, стали активно вытесняться электронными устройствами трансформаторы, электромеханические и тиристорные ключи в силовой электротехнике, начал активно развиваться Частотно-регулируемый привод и инверторные преобразователи напряжения. До х гг. В году немецкий физик Карл Фердинанд Браун впервые обнаружил явление односторонней проводимости контакта металл—полупроводник.

В году инженер Гринлиф Виттер Пиккард изобретает точечный полупроводниковый диод-детектор.

В году английский физик Уильям Икклз обнаружил у некоторых полупроводниковых диодов способность генерировать электрические колебания, а инженер Олег Лосев в году самостоятельно разработал диоды, обладающие при некоторых напряжениях смещения отрицательным дифференциальным сопротивлением, с помощью которых впервые успешно использовал усилительные и генераторные свойства полупроводников Кристадинный эффект , в детекторных и гетеродинных радиоприёмниках собственной конструкции.

Особенностью этого периода развития было то, что физика полупроводников была ещё плохо изучена, все достижения являлись следствием экспериментов, учёные затруднялись объяснить, что происходит внутри кристалла, часто выдвигая ошибочные гипотезы.

Потенциальных перспектив полупроводников никто не видел. Первый шаг в создании полевого транзистора сделал австро-венгерский физик Юлий Эдгар Лилиенфельд , который предложил метод управления током в образце путём подачи на него поперечного электрического поля, которое, воздействуя на носители заряда, будет управлять проводимостью.

Однако несмотря на то, что полевые транзисторы основаны на простом электростатическом эффекте поля и по протекающим в них физическим процессам проще биполярных, создать работоспособный образец полевого транзистора долго не удавалось.

Работоспособный полевой транзистор был создан уже после открытия биполярного транзистора. В году Уильям Шокли теоретически описал модель полевого транзистора другого типа, модуляция тока в котором, в отличие от ранее предложенных МДП [8] структур, осуществлялась изменением толщины проводящего канала за счёт расширения или сужения обеднённой области, прилегающего к каналу р-n-перехода.

Это происходило при подаче на переход управляющего напряжения запирающей полярности затворного диода. Первый полевой МДП-транзистор, запатентованный ещё в е годы и сейчас составляющий основу компьютерной индустрии, впервые был создан в году после работ американцев Канга и Аталлы, предложивших в качестве слоя затворного диэлектрика формировать на поверхности кремниевого кристалла с помощью окисления поверхности кремния тончайший слой диоксида кремния , изолирующий металлический затвор от проводящего канала, такая структура получила название МОП-структура Металл-Окисел-Полупроводник.

В отличие от полевого, первый биполярный транзистор создавался экспериментально, а его физический принцип действия был объяснён уже позднее. Иоффе провёл ряд экспериментов с полупроводниковым устройством, конструктивно повторяющим точечный транзистор на кристалле карборунда SiC , однако достаточного коэффициента усиления получить тогда не удалось.

Изучая явления электролюминесценции в полупроводниках, Лосев исследовал около 90 различных материалов, особенно выделяя кремний, и в году он вновь упоминает о работах над трёхэлектродными системами в своих записях, но начавшаяся война и гибель инженера в блокадном Ленинграде зимой года привели к тому, что некоторые его работы оказались утеряны и сейчас неизвестно, насколько далеко он продвинулся в создании транзистора. В начале х годов точечные трёхэлектродные усилители изготовили также радиолюбители Ларри Кайзер из Канады и Роберт Адамс из Новой Зеландии, однако их работы не были запатентованы и не подвергались научному анализу [5].

Успеха добилось опытно-конструкторское подразделение Bell Telephone Laboratories фирмы American Telephone and Telegraph , с года в нём, под руководством Джозефа Бекера, работала группа ученых специально нацеленная на создание твердотельных усилителей. До года изготовить полупроводниковый усилительный прибор не удалось предпринимались попытки создания прототипа полевого транзистора.

После войны, в году, исследования возобновились под руководством физика-теоретика Уильяма Шокли , после ещё 2 лет неудач, 16 декабря года, исследователь Уолтер Браттейн , пытаясь преодолеть поверхностный эффект в германиевом кристалле и экспериментируя с двумя игольчатыми электродами, перепутал полярность приложенного напряжения и неожиданно получил устойчивое усиление сигнала.

Последующее изучение открытия, совместно с теоретиком Джоном Бардиным показало, что никакого эффекта поля нет, в кристалле идут ещё не изученные процессы, это был не полевой, а неизвестный прежде, биполярный транзистор.

Узнав об успехе, уже отошедший от дел Уильям Шокли, вновь подключается к исследованиям и за короткое время создает теорию биполярного транзистора, в которой уже наметил замену точечной технологии изготовления, более перспективной, плоскостной.

И все же, мировой сенсации не состоялось, первоначально открытие не оценили по достоинству, ибо первые точечные транзисторы, в сравнении с электронными лампами, имели очень плохие и неустойчивые характеристики. Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии вторично за создание теории сверхпроводимости.

Прибор использовался в качестве смесителя в радиолокационной технике, как два, близких по параметрам, выпрямительных точечных диода, выполненных на одном кристалле германия.

Тогда же Матаре впервые обнаружил влияние тока одного диода на параметры другого и начал исследования в этом направлении. После войны Герберт Матаре, в Париже, встретился с Иоганном Велкером, где оба физика, работая в филиале американской корпорации Westinghouse Electric , продолжили эксперименты над дуодиодом в инициативном порядке.

Серийно выпускаемые фирмой Westinghouse транзитроны, несмотря на то что по качеству они успешно конкурировали с транзисторами, также не смогли завоевать рынок и вскоре работы в этом направлении прекратились [5]. Несмотря на миниатюрность и экономичность, первые транзисторы отличались высоким уровнем шумов, маленькой мощностью, нестабильностью характеристик во времени и сильной зависимостью параметров от температуры.

Точечный транзистор, не являясь монолитной конструкцией, был чувствителен к ударам и вибрациям. Фирма-создатель Bell Telephone Laboratories не оценила перспективы нового прибора, выгодных военных заказов не ожидалось и лицензия на изобретение вскоре начала продаваться всем желающим за 25 тыс. В году был создан плоскостной транзистор, конструктивно представляющий собой монолитный кристалл полупроводника, и примерно в это же время появились первые транзисторы на основе кремния.

Характеристики транзисторов быстро улучшались и вскоре они стали активно конкурировать с электронными радиолампами. Позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, совершив революцию в создании интегральных схем и компьютеров.

В начале го века транзистор стал одним из самых массовых изделий, производимых человечеством. С появлением интегральных микросхем началась борьба за уменьшение размера элементарного транзистора. В году самые маленькие транзисторы содержали считанные атомы вещества [12]. Транзисторы стали основной частью компьютеров и других цифровых устройств.

В некоторых конструкциях процессоров их количество превышало миллиард штук. Современная технология может оперировать не только электрическим зарядом, но и магнитными моментами, спином отдельного электрона, фононами и световыми квантами, квантовыми состояниями в общем случае.

Помимо основного полупроводникового материала , применяемого обычно в виде легированного в некоторых частях монокристалла, транзистор содержит в своей конструкции металлические выводы, изолирующие элементы, корпус пластиковый, металлостеклянный или металлокерамический. Другие материалы для транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев.

Также имеются отдельные сообщения о транзисторах на основе углеродных нанотрубок [13] , о графеновых полевых транзисторах. Принцип действия и способы применения транзисторов существенно зависят от их типа и внутренней структуры.

По рассеиваемой в виде тепла мощности различают:. Существенное улучшение параметров транзисторов BISS достигнуто за счёт изменения конструкции зоны эмиттера. Такая конструкция транзистора позволяет сократить количество внешних навесных компонентов и минимизирует необходимую площадь монтажа. RET транзисторы применяются для непосредственного подключения к выходам микросхем без использования токоограничивающих резисторов.

Применение гетеропереходов позволяет создавать высокоскоростные и высокочастотные полевые транзисторы, такие как например, HEMT. Но транзисторы почти всех разновидностей имеют только три вывода. Для включения трёхвыводного прибора необходимо один из выводов назначить общим, и, поскольку таких комбинаций может быть только три, то существуют три основные схемы включения транзистора:. Выбор нагрузки транзистора и тока коллектора стока при этом оставляется за разработчиком конечной схемы, в составе которой применяются модуль или микросхема.

Такой подход значительно расширяет рамки применимости модуля или микросхемы за счет небольшого усложнения конечной схемы. Статья с подробным описанием принципа в англоязычном разделе. Существуют экспериментальные разработки полностью цифровых усилителей, на основе ЦАП, состоящих из мощных транзисторов [20] [21].

Транзисторы в таких усилителях работают в ключевом режиме. Транзисторы применяются в качестве активных усилительных элементов в усилительных и переключательных каскадах.

Реле и тиристоры имеют больший коэффициент усиления по мощности, чем транзисторы, но работают только в ключевом переключательном режиме. Вся современная цифровая техника построена, в основном, на полевых МОП металл-оксид-полупроводник -транзисторах МОПТ , как более экономичных, по сравнению с БТ, элементах.

Иногда их называют МДП металл-диэлектрик-полупроводник -транзисторы. Размеры современных МОПТ составляют от 90 до 8 нм [ источник не указан дней ]. На протяжении 60 лет происходит уменьшение размеров миниатюризация МОПТ и увеличение их количества на одном чипе степень интеграции , в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе см.

Закон Мура. Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров, снижению энергопотребления и тепловыделения. В настоящее время микропроцессоры Intel собираются на трёхмерных транзисторах 3d транзисторы , именуемых Tri-Gate.

Эта революционная технология позволила существенно улучшить существующие характеристики процессоров. Суть этой технологии в том, что сквозь затвор транзистора проходит особый High-K диэлектрик, который снижает токи утечки.

По принципу управления наиболее родственен электронной лампе полевой транзистор, многие соотношения, описывающие работу ламп, пригодны и для описания работы полевых транзисторов. Это привело к широкому использованию комплементарных схем КМОП. Основные преимущества, которые позволили транзисторам заменить своих предшественников вакуумные лампы в большинстве электронных устройств:. Материал из Википедии — свободной энциклопедии.

У этого термина существуют и другие значения, см. Транзистор значения. Подробное рассмотрение темы: Изобретение транзистора. Основная статья: Составной транзистор. Дополнительные сведения: Электронная лампа. Транзисторная история. Мощные полевые транзисторы: история, развитие и перспективы. Аналитический обзор. Виртуальный компьютерный музей.

Краткие основы и история развития. На ветвях углеродного дерева вырос небывалый транзистор. Для улучшения этой статьи желательно :. Проставив сноски , внести более точные указания на источники. Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником. Электронные компоненты. Резистор Переменный резистор Подстроечный резистор Варистор Фоторезистор Конденсатор Переменный конденсатор Подстроечный конденсатор Катушка индуктивности Кварцевый резонатор Предохранитель Самовосстанавливающийся предохранитель Трансформатор Мемристор Бареттер.

Электронно-лучевая трубка ЖК-дисплей Светодиод Газоразрядный индикатор Вакуумно-люминесцентный индикатор Блинкерное табло Семисегментный индикатор Матричный индикатор Кинескоп. Терморезистор Термопара Элемент Пельтье. Транзисторные усилители.


Биполярные транзисторы с изолированным затвором (IGBT или БТИЗ)

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными. Транзистор n-канального типа состоит из кремниевой подложки с p-проводимостью, n-областей, получаемых путем добавления в подложку примесей, диэлектрика, изолирующего затвор от канала, расположенного между n-областями. К n-областям подсоединяются выводы исток и сток. Под действием источника питания из истока в сток по транзистору может протекать ток.

Перед началом проверки полевых транзисторов рассмотрим, какие .. Теперь можно потренироваться в определении цоколевки мощного транзистора.

Как проверить полевой МОП (Mosfet) — транзистор цифровым мультиметром

Продолжаем рубрику проверки электрорадиоэлементов, и сегодня я представляю первую статью по проверке полевых транзисторов тестером или как сейчас принято говорить — мультиметром. Из этого рисунку видно, что полевые транзисторы подразделяются на транзисторы с управляющим p-n переходом и полевые транзисторы с изолированным затвором. Сегодня я вам расскажу, как проверить полевой транзистор с управляющим p-n переходом , а в следующем выпуске журнал перейдем к проверке MOSFET транзистора, так что не забываем подписываться на журнал. Форма подписки после статьи. Полевые транзисторы бывают n-канальные и p-канальные. В виду того, что широкое распространение получили n-канальные полевые транзисторы, на их примере и рассмотрим принцип работы полевого транзисторы с управляющим p-n переходом. Итак, транзистор состоит из n-полупроводника с внедренными в него высоколегированными n-областями с большой концентрацией носителей заряда — электронов. Сам полупроводник находится на подложке p-типа, которая соединена с еще одной p-областью. Вместе эти области называются затвором gate.

N канальный полевик. Как проверить полевой транзистор. Проверка полевиков в схеме

В современной электронной аппаратуре, в блоках питания , мониторах, системных платах ПК и другой аппаратуре все чаще находят применение полевые транзисторы. При проведении ремонта мы сталкивается с необходимостью проверки исправности мощных полевых транзисторов. В данной статье даны рекомендации по проверке полевого транзистора и мерах предосторожности при работе с этими компонентами электронных схем. Полевые транзисторы ПТ , благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания ПК, телевизоров, мониторов, видеомагнитофонов и другой радиоэлектронной аппаратуры.

Несмотря на свою надёжность, они нередко выходят из строя, что связано с нарушениями режима в их работе.

Краткий курс: как проверить полевой транзистор мультиметром на исправность

Принцип работы IGBT транзисторов основан на применении n-канального МОП-транзистора малой мощности для управления мощным биполярным транзистором. Таким образом, удалось совместить достоинства биполярного и полевого транзистора. Малая управляющая мощность, высокое входное сопротивление, большой уровень пробивных напряжений, малое сопротивление в открытом состоянии — позволяют применять IGBT в цепях с высокими напряжениями и большими токами. Сварочные аппараты, источники бесперебойного питания, приводы электрических двигателей, мощные преобразователи напряжения — вот сфера применения таких элементов. Биполярные транзисторы с изолированным затвором способны коммутировать токи в тысячи ампер, напряжение эмиттер-коллектор может достигать несколько киловольт.

Полезные товары

Для того, чтобы проверить полевой транзистор с управляющим P-N переходом, достаточно вспомнить его внутреннее строение. Теперь давайте вспомним, какой радиоэлемент у нас состоит из P-N перехода? Все верно, это диод. Получается что Затвор и Исток образуют один диод, а Затвор и Сток — другой диод. Сам канал обладает каким-то сопротивлением, а это есть нечто иное как резистор. У нас в гостях уже знакомый вам из прошлой статьи N-канальный полевой транзистор с P-N переходом 2N Впрочем, не так быстро!

Рассмотрены особенности работы полевых транзисторов типа MOSFET. Приведена методика как проверить полевой транзистор р- и n-канального.

Проверка полевого транзистора с помощью мультиметра

Как проверить мощный полевой транзистор

Компьютер — это сложная система, состоящая из отдельных частей. Разбирая, как работают эти отдельные части большие и малые , мы приобретаем знание. Обретая знание, мы получаем шанс помочь своему железному другу-компьютеру, если он вдруг забарахлит.

Как проверить полевой транзистор

ВИДЕО ПО ТЕМЕ: Проверить полевой транзистор MOSFET. Измеряем RDS, сопротивление канала.

В современной электронной аппаратуре все чаще находят применение полевые транзисторы. Разработчики используют их в блоках питания телевизоров, мониторов, видеомагнитофонов и другой аппаратуре. При проведении ремонта мастер сталкивается с необходимостью проверки исправности мощных полевых транзисторов. В статье автор рассказывает, как произвести проверку полевого транзистора с помощью обычного омметра. Полевые транзисторы ПТ , благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания телевизоров, мониторов, видеомагнитофонов и другой радиоэлектронной аппаратуры. При ремонте аппаратов, в которых применены полевые транзисторы, у ремонтников очень часто возникает задача проверки целостности и работоспособности этих транзисторов.

Как проверить МОП транзистор?

Как проверить МОП транзистор

Здесь принимаются все самые невообразимые вопросы Главное — не стесняйтесь. Поверьте, у нас поначалу вопросы были еще глупее. Re: проверка полевого транзистора на схеме. Было бы не плохо ещё схему увидеть Ну, если это только один транзистор, то в данном случае его лучше и безопаснее выпаять мощным паяльником и проверить отдельно от платы.

Транзистор

Добрый день! Как проверить полевой транзистор стрелочным мультиметром. Везде где встречал методы проверки используется цифровой мультиметр в режиме прозвонки диодов.


Как проверить полевой транзистор. Схема и подробное описание

Главная » Справочник » Как проверить полевой транзистор. Схема и подробное описание

admin

Categories Справочник

Данная статья поможет вам ответить на вопрос как проверить полевой транзистор. В практике радиолюбителя довольно часто возникает ситуация, когда нужно проверить полевой транзистор на исправность. В предыдущей статье был рассмотрен способ проверки транзисторов (биполярных).

Но, к сожалению, данный способ определения неисправности  не подходит для полевых транзисторов, поскольку между этими двумя видами есть существенные отличия. Одно из них это то, что касается принципа действия: в полевом транзисторе контроль выходного сигнала осуществляется электрическим полем либо входным напряжением, в биполярном же только входным током.

Поэтому рассмотрим иную схему проверки полевого транзистора. Данное устройство для проверки достаточно простое. Конечно же, с его помощью нельзя узнать необходимые  электрические характеристики, но данный индикатор поможет подсказать, годен проверяемый полупроводник или нет.

Описание работы

Для проверки первым делом необходимо соединить каждый вывод проверяемого транзистора к соответствующим выводам прибора: сток — к ХЗ, затвора Х4, исток — к Х5.

После нажатия кнопки SA2 активизируется генератор звуковой частоты. Колебания в генераторе возникают в следствии ПОС, которая образуется между истоком и затвором. Для усиления величины ПОС в схеме применен согласующий повышающий трансформатор Т1, имеющий коэффициент трансформации 3,57. Использование ПОС объясняется и тем, что у полевого транзистора коэффициент передачи не более единицы. Включатель  SA2 не только подает питание на схему, но и создает первичный импульс тока для запуска звукового генератора.

Отдельные  виды полевых транзисторов с довольно высоким напряжением отсечки начинают функционировать не иначе как при таком режиме включения. Но имеется немало видов транзисторов, которые не требуют включения с помощью импульса, после включения напряжения питания они  начинают сразу работать. Переключатель SA1 необходим для переключения режима проверки в зависимости от того какой тип (канал типа n или p) полупроводника.

В устройстве использован головной телефон (динамическая головка) ВА1, который применяется для прослушивания звукового фона и проверки работоспособности транзистора. Звуковой сигнал в головном телефоне появляется при рабочем полевом транзисторе и отсутствует при его неисправности. Питается данное устройство от 3 вольт, это может быть стабилизированный источник питания или же 2 пальчиковые батарейки

Детали устройства

Трансформатор согласующий: Ш-образный сердечник, с площадью сечения не меньше 2 кв.см. Обе обмотки намотаны проводом ПЭВ-2 диаметр 0,1мм. Первичная обмотка состоит из 2300 витков, вторичная из 644 витка с отводом от середины намотки.

При выполнении намотки желательно сперва намотать вторичную обмотку, после чего заизолировать ее и поверх нее намотать первичную. Можно применить и готовый миниатюрный трансформатор от радиоприемника. Обычно они бывают  УШ12,5Х20 или Ш12Х16. Конденсатор С1 —  К73-5.

В роли  звукового сигнализатора  допускается применение головных телефонов следующих типов ТК-47, ТА-56М, ТА-4.

Источник: Самодельные электронные устройства для дома, Сидоров И.Н.

Блок питания 0…30В/3A

Набор для сборки регулируемого блока питания. ..

Подробнее

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее




Categories Справочник Tags Тестер

Отправить сообщение об ошибке.

Проверка полевого транзистора

Проверка полевого транзистора

NOAHTEC.com

Испытательный полевой элемент

Как тестировать полевые транзисторы и другие электронные компоненты, такие как A Профессиональный

 

Проверка компонентов, которые имеют два провода, такие как резистор, конденсатор, диод и т. д., намного проще чем проверка транзистора и полевого транзистора, которые имеют три вывода. Частенько технические специалисты путаются с трехногими устройствами. В сегодняшней статье я поделюсь с вами как точно проверить полевой транзистор (fet) с помощью аналогового мультиметра. Во-первых, определите затвор, сток и исток из справочник по полупроводникам. Как только вы найдете каждый контакт из
футов, затем используйте аналоговый измеритель, настроенный на диапазон, умноженный на 10 кОм. Если ты измеряя n-канальный полевой транзистор, затем поместите черный щуп на сливной штифт. затем коснитесь штифта затвора красным щупом, чтобы разрядить любую внутреннюю емкость в фет. Теперь переместите красный щуп на исток, пока черный щуп неподвижен. касаясь сливного штифта. Используйте свой палец и коснитесь ворот и сливного штифта вместе, и вы увидите, что стрелка аналогового измерителя дернется вперед до средний диапазон шкалы измерителя. Снятие красного щупа с источника булавка и коснувшись ее снова исходным булавкой, игла все равно останется в центре шкалы измерителя. Чтобы разрядить его, вы должны удалить красный щуп и коснитесь одного
время на булавке ворот. Это снова разрядит внутреннюю емкость. Теперь, используя красный щуп, чтобы снова коснуться штифта источника, игла вообще не двигаться, потому что вы уже разряжаете его, касаясь штифта затвора.
Я знаю, что это немного запутанно, но после некоторой практики вы сможете для тестирования всех типов ФЭТ.


При измерении fe и вы заметили, что все показания сдвинулись к 0 Ом, то полевой транзистор считается закороченным и его необходимо заменить. Проверка P-канала аналогична проверке N-канального полевого транзистора, просто переключите полярность зонда при измерении P-канала. Если у вас есть аналог мультиметр с диапазоном в 100 кОм, то вы, возможно, не сможете точно проверьте фет из-за отсутствия 9Вольтовая батарея в счетчике. Отсутствующей 9-вольтовой батареи будет недостаточно для срабатывания полевого ключа. Убедитесь, что ваш измеритель имеет временной диапазон 10 кОм. Типичная N-канальная полевая часть номера K792, K1118, IRF630, IRF 840. J306, J512, IRF9610 и др.



 

Как проверить исправность полевого транзистора

Для проверки исправности полевого транзистора Вы можете воспользоваться любым цифровым мультиметром с функцией «прозвонки диодов». Эта функция работает таким образом, что позволяет измерить прямое падение напряжения на p-n переходе, которое будет отображаться на дисплее мультиметра во время тестирования.

В процессе данного теста мультиметр способен пропускать ток через проверяемую цепь в пределах нескольких миллиампер, и если падение напряжения окажется слишком маленьким, то при наличии в приборе функции звукового оповещения он будет Чисто. А так как в любом полевом транзисторе присутствуют p-n переходы, то можно ожидать вполне адекватного результата.

Перед проверкой полевого транзистора на обрыв закоротите фольгой все его выводы на секунду для снятия статического заряда, чтобы разрядить все его переходные емкости, включая емкость затвор-исток.

Проверка встроенного обратного диода

Практически в любом современном полевом транзисторе, за исключением их специальных типов, параллельно диоду цепи сток-исток включена внутренняя «защитная» цепь. наличие этого диода внутри полевого обусловлено особенностями технологии производства мощных транзисторов.Иногда он мешает, считается паразитным, но в большинстве полевых транзисторов без него, как часть интегральной структуры электронной компонента,можно не делать.Поэтому в рабочем полевом транзисторе этот диод тоже должен быть рабочим.В n-канальном полевом транзисторе этот диод подключен катодом к стоку,анодом к истоку, а в р-канале анодом к стоку, а катодом к истоку.

Включить мультиметр в режим «звонка» диодов. Если полевой транзистор n-канальный, то красный щуп мультиметра присоедините к его истоку (истоку), а черный к стоку (сток).

Обычно сток находится посередине и подключается к токопроводящей подложке транзистора, а исток — правый вывод (проверьте это в даташите). Если внутренний диод исправен, мультиметр покажет прямое падение напряжения на нем — в районе 0,4-0,7 вольта. Если теперь положение щупов поменять местами, прибор покажет бесконечность. Если да, то внутренний диод работает.

Проверить цепь сток-исток

Полевой транзистор управляется электрическим полем затвора. А если емкость затвор-исток зарядить, то проводимость в направлении сток-исток увеличится.

Итак, если транзистор n-канальный, присоединяем черный щуп к затвору, а красный к истоку, а через секунду меняем положение щупов на противоположное — красный к затвору, а черный к истоку . Так что сначала мы, наверное, разгрузили затвор, а уже после этого заряжали. Затвор обычно слева, а источник справа (см. техпаспорт).

Теперь переместите красный щуп от затвора к стоку, а черный пусть останется у истока. Если транзистор исправен, то как только вы передвинете красный щуп от затвора к стоку, мультиметр покажет, что на стоке есть падение напряжения (не бесконечное, но может возрастать) — это значит, что транзистор перегорел.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *