Site Loader

Содержание

Как проверить транзисторы мультиметром не выпаивая

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

Проверка биполярного PNP транзистора мультиметром

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Для проверки транзисторов имеется множество специализированных испытателей, измерителей и подобных им дорогостоящих приборов. Здесь рассказывается о том, как доступным прибором проверяется работоспособность или определится назначение выводов. Имеющееся у некоторых моделей специальное гнездо для подключения транзистора позволяет снять его характеристики, но для проверки работоспособности достаточно двух щупов со шнурами. Черный провод подключается на вход COM мультиметра, а красный включатся в гнездо измерения сопротивления. Включен режим измерения диодов, либо в режим измерения сопротивления на пределе 2000 Ом.

Важно иметь представление об устройстве и принципе работа проверяемого транзистора и доступ к справочным материалам.

Что такое транзистор? Основные типы

Транзистором назван полупроводниковый радиоэлектронный компонент для преобразования тока в усилительном, когда большой выходной сигнал меняется пропорционально малому входному, или ключевом, когда транзистор полностью открыт или закрыт в зависимости от наличия входного сигнала, режимах. Применительно к технологии изготовления можно разделить на биполярные и полевые радиоэлементы. Биполярные компоненты бывают прямой (p-n-p) либо обратной (n-p-n) проводимости. Приборы полевые могут быть n-типа или p-типа, с изолированным или встроенным каналом.

Проверка исправности конкретного транзистора требует некоторых познаний в электронике. Достаточно просто прозвонить выводы транзистора как электрическую цепь, чтобы убедиться, что транзистор исправен. Щуп с черным проводом подключается на вход COM прибора. К входу измерения сопротивления подключен красный провод.

Как проверить биполярный транзистор мультиметром

Проверка биполярного транзистора мультиметром позволяет выявить неисправный компонент или определить расположение выводов (коллектор К, эмиттер Э и база Б). Чтобы знать, как проверить работоспособность, необходимо представить аналог схемы транзистора в виде двух встречно (p-n-p) или обратно (n-p-n) подключенных диодов со средней точкой, которая эквивалентна выводу базы. А оставшиеся два идентичны выводам эмиттера и коллектора. У транзисторов прямой проводимости на базе соединяются катоды («палочки» по схеме), а с обратной проводимостью аноды («стрелочки»). При подсоединении к аноду диода красного (плюсового провода), а черного к катоду тестер покажет на индикаторе какое-то значение. Если оно очень маленькое, значит, измеряемый диод пробит. А если очень большое, тогда диод в обрыве.

Нормальные значения сопротивления эмиттерного или коллекторного перехода лежат в пределах 0,4 — 1,6 кОм в зависимости от конкретного транзистора. Попарным соединением выводов транзистора с щупами мультиметра определяют пары выводов «Б-Э» и «Б-К». Сопротивление перехода К-Э всегда очень велико. Если пара не находится или сопротивление перехода коллектор-эмиттер небольшое, значит транзистор не исправен. Стоит учитывать, что сопротивление коллектора по отношению к базе всегда меньше сопротивления перехода Б-Э, что поможет определиться с цоколевкой исправной детали.

Вышесказанное справедливо как при проверке транзистора прямой проводимости, так и транзистора структуры n-p-n. В последнем случае измерения проводятся с подсоединением проводов тестера в обратной полярности.

Как проверить полевой транзистор

У полевых транзисторов выводы называются сток (С), исток (И) и затвор (З). Несмотря на то, что физика работы отличается от биполярного, при проверке на исправность также можно использовать диодный эквивалент схемы.

Схема проверки полевого транзистора p-типа аналогична испытанию с p-n-p. Перед проверкой необходимо соединить все выводы для разряда емкостей переходов. Сопротивление при подключении щупов к парам выводов «С, З» и «И, З» должно показываться только в одном из направлений. Подсоединяем черный щуп к выводу «С», а красный к вывод «И». Величину показанного сопротивления (400-700 Ом)нужно запомнить. После этого на секундочку соединяем красный провод с затвором, тем самым открывая переход. После этого замеряем сопротивление перехода. Его уменьшение говорит о том, что транзистор частично открылся. Теперь так же соединяем черный провод с выводом «З» и закрываем переход. Восстановление первоначального значения сопротивления перехода свидетельствует об исправности радиодетали. Отличие проверки полевика n-типа заключается только в перемене полярности подключения щупов прибора.

При тестировании полевых транзисторов с изолированным затвором проверяется отсутствие проводимости между затвором и истоком. Потом объединяем исток с затвором. Двухсторонняя проводимость появится у транзистора обедненного типа. У деталей обогащенного типа проводимость будет односторонняя.

Проверка мультиметром составного транзистора

Как проверить транзистор Дарлингтона? Проверить составной транзистор можно так же как биполярный, цифровым мультиметром с прозвонкой транзисторов в режиме проверки диодов. Отличие лишь в том, что прямое напряжение паре выводов Б-Э должно составлять 1,2-1,4 вольта. Если имеющийся прибор не может этого обеспечить, проверка невозможна. И тогда лучше воспользоваться элементарным пробником с использованием батареи 12 В, резистора номиналом 22 кОм включенного в базу и автомобильной лампочки мощностью 5 Вт. Далее подсоединяем «минус» источника к эмиттеру, а коллектор соединяем с лампой. Второй вывод лампы включаем в «плюс» батареи. Если подсоединить резистор к плюсовой клемме лампочка засветится. Теперь резистор переключаем на «плюс» — лампочка погасла. Это означает, что проверяемый транзистор исправен.

Как проверить транзистор, не выпаивая из монтажа

Проверить транзистор мультиметром можно после проверки схемы для выявления вероятного закорачивания выводов проверяемого элемента низкоомными резисторами. Если таковые обнаружатся, деталь для проверки придется выпаять. Если нет – проверка выполняется вышеописанными методами, но достоверность тестирования будет мала. Иногда достаточно отпайки вывода базы.

Полевые транзисторы лучше проверять отдельно от платы. Они очень чувствительны к статическому электричеству, поэтому необходимо пользоваться антистатическим браслетом.

Как проверить транзистор без мультиметра

Проверка транзистора без использования мультиметра возможна не всегда. Применение при измерениях лампочек и источников питания может с высокой вероятностью вывести из строя проверяемый элемент.

Проверка транзистора биполярного типа может быть сделана простейшей контролькой из батарейки 4,5 В, «минус» которой соединен с лампочкой от карманного фонаря. Попарно подключаете «плюс» и второй контакт лампы к выводам. Если при подключении в любой полярности к паре «К-Э» лампа не загорается — переход исправен. Подключить через ограничительный резистор «плюс» на «Б». Лампу поочередно соединяем с выводами «Э» или «К» и проверяем эти переходы. Чтобы протестировать транзистор другой структуры, изменяем полярность подключения.

Эффективно использовать для проверки транзисторов приборы, сделанные своими руками и схемы которых достаточно доступны.

NPN и PNP транзисторы

Биполярный транзистор состоит из двух PN-переходов. Существуют два вида биполярных транзисторов: PNP-транзистор и NPN-транзистор.

На рисунке ниже структурная схема PNP-транзистора:

Схематическое обозначение PNP-транзистора в схеме выглядит так:

где Э – это эмиттер, Б – база, К – коллектор.

Существует также другая разновидность биполярного транзистора: NPN транзистор. Здесь уже материал P заключен между двумя материалами N.

Вот его схематическое изображение на схемах

Так как диод состоит из одного PN-перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!

Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор. Как проверить диод мультиметром, можно прочитать в этой статье.

Проверяем исправный транзистор

Ну что же, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:

Внимательно читаем, что написано на транзисторе: С4106. Теперь открываем поисковик и ищем документ-описание на этот транзистор. По-английски он называется “datasheet”. Прямо так и забиваем в поисковике “C4106 datasheet”. Имейте ввиду, что импортные транзисторы пишутся английскими буквами.

Нас больше всего интересует распиновка выводов транзистора, а также его вид: NPN или PNP. То есть нам надо узнать, какой вывод что из себя представляет. Для данного транзистора нам надо узнать, где у него база, где эмиттер, а где коллектор.

А вот и схемка распиновки из даташита:

Теперь нам понятно, что первый вывод – это база, второй вывод – это коллектор, ну а третий – эмиттер

Возвращаемся к нашему рисунку

Мы узнали из даташита, что наш транзистор NPN проводимости.

Ставим мультиметр на прозвонку и начинаем проверять “диоды” транзистора. Для начала ставим “плюс” к базе, а “минус” к коллектору

Все ОК, прямой PN-переход должен обладать небольшим падением напряжения. Для кремниевых транзисторов это значение 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милливольта или 0,54 Вольта.

Проверяем переход база-эмиттер, поставив на базу “плюс” , а на эмиттер – “минус”.

Видим снова падение напряжения прямого PN перехода. Все ОК.

Меняем щупы местами. Ставим “минус” на базу, а “плюс” на коллектор. Сейчас мы замеряем обратное падение напряжения на PN переходе.

Все ОК, так как видим единичку.

Проверяем теперь обратное падение напряжения перехода база-эмиттер.

Здесь у нас мультиметр также показывает единичку. Значит можно дать диагноз транзистору – здоров.

Проверяем неисправный транзистор

Давайте проверим еще один транзистор. Он подобен транзистору, который мы с вами рассмотрели выше. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.

Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит. Можно смело выкидывать такой транзистор в мусор.

Проверка транзистора с помощью транзисторметра

Очень удобно проверять транзисторы, имея прибор RLC-транзисторметр

Заключение

В заключении статьи, хотелось бы добавить, что лучше всегда находить даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два и более транзисторов. Имейте также ввиду, что некоторые радиоэлементы имеют такой же корпус, как и транзисторы. Это могут быть тиристоры, стабилизаторы, преобразователи напряжения или даже какая-нибудь иностранная микросхема.

Как проверить транзистор мультиметром не выпаивая, проверка исправности

Принцип работы и виды транзисторов

Транзисторы — это полупроводниковые приборы, служащий для преобразования электрических величин. Основное их применение заключается в усилении сигнала и способность работать в режиме ключа. Они выпускаются с тремя и более выводами. Существует три вида приборов:

  • биполярные;
  • полевые;
  • биполярные транзисторы с изолированным затвором.

Бывает ещё составной транзистор. Он подразумевает электрическое объединение в одном корпусе нескольких приборов одного типа. Такие сборки называются парой Дарлингтона и Шиклаи, также имеют три вывода.

Биполярное устройство

Разделяются по своему типу. Выпускаются как электронного, так и дырочного типа проводимости. В своей конструкции используют n-p или p-n переход. Дырочного типа транзисторы состоят из двух крайних областей p проводимости, и средней n проводимости. Электронного типа наоборот. Средняя зона называется базой, а примыкающие к ней области коллектором и эмиттером. Каждая зона имеет свой вывод.

Промежуток между граничащими переходами очень мал, не превышает микрометры. При этом содержание примесей в базе меньше, чем их количество в других зонах прибора. Графически биполярный прибор обозначается для PNP стрелкой внутрь, а NPN стрелкой наружу, что показывает направление тока.

Перед тем как проверить биполярный транзистор мультиметром, нужно понимать, какие физические процессы происходят в приборе. Основа работы устройства лежит в способности p-n перехода пропускать ток в одном направлении. При подаче питания на одном переходе возникает прямое напряжение, а на другом обратное. Область перехода с прямым напряжением имеет малое сопротивление, а с обратным — большое.

Принцип работы заключается в том, что прямой сигнал влияет на токи эмиттера и коллектора. При увеличении величины прямого сигнала возрастает ток в области прямого подключения. Носители заряда перемещаются в зону базы, что приводит к увеличению тока и в обратной области подключения. Возникает объёмный заряд и электрическое поле, способствующее втягиванию в зону обратного подключения заряда другого знака. В базе происходит частичное уничтожение зарядов противоположного знака, процесс рекомбинации. Благодаря чему и возникает ток базы.

Эмиттером называется область прибора, служащая для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика. На схеме элемент обозначается латинскими буквами VT или Q.

Полевой прибор

Полевые транзисторы были изобретены в 1952 году. Основное их достоинство в высоком входном сопротивлении по сравнению с биполярными приборами. Такие элементы часто называются униполярными или мосфетами. Разделяют их по способу управления, на транзисторы с управляющим p-n переходом и с изолированным затвором.

Полевой транзистор выпускается с тремя выводами, один из них управляющий, называемый затвор. Другой исток, соответствующий эмиттерному выводу в биполярном приборе, и третий сток, вывод с которого снимается сигнал. В каждом типе устройства есть транзисторы с n-каналом и p-каналом.

Работа прибора с управляющим каналом, например, n-типа, основана на следующем принципе. Источник питания, подключённый к прибору, создаёт на его переходе обратное напряжение. Если уровень входного сигнала изменяется, то изменяется и обратное напряжение. Это приводит к тому, что меняется площадь, через которую протекают основные носители заряда. Такая площадь называется каналом. Полевые транзисторы изготавливаются методом сплавления или диффузией.

Мосфет с изолированным затвором представляет собой металлический канал, отделённый от полупроводникового слоя диэлектриком. Общепринятое название прибора — MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

Основанием элемента служит пластинка из кремния с дырочной электропроводностью. В ней создаются области с электронной проводимостью, соответственно образующие исток и сток. Такой мосфет работает в режиме обеднения или обогащения. В первом случае на затвор подаётся напряжение относительно истока отрицательного значения, из канала выдавливаются электроны, и ток истока уменьшается. Во втором режиме, наоборот, ток увеличивается из-за втягивания новых носителей заряда.

Транзистор с индуцированным каналом, открывается при возникновении разности потенциалов между затвором и истоком. Для полевика с p-каналом к затвору прикладывается отрицательное напряжение, а с n-каналом положительное. Особенность мощных транзисторов состоит в том, что вывод истока соединяется с корпусом прибора. При этом соединяется база с эмиттером. Такое соединение образует диод, который в закрытом состоянии не влияет на работу прибора.

Биполярный тип с изолированным затвором

Устройства такого типа называются IGBT (Insulated Gate Bipolar Transistor). Это сложный прибор, в котором, например, полевой n-канальный транзистор управляется биполярным устройством типа PNP.

К эмиттеру биполярного транзистора подключается коллектор мосфета. Если на затвор подаётся напряжение положительной величины, то между эмиттером и базой транзистора возникает проводящий канал. В результате транзистор IGBT отпирается, падение напряжения на PN переходе уменьшается. Когда значение напряжения увеличивается, то пропорционально увеличивается и ток канала в базе биполярного прибора, а падение напряжения на IGBT транзисторе уменьшается. Если полевой транзистор заперт, то и ток биполярного прибора будет почти нулевым.

Проверка биполярного прибора тестером

Проверку прибора можно осуществить двумя способами. Для этого в тестере используется режим прозвонки или специально предназначенный режим проверки биполярных транзисторов.

На начальном этапе выясняется тип проводимости элемента. Для этого можно воспользоваться справочником или вычислить путём прозвонки. База вычисляется методом перебора. Щуп с общего вывода тестера подключается к одному из выводов транзистора, а щуп со второго вывода по очереди прикасается к двум оставшимся ножкам радиоэлемента. При этом смотрится какую величину сопротивления показывает тестер.

Необходимо найти такое положение, чтоб величина значения сопротивления между выводами составляла бесконечность. На цифровом тестере в режиме прозвонки будет гореть единица. Если такое положение не найдено, следует зафиксировать щуп второго вывода, а щупом с общего выхода осуществлять перебор.

Когда требуемая комбинация будет достигнута, то вывод, по отношению которого измеряется сопротивление, будет базой. Для вычисления выводов коллектора и эмиттера понадобится: в случае pnp транзистора на вывод базы — подать отрицательное напряжение, а для npn — положительное. Сопротивление перехода эмиттер — база будет немного больше, чем база-коллектор.

Например, исследуя биполярный низкочастотный транзистор NPN типа MJE13003, который имеет последовательность выводов база, коллектор, эмиттер, понадобится:

  1. Переключить мультиметр в режим прозвонки.
  2. Стать положительным щупом на базу прибора.
  3. Вторым концом прикоснуться к коллектору прибора, сопротивление должно быть около 800 Ом.
  4. Второй конец переставить на эмиттер прибора, сопротивление должно составить 820 Ом.
  5. Поменять полярность. На базу стать отрицательным щупом, а к коллектору и эмиттеру прикоснуться поочерёдно вторым концом. Сопротивление должно быть бесконечным.

Если во время проверки все пункты выполняются верно, то транзистор исправен. В ином случае, при возникновении короткого замыкания между любыми переходами, или обрыва в обратном включении, делается вывод о неисправности транзистора. Проверка прибора обратной проводимости проводится аналогичным образом, лишь меняется полярность приложенных щупов. Таким способом можно проверить транзистор мультиметром, не выпаивая его, так и сняв с платы.

Второй способ измерения при использовании современного мультиметра, позволит не только проверить исправность полупроводникового прибора, но и определить коэффициент усиления h31. В зависимости от типа и вида, ножки транзистора совмещаются с соответствующими надписями на гнезде, обозначенном также hFE. При включении прибора на экране появится цифра, обозначающая коэффициент усиления транзистора. Если цифра определяется равной нулю, то такой транзистор работать не будет, или же неправильно определена его проводимость.

Определение целостности полевого радиоэлемента

Такой тип электронного прибора не получится проверить без выпайки из схемы. Способ проверки как для n-канального, так и для p-канального, а также IGBT вида, одинакова. Разница лишь в полярности, прикладываемой к выводам. Например, исправность F3NK80Z n-канального прибора выясняется по следующему алгоритму:

  1. Мультиметр переключается в режим прозвонки.
  2. Щуп общего провода прикасается к стоку прибора, а положительный — к истоку.
  3. Щуп переставляется с истока на затвор. Переход в транзисторе откроется.
  4. Возвращаем щуп на исток. Значение сопротивления должно быть маленьким, прибор, если у него есть звуковая прозвонка, запищит.
  5. Для закрытия прибора щуп общего провода соединяется с затвором, при этом положительный щуп с истока не снимается.
  6. Устанавливается положения щупов согласно первому пункту.

Для проверки p-типа проводимости последовательность операций остаётся такой же, за исключением полярности щупов, которая меняется на обратную.

Для мощных полевых приборов может случиться так, что напряжения тестера не хватит для его открытия. Так как прозвонить такой полевой транзистор мультиметром не удастся, понадобиться применить дополнительное питание. В таком случае в разрыв через сопротивление 1–2 кОм подаётся постоянное напряжение равное 12 вольт.

Существуют такие радиоэлементы, например, КТ117а, имеющие две базы. Их относят к однопереходным приборам. В современных устройствах они не получил широкого применения, но порой встречаются. У них нет коллектора.

Такие транзисторы тестером проверяются только на отсутствие короткого замыкания между выводами. Убедиться в его работе можно воспользовавшись схемой генератора.

Как проверить транзистор мультиметром: как прозвонить транзистор

Транзистор самый часто встречающийся элемент в приборостроении.

В статье подробно описан принцип действия этого радиоэлемента, основные разновидности и способы, как проверить транзистор не выпаивая, при помощи цифрового мультиметра.

Назначение и принцип работы

Основное назначение транзисторов, это увеличение электрических сигналов. Эти радиодетали, являются полупроводниковыми элементами. В их конструкцию включен полупроводниковый материал, который и дает эффект усиления сигнала.

Принцип работы этих устройств кроется в слабой проводимости электрического тока. Поэтому материал из которого состоят эти элементы и называется полупроводником. Часто при создании транзисторов используют кремний или германий. Если к этим материалам добавить вещество с большим числом свободных электронов, то кремний становится проводником с отрицательным зарядом. Такие устройства приобретают тип «N».

Если к кремнию добавить вещество с меньшим количеством электронов, но с большим количеством атомов, то такой материал тоже становится проводником, но наделяется положительным зарядом. Такие транзисторы входят в тип «P».

Таким образом, за счет изменения структуры вещества, получают полупроводниковый элемент с положительным или отрицательным усилением электрического сигнала.

Транзистор стал переходным этапом от ламповых радиодеталей. Теперь электроника стала намного компактнее, ее производство экономичнее, а приборы более надежнее и дешевле.

Разновидности

В современной электронике используется 2 основных типа усилителей сигнала: полевые и биполярные. Каждый тип наделен способностью к электрической проводимости и усилению.

Полевой транзистор

Полевые транзисторы предназначаются для управления сигналом используя для этого электромагнитное поле. Такой элемент состоит из:

  • Затвора, который служит регулятором поступающего напряжения.
  • Стока, из канала которого выходят заряды.
  • Истока, через который заходят электрические заряды.

В подобных элементах заключен полупроводниковый материал, вокруг которого расположены области с противоположной проводимостью. При подаче напряжения на затвор элемента, области расширяются, что способствует прохождению электрического тока. За счет входящего напряжения на затвор, можно регулировать проводимость элемента. Создаваемое пространство между областями является каналом транзистора. Существует 2 типа каналов:

  • Встроенный открывает путь токам с определенными амплитудами. При соответствующей полярности и амплитуде, появляется возможность регулировать ширину канала, а значит влиять на общую проводимость.
  • Индуцированный является закрытым каналом. Он открывается, только если на затвор подается определенное напряжение.

Таким образом полевые элементы делятся на постоянно открытые и закрытые. Их отличают следующие параметры:

  • Сопротивление на входе.
  • Характеристика амплитуды.
  • Подаваемая на полупроводник полярность.

Оба вида транзисторов могут использоваться на одной плате, для создания сигналов необходимой величины.

Биполярные

Биполярный транзистор работает по принципу одновременного прохождения электронов с разной полярностью. Для этого в их конструкции используется 3 области полупроводников. Биполярные транзисторы бывают 2 типов: PNP и NPN. Элементы типа N имеют отрицательный заряд на входе, тип P положительный. Биполярные радио детали состоят из:

  • Коллектора для самого большого амплитудного тока.
  • Базы для управления амплитудным током.
  • Эмиттера для выхода тока с коллектора.

Для транзисторов типа N, ток протекает с эмиттера на коллектор. Для типов P, ток протекает с коллектора через базу на эмиттер. Узнать, какой транзистор находится в схеме, можно по стрелке в обозначении. Также к биполярным относятся строчные элементы. У них больший порог прохождения электрического напряжения, так как они находятся под сильной нагрузкой.

Далее будут даны пошаговые инструкции как проверить транзистор мультиметром.

Проверка

Для многих встает вопрос, как проверить полевой транзистор мультиметром не выпаивая. Сделать это очень просто. Описанными способами можно проверить на работоспособность и биполярные элементы. Перед проверкой транзисторов необходимо точно узнать полярность и тип элемента. Эти данные можно найти в соответствующих справочниках. Также очень важно понимать, какой химический элемент выбран в качестве полупроводника. От этих данных зависит максимальная электрическая проводимость детали.

Полевой транзистор

Для проверки полевого транзистора понадобится цифровой мультиметр. Эти тестеры способны измерить самое минимальное значение этих устройств. Перед проверкой необходимо знать, что выводы современных транзисторов обозначаются следующим образом:

  • G — затвор;
  • D — сток;
  • S — исток.

Далее потребуется полностью отключить питание проверяемого прибора, дождаться разрядки конденсаторов. Минимальное питание не позволит получить точные данные при проверке без выпайки.

  • Перевести мультиметр в режим прозвонки диодов.
  • Красный контрольный щуп прибора устанавливаем на контакт S проверяемой детали.
  • Черный контрольный щуп на контакт D.
  • Результат должен быть более 500 мВ.

Данные в районе 50 мВ или меньше укажут на повреждение перехода.

Далее нужно проверить падение токового напряжения у другой пары контактов.

  • Красный щуп прибора соединить с контактом G.
  • Черный контрольный щуп с контактом D.
  • Результат должен быть выше значения в 1000 мВ.

Если при замере транзистора мультиметром были получены результаты от 50 до 500 мВ, то элемент считается не рабочим.

Третья проверка между оставшимися контактами G и S.

  • Красный контрольный щуп соединяется с контактом G.
  • Черный с контактом D.
  • Результат должен быть более 1000 мВ.

Если полученные данные варьируются от 50 до 500 мВ, то элемент можно считать не пригодным для работы. Прозвонка полевого транзистора цифровым мультиметром намного проще, чем аналоговым прибором. Можно получить самые точные параметры, не выпаивая элемент из схемы. Для получения подтверждения пригодности детали, лучше выпаять ее из цепи и повторить измерения.

Биполярные транзисторы

Проверка биполярного транзистора мультиметром возможна в цепи, без выпаивания его с платы. Перед началом стоит отключить питание прибора и определить назначение контактов элемента. Далее необходимо перевести мультиметр в режим проверки сопротивления.

  • Черный контрольный щуп подключить к контакту «Б».
  • Красный контрольный щуп к контакту «Э».
  • Результаты в районе 0.6–1.3 кОм укажут, что проверяемая деталь пригодна к использованию.

Далее проверяется вторая пара контактов. Для этого необходимо:

  • Черный щуп подключить к контакту «К».
  • Красный контрольный щуп к контакту «Б».
  • Результаты должны варьироваться в районе 0.6–1.3 кОм. С такими значениями переход считается исправным.

После проверки необходимо провести повторное измерение тем же способом, но при этом сменив положение контрольных щупов (изменение полярности). При полученном результате «1» элемент считается непригодным. Если замер детали покажет самое минимальное значение сопротивления для всех пар контактов, то элемент можно считать пригодным к использованию. Этот способ был проверкой транзистора с прямым коэффициентом проводимости тока PNP. Для проверки обратного коэффициента проводимости NPN необходимо:

  • Контрольный щуп красного цвета соединить с контактом «Б».
  • Сделать поочередно замеры с контактом «Э» и «К».
  • Результаты проверки обеих пар должны варьироваться в районе 0.6–1.3 кОм.
  • По окончании теста, нужно сменить полярность контрольных щупов и повторить замеры.

На непригодный к работе элемент укажет сопротивление равное «1». Минимальные значения данных являются признаком исправности транзистора.

Если транзистор не показывает указанных значений в 0.6–1.3 кОм, или выдает значения большего параметра, то деталь считается подозрительной и требует замены. Повторная проверка проводится уже без схемы, только на самом элементе. Таким образом можно получить подтверждение неисправности или выявить новую причину, но уже в другом элементе.

Подобная проверка также помогает определить работоспособность строчных транзисторов, устанавливаемых на платах развертки телевизионных кинескопов.

Составной транзистор

Подобный элемент представляет собой более сложную конструкцию. По своему принципу он совмещает 2 транзистора. Чтобы проверить составной транзистор, необходимо собрать простую схему. Проверка мультиметром не даст результата. Далее необходимо:

  • К контакту «Б» проверяемой детали подключить резистор номиналом 20 кОм. Второй конец резистора соединить с «+» блока питания.
  • Контакт «Э» соединить с минусом блока питания.
  • Один контакт лампочки соединить с «+» блока питания.
  • Второй контакт лампочки соединить с контактом «К» транзистора.

При подключении этой схемы в цепь и подачи напряжения, лампа должна загореться. Если второй контакт от лампы отсоединить от «+» блока питания и подключить к «-», то лампочка должна погаснуть. Для проверки подбирается лампа накаливания, работающая при напряжении 9–12 В, мощностью до 5 Вт. Блок питания также должен выдавать напряжение не более 12 В.

Причины неисправности

Транзисторы обоих описанных типов теряют работоспособность очень часто. Есть 3 основные причины неисправности этих радиодеталей:

  • Перегрев. Многие элементы уже имеют радиаторы, к которым они прикручены. Плохой контакт с радиатором или перегрев от рядом стоящего неисправного трансформатора становится причиной выхода из строя.
  • Сквозные токи. Частое явление при неисправности диодного моста блока питания. Переходы транзисторов выгорают от перепада напряжения.

Для контроля состояния транзисторов необходимо прислушиваться к аппаратуре.

Часто перед выходом из строя, неисправный транзистор выдает посторонние шумы, на изображении появляется мелкая рябь. Простой контроль поможет выявить неисправность до полного выгорания элемента.

Заключение

В статье были описаны способы проверки нескольких типов транзисторов. Тестирование проводилось без выпаивания с платы. Проверка детали без схемы более удобна и дает самые лучшие результаты. На данные не влияют значения сопротивлений посторонних радиодеталей в цепи. Также при проверке могут влиять незначительные токи от конденсаторов. Перед проверкой лучше выпаять проверяемый элемент из схемы.

Видео по теме

Проверка радиодеталей мультиметром не выпаивая

В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.

Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.

Включаем в сеть прибор

Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.

Коды ошибок ТВ по миганию LED

После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.

Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?

Блок схема ЖК ТВ

В таком случае, можно попробовать попросить помощи на специализированных форумах по ремонту техники, после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. Читайте тут как пользоваться обычным мультиметром.

Тестер в режиме звуковой прозвонки

Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.

Разъем питания платы управления ТВ

Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме — это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR подробнее здесь.

Таблица ESR конденсаторов

В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо транзистор тестер, правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.

Мой прибор ESR метр

Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.

Фото — вздувшийся конденсатор

То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.

Мультиметр в режиме Омметра

Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.

Цветовая маркировка резисторов

Если есть возможность прочитать его номинал, по маркировке цветными кольцами, нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.

Транзисторы разные на фото

Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.

Проверка транзистора мультиметром

Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод описан тут. У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. Мосфеты, полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.

Мосфет в SMD и обычном корпусе

При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.

Мосфеты на материнской плате ПК

Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.

Диодные сборки на схеме

Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте, шокирует — им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.

Параллельное и последовательное соединение резисторов

Здесь лучше всего один раз запомнить, правило подобных соединений:

  1. При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
  2. А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.

Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы — AKV.

Обсудить статью ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный — к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.

Конденсаторы

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Диоды

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитроны

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300. 500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200. 500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Шлейф/разъём

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

Проверка биполярного PNP транзистора мультиметром

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Основные способы проверки транзистора. Как проверить мультиметром транзистор: испытание различных типов устройств

Современные электронные мультиметры имеют специализированные коннекторы для проверки различных радиодеталей, включая транзисторы.

Это удобно, однако, проверка не совсем корректная. Радиолюбители со стажем помнят, как проверить транзистор тестером со стрелочной индикацией. Техника проверки на цифровых приборах не изменилась. Для точного определения состояния полупроводникового прибора, каждые его элемент тестируется отдельно.

Классика вопроса: как проверить биполярный транзистор мультиметром

Этот популярный проводник выполняет две задачи:

  • Режим усиления сигнала. Получая команду на управляющие выводы, прибор дублирует форму сигнала на рабочих контактах, только с большей амплитудой;
  • режим ключа. Подобно водопроводному крану, полупроводник открывает или закрывает путь электрическому току по команде управляющего сигнала.

Полупроводниковые кристаллы соединены в корпусе, образуя p-n переходы . Такая же технология применяется в диодах. По сути – биполярный транзистор состоит из двух диодов, соединенных в одной точке одноименными выводами.
Чтобы понять, как проверить транзистор мультиметром, рассмотрим отличие pnp и npn структуры.

Так называемый «прямой» (см. фото)


С обратным переходом, как изображено на фото


Разумеется, если вы спаяете диоды так, как показано на условной схеме – транзистор не получится. Но с точки зрения проверки исправности – можно представить, что у вас обычные диоды в одном корпусе.

То есть, положив перед собой схему полупроводниковых переходов, вы легко определите не только исправность детали в целом, но и локализуете конкретный неисправный p-n переход. Это поможет понять причину поломки, ведь полупроводник работает не автономно, а в составе электросхемы.

Как проверить биполярный транзистор мультиметром – видео.

Возникает резонный вопрос: Как определить маркировку выводов транзистора, не имея каталога? Такая практика пригодится не только для проверки радиодеталей. При сборке монтажной платы, незнание конструкции транзистора приведет к его перегоранию.

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Содержание:

В электронике и радиотехнике большое значение имеет не только правильная сборка схемы, но и последующая проверка ее работоспособности. Проверяться может все устройство или его отдельные элементы. В связи в этим довольно часто возникает вопрос, как проверить транзистор мультиметром, не нарушая схемы. Существуют различные способы, которые применяются индивидуально к каждому виду элементов. Прежде чем начинать подобную проверку и тестирование, рекомендуется изучить общее устройство и .

Основные типы транзисторов

Существует два основных типа транзисторов — биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае — только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов — дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов — «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам — эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов — носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта — исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Проверка биполярного транзистора мультиметром

Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.

Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета — с выходом, измеряющим сопротивление, напряжение и частоту.

В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.

Проверка биполярного транзистора мультиметром выполняется в следующем порядке:

  • Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
  • Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный — к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
  • Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
  • Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
  • Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
  • После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.

Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.

Проверка работоспособности полевого транзистора

Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.

Типовая схема полевого транзистора представлена на рисунке. Основные выводы — затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.

Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.

Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.

Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный — к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности. Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов. После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.

В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.

Как проверить составной транзистор мультиметром

Составной транзистор или транзистор Дарлингтона представляет собой схему, объединяющую в своем составе два и более биполярных транзистора. Это позволяет значительно увеличить коэффициент усиления по току. Такие транзисторы применяются в схемах, предназначенных для работы с большими токами, например, в стабилизаторах напряжения или выходных каскадах усилителей мощности. Они необходимы, когда требуется обеспечение большого входного импеданса, то есть полного комплексного сопротивления.

Общие выводы у составного транзистора такие же, как и у биполярной модели. Точно так же и происходит проверка npn транзистора мультиметром. В этом случае применяется методика, аналогичная проверке обычного биполярного транзистора.

Транзистор – полупроводниковый прибор, основное назначение которого – использование в схемах для усиления или генерирования сигналов, а также для электронных ключей.

В отличие от диода, транзистор имеет два p-n-перехода, соединенных последовательно. Между переходами располагаются зоны, имеющие разную проводимость (типа «n» или типа «р»), к которым подключаются выводы для подключения. Вывод от средней зоны называется «базой», а от крайних – «коллектор» и «эмиттер».

Разница между зонами «n» и «p» состоит в том, что у первой есть свободные электроны, а у второй – так называемые «дырки». Физически «дырка» означает нехватку электрона в кристалле. Электроны под действием поля, создаваемого источником напряжения, двигаются от минуса к плюсу, а «дырки» — наоборот. При соединении между собой областей с разной проводимостью электроны и «дырки» диффузируют и на границе соединения образуется область, называемая p-n-переходом. За счет диффузии область «n» оказывается заряженной положительно, а «р» — отрицательно, а между областями с различной проводимостью возникает собственное электрическое поле, сосредоточенное в области p-n-перехода.

При подключении плюсового вывода источника к области «р», а минуса – к «n» его электрическое поле компенсирует собственное поле p-n-перехода, и через него проходит электрический ток. При обратном подключении поле от источника питания складывается с собственным, увеличивая его. Переход запирается, и ток через него не проходит.

В составе транзистора есть два перехода: коллекторный и эмиттерный. Если подключить источник питания только между коллектором и эмиттером, то ток через него не пойдет. Один из переходов оказывается запертым. Чтобы его открыть, на базу подается потенциал. В результате на участке коллектор-эмиттер возникает ток, который в сотни раз больше тока базы. Если при этом ток базы изменяется во времени, то ток эмиттера в точности повторяет его, но с большей амплитудой. Этим и обусловлены усилительные свойства.

В зависимости от комбинации чередования зон проводимости различают транзисторы p-n-p или n-p-n. Транзисторы p-n-p открываются при положительном потенциале на базе, а n-p-n – при отрицательном.

Рассмотрим несколько способов, как проверить транзистор мультиметром.

Проверка транзистора омметром

Поскольку в составе транзистора имеется два p-n-перехода, то их исправность можно проверить по методике, используемой для тестирования полупроводниковых диодов. Для этого его можно представить эквивалентом встречного соединения двух полупроводниковых диодов.

Критериями исправности для них является:

  • Низкое (сотни Ом) сопротивление при подключении источника постоянного тока в прямом направлении;
  • Бесконечно большое сопротивление при подключении источника постоянного тока в обратном направлении.

Мультиметр или тестер измеряют сопротивление, используя собственный вспомогательный источник питания – батарейку. Напряжение ее невелико, но его достаточно, чтобы открыть p-n-переход. Меняя полярность подключения щупов от мультиметра к исправному полупроводниковому диоду, в одном положении мы получаем сопротивление в сотню Ом, а в другом – бесконечно большое.

Полупроводниковый диод бракуется, если

  • в обоих направлениях прибор покажет обрыв или ноль;
  • в обратном направлении прибор покажет любую значащую величину сопротивления, но не бесконечность;
  • показания прибора будут нестабильными.

При проверке транзистора потребуется шесть измерений сопротивлений мультиметром:

  • база-эмиттер прямое;
  • база-коллектор прямое;
  • база-эмиттер обратное;
  • база-коллектор обратное;
  • эмиттер-коллектор прямое;
  • эмиттер-коллектор обратное.

Критерием исправности при измерении сопротивления участка коллектор-эмиттер является обрыв (бесконечность) в обоих направлениях.

Коэффициент усиления транзистора

Различают три схемы подключения транзистора в усилительные каскады:

  • с общим эмиттером;
  • с общим коллектором;
  • с общей базой.

Все они имеют свои характеристики, а наиболее распространена схема с общим эмиттером. Любой транзистор характеризуется параметром, определяющим его усилительные свойства – коэффициент усиления. Он показывает, во сколько раз ток на выходе схемы будет больше, чем на входе. Для каждой из схем включения имеется свой коэффициент, разный для одного и того же элемента.

В справочниках приводится коэффициент h31э – коэффициент усиления для схемы с общим эмиттером.

Как проверить транзистор, измеряя коэффициент усиления

Одним из методов проверки исправности транзистора является измерение его коэффициента усиления h31э и сравнение его с паспортными данными. В справочниках дается диапазон, в котором может находиться измеренное значение для данного типа полупроводникового прибора. Если измеренное значение укладывается в диапазон, то он исправен.

Измерение коэффициента усиления производится еще и для подбора компонентов с одинаковыми параметрами. Это необходимо для построения некоторых схем усилителей и генераторов.

Для измерения коэффициента h31э мультиметр имеет специальный предел измерения, обозначенный hFE. Буква F обозначает «forward» (прямая полярность), а «Е» — схему с общим эмиттером.

Для подключения транзистора к мультиметру на его передней панели установлен универсальный разъем, контакты которого обозначены буквами «ЕВСЕ». Согласно этой маркировке подключаются выводы транзистора «эмиттер-база-коллектор» или «база-коллектор-эмиттер», в зависимости от их расположения у конкретной детали. Для определения правильного расположения выводов придется воспользоваться справочником, там же заодно можно узнать и коэффициент усиления.

Затем подключаем транзистор к разъему, выбрав предел измерения мультиметра hFE. Если его показания соответствуют справочным – проверяемый электронный компонент исправен. Если нет, или прибор показывает что-то невразумительное – транзистор вышел из строя.

Полевой транзистор

Полевой транзистор отличается от биполярного по принципу действия. Внутрь пластины кристалла одной проводимости («р» или «n») посередине внедряется участок с другой проводимостью, называемый затвором. По краям кристалла подключаются выводы, называемые истоком и стоком. При изменении потенциала на затворе изменяется величина токопроводящего канала между стоком и истоком и ток через него.

Входное сопротивление полевого транзистора очень большое, а вследствие этого он имеет большой коэффициент усиления по напряжению.

Как проверить полевой транзистор

Рассмотрим проверку на примере полевого транзистора с n-каналом. Порядок действий будет таким:

  1. Переводим мультиметр на режим прозвонки диодов.
  2. Плюсовой вывод от мультиметра подключаем к истоку, минусовой – к стоку. Прибор покажет 0,5-0,7 В.
  3. Меняем полярность подключения на противоположную. Прибор покажет обрыв.
  4. Открываем транзистор, подключив минусовой провод к истоку, а плюсовым коснувшись затвора. За счет существования входной емкости элемент остается открытым некоторое время, это свойство и используется для проверки.
  5. Плюсовой провод перемещаем на сток. Мультиметр покажет 0-800 мВ.
  6. Меняем полярность подключения. Показания прибора не должны измениться.
  7. Закрываем полевой транзистор: плюсовой провод к истоку, минусовой – к затвору.
  8. Повторяем пункты 2 и 3, ничего не должно измениться.

Давайте займемся теорией, повремените убегать. Портал ВашТехник наряду с заумными сентенциями, рассчитанными быть понятыми профи, предоставит методику пяти пальцев. Не слышали? Просто, как пять пальцев. Сначала обсудим типы транзисторов, потом расскажем, что можно сделать при помощи мультиметра. Рассмотрим штатные гнезда hFE (объясним, что это такое), методику замещения схемы через соединение нескольких диодов. Расскажем, с чего начать. Поймете, как проверить транзистор мультиметром, или… Давайте, пожалуй, без «или». Приступим, чтобы твердо отличать МОП-транзистор от мопса, растолчем теорию.

Типы, классификация транзисторов

Избегаем исследовать дебри. Знайте простое правило: в биполярных транзисторах носители обоих знаков участвуют в создании выходного тока, в полевых – одного. Определение умников. Теперь работаем пальцами:

  1. Транзисторы полевого типа выступают началом. Когда Битлз выходили на сцену, на замену вакуумным триодам стали приходить полупроводники. Если говорить кратко, p-n-p транзистор — два богатых положительными носителями слоя кристалла (кремний, германий, примесной проводимости). Проводя уроки физики, учитель часто рассказывал, как V-валентный мышьяк легировал решетку кремния, образуя новый материала. Добавим, что положительные p-области, отгорожены узкой отрицательной (n-negative). Как ком в горле. Узкий перешеек, называемый базой, отказывается пускать электроны (в нашем случае скорее дырки) течь в нужном направлении. Небольшой отрицательный заряд появляется на управляющем электроде, дырки коллектора (верхняя p-область на традиционных электрических схемах) больше не могут сдерживаться, буквально рвутся в сторону приложенного напряжения. Поскольку база тонкая, используя набранную скорость носители пролетают перешеек, уносятся дальше — достигая эмиттера (нижняя p-область), здесь увлекаются разностью потенциалов, создаваемой напряжением питания. Типичное школьное объяснение. Относительно небольшое напряжение управляющего электрода способно регулировать скорость сильного потока дырок (положительных носителей), увлекаемого полем напряжения питания. На этом построена техника. Навстречу дыркам движутся электроны, транзисторы называют биполярными.
  2. Полевые транзисторы снабжены каналом любого типа проводимости, разделяющим области истока и стока (см. рисунок выше). Управляющий электрод называют затвором. Причем основной материал подложки, затвора противоположен каналу, истоку и стоку. Поэтому положительное напряжение (см. рисунок) запрет ход зарядам через транзистор. Плюс оттянет (в p-область) доступные электроны. Полевые транзисторы в электронике применяются намного чаще. На рисунке затвор электрически соединен с кристаллом, структура называется управляющим p-n переходом. Бывает, область изолирована от кристалла диэлектриком, в качестве которого часто выступает оксид. Чистой воды MOSFET транзистор, по-русски – МОП.

При помощи мультиметра, в штатном режиме проверяются биполярные транзисторы. Если тестер поддерживает такую опцию, часто именуемую hFE, на лицевой панели смонтирован круглый разъем, поделенный вертикальной чертой на две части, где надписаны по 4 гнезда следующим образом:

  1. B – база (англ. Base).
  2. С – коллектор (англ. Collector).
  3. E – эмиттер (англ. Emitter).

Гнезд для эмиттера два, чтобы учесть раскладку выводов корпуса. База может быть с края, посередине. Для удобства сделано. Нет разницы, в какое гнездо вставить ножку эмиттера биполярного транзистора. Пара слов, как пользоваться.

Проверка биполярного транзистора мультиметром в штатном режиме

Чтобы гнездо проверки биполярных транзисторов начало работать (вести измерения), переведем тестер в режим hFE. Откуда взялись буквы? h — касается категории параметров, описывающих четырехполюсник любого типа. Не важно знать, что подразумевает понятие — просто уясним: существует целая группа h-параметров, среди которых имеется один важный занимающимся электроникой. Называется коэффициентом усиления по току с общим эмиттером. Обозначается, h31 (либо строчной греческой буквой бета).

Цифровая мнемоника плохо воспринимается человеческим глазом, поэтому было решено (за рубежом, понятное дело), что F будет обозначать прямое усиление по току (forward current amplification), тогда как E говорит, что измерение велось в схеме с общим эмиттером (которая применяется учебниками физики для иллюстрации принципов работы транзисторов биполярного типа). Схем включения много, каждая обладает достоинствами, параметры можно охарактеризовать через h31 (некоторые другие, упомянутые справочниками). Считается, если коэффициент усиления в норме, радиоэлемент 100% работоспособен. Теперь читатели знают, как проверяется p-n-p транзистор или n-p-n транзистор.

h31 зависит от некоторых параметров, указываемых инструкцией мультиметра. Напряжение питания 2,8 В, ток базы 10 мА. Дальше берутся графики технической документации (data sheet) транзистора, профессионал знает, как найти остальное. При включении режима hFE, подсоединении ножек биполярного транзистора в нужные гнезда на дисплее появляется значение коэффициента усиления прибора по току. Потрудитесь сопоставить справочным данным, сделав поправку на режим измерения (если понадобится). Только звучит сложно, достаточно пару раз сделать самостоятельно, добьетесь результатов.

Проверка транзисторов мультиметром: нештатный режим

Допустим, вызывает сомнение исправность транзистора полевого типа. Известный русский вопрос в электронике присутствует. Начинают думать… м-да.

  • Полевой транзистор отпирается или запирается определенным знаком напряжения. Обсуждали выше. Если помните, говорили, при прозвонке на щупах тестера небольшое постоянное напряжение. Будем использовать в наших тестах. Пока транзистор на плате, сложно сделать измерения, стоит изъять из привычного окружения, как можно применить нестандартные методики. Оказывается, если приложить на электрод отпирающее напряжение, за счет некоторой собственной емкости транзистора область зарядится, сохраняя приобретенные свойства. Допускается прозвонить электроды между истоком и стоком. Сопротивление порядка 0,5 кОм покажет: полевой транзистор работоспособен. Стоит закоротить базу с другими отводами, проводимость исчезнет. Полевой транзистор закрылся и годен.
  • Биполярные транзисторы, полевые с управляющим p-n переходом проверяют гораздо проще. В первом случае применяется схема замещения элемента двумя диодами, включенными навстречу (или наоборот спинками). Подадим отпирающее напряжение (p – плюс, n – минус), получив на измерителе сопротивления номинал 500 – 700 Ом. Можно также звонить, пользуясь слухом. Недаром на шкале часто нарисован диод. Прозвонка используется для проверки работоспособности. Напряжения хватает открыть p-n-переход.

Подготовка к проверке транзистора

Временами схватишь руками составной транзистор. Внутри корпуса находиться несколько ключей. Используется для экономии места при одновременном увеличении коэффициента усиления (причем в десятки, тысячи раз, если речь шла о каскадной схеме). Устроен так транзистор Дарлингтона. В корпус зашит защитный стабилитрон, предохраняющий переход эмиттер-база от перегрузки по напряжению. Тестирование идет одним путем:

  • Нужно найти подробные технические характеристика транзистора (составного элемента). При нынешнем масштабе компьютеризации не составит проблемы. Даже если изделие импортное. Обозначения на схемах понятные, термины не сложные. Параметр hFE расписали.
  • Затем ведется изучение, выполняется анализ. Разбиение схемы на более простые составляющие. Если между переходами коллектора и эмиттера включен стабилитрон, логично начать проверку с него. В начальный момент транзистор заперт, ток мультиметра пойдет, минуя защитный каскад. В одном направлении стабилитрон даст сопротивление 500-700 Ом, в другом (если не пробьется) будет обрыв. Аналогично разобьем на части транзистор Дарлингтона, если имеете представление (обсуждали выше).

Режим прозвонки покажет цифры. Говорят, падение напряжения, по некоторым сведениям, номинал сопротивления. Потрудимся привести опыты, решая вопрос. Вызвонить известный по значению сопротивления, заведомо исправный резистор. Если на экране появится номинал в омах, думать нечего. В противном случае можно оценить заодно ток (разделив потенциал дисплея на номинал). Знать тоже нужно, пригодится в процессе тестирования. До начала работ рекомендуется хорошенько изучить мультиметр. Достаньте инструкцию из мусорной корзины, прочитайте.

Народ интересуется вопросом, можно ли проверить транзистор мультиметром, не выпаивая. Очевидно, многое определено схемой. Тестер просто прикладывает напряжения, оценивает возникающие токи. На основе показаний вычисляется коэффициент усиления, служа критерием годности/негодности. Попробуйте проверить полевой транзистор мультиметром из входящих в состав процессора! Отбрось надежду всяк сюда входящий. Не всегда можно прозвонить полевой транзистор мультиметром.

Разбить биполярный транзистор на диоды

Рисунок, представленный среди текста, демонстрирует схему замещения транзистора двумя диодами. Позволит рассматривать усилительный элемент, представив суммой двух независимых более простых. Не обладающих усилением, проявляющих нелинейные свойства (неодинаковость прямого/обратного включения).

Мощные транзисторы силовых цепей бессилен открыть скудными силами мультиметр. Поэтому для тестирования устройств применяются специальные схемы. Нельзя проверить биполярный транзистор мультиметром напрямую.

Проверка условных диодов, замещающих транзистор

Методик несколько. Можно попробовать измерить сопротивление стандартной шкалой Ω. Красный щуп нужно прикладывать к p-области. Тогда дисплей мультиметра покажет цифру, меньшую бесконечности. В противоположном направлении результат будет нулевым. Мультиметр покажет обрыв. Нормальные результаты прозвонки диода.

Если пользоваться специальным режимом, экран показывает размер сопротивления в прямом направлении, обрыв (стандартно единичка в левом углу ЖК-экрана) в другом. Обратите внимание – рисунок содержит поясняющие надписи, куда прислонять щуп, получая открытый p-n переход. В обратном направлении прибор показывает обрыв.

Как прозвонить транзистор: подробная инструкция по прозвонке

Работоспособность любой электрической схемы зависит от исправности отдельных ее элементов а также от правильности сборки. Транзистор является крайне распространенным радиоэлементом и любой радиотехник должен знать как прозвонить транзистор. Само тестирование начинается с определения его типа, модели. Проверка может отличаться от их разновидности и иметь некоторые особенности.

В данной статье будут описаны все нюансы проверки транзистора, какие приборы и оборудование для этого потребуется. В качестве дополнения материал содержит несколько видеоматериалов с подробным практическими уроками, а также одна статья, подробно описывающая весь этот процесс.

Проверка транзистора.

Почему не работает транзистор

Наиболее вероятные причины, по мнению специалистов, выхода из строя триода в схеме следующие:

  • когда пропадает (обрывается) один из переходов;
  • пробой перехода;
  • пробой на одном из участков эмиттера или коллектора;
  • потеря мощности полупроводниковым прибором в работе;
  • визуальные повреждения выводов транзистора.

Признаки, по которым можно определить визуально поломку триода в схеме: потемнение или изменение первоначального цвета полупроводникового прибора, изменение его формы «выпуклость», наличие черного пятна.

Как проверить транзисторКак проверить транзистор? (Или как прозвонить транзистор) Такой вопрос, к сожалению, рано или поздно возникает у всех. Транзистор может быть повреждён перегревом при пайке либо неправильной эксплуатацией. Если есть подозрение на неисправность, есть два лёгких способа проверить транзистор.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. 

Проверка транзистора мультиметром (тестером) (прозвонка транзистора) производится следующим образом. Для лучшего понимания процесса на рисунке изображён “диодный аналог” npn-транзистора. Т.е. транзистор как бы состоит из двух диодов. Тестер устанавливается на прозвонку диодов и прозванивается каждая пара контактов в обоих направлениях. Всего шесть вариантов.

  • База – Эмиттер (BE): соединение должно вести себя как диод и
    проводить ток только в одном направлении.
  • База – Коллектор (BC): соединение должно вести себя как диод и
    проводить ток только в одном направлении.
  • Эмиттер – Коллектор (EC): соединение не должно проводить ток ни в каком направлении.

При прозвонке pnp-транзистора “диодный аналог” будет выглядеть также, но с перевёрнутыми диодами. Соответственно направление прохождения тока будет обратное, но также, только в одном направлении, а в случае “Эмиттер – Коллектор” – ни в каком направлении.

Классификация транзисторов.

Проверка простой схемой включения транзистора

Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как “ключ”. Такая схема может быть быстро собрана на монтажной печатной плате, например. Обратите внимание на 10Ком резистор, который включается в базу транзистора.

Это очень важно, иначе транзистор “сгорит” во время проверки. Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании – гаснуть. Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания.

Проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов. Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода. Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом. Делая вывод из всех замеров, база располагается на правом выводе.

Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Методы проверки различных транзисторов.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Материал в тему: все о переменном конденсаторе.

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно. Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE.

Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31. Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры.

Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Проверка транзистора.

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный.

Первый образует канал управления, а второй – силовой канал. Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом. Теперь необходимо убедиться в функциональности транзистора.

Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору.

На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления. Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства.

Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору. Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее. Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время.

Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения. Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального.

Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную. Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра.

Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Подключения транзистора к тестеру

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробно о способах проверки транзисторов можно узнать  из статьи Как проверить полевой транзистор. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.katod-anod.ru

www.morflot.su

www.karpsy.ru

www.remoo.ru

Предыдущая

ПрактикаСпособы проверки транзисторов на работоспособность

Следующая

ПрактикаКак проверить полевой транзистор

Как проверить igbt транзистор мультиметром не выпаивая. Как проверить биполярный транзистор. Проверяем исправный транзистор

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.

Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Транзистор n-канального типа состоит из кремниевой подложки с p-проводимостью, n-областей, получаемых путем добавления в подложку примесей, диэлектрика, изолирующего затвор от канала, расположенного между n-областями. К n-областям подсоединяются выводы (исток и сток). Под действием источника питания из истока в сток по транзистору может протекать ток. Величиной этого тока управляет изолированный затвор прибора.

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.

Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора.

Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.

При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.

Схема проверки полевого транзистора n-канального типа мультиметром

Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.

Общие правила в том, гласят начать процедуру с определения работоспособности самого измерительного прибора. Убедившись, что тот работает безошибочно, переходят к дальнейшим измерениям.

Выводы:

  1. Полевые транзисторы типа MOSFET широко используются в технике и радиолюбительской практике.
  2. Проверку работоспособности таких транзисторов можно осуществить с помощью мультиметра, следуя определенной методике.
  3. Проверка p-канального полевого транзистора мультиметром осуществляется таким же образом, что и n-канального транзистора, за исключением того, что следует изменить полярность подключения проводов мультиметра на обратную.

Видео о том, как проверить полевой транзистор

Как проверить транзистор? (Или как прозвонить транзистор) Такой вопрос, к сожалению, рано или поздно возникает у всех. Транзистор может быть повреждён перегревом при пайке либо неправильной эксплуатацией. Если есть подозрение на неисправность, есть два лёгких способа проверить транзистор.

Как проверить транзистор мультиметром (тестером)

Проверка транзистора мультиметром (тестером) (прозвонка транзистора ) производится следующим образом.
Для лучшего понимания процесса на рисунке изображён «диодный аналог» npn-транзистора . Т.е. транзистор как бы состоит из двух диодов . Тестер устанавливается на прозвонку диодов и прозванивается каждая пара контактов в обоих направлениях. Всего шесть вариантов.

  • База — Эмиттер (BE)
  • База — Коллектор (BC) : соединение должно вести себя как диод и
    проводить ток только в одном направлении.
  • Эмиттер — Коллектор (EC) : соединение не должно проводить ток ни в каком направлении.

При прозвонке pnp-транзистора «диодный аналог» будет выглядеть также, но с перевёрнутыми диодами. Соответственно направление прохождения тока будет обратное, но также, только в одном направлении, а в случае «Эмиттер — Коллектор» — ни в каком направлении.

Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как «ключ». Такая схема может быть быстро собрана на монтажной печатной плате, например. Обратите внимание на 10Ком резистор , который включается в базу транзистора. Это очень важно, иначе транзистор «сгорит» во время проверки.

Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании — гаснуть.

Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания.

Таким образом, можно сказать, что проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора.

И помните, никто не умирает так быстро и так бесшумно, как транзистор.

Перед тем как собрать какую-то схему или начать ремонт электронного устройства необходимо убедиться в исправности элементов, которые будут установлены в схему. Даже если эти элементы новые, необходимо быть уверенным в их работоспособности. Обязательной проверке подлежат и такие распространенные элементы электронных схем как транзисторы.

Для проверки всех параметров транзисторов существуют сложные приборы. Но в некоторых случаях достаточно провести простую проверку и определить годность транзистора. Для такой проверки достаточно иметь мультиметр.

В технике используются различные виды транзисторов – биполярные, полевые, составные, многоэмиттерные, фототранзисторы и тому подобные. В данном случае будут рассматриваться наиболее распространенные и простые — биполярные транзисторы.

Такой транзистор имеет 2 р-n перехода. Его можно представить как пластину с чередующимися слоями с разными типами проводимости. Если в крайних областях полупроводникового прибора преобладает дырочная проводимость (p), а в средней – электронная проводимость (n), то прибор называется транзистор р-n-p. Если наоборот, то прибор называется транзистором типа n-p-n. Для разных видов биполярных транзисторов меняется полярность источников питания, которые подключаются к нему в схемах.

Наличие в транзисторе двух переходов позволяет представить в упрощенном виде его эквивалентную схему как последовательное соединение двух диодов.

При этом для p-n-p прибора в эквивалентной схеме между собой соединены катоды диодов, а для n-p-n прибора – аноды диодов.

В соответствии с этими эквивалентными схемами и производится проверка биполярного транзистора мультиметром на исправность.

Порядок проверки устройства — следуем по инструкции

Процесс измерений состоит из следующих этапов:

  • проверка работы измерительного прибора;
  • определение типа транзистора;
  • измерение прямых сопротивлений эмиттерного и коллекторного переходов;
  • измерение обратных сопротивлений эмиттерного и коллекторного переходов;
  • оценка исправности транзистора.

Перед тем, как проверить биполярный транзистор мультиметром, необходимо убедиться в исправности измерительного прибора. Для этого вначале надо проверить индикатор заряда батареи мультиметра и, при необходимости, заменить батарею. При проверке транзисторов важна будет полярность подключения. Надо учитывать, что у мультиметра на выводе «COM» имеется отрицательный полюс, а на выводе «VΩmA» – плюсовой. Для определенности к выводу «COM» желательно подключить щуп черного цвета, а к выводу «VΩmA» -красного.

Чтобы к выводам транзистора подключить щупы мультиметра правильной полярности, необходимо определить тип прибора и маркировку его выводов. С этой целью необходимо обратиться к справочнику или найти описание транзистора в Интернете.

На следующем этапе проверки переключатель операций мультиметра устанавливается в положение измерения сопротивлений. Выбирается предел измерения в «2к».

Перед тем, как проверить pnp транзистор мультиметром, надо минусовой щуп подключить к базе устройства. Это позволит измерить прямые сопротивления переходов радиоэлемента типа p-n-p. Плюсовой щуп подключается по очереди к эмиттеру и коллектору. Если сопротивления переходов равны 500-1200 Ом, то эти переходы исправны.

При проверке обратных сопротивлений переходов к базе транзистора подключается плюсовой щуп, а минусовой по очереди подключается к эмиттеру и коллектору.

Если эти переходы исправны, то в обоих случаях фиксируется большое сопротивление.

Проверка npn транзистора мультиметром происходит по такой же методике, но при этом полярность подключаемых щупов меняется на противоположную. По результатам измерений определяется исправность транзистора:

  1. если измеренные прямое и обратное сопротивления перехода большие, то это значит, что в приборе имеется обрыв;
  2. если измеренные прямое и обратное сопротивления перехода малы, то это означает, что в приборе имеется пробой.

В обоих случаях транзистор является неисправным.

Оценка коэффициента усиления

Характеристики транзисторов обычно имеют большой разброс по величине. Иногда при сборке схемы требуется использовать транзисторы, у которых имеется близкий по величине коэффициент усиления по току. Мультиметр позволяет подобрать такие транзисторы. Для этого в нем имеется режим переключения «hFE» и специальный разъем для подключения выводов транзисторов 2 типов.

Подключив в разъем выводы транзистора соответствующего типа можно увидеть на экране величину параметра h31.

Выводы :

  1. С помощью мультиметра можно определить исправность биполярных транзисторов.
  2. Для проведения правильных измерений прямого и обратного сопротивлений переходов транзистора необходимо знать тип транзистора и маркировку его выводов.
  3. С помощью мультиметра можно подобрать транзисторы с желаемым коэффициентом усиления.

Видео о том, как проверить транзистор мультиметром

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.

Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.

Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.

Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.

Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.

Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.

Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.

Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p . Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.

Транзистор со структурой n-p-n в виде двух диодов.

Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс (+ ) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс (+ ) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.

Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.

Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.

Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.

Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.

Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный ) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп (красный ) в гнездо с обозначением буквы омега Ω , буквы V и, возможно, других букв. Всё зависит от функционала прибора.

Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!

Теперь, когда сухая теория изложена, перейдём к практике.

Какой мультиметр будем использовать?

Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503 . Он имеет структуру n-p-n . Вот его цоколёвка.

Для тех, кто не знает, что означает это непонятное слово цоколёвка , поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С ), эмиттер (Э или англ.- Е ), база (Б или англ.- В ).

Сначала подключаем красный (+ ) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).

Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.

Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении . В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1 ». Если на дисплее единица «1 », то это означает, что сопротивление перехода велико, и он не пропускает ток.

Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…

…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.

Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1 », что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении .

Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.

Пробой P-N перхода транзистора.

В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.

Обрыв P-N перехода транзистора.

При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1 ». При таком дефекте p-n переход как бы превращается в изолятор.

Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.

В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.

В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.

Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.

То же самое проделываем и для перехода Б-Э.

Как видим, он также исправен. На дисплее – 724 мВ.

Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.

Переход Б-К при обратном включении…

Переход Б-Э при обратном включении.

В обоих случаях на дисплее прибора – единичка «1 ». Транзистор исправен.

Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:

    Определение цоколёвки транзистора и его структуры;

    Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;

    Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;

При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т.д.

Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал .

Facebook

Twitter

Вконтакте

Google+

Операционные системы

Как узнать значение транзистора мультиметром? — Sluiceartfair.com

Как узнать значение транзистора мультиметром?

Подсоедините плюсовой провод мультиметра к BASE (B) транзистора. Подсоедините отрицательный вывод измерителя к ЭМИТЕРУ (E) транзистора. Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).

Транзистор имеет полярность?

Чтобы ответить на ваш вопрос, транзистор имеет 3 клеммы, а именно базу, эмиттер и коллектор, вы можете подключить транзистор только одним способом для работы в соответствии с вашим приложением, поэтому ДА транзистор имеет полярность.

Какая полярность транзистора?

Транзистор PNP — полная противоположность устройству транзистора NPN, которое мы рассматривали в предыдущем руководстве. Кроме того, все полярности для транзистора PNP меняются местами, что означает, что он «втягивает» ток в свою базу, в отличие от транзистора NPN, который «истекает» током через свою базу.

Как проверить транзистор мультиметром?

Удалите транзистор из схемы для получения точных результатов. Подсоедините плюсовой провод мультиметра к BASE (B) транзистора.Подсоедините отрицательный вывод измерителя к ЭМИТЕРУ (E) транзистора. Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В.

Как проверить полярность мультиметром?

Это нейтральный контакт 0 В. Вы также можете подключить другой провод к более короткому вертикальному отверстию, которое представляет собой горячий контакт на 120 вольт. Если ваш мультиметр показывает показания, значит, полярность правильная, поскольку напряжение передается от горячего контакта к нейтральному. Вставьте один провод в отверстие нейтрали, а другой — в отверстие заземления.

Почему мультиметр не показывает напряжение на NPN-транзисторе?

Логика в транзисторе NPN. Если положительный зонд мультиметра подключен к аноду, а отрицательный — к катоду, то он будет показывать напряжение. Если соединения поменять местами, значение не будет отображаться. Держите мультиметр в диодном режиме. Держите положительный щуп на контакте 1 (эмиттер) транзистора.

Как проверить транзистор мультиметром (DMM + AVO) -NPN?

Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 547 NPN), потому что результат теста для 1-2 = 0.717 В постоянного тока и 2-3 = 0,711 В постоянного тока, т.е. 1-2> 2-3. Отключите питание схемы и удалите транзистор из схемы.

Проверка транзистора: пошаговое и простое объяснение

Некоторое время назад мы опубликовали руководство по проверке конденсаторов. Теперь настала очередь другого важного электронного компонента, как это. Здесь вы можете увидеть, как проверить транзистор очень просто и шаг за шагом, и вы можете сделать это с помощью таких обычных инструментов, как мультиметр.

Каждые транзисторов широко используются во множестве электронных и электрических схем для управления с помощью этого твердотельного устройства. Поэтому, учитывая их частоту, вы наверняка встретите случаи, когда вам придется их проверять …

Что мне нужно?

Если у вас уже есть хороший мультиметр или мультиметр, это все, что вам нужно для проверки транзистора. Да, этот мультиметр и должен иметь функцию проверки транзисторов.Многие современные цифровые мультиметры имеют эту функцию, даже дешевые. С его помощью вы можете измерить биполярные транзисторы NPN или PNP, чтобы определить, неисправны ли они.

Если это ваш случай, вам нужно будет только вставить три контакта транзистора в гнездо мультиметра, указанное для него, и установить селектор в положение hFE , чтобы измерить усиление. Таким образом, вы можете прочитать и проверить таблицу, соответствует ли она тому, что она должна дать.

Шаги по проверке биполярного транзистора

К сожалению, не все мультиметры имеют эту простую функцию, и чтобы протестировать более ручным способом, с любым мультиметром вам придется делать это иначе, с функцией тестирования «Диод».

  1. Первым делом удалите транзистор из схемы, чтобы получить лучшее чтение. Если это еще не припаянный компонент, вы можете сохранить этот шаг.
  2. Test Base для эмитента :
    1. Подключите положительный (красный) вывод мультиметра к базе (B) транзистора, а отрицательный (черный) вывод — к эмиттеру (E) транзистора.
    2. Если это NPN-транзистор в хорошем состоянии, измеритель должен показывать падение напряжения от 0,45 В до 0.9В.
    3. В случае PNP на экране должны отображаться инициалы OL (Over Limit).
  3. Испытание От базы к коллектору :
    1. Подключите положительный провод мультиметра к базе (B), а отрицательный провод к коллектору (C) транзистора.
    2. Если это NPN в хорошем состоянии, он покажет падение напряжения от 0,45 до 0,9 В.
    3. Если это PNP, то снова появится OL.
  4. Тестирование Эмитент по базе :
    1. Подсоедините положительный провод к эмиттеру (E), а отрицательный провод к базе (B).
    2. Если это NPN в идеальном состоянии, на этот раз будет отображаться OL.
    3. В случае PNP будет показано падение 0,45 В и 0,9 В.
  5. Испытание Коллектор на базу :
    1. Подключите положительный вывод мультиметра к коллектору (C), а отрицательный — к базе (B) транзистора.
    2. Если это NPN, он должен появиться на экране OL, чтобы указать, что это нормально.
    3. В случае PNP падение снова должно быть 0.45 В и 0,9 В., если все в порядке.
  6. Тест Коллектор к эмиттеру :
    1. Подсоедините красный провод к коллектору (C), а черный провод к эмиттеру (E).
    2. Независимо от того, является ли это NPN или PNP в идеальном состоянии, на экране будет отображаться OL.
    3. Если вы поменяете местами провода, положительный на эмиттере и отрицательный на коллекторе, как на PNP, так и на NPN, он также должен прочитать OL.

Любые различных измерений этого, если все сделано правильно, укажут, что транзистор неисправен.Вы также должны принять во внимание кое-что еще, а именно то, что эти тесты обнаруживают только то, есть ли у транзистора короткое замыкание или они открыты, но не другие проблемы. Поэтому, даже если он их пройдет, у транзистора может возникнуть другая проблема, мешающая его правильной работе.

Полевой транзистор

В случае использования транзистора FET , а не биполярного транзистора, вы должны выполнить следующие шаги с цифровым или аналоговым мультиметром:

  1. Включите мультиметр в функцию проверки диодов, как и раньше.Затем поместите черный (-) датчик на клемму слива, а красный (+) датчик на клемму источника. Результат должен быть 513 мВ или аналогичный, в зависимости от типа полевого транзистора. Если показание не получено, оно будет разомкнуто, а если оно будет очень низким, произойдет короткое замыкание.
  2. Не вынимая черный наконечник из слива, поместите красный наконечник на вывод затвора. Теперь тест не должен возвращать никаких показаний. Если на экране отображаются какие-либо результаты, значит, произошла утечка или короткое замыкание.
  3. Вставьте наконечник в фонтан, а черный останется в стоке. Это проверит переход сток-источник, активировав его и получив низкое значение около 0,82 В. Чтобы отключить транзистор, его три контакта (DGS) должны быть замкнуты накоротко, и он вернется из включенного состояния в состояние ожидания.

С его помощью вы можете тестировать транзисторы типа FET, такие как MOSFET. Не забудьте иметь технические характеристики или спецификации или из них, чтобы знать, адекватны ли полученные вами значения, поскольку они зависят от типа транзистора…


Общие сведения о транзисторах, диодах и выпрямителях Pinball SS —

Учебник по электронике

A. Базовая электроника
B. Транзисторы
C. Интегральные схемы
D. Испытательное оборудование
E. Руководство оператора
F. Чтение схем
G. Устранение неисправностей электроники

Это вторая часть из семи частей серии, предназначенной для предоставления основных знание электроники, испытательного оборудования, руководств по обслуживанию и поиска и устранения неисправностей, чтобы позволить читателю эффективно восстанавливать игры в пинбол.Имея в виду эту цель, я упростил объяснения и намеренно замалчил некоторые детали, которые не добавляют ценности и могут легко запутать новичков.

Важное примечание

Пожалуйста, прочтите руководство по пайке, прежде чем пытаться отремонтировать печатную плату. Замена компонентов печатной платы требует высоких навыков пайки.

Диоды

Диоды — это строительные блоки, из которых состоят транзисторы, мостовые выпрямители и даже интегральные схемы.

Наиболее распространенная функция диода — пропускать электрический ток в одном направлении, блокируя ток в противоположном направлении.Ток течет через диод в направлении, указанном треугольником (в сторону полосатого конца).

Диоды можно рассматривать как электронную версию обратного клапана; вода может течь в одном направлении, но не в другом. Единственным исключением является стабилитрон, который специально разработан, чтобы начать проводить в противоположном направлении, когда обратное напряжение достигает определенного порога.

В автоматах для игры в пинбол диоды чаще всего используются для защиты цепей от скачков напряжения, но они также могут регулировать напряжение (стабилитроны) и производить свет (светодиоды).

Диоды поляризованы, и необходимо устанавливать в правильном направлении . Полоса вокруг диода отмечает клемму катода и указывает на отрицательную сторону цепи. Противоположный вывод называется анодом .

ПРИМЕЧАНИЕ. Большинство светодиодов для пинбола, но не все, устраняют эту проблему с полярностью, добавляя дополнительные схемы к светодиоду. Для поляризованных светодиодов отрицательный провод должен быть короче.

Диоды широко используются в играх в пинбол.В твердотельных моделях на каждой катушке есть диод (называемый обратным диодом). В некоторых пинболах, например в играх Williams WPC, соленоидные диоды установлены на плате драйвера. Другие могут установить их на комплект проушин под игровым полем.

Диод на катушке удерживает высокое напряжение, возникающее при выключении катушки, от возврата к драйверу или плате ЦП и повреждения других компонентов. Если этот диод выходит из строя. в той же цепи часто встречаются отказы других компонентов.

Диоды также широко используются в схемах ламп и переключающих матриц (называемых блокирующими диодами). В этом случае их цель — предотвратить обратное течение тока в цепи и возбуждение других линий в матрице.

Испытательные диоды

Диод можно проверить с помощью цифрового мультиметра, настроенного на режим диода / проверки целостности цепи. Хотя этот режим обычно является частью выбора диапазона сопротивления, он измеряет падение напряжения на диоде, а не сопротивление. Поместите положительный (красный) провод на анод, а отрицательный (черный) провод на катод (сторона с полосой). Вы должны получить показания в диодном режиме от 0,3 до 0,7 вольт. Поменяйте местами провода, и вы должны получить нулевое показание (в зависимости от измерителя это может быть 1. или OL, проверьте руководство, если вы не уверены).

Если какое-либо из этих показаний выходит за пределы допустимого диапазона или вы читаете короткое замыкание, диод неисправен. Примечание: это не окончательный тест, но чаще всего выявляется неисправный диод.

Диоды не всегда могут быть протестированы в цепи, если вы получаете показание вне допустимого диапазона, удалите одну ногу диода из цепи и повторите попытку.

Я вижу много путаницы в тестировании диодов в цепи или вне цепи, поэтому приведу пару примеров. Для диодов на соленоидах необходимо поднять одну ногу для проверки. Лампы и диоды коммутационной матрицы могут быть протестированы в цепи.

Нижняя строка: если есть другие компоненты параллельно диоду, поднимите одну ногу диода для проверки. Если диод включен в последовательную цепь, вы можете проверить его на месте.

Замена диода

Большинство диодов, кроме стабилитронов, рассчитаны на пиковое напряжение и пиковую мощность.Обычно вы можете заменить его на диод с более высоким усилителем или более высоким напряжением. Например, диод 1N4001 рассчитан на 1 ампер и 100 вольт, а диод 1N4004 рассчитан на 1 ампер и 400 вольт. 1N4004, который является наиболее распространенным диодом в пинболе, может использоваться вместо 1N4001.

Стабилитроны

немного сложнее заменить, поскольку они рассчитаны на определенное напряжение и мощность. Хотя номинальное напряжение, используемое в цепи, должно быть таким же, вы можете использовать более высокий номинал ампер. Фактически, вы всегда должны заменять стабилитроны 1/2 Вт на их замену на 1 Вт, см. Пример ниже.

Стабилитрон 1N5237 рассчитан на 8,2 В и 1/2 Вт, а 1N4738 рассчитан на 8,2 В и 1 Вт. Поэтому вы можете и должны заменить 1N5237 на 1N4738.

Мостовые выпрямители

Мостовой выпрямитель, состоящий из четырех диодов, преобразует входной переменный ток в выход постоянного тока. Они являются первой ступенью в любой цепи питания и могут быть проверены как диод. ПРИМЕЧАНИЕ: тестирование мостового выпрямителя с помощью цифрового мультиметра не является окончательным, поскольку он не находится под нагрузкой.Но если он проходит плохо, значит, это плохо.

Мост имеет две клеммы переменного тока и две клеммы постоянного тока (положительную и отрицательную). Сбоку у каждого моста есть две метки: AC и знак плюс. Другой вывод переменного тока диагонален к проводу с маркировкой переменного тока, а отрицательный вывод постоянного тока диагонален к положительному выводу постоянного тока.

Тестирование мостовых выпрямителей

Вы можете тестировать мостовые выпрямители так же, как диоды. Линия, на которую указывает треугольник, соответствует линии на упаковке диода (катод).Вы можете проверить каждую ногу индивидуально, как описано ниже.

  1. Переведите цифровой мультиметр в диодный режим.
  2. Поместите измерительные провода на две соседние ножки.
  3. В одном направлении вы должны показывать от 0,3 до 0,7 вольт и ноль, когда вы меняете местами провода.
  4. Поверните по часовой стрелке и повторите это еще три раза, всего четыре теста.

На изображении выше вы будете тестировать сверху направо, затем справа вниз, затем снизу налево и, наконец, слева вверх.

Замена мостового выпрямителя
Мостовые выпрямители

, как и диоды, рассчитаны на пиковое напряжение и пиковую мощность. Обычно вы можете заменить его на выпрямитель с более высоким усилителем или более высоким напряжением. Они также поставляются в другой упаковке (не в той коробке, в которой они входят, а в физическом размере выпрямителя), так что возьмите с собой старую, когда идете в магазин электроники.

Транзисторы

Транзисторы используются для усиления и переключения электронных сигналов. Напряжение, приложенное к базе транзистора, изменяет ток, протекающий через другую пару выводов (коллектор и эмиттер).Поскольку выходная мощность может быть намного больше, чем входная мощность, транзистор может усилить сигнал или переключить цепь на 12 В с использованием логики 5 В.

В коммутационных (логических) приложениях входной сигнал либо высокий, либо низкий, а выход такой же, хотя он может иметь более высокое напряжение или ток. В приложениях с усилителями входной и выходной сигнал изменяется с пропорциональной скоростью.

Транзисторы поляризованы и должны быть установлены с правильной ориентацией. Если вы держите тансистор плоской стороной или стороной с металлическим выступом, обращенной от вас, контакт 1 будет слева.В разных корпусах транзисторов эмиттер, база и коллектор находятся на разных выводах.

Три типа транзисторов, с которыми вы столкнетесь при работе с пинболами, — это биполярные, транзисторы Дарлингтона (единый корпус с двумя внутренними биполярными транзисторами) и полевые транзисторы (или MOSFET). Биполярные транзисторы обычно используются в слаботочных приложениях, в то время как транзисторы Дарлингтона обычно используются в сильноточных приложениях. Полевые транзисторы (полевые транзисторы) использовались Штерном в играх White Star System в качестве драйверов питания (сильноточные).

Биполярные транзисторы и транзисторы Дарлингтона относятся к типу NPN или PNP (см. Изображение справа). У каждого есть эмиттер, коллектор и база (обычно сокращенно E, C и B). Основание — это ножка, которая идет к середине вертикальной линии, излучатель — это ножка со стрелкой, а коллектор — это ножка, которая диагональна и прикрепляется к вертикальной линии.

На транзисторе PNP стрелка указывает внутрь, указывая на протекание тока, а на транзисторе NPN стрелка указывает наружу, указывая на протекание тока.Наиболее важное различие между ними состоит в том, что NPN-транзистор включается при высоком входном сигнале, а PNP-транзистор включается при низком входном сигнале.

  • На транзисторе PNP, если база имеет более низкое напряжение, чем эмиттер, ток течет от эмиттера к коллектору.
  • На NPN-транзисторе, если база находится под более высоким напряжением, чем эмиттер, ток течет от коллектора к эмиттеру.

Многие транзисторы, которые вы встретите в пинболе (TIP102, TIP122, SE9302 и т. Д.)) являются транзисторами Дарлингтона (также называемыми парами Дарлингтона). Транзисторы Дарлингтона состоят из двух биполярных транзисторов, соединенных таким образом, что ток, усиленный первым транзистором, дополнительно усиливается вторым (см. Изображение справа).

Транзисторы

Дарлингтона часто имеют внутренние диоды и резисторы в дополнение к двум транзисторам. Из-за этого их труднее тестировать с помощью цифрового мультиметра в режиме диод / целостность цепи, и они часто дают неожиданные показания (по сравнению со стандартным биполярным транзистором).См. Изображение ниже, на котором показана эквивалентная схема для TIP102. Примечание. Внутренние резисторы и диод не показаны на схеме.

Чтобы запутать всех нас, транзисторы Дарлингтона иногда изображаются на схеме как два транзистора, а иногда — как один транзистор.

Физическая конфигурация ECB не является стандартной для всех транзисторов, поскольку некоторые используют другой форм-фактор (корпус). В то время как обычно база является средним выводом, на некоторых транзисторах, таких как TIP102 и TIP36C, левый вывод является основанием (металлический язычок направлен от вас, а выводы направлены вниз).

Чтобы получить диаграмму, показывающую физическую конфигурацию эмиттера, базы и коллектора для конкретного транзистора, просто введите в Google имя транзистора и слово datasheet (например, «tip36c datasheet»). Примечание. Транзисторы с левой ножкой в ​​качестве базы могут иметь маркировку TO-220 или TO-218.

Хотя есть много технических различий между биполярными транзисторами и полевыми транзисторами или полевыми МОП-транзисторами, я остановлюсь только на тех, которые относятся к поиску и устранению неисправностей. Для получения дополнительной информации о полевых транзисторах см. Все о схемах.Основное различие в поиске и устранении неисправностей заключается в том, что при проверке с помощью цифрового мультиметра требуется другой метод.

Сравнение транзисторов и полевых транзисторов.

У полевых транзисторов, как и у биполярных транзисторов, три вывода, но они называются истоком, затвором и стоком (сокращенно S, G и D). Эти выводы примерно соответствуют выводам биполярного транзистора: затвор подобен базе, исток подобен эмиттеру, а сток подобен коллектору. Вместо PNP и NPN они обычно обозначаются как N-канал или P-канал (см. Изображение справа).

Повышение положительного положения затвора (базы) на N-канале вызывает прохождение большего тока от стока (коллектора) к истоку (эмиттеру). Если сделать затвор более отрицательным на P-канале, больше тока будет течь от стока к истоку.

Другой тип транзисторов — это TRIAC, которые всегда включены или выключены и переключают переменный ток, а не постоянный ток. Они обычно используются в общей схеме освещения. После срабатывания (база переходит в высокий уровень) симисторы остаются включенными даже после снятия триггера и до тех пор, пока ток через главные клеммы не упадет до нуля.

[Примечание редактора: симисторы используются в платах драйверов WPC Williams для управления цепью переменного тока GI. Для получения дополнительной информации о симисторах см. Что такое симистор.]

Тестирование транзисторов под напряжением
Транзисторы

— один из самых простых компонентов для тестирования в цепи с питанием. Все, что вам действительно нужно проверить, это то, что выходной сигнал изменяется при изменении входа (что не верно для TRIAC, как описано ранее). Единственная проблема, которая сбивает с толку многих людей, связана с тем, что транзисторы часто используются для переключения заземления.

На диаграмме справа светодиод будет гореть при высоком входном напряжении и выключаться при низком входном напряжении.

Но какое напряжение мы будем считать на коллекторе (проводе, идущем к R1) в каждом случае? Помните, что наш транзистор обеспечивает заземление. Таким образом, если на входе низкий уровень, мы увидим 12 вольт на коллекторе, так как нет пути к земле. Без заземления светодиод не будет гореть. Если на входе высокий уровень, мы увидим 0 вольт (или минимальное напряжение) на коллекторе.Теперь, когда есть земля, загорится светодиод.

Этот метод применим ко всем транзисторам: биполярным, транзисторам Дарлингтона и полевым или полевым МОП-транзисторам.

Тестирование транзисторов с помощью цифрового мультиметра

Примечание. Вы можете выполнить этот тест с установленной в игре печатной платой, но при этом питание должно быть отключено.

Транзисторы

действительно следует тестировать вне схемы. Проверить их в цепи не так просто, как с диодом, потому что окружающие схемы могут повлиять на показания и дать неверные результаты.Также обратите внимание, что транзисторы Дарлингтона часто содержат внутренние компоненты (резисторы или диоды), которые приводят к странным показаниям по сравнению с биполярным транзистором.

Первое, что вам нужно знать, это тип транзистора, с которым вы имеете дело: биполярный, транзистор Дарлингтона или FET / MOSFET. Я расскажу о тестировании полевых транзисторов или полевых МОП-транзисторов отдельно, поскольку они требуют совершенно другой техники. Эту информацию предоставит техническое описание транзистора.

В случае транзисторов Дарлингтона вы также должны соответствовать производителю тестируемого компонента, поскольку некоторые заменяющие транзисторы используют другую внутреннюю схему.

Далее нам нужно знать, является ли транзистор NPN или PNP, что вы можете определить из таблицы или схемы, как описано ранее. Средняя буква (то есть P в NPN) сообщит вам, с чего начать с выводами зонда.

Для биполярного NPN поместите положительный или красный провод на среднюю ножку (основание). Для стандартного PNP поместите отрицательный или черный провод на среднюю ногу. Как упоминалось ранее, на некоторых транзисторах, таких как TIP102 и TIP36C, база находится на левом выводе, а не на среднем, поэтому методика тестирования немного отличается.

Ниже приведены процедуры тестирования для каждого типа транзистора (показания вне цепи). Примечание. Некоторые цифровые мультиметры будут читать от 3ХХ до 9ХХ вместо 0,3–9.

Транзистор NPN, средний вывод — база (т.е. — 2N4401)

  1. Поместите красный провод цифрового мультиметра на центральную ножку (основание) транзистора.
  2. Проверить каждую внешнюю ногу черным проводом.
  3. Вы должны получить показания в пределах 0,3 — 0,9 вольт на каждом (два показания должны быть примерно одинаковыми).
  4. Поместите черный провод на центральную ножку транзистора.
  5. Проверить каждую внешнюю ногу красным проводом.
  6. Ваш цифровой мультиметр должен открывать все значения.
  7. Протестируйте внешние ноги, вы должны получить открытые показания.
  8. Обратные отведения на внешних ножках, вы должны получить открытые показания.

Транзистор PNP, средний вывод — база (т.е. — 2N5401)

  1. Поместите черный провод цифрового мультиметра на центральную ножку (основание) транзистора.
  2. Проверить каждую внешнюю ногу красным проводом.
  3. Вы должны получить показания между.3 — 0,9 вольт на каждом (два показания должны быть примерно одинаковыми).
  4. Поместите красный провод на центральную ножку транзистора.
  5. Проверить каждую внешнюю ногу черным проводом.
  6. Ваш цифровой мультиметр должен открывать все значения.
  7. Протестируйте внешние ноги, вы должны получить открытые показания.
  8. Обратные отведения на внешних ножках, вы должны получить открытые показания.

Транзисторы PNP, левый вывод — база (т.е. — TIP36C и TIP42) *

  1. Поместите черный провод цифрового мультиметра на левую ножку транзистора.
  2. Тест на среднюю ногу и правую ногу красным проводом.
  3. Вы должны получить показания в пределах 0,3 — 0,9 вольт на каждом (два показания должны быть примерно одинаковыми).
  4. Поместите красный провод на левую ножку транзистора.
  5. Проверка средней и правой ног черным проводом.
  6. Ваш цифровой мультиметр должен открывать все значения.
  7. Проверьте среднюю и правую ногу, вы должны получить открытое значение.
  8. Поменяйте местами отведения на средней и правой ногах, вы должны получить открытые показания.

Транзисторы NPN, левый вывод — база (т.е. — TIP102, TIP120, TIP121, TIP122, 2N6045 и SE9302) *

  1. Поместите красный провод цифрового мультиметра на левую ножку транзистора *.
  2. Проверка средней и правой ног черным проводом.
  3. Вы должны получить показания в пределах 0,3 — 0,9 вольт на каждом (два показания должны быть примерно одинаковыми).
  4. Поместите черный провод на левую ножку транзистора.
  5. Тест на среднюю ногу и правую ногу красным проводом.
  6. Ваш цифровой мультиметр должен открывать все значения.
  7. Проверьте среднюю и правую ногу, вы должны получить открытое значение.
  8. Поменяйте местами отведения на средней и правой ногах, вы должны получить открытые показания.

* Сориентируйте транзистор так, чтобы металлический язычок был направлен от вас, а выводы были направлены вниз.

Помните, что транзисторы Дарлингтона иногда могут давать странные показания, как правило, от базы до эмиттера. В таблице данных будет показана внутренняя схема и будет указано, что следует ожидать «аномальных» показаний.Например, на TIP102 при тестировании с черным проводом на левой ноге и красным проводом на правой ноге вы получите показание около 1,9 В вместо разомкнутого (это из-за внутренних резисторов).

В случае сомнений сравните свои показания с показаниями заведомо исправного транзистора того же номинала и того же производителя.

транзисторы Дарлингтона: TIP102, TIP120, TIP121, TIP122, 2N6045 и SE9302.

Тестирование полевого транзистора / полевого МОП-транзистора

Хотя для точного тестирования полевого транзистора вне цепи требуется специальное оборудование, если у вас есть подходящий цифровой мультиметр, вы можете провести довольно точный тест.Большинство, но не все цифровые мультиметры подадут на тестируемое устройство 3-4 вольта (в диодном режиме) и будут работать нормально. С другой стороны, некоторые цифровые мультиметры используют более низкое напряжение (всего 1,5 В) и не будут работать в этом тесте.

Примечание: не прикасайтесь рукой к каким-либо частям транзистора, кроме корпуса или язычка, иначе вы можете включить его

  1. Черный на источнике, красный на затворе: включает транзистор.
  2. Черный на источнике, красный на сливе: низкие показания (0,00X).
  3. Красный на источнике, черный на затворе: выключает транзистор.
  4. Черный на источнике, красный на сливе: читать открыто.

Вы также можете создать свой собственный, более точный тестовый прибор, как описано в этой статье.

FET / MOSFET: 22NE10L и IRL540N.

Замена транзистора

В большинстве случаев вы сможете найти точную замену любым транзисторам. Ниже приведены некоторые предлагаемые замены, которые следует использовать вместо оригинального продукта для повышения надежности.

  • TIP120, TIP121, TIP122, 2N6045 и SE9302 — заменить на TIP102
  • TIP42 — заменить на TIP42C
  • 13N10L– заменить на IRL530N (Редактор: или IRL540N)
  • 22NE10L — заменить на IRL540N
Список литературы
  • Следующий отличный сайт предоставляет более подробные электронные руководства: All About Circuits.
  • На канале
  • Рэнди Фромма на YouTube также есть отличные видео по основам теории электроники.

Неисправности транзисторов

Почему выходят из строя транзисторы?

Все полупроводниковые приборы чрезвычайно надежны. При условии, что они эксплуатируются правильно, у них вообще нет причин для отказа; но, конечно, они терпят неудачу, и это может происходить по разным причинам.

Производственные ошибки

Производственные неисправности случаются (очень редко), обычно в новом оборудовании.Если в новом транзисторе есть неисправность, она часто проявляется в первые несколько часов использования. Если он будет работать правильно в течение этого периода, то велика вероятность, что он будет работать и дальше. Большая часть производственных дефектов может быть обнаружена с помощью «испытаний на выдержку» нового оборудования. Это запускает его на испытательном стенде в течение нескольких часов, чтобы убедиться в отсутствии ранних сбоев. Предметы, прошедшие эти испытания, можно с уверенностью использовать в регулярных целях.

Возраст компонента

Нет реальной причины, по которой транзисторы должны стареть.Срез кремния возрастом 10 лет должен быть таким же, как ломтик годовалого возраста. Однако старые системы, содержащие транзисторы, действительно начинают доставлять больше проблем. Причина этого в том, что другие компоненты, такие как резисторы, могут изменять свои значения с возрастом, особенно если они подвергаются воздействию нагрева, вызванного протеканием тока. В конечном итоге это может привести к тому, что транзистор будет работать за пределами своих нормальных параметров, например, работать при температуре выше допустимой. Именно тогда транзисторы могут выйти из строя.В таких обстоятельствах целесообразно исследовать причины неисправного транзистора, а не просто его заменять. После замены всегда проверяйте напряжение на клеммах транзистора, чтобы убедиться в отсутствии отклонений от нормы.

Внешние причины

Иногда внешние причины могут повредить или даже разрушить транзисторы. Неправильное обращение с полевыми транзисторами может привести к повреждению электростатическим разрядом. Иногда это приводит к тому, что транзистор (или печатная плата) не работает при установке в систему.Это может быть связано с тем, что очень тонкие изолирующие слои внутри устройства полностью вышли из строя из-за высокого напряжения статического электричества, небрежно приложенного к клеммам. Что еще хуже, иногда такие разряды не вызывают немедленного разрушения устройства, но повреждают изоляцию до такой степени, что через некоторое время (часы или годы) устройство выходит из строя.

В оборудовании с питанием от сети (сети) время от времени могут возникать очень короткоживущие импульсы высокого напряжения, вызванные такими событиями, как удары молнии (даже на некотором расстоянии от места повреждения) могут повредить полупроводники.Также скачки напряжения, вызванные локально такими событиями, как индукционное оборудование, такое как запуск или остановка двигателей. Большинство цепей с питанием от сети (и даже некоторые маломощные), подверженные такому повреждению, имеют встроенную защиту, предотвращающую повреждение. В большинстве случаев эта защита работает хорошо, но редко бывает эффективна на 100%.

Схемотехника

Многие неисправности, особенно в оборудовании, изготовленном для домашнего пользователя, можно найти, обратившись к базам данных повторяющихся неисправностей, опубликованным в технических журналах в Интернете.Причина возникновения этих повторяющихся неисправностей в основном зависит от конструкции. Товары для дома предназначены для производства по выгодной цене и для обеспечения бесперебойной работы в течение некоторого времени. Производители могут производить продукты, соответствующие тщательно разработанным стратегиям. Некоторые неисправности возникают из-за того, что изделие превышает «расчетный срок службы», в то время как другие возникают преждевременно. Разработка электронного продукта для определенного периода жизни в условиях, которые будут очень изменчивыми (например, в наших домах) и над которыми дизайнеры не могут повлиять, — это не точная наука.Однако возникающие неисправности обычно следуют определенной схеме, и тщательная запись предыдущих неисправностей может быть хорошим индикатором будущих неисправностей. Эти сбои могут повлиять на транзисторы так же легко, как и на любой другой компонент.

Мощность и надежность

При рассмотрении единицы неисправного оборудования всегда помните, что надежность любого компонента пропорциональна мощности, которую он рассеивает. Другими словами, «Если обычно становится жарко, то обычно выходит из строя». Такое правило предполагает, что вышедший из строя транзистор с большей вероятностью находится в выходных каскадах схемы, чем в каскадах низкого напряжения и мощности, которые ему предшествуют.Любая схема, в которой используется либо высокое напряжение, либо большой ток, либо и то, и другое, создает гораздо большую нагрузку на полупроводники, чем схемы с низким напряжением и низким током. Хотя устройства, используемые в этих схемах, спроектированы так, чтобы выдерживать такое использование, они справляются с этим хуже, чем устройства, которые относительно легко работают в условиях низкого энергопотребления. Основные проблемные места — блоки питания и выходные каскады. Когда вы сталкиваетесь с неисправной схемой и очень мало информации о ней, быстрая проверка полупроводников на этих этапах может сэкономить много работы.

Неисправности полупроводников

Когда диод или транзистор выходит из строя, обычно происходит одно из двух:

• Переход (или переходы) замыкается накоротко (его сопротивление становится очень низким или нулевым).

• Соединение (или соединения) размыкается (его сопротивление становится очень большим или бесконечным).

Конечно, этот список можно расширить, включив в него те соединения, которые могут стать негерметичными (немного низкое сопротивление), хотя это случается редко. На практике за этим условием довольно скоро следует полное короткое замыкание.

Из вышесказанного следует, что диоды и транзисторы можно проверять простым измерением сопротивления, в большинстве случаев это так. Набор тестов сопротивления может с большой степенью уверенности показать, исправен ли полупроводник или неисправен. Конечно, могут возникать и другие неисправности, и проводятся другие испытания, но они будут обсуждаться после всех важных испытаний на сопротивление.

Начало страницы.>

Меры предосторожности

МЕРЫ ПРЕДОСТОРОЖНОСТИ

Транзисторы, хотя обычно механически более прочны, чем электронные лампы, восприимчив к повреждениям электрическими перегрузками, жарой, влажностью и радиацией.Повреждение такая природа часто возникает при обслуживании транзисторов из-за неправильной полярности напряжение в цепи коллектора или чрезмерное напряжение во входной цепи. Беспечный методы пайки, которые приводят к перегреву транзистора, вызывают значительный ущерб. Одна из наиболее частых причин выхода из строя транзистора — это электростатический разряд от тела человека при обращении с устройством. Вы можете избежать таких перед началом ремонта, сняв статическое электричество с вашего тела на шасси, содержащее транзистор.Вы можете сделать это, просто коснувшись шасси. Таким образом, электричество будет передано от вашего тела к шасси, прежде чем вы начнете работать с транзистор.

Во избежание повреждения транзистора и поражения электрическим током соблюдайте следующие правила: следующие меры предосторожности при работе с транзисторным оборудованием:

  • Необходимо проверить испытательное оборудование и паяльники, чтобы убедиться в отсутствии утечек. ток от источника питания.При обнаружении тока утечки изолирующие трансформаторы должен быть использован.
  • Всегда подключайте заземление между испытательным оборудованием и цепью, прежде чем пытаться ввести или контролировать сигнал.
  • Убедитесь, что испытательные напряжения не превышают максимально допустимое напряжение для компонентов схемы и транзисторы.Кроме того, никогда не подключайте выходы испытательного оборудования напрямую к транзисторной цепи.
  • Диапазоны омметра, для которых требуется ток в испытательной цепи более одного миллиампера. не следует использовать для тестирования транзисторов.
  • Разрядники батарей не должны использоваться для питания транзисторного оборудования, потому что у них плохое регулирование напряжения и, возможно, высокие пульсации напряжения.
  • Тепло, подаваемое на транзистор, когда требуются паяные соединения, должно сохраняться. к минимуму за счет использования маломощного паяльника и тепловых шунтов, таких как удлиненный носик. плоскогубцы на выводах транзистора.
  • Когда возникает необходимость заменить транзисторы, никогда не поддавайте транзисторы, чтобы их ослабить. из печатных плат.
  • Перед заменой транзистора необходимо проверить все схемы на наличие дефектов.
  • Перед заменой транзистора необходимо отключить питание оборудования.
  • Использование обычных измерительных щупов на оборудовании с близко расположенными частями часто вызывает случайное замыкание между соседними клеммами.Эти шорты редко вызывают повреждение электронная лампа, но может испортить транзистор.
  • Для предотвращения этих коротких замыканий зонды можно покрыть изоляцией, за исключением очень короткого замыкания. короткая длина кончиков.

ИДЕНТИФИКАЦИЯ ОТВЕДЕНИЯ

Идентификация выводов транзистора играет важную роль в обслуживании транзисторов; потому что, прежде чем транзистор можно будет проверить или заменить, его выводы или клеммы должны быть идентифицированы.Поскольку не существует стандартного метода идентификации выводов транзисторов , он вполне возможно принять одно отведение за другое. Поэтому при замене транзистор, вы должны обратить пристальное внимание на то, как транзистор установлен, особенно к тем транзисторам, которые впаяны, чтобы вы не ошиблись при установка нового транзистора. Когда вы проверяете или заменяете транзистор, если у вас любые сомнения по поводу того, какой вывод есть, обратитесь к руководству по оборудованию или руководству по транзистору который показывает характеристики используемого транзистора.

Однако есть несколько типичных схем идентификации потенциальных клиентов, которые будут очень полезны. при поиске и устранении неисправностей транзисторов. Эти схемы показаны на рисунке 2-17. В случае Транзистор овальной формы показан на виде A, вывод коллектора обозначен широким пространством между ним и основанием. Наибольшее расстояние от коллектора в очереди — это эмиттерный вывод. Когда выводы расположены равномерно и выровнены, как показано на виде B, цветной точка, обычно красная, обозначает коллектора.Если транзистор круглый, как на изображении C, красный Линия указывает на коллектор, а вывод эмиттера — самый короткий вывод. С учетом D выводы имеют треугольную форму, смещенную от центра транзистора. Вывод напротив пустого квадранта в этой схеме является базовым. Если смотреть со стороны снизу коллектор — это первый вывод по часовой стрелке от основания. Выводы в поле зрения E: расположены так же, как и вид D, за исключением того, что для идентификации ведет.Если смотреть снизу по часовой стрелке, первый вывод, следующий за вкладка — эмиттер, затем база и коллектор.

Рисунок 2-17. — Идентификация выводов транзистора.

В обычном силовом транзисторе, как показано на видах F и G, вывод коллектора обычно подключается к монтажной базе. Для дальнейшей идентификации базовый отвод в поле зрения F покрыт зеленой оплеткой.В то время как отведения в поле зрения G идентифицируются путем просмотра транзистор снизу по часовой стрелке (монтажные отверстия занимают 3 часов и 9 часов), вывод эмиттера будет в положении 5 часов или 11 часов. положение часов. Другой вывод — это основание.

ТЕСТИРОВАНИЕ ТРАНЗИСТОРОВ

Есть несколько различных способов тестирования транзисторов. Их можно протестировать в схему, указанным методом замены, или с помощью тестера транзисторов, или омметр.

Тестеры транзисторов

— это не что иное, как твердотельный эквивалент электронных ламп. тестеры (хотя они и не работают по тому же принципу). С большинством транзисторов Тестеры, можно проверить транзистор в цепи или вне ее.

Для практического поиска и устранения неисправностей транзисторам требуются четыре основных теста: усиление, время утечки, пробоя и переключения. Однако при техническом обслуживании и ремонте необходимо проверить двух или трех параметров обычно достаточно, чтобы определить, нужно ли транзистору заменить.

Поскольку нецелесообразно охватывать все типы тестеров транзисторов и поскольку каждый тестер поставляется с собственным руководством оператора, мы перейдем к тому, что вы Чаще буду использовать для проверки транзисторов — омметр.

Тестирование транзисторов омметром

С помощью омметра можно выполнить два теста: коэффициент усиления и сопротивление перехода. Испытания сопротивление перехода транзистора покажет утечку, короткое замыкание и обрыв.

ТЕСТ УСИЛЕНИЯ ТРАНЗИСТОРА. — Базовый тест усиления транзистора может быть выполнен с помощью омметра. и простая тестовая схема. Тестовая схема может быть сделана всего с парой резисторов. и переключатель, как показано на рисунке 2-18. Принцип испытания заключается в том, что через транзистор между эмиттером и коллектором будет протекать небольшой ток или он отсутствует до тех пор, пока переход эмиттер-база смещен в прямом направлении. Единственная предосторожность, которую вы должны соблюдать, — это омметр.В счетчике можно использовать любую внутреннюю батарею при условии, что она не превышают максимальное напряжение пробоя коллектор-эмиттер.

Рисунок 2-18. — Проверка усиления транзистора омметром.

Когда переключатель на рис. 2-18 находится в разомкнутом положении, как показано, напряжение не подается на база PNP-транзистора и переход эмиттер-база не смещены в прямом направлении. Следовательно, омметр должен показать высокое сопротивление, как показано на измерителе.Когда переключатель замкнут, цепь эмиттер-база смещается в прямом направлении напряжением на R1 и R2. В цепи эмиттер-коллектор течет ток, что снижает сопротивление чтение на омметре. Отношение сопротивления 10: 1 в этом тесте между показаниями счетчика. указывает на нормальное усиление для транзистора звуковой частоты.

Чтобы проверить NPN-транзистор с использованием этой схемы, просто поменяйте местами выводы омметра и выполните описанную ранее процедуру.

ИСПЫТАНИЕ СОПРОТИВЛЕНИЯ ПЕРЕХОДА ТРАНЗИСТОРА. — Омметр можно использовать для проверки транзистора на утечку (нежелательное протекание тока) путем измерения базы-эмиттера, прямое и обратное сопротивление база-коллектор, коллектор-эмиттер.

Для простоты рассмотрим тестируемый транзистор на каждом изображении рисунка 2-19 (вид A, Рассмотрите вид полосы C) как два диода, соединенных спина к спине. Следовательно, каждый диод будет иметь низкое прямое сопротивление и высокое обратное сопротивление.Измеряя эти сопротивления с помощью омметр, как показано на рисунке, вы можете определить, течет ли транзистор ток через его стыки. При проведении этих измерений избегайте использования шкалы R1 на шкале счетчик или счетчик с высоким напряжением внутренней батареи. Любое из этих условий может повредить маломощный транзистор.

Рисунок 2-19A. — Проверка герметичности транзистора омметром.

ИСПЫТАНИЕ КОЛЛЕКТОРА-ЭМИТТЕРА

Рисунок 2-19B.- Проверка герметичности транзистора омметром.

ТЕСТ БАЗА-КОЛЛЕКТОР

Рисунок 2-19C. — Проверка герметичности транзистора омметром.

ТЕСТ БАЗА-ЭМИТТЕР

Теперь рассмотрим возможные проблемы с транзисторами, которые могли бы существовать, если бы показания на рис. 2-19 не получены. Список этих проблем представлен в таблице. 2-2.

Таблица 2-2. — Возможные проблемы с транзисторами по показаниям омметра

ПОКАЗАТЕЛИ СОПРОТИВЛЕНИЯ ПРОБЛЕМЫ
ПЕРЕДНИЙ ОБРАТНЫЙ Транзистор является:
НИЗКИЙ (НЕ ЗАКРОЧЕННЫЙ) НИЗКИЙ (НЕ КОРОТКИЙ) УТЕЧКА
НИЗКИЙ (ЗАКРОЧЕННЫЙ) НИЗКИЙ (КОРОТКИЙ) КОРОТКИЕ
ВЫСОКИЙ ВЫСОКИЙ ОТКРЫТЬ
** За исключением теста коллектор-эмиттер.

К настоящему времени вы должны понять, что транзистор, используемый на рисунке 2-19 (вид A, вид B и вид C) — транзистор PNP. Если вы хотите проверить NPN-транзистор на утечку, процедура идентична той, что использовалась для проверки PNP, за исключением того, что полученные показания в обратном порядке.

При тестировании транзисторов (PNP или NPN) следует помнить, что фактическое сопротивление значения зависят от шкалы омметра и напряжения аккумулятора.Типичный вперед и назад сопротивления незначительны. Лучший индикатор, показывающий, в порядке ли транзистор или плохое соотношение прямого и обратного сопротивления . Если транзистор вы тестирование показывает соотношение минимум 30 к 1, наверное, хорошо. Многие транзисторы показывают отношения от 100 к 1 или больше.

Q.38 Какие меры предосторожности необходимо предпринять перед заменой транзистора?
В.39 Как определяется вывод коллектора на транзисторе овальной формы?
В.40 Какие два теста транзистора можно выполнить с помощью омметра?
В.41. Когда вы проверяете усиление транзистора звуковой частоты с помощью омметра, какой обозначается соотношением сопротивлений 10: 1?
В.42. Когда вы используете омметр для проверки транзистора на утечку, на что указывает низкое, но не закороченное значение обратного сопротивления?

Тестер транзисторов

Как работать

Цифровые мультиметры

сегодня имеют особую возможность, например, для тестирования диодов, но аналоговые мультиметры, которые все еще распространены, нет.Несмотря на это, довольно легко выполнить простой тест «годен / не годен», используя простейшее оборудование.

Транзисторы и диоды можно проверить на работоспособность с помощью этого метода, но нет возможности предоставить подробную информацию о параметрах. Это не проблема, потому что эти компоненты будут проверены при изготовлении, и когда они используются в цепи, они очень редко выходят из строя.

Большинство отказов приводят к выходу компонента из строя. Этот тип теста очень прост и позволяет очень быстро и легко обнаруживать проблемы.

Таким способом можно проверить большинство типов диодов, включая диоды, такие как диоды опорного напряжения, диоды выпрямителя мощности и диоды для передачи сигналов.

Обзор использования мультиметра для проверки диода

Можно выполнить простую проверку диодов. Мультиметр — это все, что нужно для проверки работоспособности диода.

Тест диодов определяет, проводят ли диоды только в одном или обоих направлениях. Это означает, что его сопротивление в одном направлении будет отличаться от сопротивления в другом направлении.

Используя сопротивление в обоих направлениях, можно определить, работает ли диод, а также какие соединения являются анодом и катодом.

В свете того факта, что фактическое сопротивление в прямом направлении зависит от напряжения, невозможно дать точные значения ожидаемого сопротивления, так как напряжение на разных измерителях будет отличаться — оно даже будет отличаться между разными диапазонами измерителя. .

Выполните следующие действия:
  1. Убедитесь, что измеритель находится в диапазоне Ом — любой диапазон должен работать, но средний, если их несколько, должен работать лучше всего.
  2. Катодная клемма диода должна быть подключена к положительной клемме мультиметра, а анодная клемма — к отрицательной или общей клемме.
  3. Измеритель должен показывать сопротивление, и должно быть получено «низкое» значение.
  4. Замена соединения в обратном направлении.
  5. На этот раз должно быть получено высокое значение сопротивления.

Примечания:

  • На шаге 3 фактическое показание будет зависеть от нескольких факторов.Главное, чтобы счетчик отклонялся, возможно, до половины или более от исходного положения. Разница зависит от нескольких факторов, включая батарею в измерителе и используемый диапазон. Важно отметить, что измеритель сильно отклоняется.
  • Кремниевые диоды
  • вряд ли покажут какое-либо отклонение измерителя при тестировании в обратном направлении. Для германиевых, которые имеют гораздо более высокий уровень обратного тока утечки, измеритель может показывать небольшое отклонение, если диапазон установлен на высокое сопротивление.

Простой аналоговый мультиметр для проверки диода очень полезен, потому что он дает мгновенную индикацию того, действительно ли диод работает. Однако он не учитывает сложные параметры, такие как обратный пробой.

Тем не менее, это важный тест на техническое обслуживание и ремонт. Несмотря на изменение характеристик диода, он очень редко выходит из строя. Это станет очевидным сразу после теста.

Таким образом, такой тест может оказаться чрезвычайно полезным для широкого спектра приложений электронного тестирования и ремонта.

Мультиметр для проверки транзисторов

Простая и понятная проверка достоверности биполярных транзисторов может быть выполнена с помощью проверки диодов с помощью аналогового мультиметра. Опять же, тест с использованием мультиметра дает только уверенность в том, что транзистор не перегорел, но все же очень полезен.

Как и диоды, транзисторы с большей вероятностью выйдут из строя из-за их разрушения, чем из-за небольшого ухудшения их характеристик.

Аналоговый мультиметр может использоваться для проверки диодов между базой и коллектором транзистора, а также базой и эмиттером транзистора для определения основных электрических свойств транзистора.

Остается выполнить еще один тест. Поскольку есть встречные диоды, между коллектором и эмиттером транзистора должно быть большое сопротивление. Тем не менее, между коллектором и эмиттером может быть образован токопроводящий путь, а также диодная функция у базы, если коллекторный эмиттерный путь перегорел. На этом также должны быть проведены испытания.

Биполярный транзистор не может быть функционально дублирован с использованием двух отдельных диодов, потому что его работа зависит от базы, которая представляет собой соединение двух диодов, поскольку это один физический слой и очень тонкий.

Пошаговая инструкция: Инструкции

в первую очередь ориентированы на транзисторы NPN, так как это наиболее распространенные типы используемых. Существуют разновидности PNP — они указаны в скобках (.. .. ..):

  1. Убедитесь, что измеритель находится в диапазоне Ом — любой диапазон должен работать, но средний, если их несколько, должен работать лучше всего.
  2. Подключите клемму базы транзистора к положительной клемме мультиметра (обычно красной).
  3. Отрицательный или общий вывод (обычно черный разъем) подключается к коллектору, и измеряется сопротивление.Требуется считывание разомкнутой цепи (транзистор PNP должен показывать отклонение).
  4. Повторите измерение с положительной клеммой, подключенной к эмиттеру, в то время как положительная клемма все еще подключена к базе. Опять же, показания должны быть разомкнутыми (мультиметр должен отклоняться с транзистором PNP).
  5. Поменяйте местами подключение к базе транзистора, на этот раз подключив отрицательную (черную) клемму аналогового измерительного прибора к базе.
  6. Сначала подключите положительную клемму к коллектору и измерьте сопротивление.Затем вставьте его в эмиттер. Указывается, что транзистор любого типа размыкает цепь отклонением (в обоих случаях).
  7. Затем подключите отрицательный или общий вывод измерителя к коллектору, а положительный полюс измерителя — к эмиттеру. Убедитесь, что измеритель показывает обрыв цепи. (Измеритель должен отображать обрыв цепи для типов NPN и PNP.
  8. Подключите отрицательный полюс и коллектор измерителя так, чтобы оба подключили эмиттер и коллектор соответственно. Еще раз проверьте, показывает ли счетчик обрыв цепи.
  9. Транзисторы, прошедшие все испытания, считаются исправными и все переходы исправны.

Примечания:

  • Последняя проверка гарантирует, что база не «продувалась» от коллектора до эмиттера. Иногда коллектор и эмиттер все еще могут быть соединены диодом, но коллектор и эмиттер могут быть закорочены вместе.
  • Для германиевых транзисторов обратные показания не будут такими хорошими, как для кремниевых транзисторов.В германии присутствуют некоторые второстепенные носители, которые пропускают небольшой ток.

Обзор аналоговых мультиметров

Подавляющее большинство мультиметров, представленных сегодня на рынке, являются цифровыми, но все еще используется много аналоговых измерителей. Несмотря на то, что они могут не быть новейшими технологиями, они по-прежнему идеальны для многих целей, включая измерения, подобные приведенным выше. Хотя описанные выше тесты предназначены для аналоговых измерителей, аналогичные тесты могут быть выполнены с цифровыми мультиметрами.

Многие цифровые мультиметры предлагают специальную функцию проверки биполярных транзисторов, что очень удобно. Функция тестирования биполярных транзисторов обычно работает аналогично описанному здесь, хотя некоторые цифровые мультиметры также сообщают о текущем усилении.

Простой тест диодов и транзисторов очень полезен во многих сценариях обслуживания и ремонта. Отличный способ определить, работает ли диод или транзистор, — это посмотреть на его характеристики. Тот факт, что мультиметр может обеспечить эту возможность при отсутствии тестеров транзисторов, особенно полезен, поскольку они редко доступны.Кроме того, проводить тест очень просто.

Комплектация транзисторов для FF Clones

Авторское право 2000 R.G. Увлеченный. Все права защищены. Нет разрешения на локальные копии или обслуживание со страниц, отличных от http://www.geofex.com.


Вы решили создать лучший в мире клон Fuzz Face. У тебя есть собранные части, в том числе некоторые германиевые транзисторы dyn-o-mite PNP, и просто чешется достать пайку.Но — из этой партии германиевых транзисторов, как узнать, какие из них звучать хорошо, а что не будет? Для первого заказа вы можете просто выбрать их в цифровом мультиметре с диапазоном проверки транзисторов. Однако все современные цифровые мультиметры Предположим, что тестируемый транзистор вообще не имеет утечки. Они просто поставили Измерьте величину базового тока и посмотрите, сколько тока поступает на коллектор из. Из-за более высокой утечки германия это просто делает устройство негерметичным. выглядят как устройство с более высоким коэффициентом усиления.Вот как отделить пшеницу от плевел.

Это — один из способов отделить утечку от истинного выигрыша. Вы подключаете пару резисторов и цифровой мультиметр к устройству, а резисторы устанавливают условия, которыми вы можете управлять, чтобы посмотреть, что к чему. Если вы действительно хотите это сделать, возьмите резистор 2,2 МОм и резистор 2,4 кОм. ; лучше возьмите по одной металлической пленке 2.2M и 2.49K 1% резисторы. Это обойдется вам примерно в 0,30 доллара США, если вы получите их от Mouser, и немного больше или меньше, чем из других источников.Если ты собираешься много делать этого, установите транзисторный разъем, чтобы вы могли легко протестировать большое количество устройств.

Если вы удовлетворены показателем прибыли, но готовы согласиться на более низкая точность, вы можете использовать углеродную пленку на 5%, но знайте, что точность будет быть меньше. Если можешь, получи несколько резисторов 2,4 кОм и измерьте их. Вы можете найти тот, который ближе к 2,472 Ом, что было бы идеально. я придирчиво к омам, потому что если вы получите ровно 2.2M и 2472 Ом, и используйте батарею 9,0 В, вы обнаружите, что напряжение на резисторе будет быть численно равным указанному усилению! Вот почему несколько странный резистор ценности и обсуждение ценностей. Это делает окончательные цифры на вашем цифровом мультиметре. выходи о праве.

Для проверки вставьте транзистор в гнездо и считайте напряжение постоянного тока. через резистор 2,4 кОм. Резистор преобразует любой ток утечки из транзистор в напряжение, которое вы затем можете прочитать на своем счетчике.2472 Ом сопротивление резистора составляет 2,472 вольт на миллиампер, поэтому утечка в миллиамперах приведет к отображению 2,472 вольт. Это невероятно большая утечка, поэтому любой транзистор, который это не будет полезно для FF. Фактически, хотя он будет немного отличаться, любой транзистор, который показывает утечку более нескольких микроампер. Из-за резистора масштабирования, показанное на вашем счетчике значение является «усилением ложной утечки» и нужно будет вычесть из общего чтения, которое вы сделаете в следующий раз.

Чтобы проверить общее усиление, нажмите переключатель, который соединяет резистор 2,2 МОм с база. Это приводит к тому, что ток базы протекает более чем на 4 мкА. база. Транзистор умножает это на свое внутреннее усиление, и сумма утечка (которая не меняется с током базы) и усиленная база Текущий. Если транзистор имеет коэффициент усиления 100 и нет утечки, напряжение на тогда резистор 2,4 кОм равен (4 мкА) * (100) * (2472) = 0,9888 В — что почти ровно 1/100 от фактический выигрыш.Довольно аккуратно, да?

Но мы знаем, что у германия действительно есть утечка — вот почему этот маленький танец в первую очередь. Итак, предположим, что устройство протекает 100uA на начать с. Вставляем устройство в розетку и считываем напряжение перед тем, как нажмите переключатель. Он читает (100E-6) * (2472) = 247 мВ. Таким образом, утечка делает метр считают, что есть «усиление» почти 25 без тока в база у всех.

Насколько велика утечка? 100uA обычное дело, 200 бывает довольно часто.Более 300 мкА означает, что устройство подозрительно, а более чем 500уА я бы сказал плохо.

Допустим, у устройства действительно утечка 93uA, и у него усиление 110 — первоклассный экземпляр. Что происходит при тестировании? Мы забиваем вещь сокета и прочтите (93uA) * (2472) = .229V. Затем нажимаем переключатель и читаем 1,330 В. Чтобы получить реальное усиление, мы вычитаем 0,229 В из 1,330 В и получаем 1,101 В. В истинное усиление всего в 100 раз превышает показание.

Эй! Как так получилось, 110.1, а не 110? Ну, это из-за того, что несовершенный мир, и из этого тестера строится с некоторыми приближениями. В точный базовый ток составляет 4,046 … мкА, если предположить, что база транзистора проводит это много при прямом напряжении 0,1 В (разумно с германием на этих токи) и что батарея * ровно * 9.0000V, и что резисторы 2.20000M, и … ну, вы поняли. Точность 0,5% неуместна отлично подходит для работы с такими тупыми инструментами и намного лучше, чем вам на самом деле нужно сделайте хорошо звучащий FF.Кроме того, если ты умный, ты щелкнешь выключателем и следите за напряжением, пока кладете палец на транзистор. Простой тепло пальцами приведет к быстрому увеличению прироста. Какая реальная выгода? Все они являются — при температуре и условиях на данный момент.

Не зацикливайтесь на точных цифрах — они изменятся через секунду в любом случае. Ищите небольшую утечку и приблизительно правильный коэффициент усиления.

Правый * реальный * выигрыш составляет от 70 до примерно 130.В этом диапазоне люди сообщают о лучших звуки. Некоторые люди предпочитают равную прибыль, другие предпочитают меньшую прибыль.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *