Site Loader

Содержание

Как проверить транзистор | Электрик



Часто в ремонте разной электронной техники возникает подозрение в неисправности биполярных или полевых (Mosfet) транзисторов. Помимо специализированных приборов и пробников для проверки транзисторов, существуют способы доступные всем, из минимума нам подойдет самый простой тестер или мультиметр.

Как мы знаем транзисторы, в основном, бывают двух разновидностей: биполярные и полевые, принцип работы их похож но способы проверки существенно отличаются, поэтому мы рассмотрим разные методы проверки для каждых транзисторов по отдельности.

Проверка биполярных транзисторов


Способы проверки биполярных транзисторов достаточно просты и для удобства нужно помнить что биполярный транзистор условно представляет из себя два диода с точкой по середине, по сути из двух p-n переходов.

Биполярные транзисторы существуют двух типов проводимости: p-n-p и  n-p-n что необходимо помнить и учитывать при проверке.

А диод как мы знаем, пропускает ток только в одну сторону, что мы и будем проверять.

Если так получится что ток проходит в обе стороны перехода то это явно указывает на то что транзистор «пробит» но это все условности, в реальности же при замере сопротивления ни в какой из позиций проверяемых переходов не должно быть «нулевого» сопротивления — поэтому это и есть самый простой способ выявления поломки транзистора.
Ну а теперь рассмотрим более достоверные способы проверки и поподробней.

И так выставляем тестер или мультиметр в режим прозвонки (проверка диодов), дальше нужно убедится в том что щупы вставлены в правильные разъемы (красный и черный), а на дисплее нет значка «разряжен». На дисплее должна быть единица а при замыкание щупов должны высветится нули (или близкие к нулям значения), также должен прозвучать звуковой сигнал. И так мы убедились в выборе правильного режима мультиметра, можем приступать к проверке.

И так поочередно проверяем все переходы транзистора:

  • База — Эмиттер — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • База — Коллектор — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • Эмиттер — Коллектор — в исправном состояние сопротивление перехода должно быть «бесконечное», то есть переход не должен пропускать ток или прозваниватmся ни в одном из положений полярности.

В зависимости от полярности транзистора (p-n-p или n-p-n) будит зависить лишь направление «прозвонки» переходов база-эмиттер и база-коллектор, с разной полярностью транзисторов направление будет противоположное.

Как определяется «пробитый» переход?
Если мультиметр обнаружит что какой ли бо из переходов (Б-К или Б-Э) в обоих из включений полярности имеет «нулевое» сопротивление и пищит звуковая индикация то такой переход пробит и транзистор неисправен.

Как определить обрыв p-n перехода?
Если один из переходов в обрыве — он не будит пропускать ток и прозваниватся ни в одну из сторон полярности как бы вы не меняли при этом полярность щупов.

Думаю всем понятно как проверять переходы транзистора, суть проверки такая же как у диодов, черный (минусовой) щуп ставим например на коллектор, а красный щуп (плюсовой) на базу и смотрим показания на дисплее. Затем меняем щупы тестера местами и смотрим показания снова. В исправного транзистора в одном случае должно быть какое то значение, как правило больше 100, в другом случае на дисплее должна быть единица «1» что говорит о «бесконечном» сопротивление.

Проверка транзистора стрелочным тестером


Принцип проверки все тот же, мы проверяем переходы (как диоды)
Отличие лишь в том что такие «омметры» не имеют режима прозвонки диодов и «бесконечное» сопротивление у них находится в начальном состояние стрелки, а максимальное отклонение стрелки будит уже говорить о «нулевом» сопротивление. К этому нужно просто привыкнуть и помнить о такой особенности при проверке.
Измерения лучше всего производить в режиме «1Ом» (можно пробовать и до *1000Ом пределе).

Для проверки в схеме (не выпаивая) стрелочным тестером можно даже более точно определить сопротивление перехода если он в схеме зашунтирован низкоомным резистором, например показания сопротивления в 20 Ом будет уже указывать о том что сопротивление перехода не «нулевое» а значит большая вероятность что переход исправен. С мультиметром же в режиме прозвонки диодов будит такая картина что он попросту будет показывать «кз» и пищать (тоже конечно зависит от точности прибора).

Если не известно где база, а где эмиттер и коллектор. Цоколевка транзистора?


У транзисторов средней и большой мощности вывод коллектора всегда на корпусе который переиначенный для закрепления на радиатора, так что с этим проблем не будит. А уже зная расположение коллектора, найти базу и эмиттер будит намного проще.
Ну а если транзистор малой мощности в пластмассовом корпусе где все выводы одинаковы будим применять такой способ:
Все что нам нужно — поочередно замерить все комбинации переходов прикасаясь щупами поочередно к разным выводам транзистора.

Нам нужно найти два перехода которые покажут бесконечность «1». Например: мы нашли бесконечность между правим-левим и правим-среднем, то есть по сути мы нашли и измеряли обратное сопротивления двух p-n переходов (как диодов) из этого размещение базы стает очевидным — база справа.

Дальше ищем где коллектор а где эмиттер, для этого от базы уже измеряем прямое сопротивление переходов и здесь все стает ясно так как сопротивление перехода база-Коллектор всегда меньше по сравнению с переходом база-Эмиттер.

Быстрая точная проверка транзистора


Если под руками есть мультиметр с функцией тестирования коэффициента усиления транзисторов — замечательно, проверка займет несколько секунд, здесь лишь надо будет определить правильную цоколевку (если конечно она не известна).
У таких мультиметров проверочные гнезда состоят из двух отделов p-n-p и n-p-n, а кроме того каждый отдел имеет три комбинации как можно вставить туда транзистор, то есть вместе не более 6 комбинаций, и только лишь одна правильная которая должна показать коэффициент усиления транзистора, за условий что он исправен.

Простой пробник


В данной схеме транзистор будет работать как ключ, схема очень простая и удобная если нужно часто и много проверять транзисторы.

Если транзистор рабочий — при нажатие кнопки светодиод светится, при отпускание гаснет.
Схема представлена для n-p-n транзисторов, но она универсальна, все что нужно сделать, это поставить параллельно к светодиоду еще один светодиод в обратной полярности, а при проверке p-n-p транзистора — просто менять полярность источника питания.

Если по данной методике что то идет не так, задумайтесь, а транзистор ли перед вами и случайно быть может он не биполярный, а полевой или составной.
Часто бывает путают при проверке составные транзисторы пытаясь их проверить стандартным способом, но нужно в первую очередь смотреть справочник или «даташит» со всем описанием транзистора.


Как проверить составной транзистор Чтобы проверить такой транзистор его необходимо «запустить» то есть он должен как бы работать, для создания такого условия есть простой но интересный способ.
Стрелочным тестером, выставленным в режим проверки сопротивления (предел *1000?) подключаем щупы, плюсовой на коллектор, минусовой на эмиттер — для n-p-n (для p-n-p наоборот) — стрелка тестера не двинется сместа оставаясь в начале шкалы «бесконечность» (для цифрового мультиметра «1»)
Теперь если послюнявить палиц и замкнуть им прикоснувшысь к выводам базы и коллектора то стрелка сдвинется с места от того что транзистор немного приоткроется.
Таким же способом можно проверить любой транзистор даже не выпаивая з схемы.
Но следует помнить что некоторые составные транзисторы имеют в своем составе защитные диоды в переходе эмиттер-коллектор что дает им преимущество в работе с индукционной нагрузкой, например с электромагнитным реле.

Проверка полевых транзисторов

Здесь есть один отличительный момент при проверке таких транзисторов — они очень чувствительны к статическому электричеству которое способно вывести из строя транзистор если не соблюдать методы безопасности при проверке а также выпайке и перемещению. И в большей мере подвержены статике именно маломощные и малогабаритные полевые транзисторы.

Какие методы безопасности?
Транзисторы должны находится на столе на металлическом листе который подключен к заземлению. Для того чтобы снять с человека предельный статический заряд — применяют антистатический браслет который надевают на запястье.
Кроме того хранение и транспортировка особо чувствительных полевиков должна быть з закорочеными выводами, как правило выводы просто обматывают тонкой медной проволкой.

Полевой транзистор в отличие от биполярного управляется напряжением, а не током как у биполярного, поэтому прикладывая напряжение к его затвору мы его или открываем (для N-канального) или закрываем (для P-канального).

Проверить полевой транзистор можно как стрелочным тестером так и цифровым мультиметром.
Все выводы полевого транзистора должны показывать бесконечное сопротивление, независимо от полярности и напряжения на щупах.

Но если поставить положительный щуп тестера к затвору (G) транзистора N-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. И уже измеряя сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов, например емкости затвора и сопротивления перехода.

Для P-канального типа транзистора полярность щупов обратная. Также для чистоты эксперимента, перед каждой проверкой необходимо закорачивать выводы транзистора пинцетом чтобы снять заряд с затвора после чего сопротивление сток-исток должно снова стать «бесконечным» («1») — если это не так то транзистор скорее всего неисправен.

Особенностью современных мощных полевых транзисторов (MOSFET’ов) есть то что канал сток-исток прозванивается как диод, встроенный диод в канале полевого транзистора есть особенностью мощных полевиков (явление производственного процесса).
Чтобы не посчитать такую «прозвонку» канала за неисправность просто следует помнить о диоде.

В исправном состояние переход сток-исток MOSFETа должен в одну сторону звониться как диод а в другую показывать бесконечность (в закрытом состояние — после закорачивания выводов) Если переход прозваниваеться в обе стороны с «нулевым» сопротивлением то такой транзистор «пробит» и неисправен

Наглядный способ (экспресс проверка)

  • Необходимо замкнуть выводы транзистора

  • Тестером в режиме прозвонки (диод) ставим плюсовой щуп к истоку, а минусовой к стоку (исправный покажет 0.5 — 0.7 вольта)

  • Теперь меняем щупы местами (исправный покажет «1» или по другому говоря бесконечное сопротивление)
  • Минусовой щуп ставим к истоку, а плюсовой на затвор (открываем транзистор)

  • Минусовой щуп оставляем на истоке, а плюсовой сразу ставим на сток, исправный транзистор будет открыт и покажет 0 — 800 милливольт

  • Теперь можем поменять плюсовой и минусовой щупы местами, в обратной полярности переход сток-исток должен иметь такое же сопротивление.

  • Плюсовой щуп ставим к истоку, а минусовой на затвор — транзистор закроется

  • Можем снова проверить переход сток-исток, он должен показывать снова «бесконечное» сопротивление так как транзистор уже закрыт (но помним про диод в обратной полярности)

Большая емкость затвора некоторых полевых транзисторов (особенно мощных) позволяет некоторое продолжительное время сохранять транзистор открытим, что позволяет нам открыв его проверять сопротивление сток-исток уже убрав плюсовой щуп с затвора. Но у транзисторов с малой емкостью затвора необходимо очень быстро перемещать щупы что бы зафиксировать правильную работу транзистора.


Примечание: для проверки P-канального полевого транзистора, процесс выглядит также но щупы мультиметра должны быть противоположной полярности. Для удобства можно перекинуть их местами (красный на минус, а черный на плюс) и использовать все туже описану выше инструкцию.

Проверяя транзистор по такой методике канал сток-исток можно открывать и закрывать даже пальцем, например чтобы открыть достаточно прикоснутся пальцем к затвору держась при этом второй рукой за плюс, а чтобы закрыть нужно все также прикоснутся к затвору но уже держась другим пальцем или второй рукой за минус. Интересный опыт который дает понимание того что транзистор управляется не током (как у биполярных) а напряжением.

Простая схема пробника для проверки полевых транзисторов


Можно собрать простую и эффективную схему проверки полевиков которая достаточно ясно даст понять о состояние транзистора, к тому же достаточно быстро можно перекидать транзисторы если их предстоит проверять часто и много. В некоторых схемах можно проверить транзистор даже полностью не выпаивая его с платы.

Схема универсальна как для P-канальных так и для N-канальных полевых транзисторов в ней присутствует два светодиода включенных в обратной полярности друг к другу (каждый для своего типа) и все что остается при смене типа проверяемого полевого транзистора — просто поменять полярность источника питания.

Как проверить транзистор мультиметром не выпаивая

Как проверить биполярный транзистор мультиметром

Существует множество приборов для проверки любых типов транзисторов. Ими можно проверить не только исправность транзистора, но и подобрать необходимый коэффициент усиления h31э.

Проверка транзистора

Однако для ремонта бытовой техники и электроники вполне достаточно одного мультиметра. Чтобы понять сам процесс проверки транзистора, нелишне будет знать, что такое транзистор и как он работает. Транзистор можно представить как два встречно включенных диода имеющих p-n переходы. Для p-n-p транзисторов эквивалентная схема выглядит как два диода включенных катодами друг к другу, а для n-p-n структуры диоды включены анодами друг к другу.

Эквивалентные схемы транзисторов

Так можно представить себе упрощенный эквивалентный вариант транзистора. В двух словах о принципе работы транзистора. При подаче переменного сигнала на базу транзистора (общий конец соединения диодов) меняется сопротивление переходов коллектор – база и эмиттер – база. Соответственно и общее сопротивление переходов меняется по закону входного сигнала. Постоянное напряжение источника питания, приложенное к коллектору и эмиттеру, будет также меняться по закону входного сигнала.

Но напряжение источника питания, приложенное к переходу эмиттер – коллектор транзистора значительно больше сигнала поступающего на базу. Выходной сигнал снимается с выводов эмиттера и коллектора. Так работает транзистор в режиме усиления. В ключевом режиме на базу подаётся минимальный сигнал, при котором транзистор закрыт и максимальный сигнал, который полностью открывает транзистор.

Как проверить p-n-p транзистор мультиметром

Биполярные транзисторы могут быть с прямой проводимости p-n-p и обратной проводимостью n-p-n. На схеме проводимость p-n-p переходов обозначается стрелкой по направлению к базе, а n-p-n переходы отражаются стрелкой указывающей направление от базы. Для проверки транзистора на мультиметре выбирают предел измерения сопротивления 2000 Ом или “прозвонку”.

Находим обратное сопротивление переходов

Минус мультиметра прикладывают к базе транзистора, а плюс поочередно к выводам коллектора и эмиттера. Нормальное сопротивление перехода будет в пределах 400 – 1200 Ом. Чтобы проверить переходы коллектор – база и эмиттер – база на обратное сопротивление, плюс мультиметра прикладывают к базе, а минусы к эмиттеру и коллектору по очереди.

Обратное сопротивление коллектора и эмиттера должно быть большим, и мультиметр будет показывать “1”. Чтобы проверить транзистор с обратной полярностью n-p-n, к базе прикладывают плюс мультиметра, а в остальном методика такая же, как и при проверке полярности p-n-p. Этим же методом можно проверить работоспособность транзисторов, не выпаивая с платы.

Иногда переходы транзистора в схеме могут быть шунтированы небольшим сопротивлением. Тогда лучше отпаять базу или весь транзистор, так как показания мультиметра при проверке на целостность элемента будут неверными. Если переходы транзистора в обоих направлениях показывают ноль или близкое к нему, то это указывает на пробой переходов, а показания “1” на мультиметре говорят об обрыве переходов.

Как найти цоколевку транзистора мультиметром

Расположение выводов (цоколевка) транзистора можно найти по справочнику или по типу транзистора в интернете. Определить расположение выводов можно и мультиметром. Для этого плюс мультиметра прикладывают к правому выводу транзистора, а минус к среднему и левому контакту.

Как найти эмиттер и коллектор

Допустим, что сопротивление в обоих измерениях составило бесконечность. Получается, что мы нашли обратное сопротивление двух переходов n-p-n. Таким образом, мы попали на базу. Для нахождения коллектора и эмиттера минусом становятся на базу, а плюсом касаемся двух оставшихся выводов по очереди.

На дисплее отобразились значения сопротивлений переходов 816 Ом и 807 Ом. Вывод с сопротивлением 807 Ом будет коллектором, потому что переход база – коллектор имеет меньше значение сопротивления, чем переход база – эмиттер. Существуют так же транзисторы средней и большой мощности, у них коллектор соединен с корпусом или с металлической пластиной, предназначенной для рассеивания тепла.

Как проверить мощный биполярный транзистор и его цоколевку!!!

Как проверить биполярный транзистор мультиметром

Сегодня я расскажу, как проверить исправность биполярного транзистора с помощью мультиметра. Эта проверка на наличие пробоя, то есть, она позволяет узнать живой транзистор или нет.  Такую проверку я произвожу перед каждым впаиванием элемента при сборке новой схемы или в процессе ремонта.  На сленге её также именуют «прозвонкой».

У всех современных мультиметров есть режим диодной проверки, вот его и нужно включить.

После чего необходимо подключить щупы, черный в разъем «COM», а красный в разъем со значком диода или измерения сопротивления.

После включения режима на экране прибора единица, которая означает обрыв, бесконечное сопротивление или закрытый PN переход транзистора или диода.

Дальше необходимо соединить щупы между собой и убедиться, что есть контакт щупов с мультиметром и они исправные.

На дисплее значение изменится с единицы на несколько нулей, в зависимости от точности прибора и сопротивления щупов. Некоторые приборы предусматривают звуковую сигнализацию в режиме проверки диодов (как у меня), это удобно при ремонте устройств, так как в момент проверки можно не смотреть на дисплей мультиметра, а сконцентрироваться на проблемном месте. Звуковой сигнал звучит только при малом сопротивлении (десятки и единицы Ом).

Определяем тип транзистора и обозначение выводов

Биполярные транзисторы бывают двух структур PNP и NPN. От типа структуры будет зависеть их проводимость. В дебри про электронно-дырочную структуру я углубляться не буду, а лишь опишу процесс проверки.

У меня есть транзистор КТ837H, на примере которого я буду описывать процесс проверки.

Первым делом необходимо найти техническое описание элемента (Datasheet) или справочник. В документации находим название структуры транзистора, в моем случае это PNP. Следующая нужная информация это расположение и обозначение выводов (цоколевка).

Транзистор, как два диода…

Транзисторы имеют два PN перехода и их можно представить как два последовательно соединенных диода. И проверять транзисторы можно как два диода. Точка соединения диодов будет базой, а два остальных вывода коллектором и эмиттером.

Если диоды соединены катодами (отрицательными выводами), то база N типа (N- negative, отрицательный).

Если диоды соединены анодами (положительными выводами), то база P типа (P- positive, положительный).

Полезным будет прочесть статью «Как проверить диод мультиметром».

Проверка транзисторов структуры PNP

Для PNP транзисторов соединяем черный щуп(отрицательный) к базе, а красным по очереди касаемся коллектора и эмиттера. Это называется прямым смещением. Переходы должны открыться.

Для исправного транзистора на дисплее должно отобразиться напряжение открытия переходов (обычно несколько сотен милливольт, примерно 500-800мВ), но ни в коем случае не десятки и тем более не единицы милливольт.

Как мы видим, исправный транзистор PNP типа открылся при касании базы черным (отрицательным) щупом, а красным (положительным) мы касались коллектора и эмиттера.

После чего, к базе транзистора PNP типа подключаем уже красный щуп, а черным по очереди касаемся коллектора и эмиттера. Транзистор, точнее его переходы должны быть закрыты, если элемент исправный. Это называется обратным смещением.

В этих положениях переходы заперты и на дисплее должна быть единица (она же бесконечность). Если в этих положениях переходы открываются и на дисплее отображается напряжение открытия  (любое), то такой элемент не исправен. Обычно у пробитых элементов показания на дисплее прибора меньше десяти милливольт.

Ниже пример неисправного полупроводникового прибора, у него все выводы замкнуты, сопротивление между ними единицы Ом, поэтому в режиме диодной прозвонки (независимо от положения щупов) на дисплее 2мВ, то есть переход «пробитый».

Если хотя бы один переход звонится накоротко (на дисплее десятки или единицы милливольт), то такой полупроводник сразу подлежит замене.

Проверка транзисторов структуры NPN

Та же самая процедура, что и с PNP структурой, только открытие переходов у исправного элемента происходит при соединении красного (положительного)  щупа к базе, а черного (отрицательного) к коллектору и эмиттеру.

При соединении черного щупа к базе, а красного к коллектору и эмиттеру у исправного полупроводника переходы должны быть закрыты и на дисплее «обрыв» (единица).

Примечание

В режиме диодной проверки на дисплее отображается значение не сопротивления в Омах, как многие считают, а значение напряжения открытия PN перехода в милливольтах.

 

 

Как проверить транзистор мультиметром?

Назначение транзистора

Транзистор — деталь распространенная, найти её можно в любом электроприборе. Он нужен для работы с электрическим сигналом, то есть он способен генерировать, усиливать и преобразовывать электросигналы. Транзисторы бывают двух видов: биполярные и униполярные, или, как их чаще называют, полевые. Такое деление основано по принципу действия и на строении детали. Каждый тип в этой статье описан не зря — это основа знаний, как проверить транзистор мультиметром.

Итак: биполярные транзисторы работают благодаря полупроводникам с двумя типами проводимости: прямым (рositive) и обратным (negative). В зависимости от комбинации его обозначают NPN и PNP. А вот полевые работают только с одним типом. Это или N-Channel, или P-Channel.

Биполярные устройства управляются силой тока, а униполярные — напряжением.

Биполярные транзисторы можно увидеть в большинстве аналоговой техники, тогда как цифровые приборы чаще оснащены полевыми. Имея ввиду эти отличия, рассмотрим как проверить транзистор тестером.

Конструкция мультиметра

Мультиметр (тестер) — универсальный прибор для измерений. Он вычисляет силу тока, напряжение, сопротивление, определяет также целостность провода. Мультиметры бывают аналоговыми или цифровыми. Разница заключается в точности измерений и в том, каким образом вы получите результат: считывая по движению стрелки по принципу механических часов (аналог), или на экранчик (цифра). Цифровой, по ряду причин, проще в использовании, поэтому подходит пользователям с минимальным уровнем познаний в радиоэлектронике. Независимо от типа тестера, проверка транзистора мультиметром — процесс простой.

Особое внимание перед началом диагностики транзистора стоит уделить правильной комплектации тестера. Это займет от силы пару минут, но убережет от ошибок в результатах. Итак, мультиметр оснащён двумя щупами. Черный — минусовой, красный — плюсовой. Обязательно убедитесь, чтобы каждый из них был вставлен в корректное гнездо, ведь зависимо от модели и типа тестера их может быть разное количество. Транзисторы проверяем исключительно в таком положении: чёрный щуп в гнездо маркированное английскими буквами СОМ, красный щуп помещаем в разъемы, обозначенные буквами греческого алфавита.

Как проверить биполярный транзистор мультиметром

БП транзистор — это прибор-полупроводник, который используют для увеличения мощности входного электросигнала. Такими транзисторами управляет ток. Состоит он из трёх элементов. Первый — это эмиттер. Он генерирует носители заряда. Рабочий ток стекает в коллектор, т. е. своеобразный приемник и второй ключевой элемент транзистора. Третий — база. Именно она и подаёт напряжение.

Представим прибор как пару диодов. Они включены встречно и сходятся в базе. Для проверки исправности этого типа достаточно произвести два измерения сопротивления. Определяем, какой транзистор: p-n-p или n-p-n. Рассмотрим детально, как проверить npn транзистор мультиметром. Используем следующий алгоритм действий:

  • Подаем минусовое U-ние к выводу базы. На тестере режим измерения R-ния. Ставим порог 2000. Или же используем режим «прозвонок», это для тех, кто хочет узнать, как прозвонить транзистор мультиметром. Независимо от предпочитаемого режима, результат будет корректен.
  • Берём черный щуп и подводим его к выводу на базе, фиксируем. Красный щуп — к коллекторному переходу. Затем перемещаем к эмиттеру (вывод). Если получили значение прямого сопротивления от 500 Ом до 1200 Ом — переходы целы.
  • Далее измеряем обратное R-ние. Для этого красный щуп подносим к выводу базы и фиксируем. Черный передвигаем поочерёдно сначала к выводу коллектора, затем эмиттера. Тестер должен показать большое значение. Если у вас цифровой мультиметр выставлен на «2000», показывает «1», то величина R-ния выше 2000 Ом. Большое значение — показатель исправности транзистора.

Этот метод подойдёт и искателям способа, как проверить транзистор мультиметром не выпаивая. Представим: вам нужно проверить прибор на плате прямо в схеме. Тогда проблемы могут возникнуть исключительно в случае плотного шунтирования низкоомными резисторами p-n переходов. Проверить просто: при измерении показатели обоих видов сопротивления будут крайне малы. В таком случае выпаивание вывода базы — необходимая мера для дальнейшей корректной диагностики. Транзистор n-p-n диагностируем таким же методом. Единственное отличие: на выходе базы фиксируем красный, а не чёрный щуп тестера.

Как проверить нетипичные модели транзисторов

Есть транзисторы, которые могут не поддаться обычной проверке мультиметром, независимо от того, стоит режим прозвонки или омметра. Такие триоды используют, к примеру, в электронных балластах светильников. Среди моделей — MJE13003, 13005, 13007.

Детальнее рассмотрим, как проверить транзистор 13003 мультиметром, на одном примере. Всё дело в нетипичной цоколёвке транзистора 13003 — вывод базы находится справа. В даташитах сказано, что выводы могут чередоваться слева направо в такой последовательности: база, коллектор, эмиттер. Поэтому нужно точно определить порядок и положение составных и действовать методом описанным выше.

Погрешности при замерах могут провоцировать и диоды внутри деталей некоторых транзисторов.

Поэтому прежде чем приступать к замерам, нужно четко понимать строение проверяемого транзистора.

Как проверить полевой транзистор мультиметром

Этот прибор управляется электрическим полем, которое создаёт напряжение. Это одно из главных отличий от биполярного полупроводникового ключа. Униполярные транзисторы делят на два типа. Первый имеет изолированный затвор. Второй p-n переходы. Независимо от типа бывают n-, или p-канальные. Большинство полевых транзисторов имеют три вывода: исток, сток и затвор. Если сравнивать с биполярным, то это аналоги эмиттера, коллектора и базы.

Берём за основу проверку  устройства типа p-n. Независимо от типа канала (n, p), последовательность действий меняться не будет. Разница лишь в противоположном подключении щупов. Итак, для диагностики n-канального прибора нам понадобится:

  • Установить на режим мультиметра «измерения R». Уровень 2000. Плюсовой щуп устанавливаем к истоку. Чёрный закрепляем на стоке. Измеряем сопротивление. Потом нужно щупы переставить. Замеряем вновь. Результаты при работающем транзисторе будут приблизительно равнозначными.
  • Далее тестируем переход исток-затвор. Для этого ставим режим на мультиметре «проверка диодов». Плюс подключаем к затвору, а минус к истоку. Прибор в норме фиксирует падение U-ния около 650 мВ. Отсоединяем щупы и перемещаем: теперь чёрный находится у затвора, а красный у истока. Тестер должен показать единицу, то есть бесконечность. Это свидетельствует об исправности транзистора.
  • Для проверки перехода сток-затвор оставляем мультиметр в режиме проверки диодов. Действуем аналогично пункту проверки p-n перехода исток-затвор.

Когда все три замера совпадают с вышеописанными полевой транзистор готов к эксплуатации.

Предлагаем пример проверки полевого транзистора в видеоролике:

Видео с проверкой транзистора мультиметром

Смотрите в формате видео, как проверить транзистор мультиметром.

Как проверить транзистор мультиметром

Поделиться ссылкой:

 

   

Во время ремонта или сборки радиоэлектронных устройств у всех радиолюбителей возникает необходимость проверить транзистор мультиметром. И для этого есть очень простой и самый распространенный способ. В основном эта статья предназначена для начинающих радиолюбителей, поэтому я более доступно для понимания расскажу, как это сделать. Для начала нужно представить, что собой представляет биполярный транзистор (о том, как проверить полевой транзистор будет написано в отдельной статье). Это 2 p-n перехода. Как мы уже знаем диод имеет один переход. Поэтому представим, что транзистор состоит из двух диодов, как на рисунках ниже. N-p-n и p-n-p структур.

n-p-n транзистор p-n-p транзистор

Получается, что транзистор это два встречно включенных диода с отводом от средней точки, который является базой. Но на самом деле его структура намного сложнее. Наша задача заключается в том, чтобы проверить диоды на исправность. Как проверить диод есть уже отдельная статья. Т.е. сначала проверяем диоды в одну сторону, а потом в другую сторону. Как это сделать видно на рисунках ниже. Для примера взят n-p-n транзистор кт315. Мультиметр включается в режим проверки диодов. Напомню, что при проверке диодов при прямом включении, кода плюс (+) мультиметра подсоединен к аноду, а минус (-) к катоду падение напряжения при исправном диоде будет составлять от 0,1 до 0,8 вольта. А при обратном включении, когда полярность щупов мультиметра поменяна, будет максимальным около 3 вольт, потому что сопротивление диода будет стремиться к бесконечности (т.к. не проводит ток в обратном включении).

На фото обозначена полярность щупов, цоколевка транзистора и выделен режим мультиметра. Ножки транзистора я удлиннил для наглядности.

База — коллектор База — эмиттер
Проверка при прямом включении переходов

 

База — коллектор База — эмиттер
Проверка при обратном включении переходов

Если хотя бы один переход пропускает ток в обоих направлениях или не пропускает в обе стороны, то такой транзистор является неисправным. И еще одним этапом проверки транзистора является проверка проводимости между коллектором и эмиттером. Ток не должен проходить ни в одном направлении. Бывает, что пробивает транзистор между коллектором и эмиттером по подложке. Если хотя бы в одном направлении проводит, значит, транзистор не исправен. Как это сделать видно на фото ниже.

Коллектор — эмиттер Эмиттер — коллектор
Проверка перехода между коллектором и эмиттером

Кратко весь процесс можно описать следующим образом. Сначала проверяются переходы «база-коллектор» «база-эмиттер» в одном направлении, потом в обратном. Далее проверяется переход «коллектор-эмиттер» в одном направлении и в другом. По результатам проверки делаются выводы о исправности транзистора. Вся проверка занимает не более 1 минуты. Проверив несколько десятков транзисторов, вы будете делать это уже на «автомате», и за более короткое время. И в заключение хочу сказать, что транзисторы необходимо проверять не только при ремонте радиотехники, но и при создании каких либо радиоэлектронных устройств. Часто бывает так, что купленный в магазине или выпаянный из вторичной платы транзистор оказывается неисправным. Кроме простых биполярных транзисторов существует множество других видов. Это однопереходные, составные и так далее. Которые могут содержать в себе дополнительно резисторы, диоды и предохранители. Методика их проверки иная. Поэтому перед проверкой сначала узнайте характеристики транзисторов.

 


Анекдот:

Открыли супермагазин в котором есть ВСЕ: 
Приходит мужик: 
— Взвесьте мне полкило крокодильего хвоста. 
— Пожалуйста… 
Приходит другой: 
— Дайте мене 2 десятка яиц бурундука. 
— Нет проблем. 
Приходит третий: 
— Дай мене 2 кг ни%уя. 
Продавец немного растерялся — решил позвать директора, тот пришел и 
говорит: 
— Я сам обслужу этого покупателя. 
Приглашает мужика пройти с ним. Заходят они в подвал, свет выключен. 
Директор спрашивает: 
— Что вы видите??? 
Тот: 
— Ни%уя… 
Директор: 
— Здесь как раз 2 кило. Берите и пройдем в кассу!!!

     

Как проверить полевой транзистор мультиметром

При проведении ремонтных работ электронной техники, возникает вопрос проверки функционального состояния тех или иных полупроводниковых элементов. Решение этой проблемы сильно облегчает наличие специализированных приборов, однако, во многих случаях вполне можно обойтись и без них.

Есть ряд способов, как проверить транзистор мультиметром без использования сложных приборов и каких-либо дополнительных электрических схем. Рассматриваются алгоритмы проверки различных типов транзисторов.

 

 

Проверка trz (транзистора), равно как и любого другого элемента схемы, начинается с определения его типа. Эту информацию несложно найти в интернете. У опытного мастера всегда есть под рукой ссылки на проверенные ресурсы. Если таковых нет, то, обычно достаточно вбить маркировку компонента в поисковой системе и нужная информация найдется уже на первой странице поисковой выдачи. Наиболее распространенные типы транзисторов: биполярные, полевые, составные, однопереходные. Определив тип элемента, можно начинать его функциональную проверку.

Биполярный транзистор

Наиболее распространенные транзисторы. Используются в основном в схемах усиления или генерации сигнала: в усилителях, генераторах, модуляторах, инверторах и т. д. Бывают двух типов: p-n-p и n-p-n. Не углубляясь в структуру полупроводникового прибора, достаточно будет сказать, что каждый p-n переход представляет собой диод. Строго говоря, это не совсем так, но для проверки работоспособности такое представление вполне допустимо. Таким образом, последовательность p-n-p представима в виде двух диодов, соединенных катодами, а n-p-n – двух диодов, соединенных анодами. Чтобы проверить, работоспособность такого элемента, нужно мультиметром замерить сопротивление переходов.

Определение работоспособности p-n-p полупроводника:

  • Берется мультиметр. Черный провод (обозначим его как Ч) помещается в гнездо COM (минус).
  • Красный (К) – в гнездо VΩmA (плюс).
  • Тестер выставляется на замер электрического сопротивления. Предельное значение выбирается 2 кОм. Это означает, что мультиметр может корректно измерять сопротивление от 0 до 2000 Ом. При превышении данного порога, на экране прибора загорится «1».
  • Для замера прямых сопротивлений Ч закрепляется на базе элемента.
  • Чтобы замерить величину сопротивления эмиттерного перехода, К помещается на эмиттер.
  • Измеренное значение должно быть от 500 до 1200 Ом. Аналогично и для коллектора.
  • Для измерения обратных сопротивлений на базе элемента закрепляется К. Ч поочередно помещается на коллектор и эмиттер. Полученные значения должны превышать установленный порог в 2кОм. Об этом, в обоих случаях, будет свидетельствовать цифра «1» на экране тестера.
  • Для n-p-n полупроводника применяется та же самая методика. За исключение того, что в п.1 Ч и К помещаются в противоположные гнезда. Тем самым меняется полярность щупов тестера.

Если изначально нет информации относительно расположения базы, коллектора, эмиттера, это нетрудно определить. Измерительный прибор устанавливается в состояние п. 1 и п. 2 вышеприведенной схемы. К (плюс) помещается на правый вывод полупроводника. Ч (минус) поочередно замыкается на средний и левый выводы. Если в обоих случаях тестер покажет «1», то данный контакт и есть база. В противном случае аналогичным образом тестируем оставшиеся контакты.

Остается найти эмиттер и коллектор. Для этого необходимо просто замерить сопротивление коллекторных и эмиттерных переходов. Ч помещается на базу. К поочередно замыкается на оставшиеся выводы. Полученные значения должны лежать в диапазоне от 500–1200 Ом. При этом большее значение будет относиться к коллекторному переходу, а меньшее, соответственно к эмиттерному.

Полевой транзистор

Обладает значительно меньшим энергопотреблением по сравнению с биполярным. Основная область применения – это приборы, работающие в ждущем или следящем режимах. Импортные элементы обычно имеют маркировку, упрощающую идентификацию выводов: G-затвор, S-исток, D-сток. Полевой транзистор или, как его еще называют, мосфет, бывает n-канальный и p-канальный. Алгоритмы проверки работоспособности полупроводников обоих типов похожи.

Определение функциональности n-канального полупроводника.

Поскольку у таких компонентов между стоком и истоком часто встраивается диод, то, для проверки функциональности, на измерительном устройстве устанавливается в режим проверки диодов. Ч идет на минус тестера, а К – на плюс.

  • К помещается на исток элемента, а Ч – на сток. Напряжение должно быть от 500 до 700 мВ.
  • К – на сток, а Ч – на исток. Значение в этом случае должны выходить за пределы измерений мультиметра. Об этом свидетельствует цифра «1» на экране прибора.
  • Ч – на истоке. Касание К затвора открывает транзистор. Ч остается на истоке, а К соединяется со стоком. Замеренное напряжение должно лежать в диапазоне от 0 до 800 мВ и не зависеть от смены полярности проводов тестера.
  • Замыкание К на исток, а Ч – на затвор проводит к закрытию прибора и переводу его в изначальное состояние.

Для определение работоспособности p-канального полупроводника Ч подключается к плюсу мультиметра, а К – к минусу. Дальнейшая последовательность действий аналогична методике проверки элемента n-канального типа.

Составной транзистор

Также известен как пара Дарлингтона. Является каскадом из двух и более биполярных транзисторов. Тестирование таких элементов одним лишь мультиметром, без сборки дополнительных схем, не представляется возможным. Вопрос монтажа подобных вспомогательных схем выходит за рамки данной статьи.

Однопереходный транзистор

В основном используются во всевозможных реле и пороговых устройствах. У элементов данного типа присутствует только один p-n переход. Для проверки его работоспособности мультиметром замеряется сопротивление между ножками «Б1» и «Б2». Если полученная величина незначительна, то компонент неисправен.

Проверка элемента без выпаивания его из схемы

Часто возникает вопрос, как проверить smd транзистор мультиметром. SMD – это аббревиатура от английского Surface Mounted Device (устройство, монтируемое на поверхность). Такие полупроводники не вставляются в отверстия плат. Их просто напаивают сверху на контактные дорожки. В современных платах плотность таких дорожек невероятно велика. Более того, часто они располагаются в несколько слоев. Поэтому если какая-то из дорожек располагается в середине такого «пирога», то ее может быть просто не видно.

Становится понятно, что поскольку демонтаж и обратный монтаж smd компонентов на контактные дорожки печатных плат зачастую сопряжен со значительными сложностями, то лучше всего было бы осуществить проверку функциональности элемента, не выпаивая его. К сожалению, такое подход возможен только для биполярных транзисторов. Однако даже при положительных итогах проверки нельзя быть полностью уверенным в результате. В большинстве же случаев только лишь демонтаж элемента с печатной планы позволяет гарантированно проверить его работоспособность.

Как проверить транзистор на усилителе

В этой статье, мы расскажем вам, как проверить транзистор мультиметром. Наверняка многим из вас хорошо известно, что большинство мультиметров имеют в своём арсенале, специальное гнездо, но не в любой ситуации использование гнезда удобно и оптимально. Так для того, чтобы подобрать несколько элементов, имеющим одинаковый коэффициент усиления, использование гнезда вполне оправданно, а для выявления работоспособности транзистора, вполне достаточно воспользоваться тестером.

о транзисторе

Давайте вспомним о том, что вне зависимости от того, проверяем мы транзистор с прямой или обратной проводимостью, они имеют два p-n перехода. Любой из этих переходов можно сопоставить с диодом. Исходя из этого, можно с уверенностью заявить, что транзистор представляют собой пару диодов, соединённых параллельно, а место их соединения, является базой.

Таким образом получается, что у одного из диодов выводы будут представлять собой базу и коллектор, а у второго диода выводы будут представлять базу и эмиттер, или наоборот. Исходя из выше написанного, наша задача сводится к проверке напряжения падения на полупроводниковом приборе, или проверки его сопротивления. Если диоды работоспособны, значит и проверяемый элемент рабочий.Для начала рассмотрим транзистор с обратной проводимостью, то есть имеющим структуру проводимости N-P-N. На электрических схемах, разных устройств, структуру транзистора определяют с помощью стрелки, которая указывает эмиттерный переход. Так если стрелка указывает на базу, значит, мы имеем дело c с транзистором прямой проводимости, имеющим структуру p-n-p, а если наоборот, значит это транзистор с обратной проводимостью, имеющий структуру n-p-n.

Для открытия транзистора с прямой проводимостью, нужно дать отрицательное напряжение на базу. Для этого берём мультиметр, включаем его, и после этого выбираем режим измерения прозвонки, обычно он обозначается символическим изображением диода.

В этом режиме прибор показывает падение напряжения в мВ. Благодаря этому мы можем определить кремниевый или германиевый диод или транзистор. Если падение напряжения лежит в пределах 200-400 мВ, то перед нами германиевый полупроводник, а если 500-700 кремниевый.

Проверка работоспособности транзистора

Подключаем на базу транзистора, плюсовой щуп (красный цвет), другим щупом (черный- минус) подключаем к выводу коллектора и делаем измерение

Затем минусовым щупом подключаем к выводу эмиттера и измеряем.

Если переходы транзистора не пробиты, то падение напряжения на коллекторном и эмиттерном переходе должно быть на границе от 200 до 700 мВ.

Теперь произведём обратное измерение коллекторного и эмиттерного перехода. Для этого берем, подключаем черный щуп к базе, а красный по очереди подключаем к эмиттеру и коллектору, производя измерения.

Во время измерения, на экране прибора высветится цифра «1», что в свою очередь означает, что при выбранном нами режиме измерения, падение напряжения отсутствует. Точно также, можно проверить элемент, который находиться на электронной плате, от какого-либо устройства, при этом во многих случаях можно обойтись и без выпаивания его из платы. Бывают случаи, когда на впаянные элементы в схеме, оказывают большое влияние резисторы с малым сопротивлением. Но такие схематические решения, встречаются очень редко. В таких случаях при измерении обратного коллекторного и эмиттерного перехода, значения на приборе будут низкие, и тогда нужно выпаивать элемент из печатной платы. Способ проверки работоспособности элемента с обратной проводимостью (P-N-P переход), точно такой же, только на базу элемента подключается минусовой щуп измерительного прибора.

Признаки неисправного транзистора

Теперь мы знаем, как определить рабочий транзистор, а как проверить транзистор мультиметром и узнать, что он не рабочий? Тут тоже всё достаточно легко и просто. Первая неисправность элемента, выражается в отсутствии падения напряжения или в бесконечном большом сопротивлении, прямого и обратного p-n перехода. То есть, при прозвонке прибор показывает «1». Это обозначает, что измеряемый переход в обрыве и элемент не рабочий. Другая неисправность элемента, выражается в наличии большого падения наряжения на полупроводнике (прибор при этом как правило пищит), или около нулевом значении сопротивления прямого и обратного p-n перехода. В таком случае пробита внутренняя структура элемента (короткозамкнута), и он не рабочий.

Определение цоколевки у транзистора

Теперь давайте научимся определять, где у транзистора находится база, эмиттер и коллектор. В первую очередь начинают искать базу элемента. Для этого включаем мультиметр в режим прозвонки. Положительный щуп закрепляем на левую ножку, а минусовым последовательно производим измерение на средней и правой ножке.

Мультиметр нам показал «1» между левой и средней ножкой, а между левой и правой ножкой показания составили 555 мВ.

Пока эти измерения не дают нам возможности, сделать какие-либо выводы. Двигаемся вперёд. Закрепляемся плюсовым щупом на средней ножке, а минусовым последовательно производим измерение на левой и правой ноге.

Тостер показал значение равное «1» между левой и средней ногой, и 551 мВ, между средней и правой ногой.

Эти измерения, тоже не дают возможности сделать вывод и определить базу. Двигаемся дальше. Закрепляем плюсовой щуп на правой ноге, а минусовым щупом по очереди закрепляем среднюю и левую ногу, при этом производим измерения.

В ходе измерения мы видим, что величина падения напряжения между правой и средней ножкой равна единице, и между правой и левой ножкой тоже равно единице (бесконечность). Таким образом, мы нашли базу транзистора, и она находиться на правой ноге.

Теперь нам осталось определить, на какой ноге коллектор, а на какой эмиттер. Для этого прибор следует переключить в измерение сопротивления 200 кОм. Измеряем на средней и левой ноге, для чего закрепим щуп с минусом на правой ноге(база), а плюсовой по очереди будем закреплять на средней ноге и левой, при этом проводя измерения сопротивления.

Получив измерения мы видим, что на левой ноге R=121,0 кOм, а на средней ноге R=116.4 кOм. Следует запомнить раз и навсегда, если вы будете в дальнейшем проверять и находить эмиттер и коллектор, что сопротивление коллекторного перехода в любых случаях меньше, чем сопротивление эмиттера.

Подведём итоги наших измерений:

  1. Измеряемый нами элемент имеет p-n-p структуру.
  2. Нога базы, расположена справа.
  3. Нога коллектора, расположена в середине.
  4. Нога эмиттера находится слева.

Пробуйте и определяйте работоспособность полупроводниковых элементов, это ведь очень легко!

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Каждый владелец техники должен знать как проверить усилитель автомобильный на работоспособность. Для начала нужно проверить наличие питания на клеммах усилителя, делаем это мультиметром или же любой автомобильной лампочкой.

Отсутствие напряжения 12-14 Вольт на основных клеммах питания усилителя свидетельствует:

  • о проблемах с проводкой автомобиля;
  • с наличем короткого замыкания в цепях питания.

Многие автомобильные усилители, бюджетного класса и выше, оборудованы встроенной системой защиты с индикацией, которой служит светодиод красного цвета, подписан он как «Protect – защита». Если с питанием в бортовой системе автомобиля всё в порядке, то нужно более тщательно в домашних условиях и с помощью мультиметра выполнить ремонт и восстановление работоспособности устройства.

Как проверить автомобильный усилитель в домашних условиях

Для того чтобы проверить работоспособность усилителя для авто в домашних условиях можно воспользоваться любым блоком с выходным постоянным напряжением от 12 до 14 вольт, или же компьютерным блоком, в котором есть необходимое для запуска усилителя напряжение. Мощность источника должна быть не менее 200 вольт и перед включением, обязательно, регулятор громкости мощности установить на минимум. Процесс ремонта всегда нужно начинать с визуального осмотра всех радиодеталей на монтажной плате усилителя. Стандартная модель автомобильного усилителя состоит из трёх основных узлов:

  1. блок преобразователя входного напряжения, который выполняет изменение однополярного входного напряжения бортовой цепи автомобиля, в двух полярный с повышением величины напряжения до 20 Вольт;
  2. узел усилителя мощности, зачастую он выполнен на биполярных транзисторах, которые установлены на радиаторах, необходимых для увеличения площади рассеивания тепла. Мощные выходные каскады на максимальной мощности очень сильно греются, поэтому плохое, негерметичное соединение плоскости транзистора и теплоотводящего радиатора обязательно приведёт к его перегреву, а соответственно и к пробою;
  3. блок регуляторов частоты, служащий для изменения тембра звучания. Распространённая неисправность этого узла связана с ухудшением плавности изменения сопротивления переменными резисторами.

После вскрытия корпуса стоит внимательно осмотреть каждую деталь усилителя, особое внимание обратить на:

  • перегоревшие предохранители. Сквозь стеклянную колбу должна быть видна не оборванная нить плавкой вставки;

  • резисторы, не должны иметь видимого нагара, свидетельствующего об их перегорании;

Одна из самых распространённых неисправностей, вышедших из строя автомобильных усилителей, связаны с поломкой именно инверторного блока питания. Этот узел состоит из:

  • входных фильтрующих конденсаторов с большой ёмкостью;
  • импульсного трансформатора;
  • транзисторного преобразователя и микросхемы для выполняющих роль инвертирующего устройства;
  • выпрямительных диодов, работающих в паре;
  • сглаживающей цепочки, состоящей дросселя и нескольких электролитических конденсаторов.

В любом случае обнаруженные сгоревшие детали должны быть заменены на новые. При этом ни предохранитель, ни резистор установленный в звуковоспроизводящей аппаратуре не выходит со строя без сопутствующих причин. Конденсатор со временем может высохнуть и вздуться. Более точные исследования и проверка усилителей выполняется с помощью мильтиметра и осциллографа.

Как проверить усилитель автомобильный мультиметром

Перед тем как проверить усилитель звука на работоспособность, необходимо мультиметром выявить нет ли короткого замыкания в цепях блока питания, которое могло произойти в следствии пробоя полупроводникового диода или транзистора.

Чтобы проверить работу усилителя звука, а точнее его инвертирующего и сглаживающего пульсации узла, необходимо установить мультиметр в режим измерения тока и подключить последовательно в цепь питания. Величина рабочего тока должна быть в пределах до 500мА (то есть 0,5 А). Если эта величина зашкаливает, то вероятно вышел из строя блока питания установленный внутри усилителя, а точнее пробой силовой цепи.

Как прозвонить усилитель звука мультиметром

Для того чтобы правильно и с большой долей вероятности найти вышедший из строя транзистор выходного каскада, тем самым проверить усилитель звука, лучше всего выпаивать каждый из этих полупроводниковых приборов. Однако, эта процедура весьма трудоёмкая и займёт много времени, поэтому выходные транзисторы проверяются непосредственно на монтажной плате, переключив его на измерение сопротивления или на прозвонку цепи. Если присоединяя к ножкам щёпы мултиметра сопротивление и в одну и в другую сторону будет одинаковым или очень низким, то это значит транзистор пробит и требует замены.

Прозвонить можно также и диоды, которые должны пропускать ток в одном направлении, то есть если дотронуться щупами омметра в одну сторону сопротивление должно быть низкое, то в другую сторону больше 100 кОм.

Можно прозвонить эмиттерную цепь выходного каскада, но для этого нужно знать распайку транзисторов, то есть где у него база, эмиттер и коллектор. Проверка усилителя звука заключается в том что одним щупом прикасаются к эмиттеру транзистора выходного каскада, а другим на клемму идущую на динамик. Прозвонка должна показывать нулевое сопротивление или близкое к нему значение. Понять как проверить усилитель звука мультиметром сможет и человек малознакомый с электроникой.

Как проверить усилитель звука в магнитоле

Разобраться и понять, как проверить работает ли усилитель звука в магнитоле или нет, нужно применить алгоритм аналогичный с проверкой автомобильного усилителя. То есть:

  • проверить наличие питания, и короткого замыкания в системе источника снабжения электроэнергией;
  • внимательно осмотреть монтажную плату, на наличие явно вышедших со строя элементов и радиодеталей;
  • проверить плотность прилегания радиатора к транзисторам и микросхемам выходных каскадов.

Способов и приемов, как прозвонить усилитель звука, множество, но далеко не все специалисты хотят открывать тайну, нахождения неисправности.

Оставьте заявку и мы перезвоним Вам в течение 48 часов!

Часто в ремонте разной электронной техники возникает подозрение в неисправности биполярных или полевых (Mosfet) транзисторов. Помимо специализированных приборов и пробников для проверки транзисторов, существуют способы доступные всем, из минимума нам подойдет самый простой тестер или мультиметр.

Как мы знаем транзисторы, в основном, бывают двух разновидностей: биполярные и полевые, принцип работы их похож но способы проверки существенно отличаются, поэтому мы рассмотрим разные методы проверки для каждых транзисторов по отдельности.

Проверка биполярных транзисторов

Способы проверки биполярных транзисторов достаточно просты и для удобства нужно помнить что биполярный транзистор условно представляет из себя два диода с точкой по середине, по сути из двух p-n переходов.

Биполярные транзисторы существуют двух типов проводимости: p-n-p и n-p-n что необходимо помнить и учитывать при проверке.

А диод как мы знаем, пропускает ток только в одну сторону, что мы и будем проверять.
Если так получится что ток проходит в обе стороны перехода то это явно указывает на то что транзистор «пробит» но это все условности, в реальности же при замере сопротивления ни в какой из позиций проверяемых переходов не должно быть «нулевого» сопротивления – поэтому это и есть самый простой способ выявления поломки транзистора.
Ну а теперь рассмотрим более достоверные способы проверки и поподробней.

И так выставляем тестер или мультиметр в режим прозвонки (проверка диодов), дальше нужно убедится в том что щупы вставлены в правильные разъемы (красный и черный), а на дисплее нет значка «разряжен». На дисплее должна быть единица а при замыкание щупов должны высветится нули (или близкие к нулям значения), также должен прозвучать звуковой сигнал. И так мы убедились в выборе правильного режима мультиметра, можем приступать к проверке.

И так поочередно проверяем все переходы транзистора:

  • База – Эмиттер – исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • База – Коллектор – исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • Эмиттер – Коллектор – в исправном состояние сопротивление перехода должно быть «бесконечное», то есть переход не должен пропускать ток или прозваниватmся ни в одном из положений полярности.

В зависимости от полярности транзистора (p-n-p или n-p-n) будит зависить лишь направление «прозвонки» переходов база-эмиттер и база-коллектор, с разной полярностью транзисторов направление будет противоположное.

Как определяется «пробитый» переход?
Если мультиметр обнаружит что какой ли бо из переходов (Б-К или Б-Э) в обоих из включений полярности имеет «нулевое» сопротивление и пищит звуковая индикация то такой переход пробит и транзистор неисправен.

Как определить обрыв p-n перехода?
Если один из переходов в обрыве – он не будит пропускать ток и прозваниватся ни в одну из сторон полярности как бы вы не меняли при этом полярность щупов.

Думаю всем понятно как проверять переходы транзистора, суть проверки такая же как у диодов, черный (минусовой) щуп ставим например на коллектор, а красный щуп (плюсовой) на базу и смотрим показания на дисплее. Затем меняем щупы тестера местами и смотрим показания снова. В исправного транзистора в одном случае должно быть какое то значение, как правило больше 100, в другом случае на дисплее должна быть единица «1» что говорит о «бесконечном» сопротивление.

Проверка транзистора стрелочным тестером

Принцип проверки все тот же, мы проверяем переходы (как диоды)
Отличие лишь в том что такие «омметры» не имеют режима прозвонки диодов и «бесконечное» сопротивление у них находится в начальном состояние стрелки, а максимальное отклонение стрелки будит уже говорить о «нулевом» сопротивление. К этому нужно просто привыкнуть и помнить о такой особенности при проверке.
Измерения лучше всего производить в режиме «1Ом» (можно пробовать и до *1000Ом пределе).

Для проверки в схеме (не выпаивая) стрелочным тестером можно даже более точно определить сопротивление перехода если он в схеме зашунтирован низкоомным резистором, например показания сопротивления в 20 Ом будет уже указывать о том что сопротивление перехода не «нулевое» а значит большая вероятность что переход исправен. С мультиметром же в режиме прозвонки диодов будит такая картина что он попросту будет показывать «кз» и пищать (тоже конечно зависит от точности прибора).

Если не известно где база, а где эмиттер и коллектор. Цоколевка транзистора?

У транзисторов средней и большой мощности вывод коллектора всегда на корпусе который переиначенный для закрепления на радиатора, так что с этим проблем не будит. А уже зная расположение коллектора, найти базу и эмиттер будит намного проще.
Ну а если транзистор малой мощности в пластмассовом корпусе где все выводы одинаковы будим применять такой способ:
Все что нам нужно – поочередно замерить все комбинации переходов прикасаясь щупами поочередно к разным выводам транзистора.

Нам нужно найти два перехода которые покажут бесконечность «1». Например: мы нашли бесконечность между правим-левим и правим-среднем, то есть по сути мы нашли и измеряли обратное сопротивления двух p-n переходов (как диодов) из этого размещение базы стает очевидным – база справа.
Дальше ищем где коллектор а где эмиттер, для этого от базы уже измеряем прямое сопротивление переходов и здесь все стает ясно так как сопротивление перехода база-Коллектор всегда меньше по сравнению с переходом база-Эмиттер.

Быстрая точная проверка транзистора

Если под руками есть мультиметр с функцией тестирования коэффициента усиления транзисторов – замечательно, проверка займет несколько секунд, здесь лишь надо будет определить правильную цоколевку (если конечно она не известна).
У таких мультиметров проверочные гнезда состоят из двух отделов p-n-p и n-p-n, а кроме того каждый отдел имеет три комбинации как можно вставить туда транзистор, то есть вместе не более 6 комбинаций, и только лишь одна правильная которая должна показать коэффициент усиления транзистора, за условий что он исправен.

Простой пробник

В данной схеме транзистор будет работать как ключ, схема очень простая и удобная если нужно часто и много проверять транзисторы.

Если транзистор рабочий – при нажатие кнопки светодиод светится, при отпускание гаснет.
Схема представлена для n-p-n транзисторов, но она универсальна, все что нужно сделать, это поставить параллельно к светодиоду еще один светодиод в обратной полярности, а при проверке p-n-p транзистора – просто менять полярность источника питания.

Если по данной методике что то идет не так, задумайтесь, а транзистор ли перед вами и случайно быть может он не биполярный, а полевой или составной.
Часто бывает путают при проверке составные транзисторы пытаясь их проверить стандартным способом, но нужно в первую очередь смотреть справочник или «даташит» со всем описанием транзистора.

Как проверить составной транзистор

Чтобы проверить такой транзистор его необходимо «запустить» то есть он должен как бы работать, для создания такого условия есть простой но интересный способ.
Стрелочным тестером, выставленным в режим проверки сопротивления (предел *1000?) подключаем щупы, плюсовой на коллектор, минусовой на эмиттер – для n-p-n (для p-n-p наоборот) – стрелка тестера не двинется сместа оставаясь в начале шкалы «бесконечность» (для цифрового мультиметра «1»)
Теперь если послюнявить палиц и замкнуть им прикоснувшысь к выводам базы и коллектора то стрелка сдвинется с места от того что транзистор немного приоткроется.
Таким же способом можно проверить любой транзистор даже не выпаивая з схемы.
Но следует помнить что некоторые составные транзисторы имеют в своем составе защитные диоды в переходе эмиттер-коллектор что дает им преимущество в работе с индукционной нагрузкой, например с электромагнитным реле.

Проверка полевых транзисторов

Здесь есть один отличительный момент при проверке таких транзисторов – они очень чувствительны к статическому электричеству которое способно вывести из строя транзистор если не соблюдать методы безопасности при проверке а также выпайке и перемещению. И в большей мере подвержены статике именно маломощные и малогабаритные полевые транзисторы.

Какие методы безопасности?
Транзисторы должны находится на столе на металлическом листе который подключен к заземлению. Для того чтобы снять с человека предельный статический заряд – применяют антистатический браслет который надевают на запястье.
Кроме того хранение и транспортировка особо чувствительных полевиков должна быть з закорочеными выводами, как правило выводы просто обматывают тонкой медной проволкой.

Полевой транзистор в отличие от биполярного управляется напряжением, а не током как у биполярного, поэтому прикладывая напряжение к его затвору мы его или открываем (для N-канального) или закрываем (для P-канального).

Проверить полевой транзистор можно как стрелочным тестером так и цифровым мультиметром.
Все выводы полевого транзистора должны показывать бесконечное сопротивление, независимо от полярности и напряжения на щупах.

Но если поставить положительный щуп тестера к затвору (G) транзистора N-типа, а отрицательный – к истоку (S), зарядится емкость затвора и транзистор откроется. И уже измеряя сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов, например емкости затвора и сопротивления перехода.

Для P-канального типа транзистора полярность щупов обратная. Также для чистоты эксперимента, перед каждой проверкой необходимо закорачивать выводы транзистора пинцетом чтобы снять заряд с затвора после чего сопротивление сток-исток должно снова стать «бесконечным» («1») – если это не так то транзистор скорее всего неисправен.

Особенностью современных мощных полевых транзисторов (MOSFET’ов) есть то что канал сток-исток прозванивается как диод, встроенный диод в канале полевого транзистора есть особенностью мощных полевиков (явление производственного процесса).
Чтобы не посчитать такую «прозвонку» канала за неисправность просто следует помнить о диоде.

В исправном состояние переход сток-исток MOSFETа должен в одну сторону звониться как диод а в другую показывать бесконечность (в закрытом состояние – после закорачивания выводов) Если переход прозваниваеться в обе стороны с «нулевым» сопротивлением то такой транзистор «пробит» и неисправен

Наглядный способ (экспресс проверка)

  • Необходимо замкнуть выводы транзистора
  • Тестером в режиме прозвонки (диод) ставим плюсовой щуп к истоку, а минусовой к стоку (исправный покажет 0.5 – 0.7 вольта)
  • Теперь меняем щупы местами (исправный покажет «1» или по другому говоря бесконечное сопротивление)
  • Минусовой щуп ставим к истоку, а плюсовой на затвор (открываем транзистор)
  • Минусовой щуп оставляем на истоке, а плюсовой сразу ставим на сток, исправный транзистор будет открыт и покажет 0 – 800 милливольт
  • Теперь можем поменять плюсовой и минусовой щупы местами, в обратной полярности переход сток-исток должен иметь такое же сопротивление.
  • Плюсовой щуп ставим к истоку, а минусовой на затвор – транзистор закроется
  • Можем снова проверить переход сток-исток, он должен показывать снова «бесконечное» сопротивление так как транзистор уже закрыт (но помним про диод в обратной полярности)

Большая емкость затвора некоторых полевых транзисторов (особенно мощных) позволяет некоторое продолжительное время сохранять транзистор открытим, что позволяет нам открыв его проверять сопротивление сток-исток уже убрав плюсовой щуп с затвора. Но у транзисторов с малой емкостью затвора необходимо очень быстро перемещать щупы что бы зафиксировать правильную работу транзистора.

Примечание: для проверки P-канального полевого транзистора, процесс выглядит также но щупы мультиметра должны быть противоположной полярности. Для удобства можно перекинуть их местами (красный на минус, а черный на плюс) и использовать все туже описану выше инструкцию.

Проверяя транзистор по такой методике канал сток-исток можно открывать и закрывать даже пальцем, например чтобы открыть достаточно прикоснутся пальцем к затвору держась при этом второй рукой за плюс, а чтобы закрыть нужно все также прикоснутся к затвору но уже держась другим пальцем или второй рукой за минус. Интересный опыт который дает понимание того что транзистор управляется не током (как у биполярных) а напряжением.

Простая схема пробника для проверки полевых транзисторов

Можно собрать простую и эффективную схему проверки полевиков которая достаточно ясно даст понять о состояние транзистора, к тому же достаточно быстро можно перекидать транзисторы если их предстоит проверять часто и много. В некоторых схемах можно проверить транзистор даже полностью не выпаивая его с платы.

Схема универсальна как для P-канальных так и для N-канальных полевых транзисторов в ней присутствует два светодиода включенных в обратной полярности друг к другу (каждый для своего типа) и все что остается при смене типа проверяемого полевого транзистора – просто поменять полярность источника питания.

Вернуться в блог

Написано Эли в четверг, 4 мая 2017 г.

Спросите любого полевого техника или специалиста по стендовым испытаниям, какое у них наиболее часто используемое испытательное оборудование, и он, вероятно, скажет, что это цифровой мультиметр (цифровой мультиметр). Эти универсальные устройства могут использоваться для тестирования и диагностики широкого спектра цепей и компонентов. В крайнем случае, цифровой мультиметр может даже заменить дорогое специализированное испытательное оборудование. Один особенно полезный навык — это знание того, как проверить транзистор с помощью цифрового мультиметра.Для решения этой задачи существуют специализированные анализаторы компонентов, но для среднего хобби может быть трудно оправдать расходы.

Распиновка транзисторов

К счастью, использование цифрового мультиметра для получения базовых показаний «годен / не годен» с подозреваемого неисправного двухполюсного транзистора NPN или PNP — это простая и быстрая задача. Некоторые мультиметры имеют встроенную функцию тестирования транзисторов, если она у вас есть, вы можете пропустить этот пост в блоге — просто вставьте свой транзистор в гнездо на мультиметре и установите измеритель в правильный режим.Вы, вероятно, получите такую ​​информацию, как коэффициент усиления (hFE), который можно будет проверить по таблице данных, а также результаты проверки пройден / не пройден. Если ваш измеритель не имеет функции тестирования транзисторов, не бойтесь — транзисторы можно легко проверить с помощью настройки тестирования «Диод». (Некоторые счетчики имеют функцию проверки диодов в сочетании с проверкой целостности цепи — это нормально).

Тестирование транзистора

Удалите транзистор из схемы для получения точных результатов.

Шаг 1: (от базы к эмиттеру)

Подсоедините плюсовой провод мультиметра к BASE (B) транзистора.Подсоедините отрицательный вывод измерителя к ЭМИТЕРУ (E) транзистора. Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).

Шаг 2: (от базы к коллектору)

Держите положительный провод на ОСНОВАНИИ (B) и вставьте отрицательный провод в КОЛЛЕКТОР (С).

Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).

Шаг 3: (от эмиттера к базе)

Подсоедините плюсовой провод мультиметра к ЭМИТТЕРУ (E) транзистора. Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.

Для исправного транзистора NPN вы должны увидеть «OL» (превышение предела). Если вы проверяете транзистор PNP, измеритель должен показать падение напряжения между 0,45 и 0,9 В.

Шаг 4: (от коллектора к базе)

Подсоедините плюсовой провод мультиметра к КОЛЛЕКТОРУ (С) транзистора.Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.

Для исправного транзистора NPN вы должны увидеть «OL» (превышение предела). Если вы проверяете транзистор PNP, измеритель должен показать падение напряжения между 0,45 и 0,9 В.

Шаг 5: (от коллектора к эмиттеру)

Подсоедините положительный провод измерителя к КОЛЛЕКТОРУ (C), а отрицательный провод измерителя к ЭМИТТЕРУ (E) — исправный транзистор NPN или PNP покажет на измерителе «OL» / превышение предела. Поменяйте местами провода (положительный на эмиттер и отрицательный на коллектор). Еще раз, хороший транзистор NPN или PNP должен показывать «OL».

Если размеры вашего биполярного транзистора противоречат этим инструкциям, считайте это плохим.

Вы также можете использовать падение напряжения, чтобы определить, какой вывод является эмиттером на немаркированном транзисторе, поскольку переход эмиттер-база обычно имеет немного большее падение напряжения, чем переход коллектор-база.

Помните: этот тест проверяет только то, что транзистор не закорочен или не открыт, он не гарантирует, что транзистор работает в пределах своих расчетных параметров.Его следует использовать только для того, чтобы решить, нужно ли вам «заменить» или «перейти к следующему компоненту». Этот тест работает только с биполярными транзисторами — вам нужно использовать другой метод для тестирования полевых транзисторов.

В качестве особой благодарности нашим клиентам и читателям блогов мы хотели бы предложить 10% скидку на весь ваш заказ, используя КОД: «BLOG1000»

Чтобы получить месяц признательности нашим клиентам, все, что вам нужно сделать, это использовать код «BLOG1000» при оформлении заказа в вашей карточке покупок.

И когда появится окошко, введите соответствующий текущий активный промокод.В данном случае это: BLOG1000

И продолжайте проверять!

Спасибо, что являетесь клиентом Vetco!

Вернуться в блог

Как проверить транзистор и диод »Электроника

Очень быстро и легко научиться тестировать транзистор и диод с помощью аналогового мультиметра — обычно этого достаточно для большинства приложений.


Учебное пособие по мультиметру Включает:
Основы работы с измерителем Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр DMM Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Тест диодов и транзисторов Диагностика транзисторных цепей


Хотя многие цифровые мультиметры в наши дни имеют специальные возможности для тестирования диодов, а иногда и транзисторов, не все, особенно старые аналоговые мультиметры, которые все еще широко используются.Однако по-прежнему довольно легко выполнить простой тест «годен / не годен», используя простейшее оборудование.

Этот вид тестирования позволяет определить, работает ли транзистор или диод, и, хотя он не может предоставить подробную информацию о параметрах, это редко является проблемой, потому что эти компоненты проверяются при изготовлении, и производительность сравнительно редко может быть нарушена. упадут до точки, где они не работают в цепи.

Большинство отказов являются катастрофическими, в результате чего компонент становится полностью неработоспособным.Эти простые тесты мультиметра позволяют очень быстро и легко обнаружить эти проблемы.

Таким образом можно тестировать диоды

большинства типов — силовые выпрямительные диоды, сигнальные диоды, стабилитроны / опорные диоды напряжения, варакторные диоды и многие другие типы диодов.

Как проверить диод мультиметром

Базовый тест диодов выполнить очень просто. Чтобы убедиться, что диод работает удовлетворительно, необходимо провести всего два теста мультиметра.

Тест диода основан на том факте, что диод будет проводить только в одном направлении, а не в другом.Это означает, что его сопротивление будет отличаться в одном направлении от сопротивления в другом.

Измеряя сопротивление в обоих направлениях, можно определить, работает ли диод, а также какие соединения являются анодом и катодом.

Поскольку фактическое сопротивление в прямом направлении зависит от напряжения, невозможно дать точные значения ожидаемого прямого сопротивления, так как напряжение на разных измерителях будет разным — оно даже будет различным в разных диапазонах измерителя.


… полоса на корпусе диода представляет катод ….

Метод проверки диода аналоговым измерителем довольно прост.

Пошаговая инструкция:
  1. Установите измеритель на его диапазон Ом — подойдет любой диапазон, но средний диапазон Ом, если их несколько, вероятно, лучше всего.
  2. Подключите катодную клемму диода к клемме с положительной меткой на мультиметре, а анод — к отрицательной или общей клемме.
  3. Установите измеритель на показания в омах, и должны быть получены «низкие» показания.
  4. Поменяйте местами соединения.
  5. На этот раз должно быть получено высокое значение сопротивления.

Примечания:

  • На шаге 3 выше фактическое показание будет зависеть от ряда факторов. Главное, чтобы счетчик отклонялся, возможно, до половины и более. Разница зависит от многих элементов, включая батарею в глюкометре и используемый диапазон.Главное, на что следует обратить внимание, это то, что счетчик сильно отклоняется.
  • При проверке в обратном направлении кремниевые диоды вряд ли покажут какое-либо отклонение измерителя. Германиевые, которые имеют гораздо более высокий уровень обратного тока утечки, могут легко показать небольшое отклонение, если измеритель установлен на высокий диапазон Ом.

Этот простой аналоговый мультиметр для проверки диода очень полезен, потому что он очень быстро показывает, исправен ли диод.Однако он не может тестировать более сложные параметры, такие как обратный пробой и т. Д.

Тем не менее, это важный тест для обслуживания и ремонта. Хотя характеристики диода могут измениться, это случается очень редко, и очень маловероятно, что произойдет полный пробой диода, и это будет сразу видно с помощью этого теста.

Соответственно, этот тип теста чрезвычайно полезен в ряде областей тестирования и ремонта электроники.

Проверка диодов мультиметром

Как проверить транзистор мультиметром

Тест диодов с помощью аналогового мультиметра может быть расширен, чтобы обеспечить простую и понятную проверку достоверности биполярных транзисторов. Опять же, тест с использованием мультиметра дает только уверенность в том, что биполярный транзистор не перегорел, но все же очень полезен.

Как и в случае с диодом, наиболее вероятные отказы приводят к разрушению транзистора, а не к небольшому ухудшению характеристик.

Испытание основано на том факте, что биполярный транзистор можно рассматривать как состоящий из двух встречных диодов, и при выполнении теста диодов между базой и коллектором и базой и эмиттером транзистора с использованием аналогового мультиметра, большая часть можно установить базовую целостность транзистора.

Эквивалентная схема транзистора с диодами для проверки мультиметром.

Требуется еще один тест. Транзистор должен иметь высокое сопротивление между коллектором и эмиттером при разомкнутой цепи базы, так как имеется два встречных диода.Тем не менее, возможно, что коллектор-эмиттерный тракт перегорел, и между коллектором и эмиттером был создан путь проводимости, при этом все еще выполняя диодную функцию относительно базы. Это тоже нужно проверить.

Следует отметить, что биполярный транзистор не может быть функционально воспроизведен с использованием двух отдельных диодов, потому что работа транзистора зависит от базы, которая является переходом двух диодов, являясь одним физическим слоем, а также очень тонкой.

Пошаговая инструкция:

Инструкции даны в основном для транзисторов NPN, поскольку они являются наиболее распространенными в использовании.Варианты показаны для разновидностей PNP — они указаны в скобках (.. .. ..):

  1. Установите измеритель на его диапазон Ом — подойдет любой диапазон, но средний диапазон Ом, если их несколько, вероятно, лучше всего.
  2. Подключите клемму базы транзистора к клемме с маркировкой «плюс» (обычно красного цвета) на мультиметре
  3. Подключите клемму с маркировкой «минус» или «общий» (обычно черного цвета) к коллектору и измерьте сопротивление.Он должен читать обрыв цепи (для транзистора PNP должно быть отклонение).
  4. Когда клемма с маркировкой «положительный» все еще подключена к базе, повторите измерение с положительной клеммой, подключенной к эмиттеру. Показание должно снова показать обрыв цепи (мультиметр должен отклоняться для транзистора PNP).
  5. Теперь поменяйте местами подключение к базе транзистора, на этот раз подключив отрицательную или общую (черную) клемму аналогового измерительного прибора к базе транзистора.
  6. Подключите клемму с маркировкой «плюс» сначала к коллектору и измерьте сопротивление. Затем отнесите к эмиттеру. В обоих случаях измеритель должен отклониться (указать обрыв цепи для транзистора PNP).
  7. Затем необходимо подключить отрицательный или общий вывод счетчика к коллектору, а положительный полюс счетчика — к эмиттеру. Убедитесь, что счетчик показывает обрыв цепи. (Счетчик должен показывать обрыв цепи для типов NPN и PNP.
  8. Теперь поменяйте местами соединения так, чтобы отрицательный или общий вывод измерителя был подключен к эмиттеру, а положительный полюс измерителя — к коллектору.Еще раз проверьте, что прибор показывает обрыв цепи.
  9. Если транзистор проходит все тесты, значит, он в основном исправен и все переходы целы.

Примечания:

  • Заключительные проверки от коллектора до эмиттера гарантируют, что основание не «продувалось». Иногда возможно, что между коллектором и базой и эмиттером и базой все еще присутствует диод, но коллектор и эмиттер закорочены вместе.
  • Как и в случае с германиевым диодом, обратные показания для германиевых транзисторов не будут такими хорошими, как для кремниевых транзисторов. Допускается небольшой ток, поскольку это является следствием наличия неосновных носителей в германии.

Обзор аналогового мультиметра

Хотя большинство мультиметров, которые продаются сегодня, являются цифровыми, тем не менее, многие аналоговые счетчики все еще используются. Хотя они могут и не быть новейшими технологиями, они по-прежнему идеальны для многих применений и могут быть легко использованы для измерений, подобных приведенным выше.

Хотя описанные выше тесты предназначены для аналоговых измерителей, аналогичные тесты могут быть проведены с цифровыми мультиметрами, цифровыми мультиметрами.

Часто цифровые мультиметры могут включать специальную функцию тестирования биполярных транзисторов, и это очень удобно в использовании. Общие характеристики тестирования с помощью специальной функции тестирования биполярных транзисторов часто очень похожи на упомянутые здесь, хотя некоторые цифровые мультиметры могут давать значение для текущего усиления.

Использование простого теста для диодов и транзисторов очень полезно во многих сценариях обслуживания и ремонта.Очень полезно иметь представление о том, работает ли диод или транзистор. Поскольку тестеры транзисторов широко не продаются, возможность использования любого мультиметра для обеспечения этой возможности особенно полезна. Это даже удобнее, потому что тест выполнить очень просто.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG Получение данных
Вернуться в меню тестирования.. .

Как проверить транзистор с помощью цифрового мультиметра

Обновлено 23 ноября 2019 г.

Автор S. Hussain Ather

Очень важно отслеживать компоненты электрической цепи. Вы можете узнать напряжение или ток, проходящие через резисторы и другие элементы схемы, чтобы убедиться, что они работают легко и безопасно. Для этих целей пригодятся различные инструменты, такие как мультиметры и омметры.

Для проверки диодов транзисторов вы можете следить за признаками неисправности транзисторов.Транзисторы используются в диодах, элементах схемы, которые пропускают электричество только в одном направлении. Они используются для усиления электрического тока до более высокого значения.

Они созданы путем размещения тонкого слоя материала n-типа между двумя большими кусками материала p-типа или материала p-типа между двумя большими кусками n-типа. В этой установке материалы p-типа положительны из-за отсутствия электронов, а материалы n-типа отрицательны из-за избытка электронов.

Если вы заметили, что ваша схема не дает таких эффективных результатов, возможно, пришло время проверить транзистор. Тестирование может помочь вам выяснить, работает ли транзистор так хорошо, как могло бы быть. Вы бы использовали мультиметр, цифровое устройство, которое измеряет различные электрические свойства элементов схемы.

Процедура тестирования транзистора

Существует пять шагов для проверки транзистора в электрической цепи. Эти шаги включают подключение:

  1. базы к эмиттеру
  2. База к коллектору
  3. Эмиттер к базе
  4. Коллектор к базе
  5. Коллектор к эмиттеру

Для NPN-транзистора эмиттер заземлен с коллектором под напряжением, которым управляет база.Для конструкции PNP коллектор заземлен с эмиттером под напряжением.

Эти методы тестирования говорят вам, закорочен или открыт транзистор для биполярных транзисторов. Транзистор может по-прежнему колебаться в своих характеристиках в определенном диапазоне только в результате того, как он был спроектирован.

Чтобы начать процедуру тестирования транзистора, удалите транзистор из самой схемы. Возьмите мультиметр и подключите положительный провод к базе транзистора. Затем подключите отрицательный вывод к эмиттеру транзистора.

На этом этапе проверьте показания мультиметра. Транзистор NPN, который функционирует должным образом, должен показывать падение напряжения от 0,45 до 0,9 вольт, а транзистор PNP должен показывать сообщение о превышении предела. Любые знаки на мультиметре, которые отличаются от этих значений, могут указывать на неисправность транзистора.

Затем подключите отрицательный вывод мультиметра к коллектору транзистора; это этап «от базы к коллекционеру». Как и в случае с предыдущим шагом, NPN-транзистор должен иметь падение напряжения между 0.45 и 0,9 вольт, в то время как PNP должно быть выше предела.

Переключение показаний

Для шага «эмиттер-база» подключите положительный вывод мультиметра к эмиттеру, а отрицательный — к базе. В этом случае показания следует поменять местами. Транзистор NPN должен показывать сообщение о превышении предела, а для PNP — падение напряжения между 0,45 и 0,9 вольт. Аналогичным образом, если положительный вывод подключен к коллектору, а отрицательный — к базе, вы должны увидеть те же результаты на мультиметре.

Для пятого и последнего шага подключите положительный провод к коллектору, а отрицательный — к эмиттеру. И в схемах PNP, и в NPN должны отображаться сообщения о превышении лимита. Поменяйте отведения друг с другом, и вы увидите одинаковые сообщения.

Также полезно определить, какой вывод соответствует какому в немаркированном транзисторе, глядя на сами падения напряжения и определяя, какие из них соответствуют каким.

Как проверить транзистор? (с иллюстрациями)

Вы можете проверить транзистор на работоспособность, выполнив несколько простых процедур с помощью цифрового мультиметра.Большинство мультиметров цифрового типа оснащены функцией проверки диодов, которую можно использовать для проверки транзистора. Если транзистор уже подключен к печатной плате, его необходимо удалить с платы перед испытанием. Электронный транзистор может использоваться в схеме в качестве усилителя или переключателя. Независимо от его применения, процедура, используемая для тестирования транзистора, одинакова, потому что все транзисторы в основном работают как два параллельных диода, которые имеют общий элемент.

Прежде чем вы сможете приступить к реальной процедуре тестирования, вам необходимо определить тип транзистора, который вы тестируете.Транзисторы, известные как «положительно-отрицательно-положительный» (PNP), имеют две входные клеммы и одну выходную клемму. Транзистор отрицательно-положительно-отрицательный (NPN) будет иметь одну входную клемму и две выходные клеммы. Оба типа транзисторов имеют в общей сложности три клеммы, которые известны как клемма базы, клемма коллектора и клемма эмиттера.

Тип транзистора, а также расположение и идентификация его выводов обычно указываются на внешней упаковке транзистора.Если тип транзистора не указан на упаковке, вы можете выполнить простой тест с помощью мультиметра, чтобы определить это. Определите ориентацию трех выводов транзистора и подключите положительный вывод мультиметра к выводу базы транзистора. Затем подключите отрицательный вывод измерителя к клемме коллектора или эмиттера транзистора. Если мультиметр показывает значение выше нуля, значит, это транзистор типа NPN.

После того, как вы определили тип транзистора и ориентацию его выводов, вы готовы приступить к реальной процедуре тестирования.Чтобы проверить транзистор на работоспособность, вам нужно будет повернуть шкалу мультиметра в положение диода. Затем подключите положительный вывод измерителя к клемме базы транзистора. Затем следует прикоснуться отрицательным проводом измерителя к клемме коллектора транзистора и проверить сопротивление. Затем прикоснитесь отрицательным проводом к клемме эмиттера и проверьте сопротивление. После того, как вы завершите эту процедуру, вам нужно будет снова выполнить полный тест, подключив отрицательный провод к клемме базы транзистора.

Если транзистор исправен, показание сопротивления из первой части теста будет очень низким, а показание из второй части будет очень высоким.Если транзистор типа PNP, вам нужно будет выполнить первую часть теста с отрицательным проводом, подключенным к клемме базы, а положительный провод будет подключен во время второй части. Если транзистор исправен, первое показание будет высоким, а второе — низким. Транзисторы обычно перестают работать внезапно, а не постепенно. Обычно замена неисправного транзистора обходится дешевле, чем замена самой печатной платы.

Как проверить транзистор BJT с помощью цифрового мультиметра

Биполярные транзисторы состоят из трехслойного полупроводникового «сэндвича», PNP или NPN.Таким образом, транзисторы регистрируются как два диода, соединенных последовательно при тестировании с помощью функции «сопротивление» или «проверка диода» мультиметра, как показано на рисунке ниже. Показания низкого сопротивления на базе с черными отрицательными (-) выводами соответствуют материалу N-типа в базе транзистора PNP. На символе на материал N-типа «указывает» стрелка перехода база-эмиттер, которая является базой для этого примера. Эмиттер P-типа соответствует другому концу стрелки перехода база-эмиттер, эмиттеру.Коллектор очень похож на эмиттер, а также является материалом P-типа PN перехода.

Проверка счетчика транзисторов PNP: (a) прямой B-E, B-C, сопротивление низкое; (б) обратные B-E, B-C, сопротивление ∞.

Здесь я предполагаю использование мультиметра с функцией только одного диапазона (сопротивления) для проверки PN-переходов. Некоторые мультиметры оснащены двумя отдельными функциями проверки целостности цепи: сопротивлением и «проверкой диодов», каждая из которых имеет собственное назначение. Если ваш измеритель имеет назначенную функцию «проверки диодов», используйте ее, а не диапазон «сопротивления», и измеритель будет отображать фактическое прямое напряжение PN-перехода, а не только то, проводит ли он ток.

Показания счетчика, конечно, будут прямо противоположными для NPN-транзистора, причем оба PN-перехода обращены в другую сторону. Показания низкого сопротивления с красным (+) проводом на базе — это «противоположное» состояние для NPN-транзистора.

Если в этом тесте используется мультиметр с функцией «проверки диодов», будет обнаружено, что переход эмиттер-база имеет немного большее прямое падение напряжения, чем переход коллектор-база. Эта прямая разница напряжений возникает из-за несоответствия в концентрации легирования между эмиттерной и коллекторной областями транзистора: эмиттер представляет собой гораздо более легированный кусок полупроводникового материала, чем коллектор, в результате чего его соединение с базой создает более высокое прямое напряжение. уронить.

Зная это, становится возможным определить, какой провод какой на немаркированном транзисторе. Это важно, потому что упаковка транзисторов, к сожалению, не стандартизирована. Конечно, все биполярные транзисторы имеют три провода, но расположение трех проводов на физическом корпусе не организовано в каком-либо универсальном стандартизированном порядке.

Предположим, технический специалист находит биполярный транзистор и приступает к измерению целостности цепи с помощью мультиметра, установленного в режиме «проверки диодов».Измеряя между парами проводов и записывая значения, отображаемые измерителем, технический специалист получает данные, показанные на рисунке ниже.

Неизвестный биполярный транзистор. Какие терминалы являются эмиттерным, базовым и коллекторным? Показания омметра между клеммами.
  • Контактный провод счетчика 1 (+) и 2 (-): «OL»
  • Контактный провод счетчика 1 (-) и 2 (+): «OL»
  • Контактный провод счетчика 1 (+) и 3 (-) : 0,655 В
  • Контактный провод счетчика 1 (-) и 3 (+): «OL»
  • Контактный провод счетчика 2 (+) и 3 (-): 0.621 В
  • Касательный провод 2 (-) и 3 (+) измерителя: «OL

. Единственными комбинациями контрольных точек, дающими показания измерителя, являются провода 1 и 3 (красный измерительный провод на 1 и черный измерительный провод на 3). , и провода 2 и 3 (красный измерительный провод на 2 и черный измерительный провод на 3). Эти два показания должны указывать на прямое смещение перехода эмиттер-база (0,655 В) и перехода коллектор-база (0,621 В).

Теперь мы ищем один провод, общий для обоих наборов показаний проводимости.Это должно быть базовое соединение транзистора, потому что база является единственным слоем трехслойного устройства, общим для обоих наборов PN-переходов (эмиттер-база и коллектор-база). В этом примере этот провод имеет номер 3 и является общим для комбинаций контрольных точек 1-3 и 2-3. В обоих этих наборах показаний измерителя тестовый провод черный (-) касался провода 3, что говорит нам о том, что база этого транзистора сделана из полупроводникового материала N-типа (черный = отрицательный). Таким образом, транзистор представляет собой PNP с базой на проводе 3, эмиттером на проводе 1 и коллектором на проводе 2, как показано на рисунке ниже.

Клеммы BJT, идентифицируемые омметром
  • E и C высокий R: 1 (+) и 2 (-): «OL»
  • C и E высокий R: 1 (-) и 2 (+): «OL»
  • E и B вперед: 1 (+) и 3 (-): 0,655 В
  • E и B назад: 1 (-) и 3 (+): «OL»
  • C и B вперед: 2 (+) и 3 (-): 0,621 В
  • C и B в обратном направлении: 2 (-) и 3 (+): «OL»

Обратите внимание, что базовый провод в этом примере — , а не — средний вывод транзистора, как можно было бы ожидать от трех -слойная «сэндвич» модель биполярного транзистора.Это довольно частый случай, который сбивает с толку новичков, изучающих электронику. Единственный способ узнать, какой именно провод — это проверить счетчик или обратиться к документации производителя на этот конкретный номер детали транзистора.

Знание того, что биполярный транзистор ведет себя как два встречных диода при тестировании с помощью измерителя проводимости, полезно для идентификации неизвестного транзистора исключительно по показаниям измерителя. Это также полезно для быстрой функциональной проверки транзистора.Если бы техник измерил целостность цепи в более чем двух или любых менее чем двух из шести комбинаций измерительных проводов, он или она немедленно узнал бы, что транзистор неисправен (или что это не биполярный транзистор, а скорее что-то еще — отличная возможность, если для точной идентификации нельзя сослаться на номера деталей!). Однако модель транзистора с «двумя диодами» не может объяснить, как и почему он действует как усилительное устройство.

Чтобы лучше проиллюстрировать этот парадокс, давайте рассмотрим одну из схем транзисторного переключателя, используя физическую схему на рисунке ниже, а не схематический символ, представляющий транзистор.Таким образом будет легче увидеть два PN-перехода.

Небольшой базовый ток, протекающий в смещенном в прямом направлении переходе база-эмиттер, позволяет протекать большому току через смещенный в обратном направлении переход база-коллектор.

Диагональная стрелка серого цвета показывает направление потока электронов через переход эмиттер-база. Эта часть имеет смысл, поскольку электроны текут от эмиттера N-типа к базе P-типа: переход явно смещен в прямом направлении. А вот переход база-коллектор — совсем другое дело.Обратите внимание, как толстая стрелка серого цвета указывает в направлении потока электронов (вверх) от базы к коллектору. Поскольку основание выполнено из материала P-типа, а коллектор из материала N-типа, это направление электронного потока явно противоположно направлению, обычно ассоциируемому с PN-переходом! Обычное PN-соединение не допускает этого «обратного» направления потока, по крайней мере, без существенного сопротивления. Однако насыщенный транзистор оказывает очень слабое сопротивление электронам на всем пути от эмиттера до коллектора, о чем свидетельствует освещение лампы!

Очевидно, что здесь происходит что-то, что противоречит простой объяснительной модели биполярного транзистора «с двумя диодами».Когда я впервые узнал о работе транзисторов, я попытался построить свой собственный транзистор из двух последовательно включенных диодов, как показано на рисунке ниже.

Пара последовательно соединенных диодов не работает как транзистор!

Моя схема не работала, и я был озадачен. Каким бы полезным ни было описание транзистора «два диода» для целей тестирования, оно не объясняет, как транзистор ведет себя как управляемый переключатель.

В транзисторе происходит следующее: обратное смещение перехода база-коллектор предотвращает ток коллектора, когда транзистор находится в режиме отсечки (то есть, когда ток базы отсутствует).Если переход база-эмиттер смещен в прямом направлении управляющим сигналом, обычно блокирующее действие перехода база-коллектор отменяется, и через коллектор разрешается ток, несмотря на то, что электроны проходят «неправильным путем» через этот PN соединение. Это действие зависит от квантовой физики полупроводниковых переходов и может иметь место только тогда, когда два перехода должным образом разнесены и концентрации легирования трех слоев правильно пропорциональны. Два диода, соединенные последовательно, не соответствуют этим критериям; верхний диод никогда не может «включиться» при обратном смещении, независимо от того, сколько тока проходит через нижний диод в контуре базового провода.См. Раздел «Биполярные переходные транзисторы», глава 2, для получения более подробной информации.

То, что концентрации легирования играют решающую роль в особых возможностях транзистора, также подтверждается тем фактом, что коллектор и эмиттер не взаимозаменяемы. Если рассматривать транзистор просто как два соединенных друг с другом PN перехода или просто как простой сэндвич из материалов N-P-N или P-N-P, может показаться, что любой конец транзистора может служить коллектором или эмиттером. Однако это не так. При подключении «в обратном направлении» в цепи ток база-коллектор не сможет управлять током между коллектором и эмиттером.Несмотря на то, что эмиттерный и коллекторный слои биполярного транзистора имеют одно и то же легирование типа (N или P), коллектор и эмиттер определенно не идентичны!

Ток через переход эмиттер-база пропускает ток через переход база-коллектор с обратным смещением. Действие базового тока можно представить как «открытие затвора» для тока через коллектор. Более конкретно, любая заданная величина тока эмиттер-база допускает ограниченную величину тока база-коллектор.Для каждого электрона, который проходит через переход эмиттер-база и далее через базовый провод, через переход база-коллектор проходит определенное количество электронов, и не более того.

В следующем разделе это ограничение тока транзистора будет исследовано более подробно.

Сводка

  • При тестировании мультиметром в режимах «сопротивление» или «проверка диода» транзистор ведет себя как два соединенных друг с другом PN (диодных) перехода.
  • PN-переход эмиттер-база имеет немного большее прямое падение напряжения, чем PN-переход коллектор-база, из-за более сильного легирования полупроводникового слоя эмиттера.
  • Переход база-коллектор с обратным смещением обычно блокирует прохождение любого тока через транзистор между эмиттером и коллектором. Однако этот переход начинает проводить, если ток проходит через базовый провод. Базовый ток можно рассматривать как «открытие затвора» для определенного ограниченного количества тока через коллектор.

Статья извлечена из Урока Тони Купхальда по электрическим схемам Том III Полупроводники в соответствии с условиями лицензии на научный дизайн.

Как проверить транзисторы | Hackaday.io

Первый способ

Первый метод, который я использую чаще всего, — это светодиодный метод. Итак, предположим, что у вас нет мультиметра, просто наденьте источник напряжения от 5 до 12 В. Это может быть даже батарея на 9 В или что-то подобное.

  • Подключите + к коллектору,
  • Подключите анод светодиода к эмиттеру
  • И — в катоде светодиода, как на картинке ниже.

Эта установка выполняется очень быстро, и вам не нужно ничего паять. Просто используйте зажим из кожи аллигатора или что-то подобное, как я использую в этом примере.

Затем откройте переход транзистора, коснувшись пальцем между коллектором и базой вот так. Помогает, если пальцы не очень сухие.

Или просто прикоснувшись к базе. Ваше тело обычно ведет себя как антенна и принимает переменные милливольты из окружающей среды.Скорее всего, потенциал вашего тела значительно отличается от напряжения источника питания, и вам нужно всего около 0,6 В, чтобы открыть соединение база-эмиттер через сопротивление вашей кожи.

Для смещения PNP-транзистора в этом режиме вам необходимо одновременно коснуться базы и земли, например:

Я успешно использовал этот метод, пока не сжег ни одного транзистора. Я думаю, это объясняется очень высоким сопротивлением кожи.Что-то между 200 кОм и 10 МОм. Это допускает только очень небольшой ток база-эмиттер, и транзистор никогда не будет насыщаться.

Я понимаю, что у этого метода есть свои недостатки, и он может подвергнуть компонент небольшой вероятности возможных повреждений от электростатического разряда. Случайное прикосновение + к базе NPN-транзистора определенно могло поджарить его и светодиод. С другой стороны, он очень нагляден и хорош для демонстрационных целей, особенно для начинающих и студентов.


Как проверить биполярный транзистор — AntiMath

Как проверить биполярный транзистор

опубликовано в электро 4 ноября 2012 г. —

В этом посте рассказывается, как протестировать биполярный транзистор (BJT) с помощью омметра .

Биполярный транзистор имеет два перехода PN ; PN-переход в основном ведет себя как простой диод. Биполярные транзисторы бывают двух типов, NPN и PNP, в зависимости от того, как база транзистора легирована .

Простой способ проверить, в порядке ли транзистор (при условии, что у вас есть только омметр ), — это использовать омметр для проверки каждого из двух переходов.

Примечание: вы можете использовать любой тип омметра (аналоговый или цифровой)

Установите омметр на домен X1 и:

Шаг 1: Подключите красный щуп к базе (B) транзистора, а черный щуп к эмиттеру (E)

Теперь проверим соединение PN между базой и эмиттером (BE).

Шаг 2: Подключите красный щуп к базе (B) транзистора, а черный щуп к коллектору (E)
Теперь мы проверим соединение PN между базой и коллектором (BC).

Если вы получаете показания (выше 0 Ом) в обоих случаях, то соединения в порядке, и поскольку красный зонд был подключен к базе , это означает, что транзистор NPN типа .(Вы НЕ должны получать никаких показаний (∞Ω), если черный зонд подключен к базе.)

Шаг 3: Если вы не получили показания на шагах 1 и 2, переместите черный датчик на базу (B) и повторите шаги 1 и 2

Если вы получаете показания, как в шагах 1 и 2, но с черным датчиком , подключенным к базе, и вообще без показаний с красным датчиком, подключенным к базе , это означает, что ваш транзистор также исправен, но не соответствует требованиям.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.