Site Loader

Содержание

Создан транзистор c самым маленьким затвором в мире

N+1иещё 1

Физики из Национальной лаборатории Лоуренса в Беркли, а также университетов Калифорнии, Техаса и Стэнфорда создали транзистор с рекордно малым размером затвора — части устройства, отвечающей за включение и отключение. Его длина составила всего один нанометр — в 20 раз меньше, чем в современных устройствах. Ключевым для создания транзистора стало использование в качестве основного материала атомарно тонких слоев дисульфида молибдена. В случае традиционных кремниевых транзисторов минимальный размер затвора ограничен пятью нанометрами. Исследователи отмечают, что разработанная технология не адаптирована для массового производства, но тем не менее работа показывает, что предел миниатюризации транзисторов еще не достигнут. Исследование опубликовано в журнале Science, кратко о нем сообщает пресс-релиз лаборатории.

© Sujay Desai / UC Berkeley

Основной деталью современных микроэлектронных устройств являются транзисторы — полупроводниковые приборы, способные изменять свою электропроводность под действием приложенного управляющего напряжения. Полевые транзисторы (самый распространенный тип) состоят из трех основных частей — истока, затвора и стока. В простейшем случае в транзисторе есть два разных типа проводников с различными видами проводимости. Между истоком и стоком есть канал, через который могут перемещаться носители заряда, часть этого канала контактирует с полупроводником другого типа проводимости. Если приложить к последнему напряжение, то возникает запирающий слой, повышающий сопротивление канала — транзистор «отключается».

Видео дня

Современные транзисторы имеют размеры порядка десятков нанометров — на таких расстояниях начинают сказываться различные побочные эффекты, связанные с квантовой природой носителей зарядов, электронов. Так, при малых длинах канала, расположенного рядом с затвором, электроны могут «не обращать внимания» на запирающий слой и попросту туннелировать сквозь него. Такой транзистор невозможно выключить. Этот эффект можно подавить, увеличив эффективную массу электронов и сделав их менее подвижными. Эффективная масса носителей заряда — это такая масса, имея которую в вакууме частицы двигались бы так же, как двигаются в реальном материале. Изменить ее можно, выбрав другой материал для транзистора.

В новой работе авторы использовали для канала транзистора слой дисульфид молибдена толщиной в несколько атомных слоев. Эффективная масса носителей заряда в нем в несколько раз выше, чем в кремнии. Роль управляющего электрода, изменявшего состояние затвора, играла одиночная углеродная нанотрубка. От затвора она отделена слоем диэлектрика — оксида циркония.

Чтобы собрать подобное устройство, ученые пользовались высокоточными техниками — на первом этапе одиночную углеродную нанотрубку переносили на подложку. Затем с помощью сканирующей электронной микроскопии физики устанавливали точное положение нанотрубки на подложке и напыляли на ее концы палладий. Образовывались контакты большой площади, благодаря которым можно было подавать напряжение на затвор. Затем с помощью техники атомного послойного осаждения авторы наносили слой оксида циркония требуемой толщины. Следом за этим на диэлектрик помещали дисульфид молибдена и напыляли контакты — исток и сток.

Эксперименты с устройством показали, что проводимость транзистора управляется напряжением на затворе. Ток, проходящий через транзистор в выключенном состоянии, в миллион раз меньше, чем ток включенного транзистора.

Авторы отмечают, что хотя разработанные транзисторы гораздо меньше, чем используемые в современных устройствах, их массовое производство на сегодняшний день потребует значительных усовершенствований техник литографии. Так, сложность представляет рост больших по площади моноатомных слоев дисульфида молибдена, а также технология нанесения на них металлических контактов.

Для того чтобы увеличить скорость работы и другие характеристики транзисторов, физики используют необычные материалы. Так, недавно материаловеды из Университета Висконсина впервые создали транзистор на основе углеродных нанотрубок, обошедший кремниевые устройства по плотности тока насыщения. Создать в некотором смысле биосовместимые транзисторы удалось шведским физикам — ученые превратили в транзисторы клетки садовой розы.

Создан революционный транзистор, меняющий конфигурацию «на лету». Процессоры станут в разы меньше по размерам и энергопотреблению

Техника

|

Поделиться

    Австрийские исследователи модернизировали современный полевой транзистор, добавив к нему управляющий электрод и германиевую прослойку. Такая модификация позволяет в реальном времени менять параметры полупроводникового элемента в зависимости от текущих потребностей. Ученые говорят, что для выполнения некоторых арифметических операций новых транзисторов требуется до 85% меньше, чем используется в схемах на базе традиционных полевых транзисторов, реализующих эти операции. По их мнению, внедрение технологии не приведет к вытеснению классических кремниевых микросхем, а позволит улучшить их за счет дополнительных вычислительных блоков, которые окажутся востребованы, в первую очередь, в сфере искусственного интеллекта.

    Венские адаптивные тразисторы

    Исследователи из Венского технического университета разработали транзистор, который способен менять свои параметры «на лету», в соответствии с решаемой в конкретный момент времени задачей.

    Как отмечает Tom’s Hardware, потенциал у технологии по истине огромный. К примеру, микросхема, построенная с ее применением может нести до 85% меньше транзисторов, при этом выполняя все те же функции, что созданная с использованием классического подхода. Это позволяет уменьшить итоговый размер микросхемы, снизить энергопотребление и тепловыделение, что, в свою очередь, дает обширные возможности в области повышения ее производительности.

    Как работает полевой транзистор

    Транзисторы в целом и полевые в частности (Field Effect Transistors, FET) лежат в основе любой современной полупроводниковой микросхемы. Такой транзистор имеет три контакта: сток (drain), затвор (gate) и исток (source). Исток и сток образуют токопроводящий канал. На исток подается высокое напряжение, на затвор – низкое (управляющее). В зависимости от уровня напряжения на затворе электрический ток либо проходит от истока к стоку (затвор открыт), либо нет (затвор закрыт).

    На фото слева направо: Вальтер Вебер, Масияр Систани и Рафаэль Бекле

    Таким образом, транзистор можно использоваться в качестве «ключа» или, к примеру, элементарной двоичной ячейки памяти. При помощи соединения групп транзисторов и других электронных компонентов между собой можно получить логические элементы, выполняющие простейшие операции двоичной логики.

    Всего лишь один дополнительный электрод

    Специалисты из Австрии предложили соединить два электрода (сток и исток) между собой при помощи тончайшей германиевой нити, а над ней расположить алюминиевый электрод затвора, подобно тому, как это сделано в традиционном полевом транзисторе. Кроме того, ученые добавили управляющий электрод, который расположили на границе раздела между германиевым и металлическим слоями.

    Именно управляющий электрод позволяет «программировать» транзистор.

    Адаптивный транзистор включает обычный затвор (выделен красным) и дополнительный программирующий затвор (синий), расположенный между истоком (зеленый слева) и стоком (зеленый справа)

    Адаптивность нового германиевого транзистора обусловлена электрическими свойствами данного материала. Как объясняет Масиар Систани (Masiar Sistani), один участников исследовательской группы, при подаче напряжения на германиевую структуру сила тока возрастает, пока не достигнет определенного порога. После перехода этого порога ток вновь начинает уменьшается. Этот эффект носит название отрицательного дифференциального сопротивления (negative differential resistance).

    Дополнительный управляющий электрод позволяет регулировать этот порог, то есть устанавливать уровень напряжения, при котором происходит открытие/закрытие транзистора. Таким образом, транзистор такой конструкции может находиться в более чем двух фиксированных состояниях «включено» и «выключено».

    «Арифметические операции, для которых ранее требовалось 160 транзисторов, теперь возможны с 24 транзисторами. Таким образом, скорость и энергоэффективность схем также могут быть значительно увеличены», – поясняет профессор

    Вальтер Вебер (Walter Weber), возглавляющий исследовательскую группу.

    Не замена полупроводникам на основе кремния

    Безопасные коммуникации сотрудников: что важно знать

    импортозамещение ucaas

    По словам Масиара Систани, разработка его команды не претендует на замену «хорошо себя зарекомендовавшей технологии транзисторов на основе кремния». Ученый предполагает, что в будущем на базе германиевых транзисторов будут строить блоки-дополнения для классических интегральных схем, которые решают более специфические задачи. Так, исследователи предполагают, что их технология найдет применение в сфере искусственного интеллекта.

    Как отмечает издание SciTechDaily, быстрое промышленное внедрение новой технологии представляется реалистичным. Задействованные учеными материалы и так применяются при производстве полупроводниковых изделий, проработка принципиально новых производственных процессов также не потребуется.

    В середине декабря 2021 г. CNews писал о том, что Samsung и IBM создали технологию вертикального расположения транзисторов VTFET, способную резко увеличить производительность и энергоэффективность будущих процессоров, а также преодолеть порог в 1 нм. По сравнению с современными чипами FinFET потребление энергии чипами VTFET ниже на 85%, а производительность выше вдвое.

    • VK Cloud Conf: как перенести лучшие практики разработки ИТ-компаний в классический бизнес

    Дмитрий Степанов


    Поставщики беспроводных радиочастот и ресурсы

    Веб-сайт RF Wireless World является домом для поставщиков и ресурсов RF и Wireless. На сайте представлены статьи, учебные пособия, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тесты и измерения, калькуляторы, новости, книги, загрузки и многое другое.

    Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, оптоволокно, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. д. Эти ресурсы основаны на стандартах IEEE и 3GPP. Он также имеет академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и дисциплинам MBA.

    Статьи о системах на основе IoT

    Система обнаружения падений для пожилых людей на основе IoT : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падения IoT. Подробнее➤

    См. также другие статьи о системах на основе IoT:
    • Система очистки туалетов AirCraft. • Система измерения удара при столкновении • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной розничной торговли • Система мониторинга качества воды • Система интеллектуальной сети • Умная система освещения на основе Zigbee • Умная система парковки на базе Zigbee • Умная система парковки на базе LoRaWAN.


    Изделия для беспроводных радиочастот

    Этот раздел статей охватывает статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE/3GPP и т. д. , стандарты. Он также охватывает статьи, связанные с испытаниями и измерениями, посвященные испытаниям на соответствие, используемым для испытаний устройств на соответствие RF/PHY. СМ. УКАЗАТЕЛЬ СТАТЕЙ >

    >.


    Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH была рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Подробнее➤


    Основные сведения о повторителях и типы повторителей

    : В нем объясняются функции различных типов повторителей, используемых в беспроводных технологиях. Подробнее➤


    Основы и типы замираний : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные замирания, быстрые замирания и т. д., используемые в беспроводной связи. Подробнее➤


    Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Подробнее➤


    Основы помех и типы помех: В этой статье рассматриваются помехи по соседнему каналу, помехи в одном канале, Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. д. Подробнее➤


    Раздел 5G NR

    В этом разделе рассматриваются функции 5G NR (новое радио), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. д. 5G NR Краткий справочный указатель >>
    • Мини-слот 5G NR • Часть полосы пропускания 5G NR • БАЗОВЫЙ НАБОР 5G NR • Форматы 5G NR DCI • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Опорные сигналы 5G NR • 5G NR m-Sequence • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • MAC-уровень 5G NR • Уровень 5G NR RLC • Уровень PDCP 5G NR


    Учебники по беспроводным технологиям

    В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводным сетям. Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, беспроводная сеть, волновод, антенна, фемтосота, испытания и измерения, IoT и т. д. См. ИНДЕКС УЧЕБНЫХ ПОСОБИЙ >>


    Учебное пособие по 5G — В этом учебном пособии по 5G также рассматриваются следующие подтемы, посвященные технологии 5G:
    Учебник по основам 5G Диапазоны частот учебник по миллиметровым волнам Рамка волны 5G мм Зондирование канала миллиметровых волн 5G 4G против 5G Испытательное оборудование 5G Архитектура сети 5G Сетевые интерфейсы 5G NR звучание канала Типы каналов 5G FDD против TDD Нарезка сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G ТФ


    В этом учебнике GSM рассматриваются основы GSM, сетевая архитектура, сетевые элементы, системные спецификации, приложения, Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM или настройка вызова или процедура включения питания, Вызов MO, вызов MT, модуляция VAMOS, AMR, MSK, GMSK, физический уровень, стек протоколов, основы мобильного телефона, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
    ➤Читать дальше.

    LTE Tutorial , описывающий архитектуру системы LTE, включая основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он предоставляет ссылку на обзор системы LTE, радиоинтерфейс LTE, терминологию LTE, категории LTE UE, структуру кадра LTE, физический уровень LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, Voice Over LTE, расширенный LTE, Поставщики LTE и LTE vs LTE advanced.➤Подробнее.


    Радиочастотные технологии Материал

    На этой странице мира беспроводных радиочастот описывается пошаговое проектирование преобразователя частоты на примере повышающего преобразователя частоты 70 МГц в диапазон C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, генератор опорной частоты OCXO, амортизирующие прокладки. ➤Читать дальше.
    ➤ Проектирование и разработка радиочастотного приемопередатчика ➤Дизайн радиочастотного фильтра ➤Система VSAT ➤Типы и основы микрополосковых ➤Основы волновода


    Секция испытаний и измерений

    В этом разделе рассматриваются ресурсы по контролю и измерению, контрольно-измерительное оборудование для тестирования тестируемых устройств на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE. ИНДЕКС испытаний и измерений >>
    ➤Система PXI для контрольно-измерительных приборов. ➤ Генерация и анализ сигналов ➤ Измерения физического уровня ➤ Тестирование устройства WiMAX на соответствие ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤ Тест на соответствие TD-SCDMA


    Волоконно-оптические технологии

    Волоконно-оптический компонент основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д. Эти компоненты используются в оптоволоконной связи. ИНДЕКС оптических компонентов >>
    ➤Руководство по оптоволоконной связи ➤APS в SDH ➤Основы SONET ➤ Структура кадра SDH ➤ SONET против SDH


    Продавцы беспроводных радиочастот, производители

    Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

    Поставщики ВЧ-компонентов, включая ВЧ-изолятор, ВЧ-циркулятор, ВЧ-смеситель, ВЧ-усилитель, ВЧ-адаптер, ВЧ-разъем, ВЧ-модулятор, ВЧ-трансивер, PLL, VCO, синтезатор, антенну, осциллятор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексер, дуплексер, чип-резистор, чип-конденсатор, чип-индуктор, ответвитель, ЭМС, программное обеспечение RF Design, диэлектрический материал, диод и т. д. Поставщики радиочастотных компонентов >>
    ➤Базовая станция LTE ➤ РЧ-циркулятор ➤РЧ-изолятор ➤Кристаллический осциллятор


    MATLAB, Labview, Embedded Исходные коды

    Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. СМОТРИТЕ ИНДЕКС ИСТОЧНИКОВ >>
    ➤ 3–8 код декодера VHDL ➤Скремблер-дескремблер Код MATLAB ➤32-битный код ALU Verilog ➤ T, D, JK, SR триггер коды labview


    *Общая медицинская информация*

    Сделайте эти пять простых вещей, чтобы помочь остановить коронавирус (COVID-19).
    ВЫПОЛНИТЕ ПЯТЬ
    1. РУКИ: Мойте их чаще
    2. ЛОКТ: кашляйте в него
    3. ЛИЦО: Не прикасайтесь к нему
    4. НОГИ: Держитесь на расстоянии более 3 футов (1 м) друг от друга
    5. ЧУВСТВУЙТЕ: Болен? Оставайтесь дома

    Используйте технологию отслеживания контактов >> , следуйте рекомендациям по социальному дистанцированию >> и установить систему наблюдения за данными >> спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таких стран, как США и Китай, чтобы остановить распространение COVID-19так как это заразное заболевание.


    Радиочастотные калькуляторы и преобразователи

    Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц измерения. Они охватывают беспроводные технологии, такие как GSM, UMTS, LTE, 5G NR и т. д. СМ. КАЛЬКУЛЯТОРЫ Указатель >>.
    ➤Калькулятор пропускной способности 5G NR ➤ 5G NR ARFCN и преобразование частоты ➤ Калькулятор скорости передачи данных LoRa ➤ LTE EARFCN для преобразования частоты ➤ Калькулятор антенны Yagi ➤ Калькулятор времени выборки 5G NR


    IoT-Интернет вещей Беспроводные технологии

    В разделе, посвященном IoT, рассматриваются беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth с низким энергопотреблением (BLE), NFC, RFID, INSTEON, X10, KNX, ANT+, Wavenis, Dash7, HomePlug и другие. Он также охватывает датчики IoT, компоненты IoT и компании IoT.
    См. главную страницу IoT>> и следующие ссылки.
    ➤РЕЗЬБА ➤EnOcean ➤ Учебник LoRa ➤ Учебник по SIGFOX ➤ WHDI ➤6LoWPAN ➤Зигби RF4CE ➤NFC ➤Лонворкс ➤CEBus ➤УПБ



    СВЯЗАННЫЕ ПОСТЫ


    Учебники по беспроводным радиочастотам

    GSM ТД-СКДМА ваймакс LTE UMTS GPRS CDMA SCADA беспроводная сеть 802.11ac 802.11ad GPS Зигби z-волна Bluetooth СШП Интернет вещей Т&М спутник Антенна РАДАР RFID



    Различные типы датчиков

    Датчик приближения Датчик присутствия против датчика движения Датчик LVDT и RVDT Датчик положения, смещения и уровня датчик силы и датчик деформации Датчик температуры датчик давления Датчик влажности датчик МЭМС Сенсорный датчик Тактильный датчик Беспроводной датчик Датчик движения Датчик LoRaWAN Световой датчик Ультразвуковой датчик Датчик массового расхода воздуха Инфразвуковой датчик Датчик скорости Датчик дыма Инфракрасный датчик Датчик ЭДС Датчик уровня Активный датчик движения против пассивного датчика движения


    Поделиться этой страницей

    Перевести эту страницу

    СТАТЬИ Раздел T&M ТЕРМИНОЛОГИИ Учебники Работа и карьера ПОСТАВЩИКИ Интернет вещей Онлайн калькуляторы исходные коды ПРИЛОЖЕНИЕ. ПРИМЕЧАНИЯ Всемирный веб-сайт T&M  

    Что такое FET (полевой транзистор)?

    Полевой транзистор (FET) представляет собой тип транзистора, который использует электрическое поле для управления током, протекающим через полупроводниковый канал. Полевые транзисторы широко используются в электронных схемах благодаря их высокому входному сопротивлению, низкому выходному сопротивлению и высокому коэффициенту усиления.

    Как работает полевой транзистор (FET)?

    Полевые транзисторы имеют три вывода: исток (S), сток (D) и затвор (G). Когда мы подаем напряжение на затвор, создается электрическое поле, которое либо притягивает, либо отталкивает носители заряда (электроны или дырки) в области канала. Притягиваются или отталкиваются носители заряда, зависит от полярности напряжения. Процесс подачи напряжения на затвор полевого транзистора управляет проводимостью канала и протеканием тока между выводами истока и стока.

    Изображение MOSFET, подтипа FET. | Изображение: Shutterstock

    Еще от этого экспертаЧто такое электрический заряд?

     

    Характеристики полевого транзистора 

    Устройство, управляемое напряжением

    Полевой транзистор – это устройство, управляемое напряжением. Это означает, что его выходной ток контролируется напряжением, которое мы подаем на его клемму затвора.

     

    Высокий входной импеданс

    Полевые транзисторы имеют очень высокий входной импеданс, что означает, что они не нагружают источник сигнала и могут использоваться в качестве буферных усилителей. Использование полевых транзисторов в качестве буферных усилителей может помочь предотвратить искажение сигнала и улучшить общее качество выходного сигнала схемы. Кроме того, полевые транзисторы энергоэффективны, что делает их привлекательным выбором для устройств с батарейным питанием.

     

    Униполярное устройство

    Полевые транзисторы являются униполярными устройствами, что означает, что они используют только один тип носителей заряда (электроны или дырки) для управления протеканием тока. Альтернативой монополярному устройству является биполярное устройство. В отличие от однополярного устройства, такого как полевой транзистор, биполярное устройство, такое как транзистор с биполярным переходом (BJT), использует как электроны, так и дырки для управления протеканием тока. Биполярные устройства имеют высокий коэффициент усиления по току и могут работать с более высокими уровнями мощности, что делает их подходящими для приложений с усилением мощности.

     

    3 клеммы

    Исток, сток и затвор — это три клеммы полевого транзистора. Исток и сток подключены к каналу, а затвор управляет протеканием тока через канал.

    Соответствующие материалы Объяснение NMOS-транзисторов и PMOS-транзисторов

     

    Проводимость канала

    Мы можем контролировать проводимость канала в полевом транзисторе с помощью напряжения, подаваемого на затвор. В n-канальном полевом транзисторе положительное напряжение, приложенное к затвору, будет притягивать электроны к каналу и повышать его проводимость. В p-канальном полевом транзисторе отрицательное напряжение, приложенное к затвору, будет притягивать дырки к каналу и повышать его проводимость.

    Произошла ошибка.

    Невозможно выполнить JavaScript. Попробуйте посмотреть это видео на сайте www. youtube.com или включите JavaScript, если он отключен в вашем браузере.

    Введение в полевые транзисторы (FET). | Видео: Neso Academy

     

    Типы полевых транзисторов 

    Соединительный полевой транзистор (JFET)

    В JFET канал состоит из полупроводникового материала и имеет две области на каждом конце. Они известны как клеммы источника и стока. Ворота представляют собой PN-переход, который формируется перпендикулярно каналу. Клемма затвора смещена в обратном направлении. Это создает область истощения, которая контролирует ширину канала. Когда мы подаем напряжение на затвор, обедненная область расширяется, тем самым уменьшая ширину канала и ток, протекающий через него.

     

    Полевой транзистор металл-оксид-полупроводник (MOSFET)

    Подобно JFET, в MOSFET канал также образован полупроводниковым материалом и имеет две области на каждом конце, известные как клеммы истока и стока. Однако в МОП-транзисторах затвор отделен от канала тонким изолирующим слоем, который обычно состоит из диоксида кремния. Как только на затвор подается напряжение, создается электрическое поле, которое притягивает или отталкивает носители заряда в канале в зависимости от полярности напряжения. Этот процесс управляет шириной канала и протеканием тока между выводами истока и стока.

    МОП-транзисторы можно разделить на два подтипа: МОП-транзисторы с режимом улучшения и с режимом истощения.

     

    МОП-транзисторы в режиме расширения

    В МОП-транзисторах в режиме расширения канал обычно закрыт, и для его включения необходимо подать положительное напряжение на затвор.

     

    МОП-транзисторы с режимом истощения

    В МОП-транзисторах с режимом истощения канал обычно включен, и для его выключения необходимо подать отрицательное напряжение на затвор.

     

    Преимущества использования полевых транзисторов 

    Полевые транзисторы имеют ряд преимуществ по сравнению с другими типами транзисторов, что делает их популярными в различных электронных приложениях.

    • Высокий входной импеданс : Полевые транзисторы имеют очень высокий входной импеданс, что означает, что мы можем использовать их для буферизации и усиления сигналов, не загружая источник сигнала. В результате полевые транзисторы идеально подходят для использования в предусилителях, смесителях и других схемах обработки сигналов.
    • Низкий уровень шума : Полевые транзисторы имеют низкий уровень шума, что означает, что мы можем использовать их в малошумящих усилителях и других устройствах, где шум является проблемой.
    • Низкое энергопотребление : Для работы полевых транзисторов требуется очень мало энергии, поэтому они идеально подходят для устройств с батарейным питанием и других приложений с низким энергопотреблением.
    • Высокая скорость переключения : Полевые транзисторы имеют очень высокую скорость переключения, что делает их идеальными для использования в цифровых схемах, импульсных источниках питания и других высокочастотных устройствах.
    • Температурная стабильность : Полевые транзисторы обладают отличной температурной стабильностью, что означает, что их характеристики остаются стабильными в широком диапазоне температур.
    • Способность работать с высоким напряжением : Полевые транзисторы могут работать с высоким напряжением, что делает их подходящими для использования в высоковольтных цепях, таких как усилители мощности и источники питания.

    Еще из словаря Built In Tech Что такое ЭМИ?

     

    Недостатки использования полевого транзистора 

    Несмотря на свои преимущества, полевые транзисторы все же имеют некоторые недостатки, которые следует учитывать при проектировании электронных схем.

    • Чувствительность к статическому электричеству : Полевые транзисторы чувствительны к статическому электричеству, которое может повредить устройство при обращении или сборке.
    • Высокая входная емкость : Полевые транзисторы имеют высокую входную емкость, что может ограничивать их полосу пропускания и скорость в определенных приложениях, таких как высокочастотные усилители или схемы, где входная емкость полевых транзисторов может ограничивать полосу пропускания схемы.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *