Site Loader

Содержание

Что такое биполярный транзистор и как его проверить

Добрый день, друзья!

Сегодня мы продолжим знакомиться с электронными «кирпичиками» компьютерного «железа». Мы уже рассматривали с вами, как устроены полевые транзисторы, которые обязательно присутствуют на каждой материнской плате компьютера.

Усаживайтесь поудобнее – сейчас мы сделаем интеллектуально усилие и попытаемся разобраться, как устроен

Биполярный транзистор

Биполярные транзисторыБиполярный транзистор – это полупроводниковый прибор, который широко применяется в электронных изделиях, в том числе и компьютерных блоках питания.

Слово «транзистор» (transistor) образовано от двух английских слов – «translate» и «resistor», что означает «преобразователь сопротивления».

Слово «биполярный» говорит о том, что ток в приборе вызывается заряженными частицами двух полярностей – отрицательной (электронами) и положительной (так называемыми «дырками»).

«Дырка» — это не жаргон, а вполне себе научный термин. «Дырка» — это не скомпенсированный положительный заряд или, иными словами, отсутствие электрона в кристаллической решетке полупроводника.

Транзисторы pnp и npnБиполярный транзистор представляет собой трехслойную структуру с чередующимися видами полупроводников.

Так как существуют полупроводники двух видов, положительные (positive, p-типа) и отрицательные (negative, n-типа), то может быть два типа такой структуры – p-n-p и n-p-n.

Средняя область такой структуры называется базой, а крайние области – эмиттером и коллектором.

На схемах биполярные транзисторы обозначаются определенным образом (см рисунок). Видим, что транзистор представляет собой, по существу, да p-n перехода, соединенных последовательно.

Транзисторы pnp и npnВопрос на засыпку – почему нельзя заменить транзистор двумя диодами? Ведь в каждом из них есть p-n переход, не так ли? Включил два диода последовательно – и дело в шляпе!

Нет! Дело в том, что базу в транзисторе во время изготовления делают очень тонкой, чего никак нельзя достичь при соединении двух отдельных диодов.

Принцип работы биполярного транзистора

Основной принцип работы транзистора заключается в том, что небольшой ток базы может управлять гораздо бОльшим током коллектора — в диапазоне практически от нуля до некоей максимально возможной величины.

Рабочие токи транзистора

Отношение тока коллектора к току базы называется коэффициентом усиления по току и может составлять величину от нескольких единиц до нескольких сотен.

Интересно отметить, что у маломощных транзисторов он чаще всего больше, чем у мощных (а не наоборот, как можно было бы подумать).

Это напоминает работу полевого транзистора (ПТ).

Разница в том, что в отличие от затвора ПТ, при управлении ток базы всегда присутствует, т.е. на управление всегда тратится какая-то мощность.

Чем больше напряжение между эмиттером и базой, тем больше ток базы и, соответственно, больше ток коллектора. Однако любой транзистор имеет максимально допустимые значения напряжений между эмиттером и базой и между эмиттером и коллектором.

За превышение этих параметров придется расплачиваться новым транзистором.

В рабочем режиме обычно переход база-эмиттер открыт, а переход база-коллектор закрыт.

Схема для проверки ключевого режима транзистораБиполярный транзистор, подобно реле, может работать и в ключевом режиме. Если подать некоторый достаточный ток в базу (замкнуть кнопку S1), транзистор будет хорошо открыт. Лампа зажжется.

При этом сопротивление между эмиттером и коллектором будет небольшим.

Падение напряжения на участке эмиттер – коллектор будет составлять величину в несколько десятых долей вольта.

Если затем прекратить подавать ток в базу (разомкнуть S1), транзистор закроется, т.е. сопротивление между эмиттером и коллектором станет очень большим.

Лампа погаснет.

Как проверить биполярный транзистор?

Тест транзисторовТак как биполярный транзистор представляет собой два p-n перехода, то проверить его цифровым тестером достаточно просто.

Надо установить переключатель работы тестера в положение проверки диодов, присоединив один щуп к базе, а второй – поочередно к эмиттеру и коллектору.

По сути, мы просто последовательно проверяем исправность p-n переходов.

Такой переход может быть или открыт, или закрыт.

Открытый переход транзистораЗатем надо изменить полярность щупов и повторить измерения.

В одном случае тестер покажет падение напряжение на переходах эмиттер – база и коллектор – база 0,6 – 0,7 В (оба перехода открыты).

Во втором случае оба перехода будут закрыты, и тестер зафиксирует это.

Следует отметить, что в рабочем режиме чаще всего один из переходов транзистора открыт, а второй закрыт.

Измерение коэффициента передачи биполярного транзистора по току

Гнезда для измерения коэффициента усиления транзистораЕсли в тестере имеется возможность измерения коэффициента передачи по току, то проверить работоспособность транзистора можно, установив выводы транзистора в соответствующие гнезда.

Коэффициент передачи по току – это отношение тока коллектора к току базы.

Чем больше коэффициент передачи, тем большим током коллектора может управлять ток базы при прочих равных условиях.

Цоколевку (наименование выводов) и другие данные можно взять из data sheets (справочных данных) на соответствующий транзистор. Data sheets можно найти в Интернете через поисковые системы.

Коэффициент усиления транзистораТестер покажет на дисплее коэффициент передачи (усиления) тока, который нужно сравнить со справочными данными.

Коэффициент передачи тока маломощных транзисторов может достигать нескольких сотен.

У мощных транзисторов он существенно меньше – несколько единиц или десятков.

Однако существуют мощные транзисторы с коэффициентом передачи в несколько сотен или тысяч. Это так называемые пары Дарлингтона.

Пара ДарлингтонаПара Дарлингтона представляет собой два транзистора. Выходной ток первого транзистора является входным током для второго.

Общий коэффициент передачи тока – это произведение коэффициентов первого и второго транзисторов.

Пара Дарлингтона делается в общем корпусе, но ее можно сделать и из двух отдельных транзисторов.

Встроенная диодная защита

Защитный диодНекоторые транзисторы (мощные и высоковольтные) могут быть защищены от обратного напряжения встроенным диодом.

Таким образом, если подключить щупы тестера к эмиттеру и коллектору в режиме проверки диодов, то он покажет те же 0,6 – 0,7 В (если диод смещен в прямом направлении) или «запертый диод» (если диод смещен в обратном направлении).

Если же тестер покажет какое-то небольшое напряжение, да еще в обоих направлениях, то транзистор однозначно пробит и подлежит замене. Закоротку можно определить и в режиме измерения сопротивления – тестер покажет малое сопротивление.

Переход закороченВстречается (к счастью, достаточно редко) «подлая» неисправность транзисторов. Это когда он поначалу работает, а по истечению некоторого времени (или по прогреву) меняет свои параметры или отказывает вообще.

Если выпаять такой транзистор и проверить тестером, то он успеет остыть до присоединения щупов, и тестер покажет, что он нормальный. Убедиться в этом лучше всего заменой «подозрительного» транзистора в устройстве.

В заключение скажем, что биполярный транзистор – одна из основных «железок» в электронике. Хорошо бы научиться узнавать – «живы» эти «железки» или нет. Конечно, я дал вам, уважаемые читатели, очень упрощенную картину.

В действительности, работа биполярного транзистора описывается многими формулами, существуют многие их разновидности, но это сложная наука. Желающим копнуть глубже могу порекомендовать чудесную книгу Хоровица и Хилла «Искусство схемотехники».

Транзисторы для ваших экспериментов можно купить здесь:

До встречи на блоге!


Биполярный транзистор — Википедия. Что такое Биполярный транзистор

Обозначение биполярных транзисторов на схемах. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.

Простейшая наглядная схема устройства транзистора

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.

Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).

Устройство

Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.

Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1].

С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.

Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).

Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.

В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время (2015 г.) биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.

Принцип работы

В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении[2] (открыт), а коллекторный переход смещён в обратном направлении (закрыт).

В транзисторе типа n-p-n[3] основные носители заряда в эмиттере (электроны) проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того, что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико[4]. Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы (электроны) и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ), называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α = 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малый ток базы управляет значительно бо́льшим током коллектора.

Режимы работы

Напряжения
на эмиттере,
базе,
коллекторе
(UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}})
Смещение
перехода
база-эмиттер
для типа n-p-n
Смещение
перехода
база-коллектор
для типа n-p-n
Режим
для типа n-p-n
UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}}прямоеобратноенормальный
активный режим
UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}}прямоепрямоережим насыщения
UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}}обратноеобратноережим отсечки
UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}}обратноепрямоеинверсный
активный режим
Напряжения
на эмиттере,
базе,
коллекторе
(UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}})
Смещение
перехода
база-эмиттер
для типа p-n-p
Смещение
перехода
база-коллектор
для типа p-n-p
Режим
для типа p-n-p
UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}}обратноепрямоеинверсный
активный режим
UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}}обратноеобратноережим отсечки
UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}}прямоепрямоережим насыщения
UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}}прямоеобратноенормальный
активный режим

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):

UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.

Инверсный активный режим

Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).

Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.

Режим отсечки

В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).

Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Схемы включения

Любая схема включения транзистора характеризуется двумя основными показателями:

  • Коэффициент усиления по току Iвых/Iвх.
  • Входное сопротивление Rвх = Uвх/Iвх.

Схема включения с общей базой

Схема включения с общей базой.
  • Среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Не инвертирует фазу сигнала.
  • Коэффициент усиления по току: Iвых/Iвх = Iк/Iэ = α [α<1].
  • Входное сопротивление Rвх = Uвх/Iвх = Uэб/Iэ.

Входное сопротивление (входной импеданс) усилительного каскада с общей базой мало зависит от тока эмиттера, при увеличении тока — снижается и не превышает единиц — сотен Ом для маломощных каскадов, так как входная цепь каскада при этом представляет собой открытый эмиттерный переход транзистора.

Достоинства
  • Хорошие температурные и широкий частотный диапазон, так как в этой схеме подавлен эффект Миллера.
  • Высокое допустимое коллекторное напряжение.
Недостатки
  • Малое усиление по току, равное α, так как α всегда немного менее 1
  • Малое входное сопротивление

Схема включения с общим эмиттером

Схема включения с общим эмиттером.
Iвых = Iк
Iвх = Iб
Uвх = Uбэ
Uвых = Uкэ.
  • Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α) = β [β>>1].
  • Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.
Достоинства
  • Большой коэффициент усиления по току.
  • Большой коэффициент усиления по напряжению.
  • Наибольшее усиление мощности.
  • Можно обойтись одним источником питания.
  • Выходное переменное напряжение инвертируется относительно входного.
Недостатки
  • Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера.

Схема с общим коллектором

Схема включения с общим коллектором.
Iвых = Iэ
Iвх = Iб
Uвх = Uбк
Uвых = Uкэ.
  • Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β+1 [β>>1].
  • Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.
Достоинства
  • Большое входное сопротивление.
  • Малое выходное сопротивление.
Недостатки
  • Коэффициент усиления по напряжению немного меньше 1.

Схему с таким включением часто называют «эмиттерным повторителем».

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.
{\displaystyle U_{E}>U_{B}>U_{C}}

Эквивалентная схема биполярного транзистора с использованием h-параметров.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = I, Im2 = I, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = I, Im2 = I, Um1 = Umэ-б, Um2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

h21∍=rδ+r∍1−α{\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}};

h22∍≈r∍rκ(1−α){\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}};

h31∍=β=α1−α{\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}};

h32∍≈1rκ(1−α){\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}}.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.

Биполярный СВЧ-транзистор

Биполярные СВЧ-транзисторы (БТ СВЧ) служат для усиления колебаний с частотой свыше 0,3 ГГЦ[7]. Верхняя граница частот БТ СВЧ с выходной мощностью более 1 Вт составляет около 10 ГГц. Большинство мощных БТ СВЧ по структуре относится к n-p-n типу[8]. По методу формирования переходов БТ СВЧ являются эпитакcиально-планарными. Все БТ СВЧ, кроме самых маломощных, имеют многоэмиттерную структуру (гребёнчатую, сетчатую)[9]. По мощности БТ СВЧ разделяются на маломощные (рассеиваемая мощность до 0,3 Вт), средней мощности (от 0,3 до 1,5 Вт) и мощные (свыше 1,5 Вт)[10]. Выпускается большое число узкоспециализированных типов БТ СВЧ[10].

Технологии изготовления транзисторов

Применение транзисторов

См. также

Примечания

  1. ↑ Невыпрямляющий, или омический контакт — контакт двух разнородных материалов, вольтамперная характеристика которого симметрична при смене полярности и практически линейна.
  2. 1 2 Прямое смещение p-n-перехода означает, что область p-типа имеет положительный потенциал относительно облаcти n-типа.
  3. ↑ Для случая p-n-p все рассуждения аналогичны с заменой слова «электроны» на «дырки» и наоборот, а также с заменой всех напряжений на противоположное по знаку.
  4. Лаврентьев Б. Ф. Схемотехника электронных средств. — М.: Издательский центр «Академия», 2010. — С. 53—68. — 336 с. — ISBN 978-5-7695-5898-6.
  5. ↑ Лекция № 7 — Биполярный транзистор как активный четырёхполюсник, h-параметры
  6. ↑ Физические основы электроники: метод. указания к лабораторным работам / сост. В. К. Усольцев. — Владивосток: Изд-во ДВГТУ, 2007. — 50 с.:ил.
  7. ↑ Кулешов, 2008, с. 284.
  8. ↑ Кулешов, 2008, с. 285.
  9. ↑ Кулешов, 2008, с. 286.
  10. 1 2 Кулешов, 2008, с. 292.

Ссылки

Литература

  • Спиридонов Н.С. Основы теории транзисторов. — К.: Техника, 1969. — 300 с.
  • Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

Биполярные транзисторы — это… Что такое Биполярные транзисторы?

Обозначение биполярных транзисторов на схемах

Простейшая наглядная схема устройства транзистора

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же коллектор отличается от эмиттера, главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.

Принцип действия транзистора

В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они — неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передает ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10 − 1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.

Режимы работы биполярного транзистора

  • Нормальный активный режим;
  • Инверсный активный режим;
  • Режим насыщения;
  • Режим отсечки;

Нормальный активный режим

Переход эмиттер — база включен в прямом направлении (открыт), а переход коллектор — база — в обратном (закрыт)

Инверсный активный режим

Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты).

Режим отсечки

В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты).

Схемы включения

Схема включения с общей базой

Любая схема включения транзистора характеризуется двумя основными показателями:

  • коэффициент усиления по току Iвых/Iвх.

Для схемы с общей базой Iвых/Iвх=Iк/Iэ=α [α<1])

  • входное сопротивление Rвхб=Uвх/Iвх=Uбэ/Iэ.

Входное сопротивление для схемы с общей базой мало и составляет десятки Ом, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.

Недостатки схемы с общей базой :

  • Схема не усиливает ток, так как α < 1
  • Малое входное сопротивление
  • Два разных источника напряжения для питания.

Достоинства:

  • Хорошие температурные и частотные свойства.

Схема включения с общим эмиттером

Iвых=Iк
Iвх=Iб
Uвх=Uбэ
Uвых=Uкэ

Достоинства:

  • Большой коэффициент усиления по току
  • Большое входное сопротивление
  • Можно обойтись одним источником питания

Недостатки:

  • Худшие температурные и частотные свойства по сравнению со схемой с общей базой

Выходное переменное напряжение инвертируется относительно входного.

Схема с общим коллектором

Iвых=Iэ
Iвх=Iб
Uвх=Uбк
Uвых=Uкэ

Достоинства:

  • Большое входное сопротивление
  • Малое выходное сопротивление

Недостатки:

  • Не усиливает напряжение

Схему с таким включением также называют «эмиттерным повторителем»

Технология изготовления транзисторов 1

  • Планарно-эпитаксиальная
  • Сплавная
    • Дифузионный
    • Дифузионносплавной

Применение транзисторов

Ссылки и литература

Биполярный транзистор и принцип его работы, режимы и схемы, особенности переходов

Биполярные транзисторы в работеНа определённом этапе времени всем привычные электронные лампы были заменены транзисторами. И это не удивительно, поскольку они имеют гораздо меньший размер, более надёжные и затрачивают гораздо меньше энергии. Такое большое количество положительных сторон привело к тому, что на сегодняшний день биполярные транзисторы являются главными элементами практически всех усилительных схем.

Составные части устройства

Биполярный транзистор разделяется на три основные части:

  1. Эммитер – это один из слоёв полупроводника, его задача заключается в инжектировании носителей заряда в базу (её слой).
  2. База – это один из слоёв полупроводника, считается главным в транзисторе.
  3. Коллектор – слой полупроводника, задачей которого является собрать все заряды, которые прошли через базу.

Как правило, область эммитера немного уже, чем у коллектора. Поскольку изготовление базы происходит из слаболегированного полупроводника, то она является очень тонкой. В результате того, что площадь контакта между эммитером и базой гораздо уже, чем между базой и коллектором, то произвести замену коллектора и эмиттера просто невозможно, даже при большом желании. Подобная ситуация приводит к тому, что биполярный транзистор считается устройством, в котором отсутствует симметрия.

Биполярный транзистор — принцип работы

Схема подключения биполярного транзистораПринцип действия биполярного транзистора представлен ниже.

Когда транзистор включают в режиме усиления, открывается эммитерный переход, и закрывается переход коллектора. Это происходит в результате подключения источников питания.

Из-за того, что переход эммитера находится в открытом положении, через него происходит переход эммитерного тока, он образуется в результате перехода дырок из базового слоя транзистора в эммитер и аналогичного перехода электронов из эммитера в базовый слой.

В результате этого эммитерный ток состоит из двух основных частей – дырочной и электронной.

Чтобы определить коэффициент инжекции, следует разобраться с уровнем эффективности эммитера.

Инжекция зарядов – это перемещение элементов, содержащих в себе заряд из зоны, где они играли основную роль, в зону, где они стали неосновными.

В базовом слое транзистора происходит рекомбинация электронов, а восполнение их концентрации происходит за счёт плюса источника ЭГ. В итоге электрическая цепь базового слоя биполярного транзистора содержит в себе достаточно слабый ток.

А те электроны, которые попросту не успели поддаться процессу рекомбинации в базовом слое, с помощью разгоняющего воздействия закрытого коллекторного перехода перемещаются в него, и происходит образование коллекторного тока. В результате этого наблюдается экстракция электрических зарядов (переход элементов, которые содержат в себе заряд из зоны, где они играли второстепенную роль в зону, где они играют главную роль).

Вот и весь принцип работы биполярного транзистора.

Режимы функционирования устройства

На этом этапе времени выделяют следующие режимы работы биполярного транзистора:

  1. Как устроен транзисторАктивный инверсный режим. В этом случае открыт переход между базовым и коллекторным слоями, а переход между базой и эммитером закрыт. Усилительные свойства в данном режиме очень плохие, поэтому в таком состоянии транзисторы используют в редчайших ситуациях.
  2. Насыщение. Оба вышеуказанных перехода находятся в открытом состоянии. В результате этого элементы коллектора и эммитера, которые содержат в себе заряд, перемещаются в базовый слой, где происходит их активная рекомбинация с основными элементами базы. Из-за чрезмерного количества зарядов происходит снижение сопротивляемости базы, наблюдается уменьшение p — n переходов. В режиме насыщения, цепь транзистора имеет вид короткозамкнутой, а данный элемент представлен в роли эквипотенциальной точки.
  3. Режим отсечки. Оба перехода в биполярном транзисторе закрыты, соответственно, происходит прекращение тока основных носителей заряда между коллекторным и эммитерным слоями. Потоки второстепенных зарядов способны только создавать неуправляемые и малые токи. В результате скудности базового слоя и перемещения носителей зарядов сопротивление вышеуказанных токов в значительной мере возрастает. Из-за подобной работы достаточно часто бытует мнение, что устройство, работающее в таком режиме, являет собой разрыв цепи.
  4. Барьерный режим. В данном режиме базовый слой прямо или с помощью малого сопротивления замыкается с коллекторным слоем. В этом случае, в цепь коллектора или эммитера необходимо включить резистор, который через транзистор начинает задавать ток. В результате такой работы происходит образование эквивалента схемы диода, которая имеет последовательно включённое сопротивление. В подобном состоянии устройства схема способна работать при различных температурных режимах и при разнообразных параметрах транзистора.

Схемы включения транзисторов биполярного типа

Из-за того, что транзистор имеет три контакта, то питание на него следует подавать из 2 источников, сумма которых образует четыре вывода. Подобное действие приводит к тому, что в один из контактов устройства происходит подача напряжения одного знака из различных источников.

С учётом того, в какой контакт производится подача напряжения, выделяют три типа схем включения биполярных транзисторов:

  • с эммитерным слоем;
  • с коллекторным слоем;
  • с базовым слоем.

Каждая из вышеуказанных схем имеет свои преимущества и недостатки.

Схема включения с общим эммитерным слоем

Данная схема создаёт самое большое усиление по току и напряжению. Благодаря таким её свойствам она и является самой распространённой. В данном случае присутствует прямой переход между эммитерным и базовым слоями и обратный переход между базой и коллектором. А тот факт, что на них осуществляется подача напряжения одного знака, способствует тому, что схему можно напитать с помощью одного источника.

Среди отрицательных сторон схемы можно выделить то, что возрастание частоты и температурного режима способствует значительному снижению усилительных свойств устройства. В результате этого следует отметить, что если необходима работа транзистора на высоких частотах, то от использования этой схемы желательно отказаться.

Схема включения с общим базовым слоем

Работа биполярного транзистораДанная схема создаёт среднее усиление сигнала, но зато она прекрасно подходит для работы на высоких частотах. Если одно и то же устройство будет сначала функционировать по первой схеме, а затем по этой, то можно будет наблюдать значительный рост граничной частоты усиления. Из-за того, что в этой схеме заниженное сопротивление входа и среднее сопротивление выхода, то её лучше использовать в случае наличия антенных усилителей, в которых волновое сопротивление кабелей составляет не более ста Ом.

Среди минусов можно выделить тот момент, что для того, чтобы напитать устройство, требуется использовать 2 источника питания.

Схема включения с общим коллекторным слоем

Среди других схем выделяется тем, что наблюдается полная передача напряжения обратно на вход – это указывает на сильнейшую отрицательную обратную связь.

Уровень усиления по току практически равен значению, присутствующему в первой схеме. Но вот уровень усиления по напряжению очень маленький, что является одним из главных недостатков данной схемы.

Разобраться в особенностях работы биполярного транзистора и его схем достаточно просто, главное — постараться вникнуть.

Значение словосочетания БИПОЛЯРНЫЙ ТРАНЗИСТОР. Что такое БИПОЛЯРНЫЙ ТРАНЗИСТОР?

  • Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.

    Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).

Источник: Википедия

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова персонализация (существительное):

Кристально
понятно

Понятно
в общих чертах

Могу только
догадываться

Понятия не имею,
что это

Другое
Пропустить

Биполярный транзистор — Википедия. Что такое Биполярный транзистор

Обозначение биполярных транзисторов на схемах. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.

Простейшая наглядная схема устройства транзистора

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.

Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).

Устройство

Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.

Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1].

С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.

Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).

Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.

В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время (2015 г.) биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.

Принцип работы

В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении[2] (открыт), а коллекторный переход смещён в обратном направлении (закрыт).

В транзисторе типа n-p-n[3] основные носители заряда в эмиттере (электроны) проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того, что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико[4]. Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы (электроны) и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ), называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α = 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малый ток базы управляет значительно бо́льшим током коллектора.

Режимы работы

Напряжения
на эмиттере,
базе,
коллекторе
(UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}})
Смещение
перехода
база-эмиттер
для типа n-p-n
Смещение
перехода
база-коллектор
для типа n-p-n
Режим
для типа n-p-n
UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}}прямоеобратноенормальный
активный режим
UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}}прямоепрямоережим насыщения
UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}}обратноеобратноережим отсечки
UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}}обратноепрямоеинверсный
активный режим
Напряжения
на эмиттере,
базе,
коллекторе
(UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}})
Смещение
перехода
база-эмиттер
для типа p-n-p
Смещение
перехода
база-коллектор
для типа p-n-p
Режим
для типа p-n-p
UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}}обратноепрямоеинверсный
активный режим
UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}}обратноеобратноережим отсечки
UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}}прямоепрямоережим насыщения
UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}}прямоеобратноенормальный
активный режим

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):

UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.

Инверсный активный режим

Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).

Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.

Режим отсечки

В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).

Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Схемы включения

Любая схема включения транзистора характеризуется двумя основными показателями:

  • Коэффициент усиления по току Iвых/Iвх.
  • Входное сопротивление Rвх = Uвх/Iвх.

Схема включения с общей базой

Схема включения с общей базой.
  • Среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Не инвертирует фазу сигнала.
  • Коэффициент усиления по току: Iвых/Iвх = Iк/Iэ = α [α<1].
  • Входное сопротивление Rвх = Uвх/Iвх = Uэб/Iэ.

Входное сопротивление (входной импеданс) усилительного каскада с общей базой мало зависит от тока эмиттера, при увеличении тока — снижается и не превышает единиц — сотен Ом для маломощных каскадов, так как входная цепь каскада при этом представляет собой открытый эмиттерный переход транзистора.

Достоинства
  • Хорошие температурные и широкий частотный диапазон, так как в этой схеме подавлен эффект Миллера.
  • Высокое допустимое коллекторное напряжение.
Недостатки
  • Малое усиление по току, равное α, так как α всегда немного менее 1
  • Малое входное сопротивление

Схема включения с общим эмиттером

Схема включения с общим эмиттером.
Iвых = Iк
Iвх = Iб
Uвх = Uбэ
Uвых = Uкэ.
  • Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α) = β [β>>1].
  • Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.
Достоинства
  • Большой коэффициент усиления по току.
  • Большой коэффициент усиления по напряжению.
  • Наибольшее усиление мощности.
  • Можно обойтись одним источником питания.
  • Выходное переменное напряжение инвертируется относительно входного.
Недостатки
  • Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера.

Схема с общим коллектором

Схема включения с общим коллектором.
Iвых = Iэ
Iвх = Iб
Uвх = Uбк
Uвых = Uкэ.
  • Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β+1 [β>>1].
  • Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.
Достоинства
  • Большое входное сопротивление.
  • Малое выходное сопротивление.
Недостатки
  • Коэффициент усиления по напряжению немного меньше 1.

Схему с таким включением часто называют «эмиттерным повторителем».

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.
{\displaystyle U_{E}>U_{B}>U_{C}}

Эквивалентная схема биполярного транзистора с использованием h-параметров.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = I, Im2 = I, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = I, Im2 = I, Um1 = Umэ-б, Um2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

h21∍=rδ+r∍1−α{\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}};

h22∍≈r∍rκ(1−α){\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}};

h31∍=β=α1−α{\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}};

h32∍≈1rκ(1−α){\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}}.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.

Биполярный СВЧ-транзистор

Биполярные СВЧ-транзисторы (БТ СВЧ) служат для усиления колебаний с частотой свыше 0,3 ГГЦ[7]. Верхняя граница частот БТ СВЧ с выходной мощностью более 1 Вт составляет около 10 ГГц. Большинство мощных БТ СВЧ по структуре относится к n-p-n типу[8]. По методу формирования переходов БТ СВЧ являются эпитакcиально-планарными. Все БТ СВЧ, кроме самых маломощных, имеют многоэмиттерную структуру (гребёнчатую, сетчатую)[9]. По мощности БТ СВЧ разделяются на маломощные (рассеиваемая мощность до 0,3 Вт), средней мощности (от 0,3 до 1,5 Вт) и мощные (свыше 1,5 Вт)[10]. Выпускается большое число узкоспециализированных типов БТ СВЧ[10].

Технологии изготовления транзисторов

Применение транзисторов

См. также

Примечания

  1. ↑ Невыпрямляющий, или омический контакт — контакт двух разнородных материалов, вольтамперная характеристика которого симметрична при смене полярности и практически линейна.
  2. 1 2 Прямое смещение p-n-перехода означает, что область p-типа имеет положительный потенциал относительно облаcти n-типа.
  3. ↑ Для случая p-n-p все рассуждения аналогичны с заменой слова «электроны» на «дырки» и наоборот, а также с заменой всех напряжений на противоположное по знаку.
  4. Лаврентьев Б. Ф. Схемотехника электронных средств. — М.: Издательский центр «Академия», 2010. — С. 53—68. — 336 с. — ISBN 978-5-7695-5898-6.
  5. ↑ Лекция № 7 — Биполярный транзистор как активный четырёхполюсник, h-параметры
  6. ↑ Физические основы электроники: метод. указания к лабораторным работам / сост. В. К. Усольцев. — Владивосток: Изд-во ДВГТУ, 2007. — 50 с.:ил.
  7. ↑ Кулешов, 2008, с. 284.
  8. ↑ Кулешов, 2008, с. 285.
  9. ↑ Кулешов, 2008, с. 286.
  10. 1 2 Кулешов, 2008, с. 292.

Ссылки

Литература

  • Спиридонов Н.С. Основы теории транзисторов. — К.: Техника, 1969. — 300 с.
  • Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *