Что такое биполярный транзистор и как его проверить
Добрый день, друзья!
Сегодня мы продолжим знакомиться с электронными «кирпичиками» компьютерного «железа». Мы уже рассматривали с вами, как устроены полевые транзисторы, которые обязательно присутствуют на каждой материнской плате компьютера.
Усаживайтесь поудобнее – сейчас мы сделаем интеллектуально усилие и попытаемся разобраться, как устроен
Биполярный транзистор
 Биполярный транзистор – это полупроводниковый прибор, который широко применяется в электронных изделиях, в том числе и компьютерных блоках питания.
Биполярный транзистор – это полупроводниковый прибор, который широко применяется в электронных изделиях, в том числе и компьютерных блоках питания.
Слово «транзистор» (transistor) образовано от двух английских слов – «translate» и «resistor», что означает «преобразователь сопротивления».
Слово «биполярный» говорит о том, что ток в приборе вызывается заряженными частицами двух полярностей – отрицательной (электронами) и положительной (так называемыми «дырками»).
«Дырка» — это не жаргон, а вполне себе научный термин. «Дырка» — это не скомпенсированный положительный заряд или, иными словами, отсутствие электрона в кристаллической решетке полупроводника.
 Биполярный транзистор представляет собой трехслойную структуру с чередующимися видами полупроводников.
Биполярный транзистор представляет собой трехслойную структуру с чередующимися видами полупроводников.
Так как существуют полупроводники двух видов, положительные (positive, p-типа) и отрицательные (negative, n-типа), то может быть два типа такой структуры – p-n-p и n-p-n.
Средняя область такой структуры называется базой, а крайние области – эмиттером и коллектором.
На схемах биполярные транзисторы обозначаются определенным образом (см рисунок). Видим, что транзистор представляет собой, по существу, да p-n перехода, соединенных последовательно.
 Вопрос на засыпку – почему нельзя заменить транзистор двумя диодами? Ведь в каждом из них есть p-n переход, не так ли? Включил два диода последовательно – и дело в шляпе!
Вопрос на засыпку – почему нельзя заменить транзистор двумя диодами? Ведь в каждом из них есть p-n переход, не так ли? Включил два диода последовательно – и дело в шляпе!
Нет! Дело в том, что базу в транзисторе во время изготовления делают очень тонкой, чего никак нельзя достичь при соединении двух отдельных диодов.
Принцип работы биполярного транзистора
Основной принцип работы транзистора заключается в том, что небольшой ток базы может управлять гораздо бОльшим током коллектора — в диапазоне практически от нуля до некоей максимально возможной величины.

Интересно отметить, что у маломощных транзисторов он чаще всего больше, чем у мощных (а не наоборот, как можно было бы подумать).
Это напоминает работу полевого транзистора (ПТ).
Разница в том, что в отличие от затвора ПТ, при управлении ток базы всегда присутствует, т.е. на управление всегда тратится какая-то мощность.
Чем больше напряжение между эмиттером и базой, тем больше ток базы и, соответственно, больше ток коллектора. Однако любой транзистор имеет максимально допустимые значения напряжений между эмиттером и базой и между эмиттером и коллектором. 
В рабочем режиме обычно переход база-эмиттер открыт, а переход база-коллектор закрыт.
 Биполярный транзистор, подобно реле, может работать и в ключевом режиме. Если подать некоторый достаточный ток в базу (замкнуть кнопку S1), транзистор будет хорошо открыт. Лампа зажжется.
Биполярный транзистор, подобно реле, может работать и в ключевом режиме. Если подать некоторый достаточный ток в базу (замкнуть кнопку S1), транзистор будет хорошо открыт. Лампа зажжется.
При этом сопротивление между эмиттером и коллектором будет небольшим.
Падение напряжения на участке эмиттер – коллектор будет составлять величину в несколько десятых долей вольта.
Если затем прекратить подавать ток в базу (разомкнуть S1), транзистор закроется, т.е. сопротивление между эмиттером и коллектором станет очень большим.
Лампа погаснет.
Как проверить биполярный транзистор?
 Так как биполярный транзистор представляет собой два p-n перехода, то проверить его цифровым тестером достаточно просто.
Так как биполярный транзистор представляет собой два p-n перехода, то проверить его цифровым тестером достаточно просто.
Надо установить переключатель работы тестера в положение проверки диодов, присоединив один щуп к базе, а второй – поочередно к эмиттеру и коллектору.
По сути, мы просто последовательно проверяем исправность p-n переходов.
Такой переход может быть или открыт, или закрыт.
 Затем надо изменить полярность щупов и повторить измерения.
Затем надо изменить полярность щупов и повторить измерения.
В одном случае тестер покажет падение напряжение на переходах эмиттер – база и коллектор – база 0,6 – 0,7 В (оба перехода открыты).
Во втором случае оба перехода будут закрыты, и тестер зафиксирует это.
Следует отметить, что в рабочем режиме чаще всего один из переходов транзистора открыт, а второй закрыт.
Измерение коэффициента передачи биполярного транзистора по току
 Если в тестере имеется возможность измерения коэффициента передачи по току, то проверить работоспособность транзистора можно, установив выводы транзистора в соответствующие гнезда.
Если в тестере имеется возможность измерения коэффициента передачи по току, то проверить работоспособность транзистора можно, установив выводы транзистора в соответствующие гнезда.
Коэффициент передачи по току – это отношение тока коллектора к току базы.
Чем больше коэффициент передачи, тем большим током коллектора может управлять ток базы при прочих равных условиях.
Цоколевку (наименование выводов) и другие данные можно взять из data sheets (справочных данных) на соответствующий транзистор. Data sheets можно найти в Интернете через поисковые системы.
 Тестер покажет на дисплее коэффициент передачи (усиления) тока, который нужно сравнить со справочными данными.
Тестер покажет на дисплее коэффициент передачи (усиления) тока, который нужно сравнить со справочными данными.
Коэффициент передачи тока маломощных транзисторов может достигать нескольких сотен.
У мощных транзисторов он существенно меньше – несколько единиц или десятков.
Однако существуют мощные транзисторы с коэффициентом передачи в несколько сотен или тысяч. Это так называемые пары Дарлингтона.
 Пара Дарлингтона представляет собой два транзистора. Выходной ток первого транзистора является входным током для второго.
Пара Дарлингтона представляет собой два транзистора. Выходной ток первого транзистора является входным током для второго.
Общий коэффициент передачи тока – это произведение коэффициентов первого и второго транзисторов.
Пара Дарлингтона делается в общем корпусе, но ее можно сделать и из двух отдельных транзисторов.
Встроенная диодная защита
 Некоторые транзисторы (мощные и высоковольтные) могут быть защищены от обратного напряжения встроенным диодом.
Некоторые транзисторы (мощные и высоковольтные) могут быть защищены от обратного напряжения встроенным диодом.
Таким образом, если подключить щупы тестера к эмиттеру и коллектору в режиме проверки диодов, то он покажет те же 0,6 – 0,7 В (если диод смещен в прямом направлении) или «запертый диод» (если диод смещен в обратном направлении).
Если же тестер покажет какое-то небольшое напряжение, да еще в обоих направлениях, то транзистор однозначно пробит и подлежит замене. Закоротку можно определить и в режиме измерения сопротивления – тестер покажет малое сопротивление.
 Встречается (к счастью, достаточно редко) «подлая» неисправность транзисторов. Это когда он поначалу работает, а по истечению некоторого времени (или по прогреву) меняет свои параметры или отказывает вообще.
Встречается (к счастью, достаточно редко) «подлая» неисправность транзисторов. Это когда он поначалу работает, а по истечению некоторого времени (или по прогреву) меняет свои параметры или отказывает вообще.
В заключение скажем, что биполярный транзистор – одна из основных «железок» в электронике. Хорошо бы научиться узнавать – «живы» эти «железки» или нет. Конечно, я дал вам, уважаемые читатели, очень упрощенную картину.
В действительности, работа биполярного транзистора описывается многими формулами, существуют многие их разновидности, но это сложная наука. Желающим копнуть глубже могу порекомендовать чудесную книгу Хоровица и Хилла «Искусство схемотехники».
Транзисторы для ваших экспериментов можно купить здесь:
До встречи на блоге!
Биполярный транзистор — Википедия. Что такое Биполярный транзистор

Обозначение биполярных транзисторов на схемах. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.
 Простейшая наглядная схема устройства транзистора
 Простейшая наглядная схема устройства транзистораБиполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.
Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).
Устройство
 Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.
 Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1].
С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.
Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).
Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.
В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время (2015 г.) биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.
Принцип работы
В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении[2] (открыт), а коллекторный переход смещён в обратном направлении (закрыт).
В транзисторе типа n-p-n[3] основные носители заряда в эмиттере (электроны) проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того, что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико[4]. Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы (электроны) и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ), называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α = 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малый ток базы управляет значительно бо́льшим током коллектора.
Режимы работы
| Напряжения на эмиттере, базе, коллекторе (UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}}) | Смещение перехода база-эмиттер для типа n-p-n | Смещение перехода база-коллектор для типа n-p-n | Режим для типа n-p-n | 
|---|---|---|---|
| UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}} | прямое | обратное | нормальный активный режим | 
| UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}} | прямое | прямое | режим насыщения | 
| UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}} | обратное | обратное | режим отсечки | 
| UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}} | обратное | прямое | инверсный активный режим | 
| Напряжения на эмиттере, базе, коллекторе (UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}}) | Смещение перехода база-эмиттер для типа p-n-p | Смещение перехода база-коллектор для типа p-n-p | Режим для типа p-n-p | 
| UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}} | обратное | прямое | инверсный активный режим | 
| UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}} | обратное | обратное | режим отсечки | 
| UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}} | прямое | прямое | режим насыщения | 
| UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}} | прямое | обратное | нормальный активный режим | 
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):
- UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.
Инверсный активный режим
Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).
Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.
Режим отсечки
В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).
Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
Схемы включения
Любая схема включения транзистора характеризуется двумя основными показателями:
- Коэффициент усиления по току Iвых/Iвх.
- Входное сопротивление Rвх = Uвх/Iвх.
Схема включения с общей базой
Схема включения с общей базой.- Среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Не инвертирует фазу сигнала.
- Коэффициент усиления по току: Iвых/Iвх = Iк/Iэ = α [α<1].
- Входное сопротивление Rвх = Uвх/Iвх = Uэб/Iэ.
Входное сопротивление (входной импеданс) усилительного каскада с общей базой мало зависит от тока эмиттера, при увеличении тока — снижается и не превышает единиц — сотен Ом для маломощных каскадов, так как входная цепь каскада при этом представляет собой открытый эмиттерный переход транзистора.
- Достоинства
- Хорошие температурные и широкий частотный диапазон, так как в этой схеме подавлен эффект Миллера.
- Высокое допустимое коллекторное напряжение.
- Недостатки
- Малое усиление по току, равное α, так как α всегда немного менее 1
- Малое входное сопротивление
Схема включения с общим эмиттером
Схема включения с общим эмиттером.Iвых = Iк
Iвх = Iб
Uвх = Uбэ
Uвых = Uкэ.
- Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α) = β [β>>1].
- Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.
- Достоинства
- Большой коэффициент усиления по току.
- Большой коэффициент усиления по напряжению.
- Наибольшее усиление мощности.
- Можно обойтись одним источником питания.
- Выходное переменное напряжение инвертируется относительно входного.
- Недостатки
- Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера.
Схема с общим коллектором
Схема включения с общим коллектором.Iвых = Iэ
Iвх = Iб
Uвх = Uбк
Uвых = Uкэ.
- Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β+1 [β>>1].
- Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.
- Достоинства
- Большое входное сопротивление.
- Малое выходное сопротивление.
- Недостатки
- Коэффициент усиления по напряжению немного меньше 1.
Схему с таким включением часто называют «эмиттерным повторителем».
Основные параметры
- Коэффициент передачи по току.
- Входное сопротивление.
- Выходная проводимость.
- Обратный ток коллектор-эмиттер.
- Время включения.
- Предельная частота коэффициента передачи тока базы.
- Обратный ток коллектора.
- Максимально допустимый ток.
- Граничная частота коэффициента передачи тока в схеме с общим эмиттером.
Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:
- коэффициент усиления по току α;
- сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:- rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
- rк — сумму сопротивлений коллекторной области и коллекторного перехода;
- rб — поперечное сопротивление базы.
 

Эквивалентная схема биполярного транзистора с использованием h-параметров.
Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».
Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.
- h11 = Um1/Im1, при Um2 = 0.
Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.
- h12 = Um1/Um2, при Im1 = 0.
Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.
- h21 = Im2/Im1, при Um2 = 0.
Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.
- h22 = Im2/Um2, при Im1 = 0.
Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:
- Um1 = h11Im1 + h12Um2;
- Im2 = h21Im1 + h22Um2.
В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.
Для схемы ОЭ: Im1 = Imб, Im2 = Imк, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:
- h21э = Imк/Imб = β.
Для схемы ОБ: Im1 = Imэ, Im2 = Imк, Um1 = Umэ-б, Um2 = Umк-б.
Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:
h21∍=rδ+r∍1−α{\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}};
h22∍≈r∍rκ(1−α){\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}};
h31∍=β=α1−α{\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}};
h32∍≈1rκ(1−α){\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}}.
С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.
В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.
Биполярный СВЧ-транзистор
Биполярные СВЧ-транзисторы (БТ СВЧ) служат для усиления колебаний с частотой свыше 0,3 ГГЦ[7]. Верхняя граница частот БТ СВЧ с выходной мощностью более 1 Вт составляет около 10 ГГц. Большинство мощных БТ СВЧ по структуре относится к n-p-n типу[8]. По методу формирования переходов БТ СВЧ являются эпитакcиально-планарными. Все БТ СВЧ, кроме самых маломощных, имеют многоэмиттерную структуру (гребёнчатую, сетчатую)[9]. По мощности БТ СВЧ разделяются на маломощные (рассеиваемая мощность до 0,3 Вт), средней мощности (от 0,3 до 1,5 Вт) и мощные (свыше 1,5 Вт)[10]. Выпускается большое число узкоспециализированных типов БТ СВЧ[10].
Технологии изготовления транзисторов
Применение транзисторов
См. также
Примечания
- ↑ Невыпрямляющий, или омический контакт — контакт двух разнородных материалов, вольтамперная характеристика которого симметрична при смене полярности и практически линейна.
- ↑ 1 2 Прямое смещение p-n-перехода означает, что область p-типа имеет положительный потенциал относительно облаcти n-типа.
- ↑ Для случая p-n-p все рассуждения аналогичны с заменой слова «электроны» на «дырки» и наоборот, а также с заменой всех напряжений на противоположное по знаку.
- ↑ Лаврентьев Б. Ф. Схемотехника электронных средств. — М.: Издательский центр «Академия», 2010. — С. 53—68. — 336 с. — ISBN 978-5-7695-5898-6.
- ↑ Лекция № 7 — Биполярный транзистор как активный четырёхполюсник, h-параметры
- ↑ Физические основы электроники: метод. указания к лабораторным работам / сост. В. К. Усольцев. — Владивосток: Изд-во ДВГТУ, 2007. — 50 с.:ил.
- ↑ Кулешов, 2008, с. 284.
- ↑ Кулешов, 2008, с. 285.
- ↑ Кулешов, 2008, с. 286.
- ↑ 1 2 Кулешов, 2008, с. 292.
Ссылки
Литература
- Спиридонов Н.С. Основы теории транзисторов. — К.: Техника, 1969. — 300 с.
- Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.
Биполярные транзисторы — это… Что такое Биполярные транзисторы?
Обозначение биполярных транзисторов на схемах
Простейшая наглядная схема устройства транзистора
Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.
Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же коллектор отличается от эмиттера, главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.
Принцип действия транзистора
В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они — неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передает ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10 − 1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.
Режимы работы биполярного транзистора
- Нормальный активный режим;
- Инверсный активный режим;
- Режим насыщения;
- Режим отсечки;
Нормальный активный режим
Переход эмиттер — база включен в прямом направлении (открыт), а переход коллектор — база — в обратном (закрыт)
Инверсный активный режим
Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты).
Режим отсечки
В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты).
Схемы включения
Схема включения с общей базой
Любая схема включения транзистора характеризуется двумя основными показателями:
- коэффициент усиления по току Iвых/Iвх.
Для схемы с общей базой Iвых/Iвх=Iк/Iэ=α [α<1])
- входное сопротивление Rвхб=Uвх/Iвх=Uбэ/Iэ.
Входное сопротивление для схемы с общей базой мало и составляет десятки Ом, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.
Недостатки схемы с общей базой :
- Схема не усиливает ток, так как α < 1
- Малое входное сопротивление
- Два разных источника напряжения для питания.
Достоинства:
- Хорошие температурные и частотные свойства.
Схема включения с общим эмиттером
- Iвых=Iк
- Iвх=Iб
- Uвх=Uбэ
- Uвых=Uкэ
Достоинства:
- Большой коэффициент усиления по току
- Большое входное сопротивление
- Можно обойтись одним источником питания
Недостатки:
- Худшие температурные и частотные свойства по сравнению со схемой с общей базой
Выходное переменное напряжение инвертируется относительно входного.
Схема с общим коллектором
- Iвых=Iэ
- Iвх=Iб
- Uвх=Uбк
- Uвых=Uкэ
Достоинства:
- Большое входное сопротивление
- Малое выходное сопротивление
Недостатки:
- Не усиливает напряжение
Схему с таким включением также называют «эмиттерным повторителем»
Технология изготовления транзисторов 1
- Планарно-эпитаксиальная
- Сплавная- Дифузионный
- Дифузионносплавной
 
Применение транзисторов
Ссылки и литература
Биполярный транзистор и принцип его работы, режимы и схемы, особенности переходов
 На определённом этапе времени всем привычные электронные лампы были заменены транзисторами. И это не удивительно, поскольку они имеют гораздо меньший размер, более надёжные и затрачивают гораздо меньше энергии. Такое большое количество положительных сторон привело к тому, что на сегодняшний день биполярные транзисторы являются главными элементами практически всех усилительных схем.
На определённом этапе времени всем привычные электронные лампы были заменены транзисторами. И это не удивительно, поскольку они имеют гораздо меньший размер, более надёжные и затрачивают гораздо меньше энергии. Такое большое количество положительных сторон привело к тому, что на сегодняшний день биполярные транзисторы являются главными элементами практически всех усилительных схем.
Составные части устройства
Биполярный транзистор разделяется на три основные части:
- Эммитер – это один из слоёв полупроводника, его задача заключается в инжектировании носителей заряда в базу (её слой).
- База – это один из слоёв полупроводника, считается главным в транзисторе.
- Коллектор – слой полупроводника, задачей которого является собрать все заряды, которые прошли через базу.
Как правило, область эммитера немного уже, чем у коллектора. Поскольку изготовление базы происходит из слаболегированного полупроводника, то она является очень тонкой. В результате того, что площадь контакта между эммитером и базой гораздо уже, чем между базой и коллектором, то произвести замену коллектора и эмиттера просто невозможно, даже при большом желании. Подобная ситуация приводит к тому, что биполярный транзистор считается устройством, в котором отсутствует симметрия.
Биполярный транзистор — принцип работы
 Принцип действия биполярного транзистора представлен ниже.
Принцип действия биполярного транзистора представлен ниже.
Когда транзистор включают в режиме усиления, открывается эммитерный переход, и закрывается переход коллектора. Это происходит в результате подключения источников питания.
Из-за того, что переход эммитера находится в открытом положении, через него происходит переход эммитерного тока, он образуется в результате перехода дырок из базового слоя транзистора в эммитер и аналогичного перехода электронов из эммитера в базовый слой.
В результате этого эммитерный ток состоит из двух основных частей – дырочной и электронной.
Чтобы определить коэффициент инжекции, следует разобраться с уровнем эффективности эммитера.
Инжекция зарядов – это перемещение элементов, содержащих в себе заряд из зоны, где они играли основную роль, в зону, где они стали неосновными.
В базовом слое транзистора происходит рекомбинация электронов, а восполнение их концентрации происходит за счёт плюса источника ЭГ. В итоге электрическая цепь базового слоя биполярного транзистора содержит в себе достаточно слабый ток.
А те электроны, которые попросту не успели поддаться процессу рекомбинации в базовом слое, с помощью разгоняющего воздействия закрытого коллекторного перехода перемещаются в него, и происходит образование коллекторного тока. В результате этого наблюдается экстракция электрических зарядов (переход элементов, которые содержат в себе заряд из зоны, где они играли второстепенную роль в зону, где они играют главную роль).
Вот и весь принцип работы биполярного транзистора.
Режимы функционирования устройства
На этом этапе времени выделяют следующие режимы работы биполярного транзистора:
 Активный инверсный режим. В этом случае открыт переход между базовым и коллекторным слоями, а переход между базой и эммитером закрыт. Усилительные свойства в данном режиме очень плохие, поэтому в таком состоянии транзисторы используют в редчайших ситуациях. Активный инверсный режим. В этом случае открыт переход между базовым и коллекторным слоями, а переход между базой и эммитером закрыт. Усилительные свойства в данном режиме очень плохие, поэтому в таком состоянии транзисторы используют в редчайших ситуациях.
- Насыщение. Оба вышеуказанных перехода находятся в открытом состоянии. В результате этого элементы коллектора и эммитера, которые содержат в себе заряд, перемещаются в базовый слой, где происходит их активная рекомбинация с основными элементами базы. Из-за чрезмерного количества зарядов происходит снижение сопротивляемости базы, наблюдается уменьшение p — n переходов. В режиме насыщения, цепь транзистора имеет вид короткозамкнутой, а данный элемент представлен в роли эквипотенциальной точки.
- Режим отсечки. Оба перехода в биполярном транзисторе закрыты, соответственно, происходит прекращение тока основных носителей заряда между коллекторным и эммитерным слоями. Потоки второстепенных зарядов способны только создавать неуправляемые и малые токи. В результате скудности базового слоя и перемещения носителей зарядов сопротивление вышеуказанных токов в значительной мере возрастает. Из-за подобной работы достаточно часто бытует мнение, что устройство, работающее в таком режиме, являет собой разрыв цепи.
- Барьерный режим. В данном режиме базовый слой прямо или с помощью малого сопротивления замыкается с коллекторным слоем. В этом случае, в цепь коллектора или эммитера необходимо включить резистор, который через транзистор начинает задавать ток. В результате такой работы происходит образование эквивалента схемы диода, которая имеет последовательно включённое сопротивление. В подобном состоянии устройства схема способна работать при различных температурных режимах и при разнообразных параметрах транзистора.
Схемы включения транзисторов биполярного типа
Из-за того, что транзистор имеет три контакта, то питание на него следует подавать из 2 источников, сумма которых образует четыре вывода. Подобное действие приводит к тому, что в один из контактов устройства происходит подача напряжения одного знака из различных источников.
С учётом того, в какой контакт производится подача напряжения, выделяют три типа схем включения биполярных транзисторов:
- с эммитерным слоем;
- с коллекторным слоем;
- с базовым слоем.
Каждая из вышеуказанных схем имеет свои преимущества и недостатки.
Схема включения с общим эммитерным слоем
Данная схема создаёт самое большое усиление по току и напряжению. Благодаря таким её свойствам она и является самой распространённой. В данном случае присутствует прямой переход между эммитерным и базовым слоями и обратный переход между базой и коллектором. А тот факт, что на них осуществляется подача напряжения одного знака, способствует тому, что схему можно напитать с помощью одного источника.
Среди отрицательных сторон схемы можно выделить то, что возрастание частоты и температурного режима способствует значительному снижению усилительных свойств устройства. В результате этого следует отметить, что если необходима работа транзистора на высоких частотах, то от использования этой схемы желательно отказаться.
Схема включения с общим базовым слоем
 Данная схема создаёт среднее усиление сигнала, но зато она прекрасно подходит для работы на высоких частотах. Если одно и то же устройство будет сначала функционировать по первой схеме, а затем по этой, то можно будет наблюдать значительный рост граничной частоты усиления. Из-за того, что в этой схеме заниженное сопротивление входа и среднее сопротивление выхода, то её лучше использовать в случае наличия антенных усилителей, в которых волновое сопротивление кабелей составляет не более ста Ом.
Данная схема создаёт среднее усиление сигнала, но зато она прекрасно подходит для работы на высоких частотах. Если одно и то же устройство будет сначала функционировать по первой схеме, а затем по этой, то можно будет наблюдать значительный рост граничной частоты усиления. Из-за того, что в этой схеме заниженное сопротивление входа и среднее сопротивление выхода, то её лучше использовать в случае наличия антенных усилителей, в которых волновое сопротивление кабелей составляет не более ста Ом.
Среди минусов можно выделить тот момент, что для того, чтобы напитать устройство, требуется использовать 2 источника питания.
Схема включения с общим коллекторным слоем
Среди других схем выделяется тем, что наблюдается полная передача напряжения обратно на вход – это указывает на сильнейшую отрицательную обратную связь.
Уровень усиления по току практически равен значению, присутствующему в первой схеме. Но вот уровень усиления по напряжению очень маленький, что является одним из главных недостатков данной схемы.
Разобраться в особенностях работы биполярного транзистора и его схем достаточно просто, главное — постараться вникнуть.
Значение словосочетания БИПОЛЯРНЫЙ ТРАНЗИСТОР. Что такое БИПОЛЯРНЫЙ ТРАНЗИСТОР?
-  Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ). 
Источник: Википедия
Делаем Карту слов лучше вместе
  Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать
 Карту слов. Я отлично
 умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
 Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать
 Карту слов. Я отлично
 умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно значение слова персонализация (существительное):
Кристально
понятно
Понятно
в общих чертах
Могу только
догадываться
Понятия не имею,
что это
Другое
Пропустить
Биполярный транзистор — Википедия. Что такое Биполярный транзистор

Обозначение биполярных транзисторов на схемах. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.
 Простейшая наглядная схема устройства транзистора
 Простейшая наглядная схема устройства транзистораБиполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.
Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).
Устройство
 Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.
 Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1].
С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.
Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).
Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.
В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время (2015 г.) биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.
Принцип работы
В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении[2] (открыт), а коллекторный переход смещён в обратном направлении (закрыт).
В транзисторе типа n-p-n[3] основные носители заряда в эмиттере (электроны) проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того, что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико[4]. Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы (электроны) и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ), называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α = 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малый ток базы управляет значительно бо́льшим током коллектора.
Режимы работы
| Напряжения на эмиттере, базе, коллекторе (UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}}) | Смещение перехода база-эмиттер для типа n-p-n | Смещение перехода база-коллектор для типа n-p-n | Режим для типа n-p-n | 
|---|---|---|---|
| UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}} | прямое | обратное | нормальный активный режим | 
| UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}} | прямое | прямое | режим насыщения | 
| UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}} | обратное | обратное | режим отсечки | 
| UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}} | обратное | прямое | инверсный активный режим | 
| Напряжения на эмиттере, базе, коллекторе (UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}}) | Смещение перехода база-эмиттер для типа p-n-p | Смещение перехода база-коллектор для типа p-n-p | Режим для типа p-n-p | 
| UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}} | обратное | прямое | инверсный активный режим | 
| UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}} | обратное | обратное | режим отсечки | 
| UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}} | прямое | прямое | режим насыщения | 
| UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}} | прямое | обратное | нормальный активный режим | 
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):
- UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.
Инверсный активный режим
Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).
Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.
Режим отсечки
В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).
Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
Схемы включения
Любая схема включения транзистора характеризуется двумя основными показателями:
- Коэффициент усиления по току Iвых/Iвх.
- Входное сопротивление Rвх = Uвх/Iвх.
Схема включения с общей базой
Схема включения с общей базой.- Среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Не инвертирует фазу сигнала.
- Коэффициент усиления по току: Iвых/Iвх = Iк/Iэ = α [α<1].
- Входное сопротивление Rвх = Uвх/Iвх = Uэб/Iэ.
Входное сопротивление (входной импеданс) усилительного каскада с общей базой мало зависит от тока эмиттера, при увеличении тока — снижается и не превышает единиц — сотен Ом для маломощных каскадов, так как входная цепь каскада при этом представляет собой открытый эмиттерный переход транзистора.
- Достоинства
- Хорошие температурные и широкий частотный диапазон, так как в этой схеме подавлен эффект Миллера.
- Высокое допустимое коллекторное напряжение.
- Недостатки
- Малое усиление по току, равное α, так как α всегда немного менее 1
- Малое входное сопротивление
Схема включения с общим эмиттером
Схема включения с общим эмиттером.Iвых = Iк
Iвх = Iб
Uвх = Uбэ
Uвых = Uкэ.
- Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α) = β [β>>1].
- Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.
- Достоинства
- Большой коэффициент усиления по току.
- Большой коэффициент усиления по напряжению.
- Наибольшее усиление мощности.
- Можно обойтись одним источником питания.
- Выходное переменное напряжение инвертируется относительно входного.
- Недостатки
- Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера.
Схема с общим коллектором
Схема включения с общим коллектором.Iвых = Iэ
Iвх = Iб
Uвх = Uбк
Uвых = Uкэ.
- Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β+1 [β>>1].
- Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.
- Достоинства
- Большое входное сопротивление.
- Малое выходное сопротивление.
- Недостатки
- Коэффициент усиления по напряжению немного меньше 1.
Схему с таким включением часто называют «эмиттерным повторителем».
Основные параметры
- Коэффициент передачи по току.
- Входное сопротивление.
- Выходная проводимость.
- Обратный ток коллектор-эмиттер.
- Время включения.
- Предельная частота коэффициента передачи тока базы.
- Обратный ток коллектора.
- Максимально допустимый ток.
- Граничная частота коэффициента передачи тока в схеме с общим эмиттером.
Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:
- коэффициент усиления по току α;
- сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:- rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
- rк — сумму сопротивлений коллекторной области и коллекторного перехода;
- rб — поперечное сопротивление базы.
 

Эквивалентная схема биполярного транзистора с использованием h-параметров.
Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».
Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.
- h11 = Um1/Im1, при Um2 = 0.
Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.
- h12 = Um1/Um2, при Im1 = 0.
Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.
- h21 = Im2/Im1, при Um2 = 0.
Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.
- h22 = Im2/Um2, при Im1 = 0.
Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:
- Um1 = h11Im1 + h12Um2;
- Im2 = h21Im1 + h22Um2.
В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.
Для схемы ОЭ: Im1 = Imб, Im2 = Imк, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:
- h21э = Imк/Imб = β.
Для схемы ОБ: Im1 = Imэ, Im2 = Imк, Um1 = Umэ-б, Um2 = Umк-б.
Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:
h21∍=rδ+r∍1−α{\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}};
h22∍≈r∍rκ(1−α){\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}};
h31∍=β=α1−α{\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}};
h32∍≈1rκ(1−α){\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}}.
С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.
В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.
Биполярный СВЧ-транзистор
Биполярные СВЧ-транзисторы (БТ СВЧ) служат для усиления колебаний с частотой свыше 0,3 ГГЦ[7]. Верхняя граница частот БТ СВЧ с выходной мощностью более 1 Вт составляет около 10 ГГц. Большинство мощных БТ СВЧ по структуре относится к n-p-n типу[8]. По методу формирования переходов БТ СВЧ являются эпитакcиально-планарными. Все БТ СВЧ, кроме самых маломощных, имеют многоэмиттерную структуру (гребёнчатую, сетчатую)[9]. По мощности БТ СВЧ разделяются на маломощные (рассеиваемая мощность до 0,3 Вт), средней мощности (от 0,3 до 1,5 Вт) и мощные (свыше 1,5 Вт)[10]. Выпускается большое число узкоспециализированных типов БТ СВЧ[10].
Технологии изготовления транзисторов
Применение транзисторов
См. также
Примечания
- ↑ Невыпрямляющий, или омический контакт — контакт двух разнородных материалов, вольтамперная характеристика которого симметрична при смене полярности и практически линейна.
- ↑ 1 2 Прямое смещение p-n-перехода означает, что область p-типа имеет положительный потенциал относительно облаcти n-типа.
- ↑ Для случая p-n-p все рассуждения аналогичны с заменой слова «электроны» на «дырки» и наоборот, а также с заменой всех напряжений на противоположное по знаку.
- ↑ Лаврентьев Б. Ф. Схемотехника электронных средств. — М.: Издательский центр «Академия», 2010. — С. 53—68. — 336 с. — ISBN 978-5-7695-5898-6.
- ↑ Лекция № 7 — Биполярный транзистор как активный четырёхполюсник, h-параметры
- ↑ Физические основы электроники: метод. указания к лабораторным работам / сост. В. К. Усольцев. — Владивосток: Изд-во ДВГТУ, 2007. — 50 с.:ил.
- ↑ Кулешов, 2008, с. 284.
- ↑ Кулешов, 2008, с. 285.
- ↑ Кулешов, 2008, с. 286.
- ↑ 1 2 Кулешов, 2008, с. 292.
Ссылки
Литература
- Спиридонов Н.С. Основы теории транзисторов. — К.: Техника, 1969. — 300 с.
- Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

 
  Активный инверсный режим. В этом случае открыт переход между базовым и коллекторным слоями, а переход между базой и эммитером закрыт. Усилительные свойства в данном режиме очень плохие, поэтому в таком состоянии транзисторы используют в редчайших ситуациях.
Активный инверсный режим. В этом случае открыт переход между базовым и коллекторным слоями, а переход между базой и эммитером закрыт. Усилительные свойства в данном режиме очень плохие, поэтому в таком состоянии транзисторы используют в редчайших ситуациях.