Site Loader

Схема изделия — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Схема. Принципиальная электрическая схема интеллектуального выключателя (код Э3) Принципиальная гидравлическая схема гидропривода (код Г3) Кинематическая схема револьверной головки токарного станка (код К3)

Схема изделия — согласно ЕСКД (ГОСТ 2.701), графический документ, на котором в виде условных обозначений или изображений показаны составные части некоторого изделия и связи между ними.

Схемы входят в комплект конструкторской документации и содержат данные, необходимые для проектирования, изготовления, сборки, регулировки, настройки и эксплуатации изделия. Схема — один из видов графических моделей изделий.

По виду элементов и связей, входящих в состав изделия, различают следующие виды схем[1] :

По основному назначению (типу):

  • структурные схемы (1)
  • функциональные схемы (2)
  • принципиальные (полные) схемы (3)
  • монтажные схемы (схемы соединений) (4)
  • схемы подключения (5)
  • общие схемы (6)
  • схемы расположения (7)
  • схемы объединения (0)

В скобках указано обозначение вида и типа схемы.

  • Усатенко С. Т. Выполнение электрических схем по ЕСКД (1989)
  1. ↑ ГОСТ 2.701-2008. ЕСКД. Схемы. Виды и типы. Общие требования к выполнению

Электронная схема — Википедия

Электронная схема — изделие, сочетание отдельных электронных компонентов, таких как резисторы, конденсаторы, индуктивности, диоды, транзисторы и интегральные микросхемы, соединённых между собой, для выполнения каких либо задач или схема (рисунок) с условными знаками.

Различные комбинации компонентов позволяют выполнять множество как простых, так и сложных операций, таких как усиление сигналов, обработка и передача информации и так далее[1] Электронные схемы строятся на базе дискретных компонентов, а также интегральных схем, которые могут объединять множество различных компонентов на одном полупроводниковом кристалле.

Соединения между элементами могут осуществляться посредством проводов, однако в настоящее время чаще применяются печатные платы, когда на изолирующей основе различными методами (например, фотолитографией) создаются проводящие дорожки и контактные площадки, к которым припаиваются компоненты

[2].

Для разработки и тестирования электронных схем применяются макетные платы, позволяющие при необходимости быстро вносить изменения в электронную схему.

Раздел электроники, изучающий проектирование и создание электронных схем, называется схемотехника.

Обычно, при рассмотрении, электронные схемы классифицируются на:

В аналоговых электронных схемах напряжение и ток могут изменяться непрерывно во времени, отражая какую-либо информацию. В аналоговых схемах существуют два базовых понятия: последовательное и параллельное соединения. При последовательном соединении, примером которого может быть новогодняя гирлянда, через все компоненты в цепочке течёт один и тот же ток. При параллельном соединении на выводах всех компонентов создаётся одно и то же электрическое напряжение, но токи через компоненты различаются: суммарный ток делится в соответствии с сопротивлением компонентов.

Простая схема, содержащая батарею, резистор и соединительные провода, демонстрирует применение законов Ома и Кирхгофа для расчёта электрической цепи

Основными элементами для построения аналоговых устройств являются резисторы (сопротивления), конденсаторы, катушки индуктивности, диоды, транзисторы, а также соединительные проводники. Обычно аналоговые схемы представляются в виде принципиальных электрических схем. За каждым элементом закреплено стандартное обозначение: например, проводники обозначаются линиями, резисторы — прямоугольниками и так далее.

Электрические цепи подчиняются законам Кирхгофа:

  • алгебраическая сумма токов в любом узле цепи равна нулю;
  • алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю.

При анализе реальных схем следует учитывать паразитные элементы: так, у реальных соединительных проводников существует сопротивление и индуктивность, несколько лежащих рядом проводников образуют ёмкость и так далее.

В цифровых схемах сигнал может принимать только несколько различных дискретных состояний, которые обычно кодируют логические или числовые значения[3]. В подавляющем большинстве случаев используется бинарная (двоичная) логика, когда одному определённому уровню напряжения соответствует логическая единица, а другому — ноль. В цифровых схемах крайне широкое применение находят транзисторы, из которых строятся логические ячейки (вентили): И, ИЛИ, НЕ и их различные комбинации. Также, на базе транзисторов создаются триггеры — ячейки, которые могут находиться в одном из нескольких устойчивых состояний, и переключаться между ними при подаче внешнего сигнала. Последние могут быть использованы как элементы памяти: например, SRAM (статическая оперативная память с произвольным доступом) сделана на их основе. Другой тип памяти — DRAM — основан на способности конденсаторов запасать электрический заряд.

Цифровые схемы по сравнению с аналоговыми той же сложности значительно проще в разработке и анализе. Это связано с тем, что логические ячейки на выходе выдают только определённые уровни напряжений, и разработчику не надо заботиться об искажениях, усилении, смещении напряжения и прочих аспектах, которые необходимо учитывать при разработке аналоговых устройств. По этой причине, на основе логических элементов могут создаваться сверхсложные схемы с огромной степенью интеграции элементов, содержащие на одном кристалле миллиарды транзисторов, стоимость каждого из которых получается ничтожно малой. Именно это во многом и определило развитие современной электроники.

Гибридные схемы объединяют элементы, относящиеся к аналоговой и цифровой схемотехнике. Среди прочих, к ним относятся компараторы, мультивибраторы, ФАПЧ, ЦАП, АЦП. Большинство современных радиоприборов и устройств связи используют гибридные схемы. К примеру, приёмник может состоять из аналоговых усилителя и преобразователя частот, после чего сигнал может быть преобразован в цифровую форму для дальнейшей обработки.

  1. Charles Alexander and Matthew Sadiku. Fundamentals of Electric Circuits (неопр.). — McGraw-Hill, 2004.
  2. Richard Jaeger. Microelectronic Circuit Design (неопр.). — McGraw-Hill, 1997.
  3. John Hayes. Introduction to Digital Logic Design (неопр.). — Addison Wesley, 1993.

схема — Викисловарь

Морфологические и синтаксические свойства[править]

схе́-ма

Существительное, неодушевлённое, женский род, 1-е склонение (тип склонения 1a по классификации А. А. Зализняка).

Корень: -схем-; окончание: [Тихонов, 1996].

Произношение[править]

Семантические свойства[править]

Схема [2] антропогенеза
Интегральная схема [3]
Значение[править]
  1. совокупность составляющих объекта и взаимосвязей между ними, а также изображение или словесное описание, поясняющее эту совокупность ◆ Белинский пишет, что моя схема поэзии и изящного ошибочная. Н. А. Полевой, «Письма», 1824-1845 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ Просидев около часа с глаза на глаз с Червевым, она стала сама резюмировать в своем уме его положения и начертала такую схему: характер в высшей мере благородный и сильный; воля непреклонная; доброта без границ; славолюбия — никакого, бессребреник полный, терпелив, скромен и проникнут богопочтением, но бог его «не в рукотворном храме», а все земные престолы, начальства и власти — это для него совсем не существует. Н. С. Лесков, «Захудалый род», 1874 г. (цитата из Национального корпуса русского языка, см. Список литературы)
    ◆ Для предупреждения недоразумений считаем, однако, необходимым заметить, что то, что мы называем идеалом народа, ничего не имеет подобного с теми политически-социальными схемами, формулами и теориями, выработанными помимо народной жизни досугом буржуазных учёных или полуученых и предлагаемыми милостиво невежественной народной толпе как необходимое условие их будущего устройства. М. А. Бакунин, «Государственность и анархия», 1873 г. (цитата из Национального корпуса русского языка, см. Список литературы)
  2. обобщённое изображение какой-либо структуры, процесса ◆ Мы не станем входить здесь в рассмотрение деталей этой схемы, но обратим внимание только на то, что у Ламарка, кроме расходящихся ветвей, есть и одна сходящаяся: его копытные млекопитающие являются результатом схождения двух ветвей — одной, идущей от рыбообразных, и другой, идущей от ластоногих. И. И. Мечников, «Очерк вопроса о происхождении видов», 1876 г. (цитата из Национального корпуса русского языка, см. Список литературы)
    ◆ Сравнивая далее образование форм по дарвиновской схеме с другими способами изменения, оказывается, что в первом случае процесс идёт более сложным и окольным путём, что составляет уже значительное затруднение. И. И. Мечников, «Очерк вопроса о происхождении видов», 1876 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ Эти факты указали на ближайшие составные группы альбумина и дали возможность построить схему относительного расположения их. А. Я. Данилевский, «Исследование состава, физического и химического строения, продуктов распадения белковых веществ и генетических отношений между различными их видами», 1871 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ Поручили детям организовать то-то и то-то — возьмите лист бумаги, начертите схему организации.
    А. В. Луначарский, «Единая трудовая социалистическая школа», 1920-1925 г. (цитата из Национального корпуса русского языка, см. Список литературы)
    ◆ Этот недостаток был преодолён после изменения схемы усилителя. Как защитить устройства АЛСН от помех, «2001» // «Локомотив» (цитата из Национального корпуса русского языка, см. Список литературы)
  3. техн. то же, что электронная схема; электронное устройство, объединяющее несколько электронных компонентов ◆ На заводе установлена линия, позволяющая по проектным нормам приступить к производству интегральных схем с толщиной линий 1 микрон на кремниевых пластинах диаметром 150 мм. Михаил Умаров, «Ситуация в российской микроэлектронике», 1996 г. // «Коммерсантъ-Daily» (цитата из Национального корпуса русского языка, см. Список литературы)
  4. порядок, способ действия, протекания процесса ◆ Он действовал по отработанной схеме.
    ◆ И действительно, когда цинкметил был взят в избытке, реакция протекала по этой схеме. А. М. Бутлеров, «Теоретические и экспериментальные работы по химии», 1851-1886 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ Я намечаю сегодняшнюю схему действий — и, вопреки всем политикам мира, буду утверждать, что сию минуту, для нас, для войны, она верна. З. Н. Гиппиус, «Дневники», 1914-1928 г. (цитата из Национального корпуса русского языка, см. Список литературы)
Синонимы[править]
  1. частичн.: структура
  2. электронная схема, микросхема
  3. шаблон, порядок, сценарий
Антонимы[править]
  1. частичн.: случайность
Гиперонимы[править]
  1. совокупность
  2. изображение
  3. устройство
Гипонимы[править]
  1. подсхема
  2. наносхема

Родственные слова[править]

Этимология[править]

Происходит от лат. schema от греч. σχῆμα «выражение лица, осанка, фигура» (восходит к праиндоевр. *segh- «держать, иметь»). Русск. схема — через польск. schema из лат. Использованы данные словаря М. Фасмера. См. Список литературы.

Фразеологизмы и устойчивые сочетания[править]

Перевод[править]

Анаграммы[править]

Библиография[править]

Схема базы данных — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 июня 2018; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 июня 2018; проверки требуют 3 правки.

Схема базы данных включает в себя описания содержания, структуры и ограничений целостности, используемые для создания и поддержки базы данных[1].

Постоянные данные в среде базы данных включают в себя схему и базу данных. Система управления базами данных (СУБД) использует определения данных в схеме для обеспечения доступа и управления доступом к данным в базе данных[1].

Схема базы данных (от англ. Database schema) — её структура, описанная на формальном языке, поддерживаемом СУБД. В реляционных базах данных схема определяет таблицы, поля в каждой таблице (обычно с указанием их названия, типа, обязательности), и ограничения целостности (первичный, потенциальные и внешние ключи и другие ограничения).

Схемы в общем случае хранятся в словаре данных. Хотя схема определена на языке базы данных в виде текста, термин часто используется для обозначения графического представления структуры базы данных[2].

Основными объектами графического представления схемы являются таблицы и связи, определяемые внешними ключами.

Есть и другое понятие схемы в теории баз данных.

Схема (SCHEMA)[3] является одним из основных объектов базы данных Oracle Database. Близкое понятие (RIS Schema) существует в RIS-интерфейсе доступа к базам данных. SCHEMA также появилась и в Microsoft SQL Server 2005 и формально определяется как набор объектов в базе данных[4].

В Oracle схема привязывается только к одному пользователю (USER) и является логическим набором объектов базы данных. Схема создаётся при создании пользователем первого объекта, и все последующие объекты, созданные этим пользователем, становятся частью этой схемы.

Схема может включать другие объекты, принадлежащие этому пользователю:

  • таблицы,
  • последовательности,
  • хранимые программы,
  • кластеры,
  • связи баз данных,
  • триггеры,
  • библиотеки внешних процедур,
  • индексы,
  • пакеты,
  • хранимые функции и процедуры,
  • синонимы,
  • представления,
  • снимки,
  • объектные таблицы,
  • объектные типы,
  • объектные представления.

Существуют и подобъекты схемы, такие как:

  • столбцы: таблиц и представлений,
  • секции таблиц,
  • ограничения целостности,
  • триггеры,
  • пакетные процедуры и функции и другие элементы, хранимые в пакетах (курсоры, типы и т. п).

Существуют объекты, независимые от схемы:

  • каталоги,
  • профили,
  • роли,
  • сегменты,
  • табличные области,
  • пользователи.

Эквивалентная схема — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июня 2015; проверки требуют 14 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июня 2015; проверки требуют 14 правок.

Эквивалентная схема (схема замещения, эквивалентная схема замещения) цепи — электрическая схема, в которой все реальные элементы заменены их эквивалентными схемами.

Эквивалентная схема (схема замещения, эквивалентная схема замещения) реального элемента цепи — электрическая схема цепи, состоящая из идеализированных элементов цепи, рассчитанные напряжения и токи на зажимах которой совпадают с какой-то погрешностью с измеренными токами и напряжениями на зажимах реального элемента. Уравнения для токов и напряжений эквивалентной схемы реального элемента являются его математической моделью.

Одной из основных задач электроники является расчет электрических цепей, то есть получение детальной количественной информации о процессах, происходящих в этой цепи. Однако рассчитать произвольную цепь, состоящую из реальных электронных компонент, практически невозможно. Мешает расчету то обстоятельство, что попросту не существует методик математического описания поведения реальных электронных компонентов (например, транзистора) как единого целого. Имеются значения отдельных параметров и экспериментально снятые зависимости, но связать их в единую точную формулу, полностью описывающую поведение компоненты, в большинстве случаев не представляется возможным.

С другой стороны, исключительно простым математическим аппаратом описываются идеализированные базовые элементы электронных схем (например, идеальный резистор). Однако они не существуют в реальном мире. Так, любой резистор (реальный элемент) имеет множество паразитных параметров: индуктивность, ёмкость, температурные зависимости и т. п.

Введение понятия эквивалентная схема позволяет «связать» мир реальных компонентов и мир их идеальных приближений. Эквивалентная схема представляет собой цепь только из идеальных компонент, которая функционирует примерно так же, как и исходная схема. В эквивалентной схеме реального элемента могут быть отражены, при необходимости, различные паразитные эффекты: утечки, внутренние сопротивления и т. д. В зависимости от требуемой точности разработаны и продолжают разрабатываться множество схем замещения одного и того же реального элемента. Например, известны сотни схем замещения (моделей) разных типов транзисторов.

В эквивалентных схемах используются перечисленные ниже идеальные элементы. Предполагается также, что геометрические размеры эквивалентной схемы настолько малы, что какие-либо эффекты длинных линий отсутствуют, то есть эквивалентная схема рассматривается как система с сосредоточенными параметрами.

Для любой электрической схемы можно составить сколько угодно различных эквивалентных схем — количество их ограничивается только соображениями целесообразности. Для одной схемы имеет смысл составлять несколько эквивалентных схем по следующим причинам:

  • Учёт различных эффектов. Эквивалентная схема составляется тем или иным образом в зависимости от того, какие эффекты мы хотим с её помощью описать. Например, для нахождения рабочей точки по постоянному току требуется одна эквивалентная схема, а для расчета АЧХ — совершенно другая.
  • Поэтапное упрощение. В процессе расчета схемы целесообразно заменять её сложные участки простыми эквивалентными цепями. Например, цепь из последовательно включенных резисторов можно заменить одним резистором с суммарным сопротивлением. В полученной упрощенной схеме можно вновь применить некоторую замену и т. д.

Эквивалентная схема является линейной системой, поэтому нелинейные эффекты реальных схем не могут быть смоделированы путём составления эквивалентных схем.

Частичным выходом из этого затруднения является рассмотрение нелинейной системы в малосигнальном приближении для конкретной рабочей точки, при этом нелинейные эффекты малы и ими можно пренебречь. Данный подход позволяет не описать нелинейные эффекты, а всего лишь ограничиться случаем, когда они пренебрежимо малы.

Эквивалентная схема реального элемента, описываемая дифференциальными уравнениями в обыкновенных производных, не может абсолютно точно соответствовать реальному элементу, электрические процессы в котором описываются дифференциальными уравнениями в частных производных (например, многие характеристики полупроводникового диода могут быть получены из решения уравнения Пуассона для p — n-перехода).

  • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. — М.: Высшая школа, 1996. — 224 с. — ISBN 5-8297-0159-6
  • Попов В. П. Основы теории цепей . — М.: Высшая школа, 2003. — 575 с. — ISBN 5-06-003949-8

Структурная схема — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 марта 2016; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 марта 2016; проверки требуют 8 правок.

Структурная схема — это совокупность элементарных звеньев объекта и связей между ними, один из видов графической модели. Под элементарным звеном подразумевается часть объекта, системы управления и т. д., которая реализует элементарную функцию.

В теории автоматического управления[править | править код]

Элементарные звенья изображаются прямоугольниками, а связи между ними — сплошными линиями со стрелками, показывающими направление действия звена. Иногда в поле прямоугольника вписывают математическое выражение закона преобразования сигнала в звене, в этом случае схему иногда называют алгоритмичной.

В схемотехнике вместе со структурной различают также принципиальную и функциональную схему. Среди всех этих схем структурная наименее детализирована.

Она предназначена для отражения общей структуры устройства. Структура есть совокупность устойчивых связей и отношений объекта, обеспечивающих его целостность и тождественность самому себе, т.е. сохранение основных свойств при различных внешних и внутренних изменениях[1]. Из структурной схемы должно быть понятно, зачем нужно данное устройство и что оно делает в основных режимах работы, как взаимодействуют его части. Обозначение структурной схемы могут быть достаточно свободными, хотя некоторые общепринятые правила всё же лучше выполнять[2].

Непременное условие, которое должно соблюдаться при разложении системы на звенья состоит в соблюдении правила однонаправленной передачи воздействий (свойство детектируемости звена). Это означает, что выходная величина любого звена системы зависит только от изменения его входной величины.

Следует отметить, что каждое из таких включенных в систему звеньев обладает свойством автономности в том смысле, что изменение динамических свойств одного звена не отражается на свойствах других звеньев.

Физическая природа процессов, протекающих в звеньях, оказывается совершенно безразличной, если они имеют одинаковые дифференциальные уравнения, как например, механическое или электрическое звено.

Разбиение динамических систем на элементарные звенья в составе структурной схеме, значительно упрощает их расчет, анализ и конструирование.

Параметрами звена являются постоянные коэффициенты дифференциального уравнения.Для элементарных звеньев они имеют свои названия и определяют инерционные свойства или свойства усиления входных сигналов звена. Принято обозначать буквой Т постоянную времени, характеризующую инерционные свойства, и буквой k — коэффициент передачи звена.[1]

  • Иванов А. А. Теория автоматического управления: Учебник. — М.: Национальный горный университет. — 2003. — 250 с.
  • А.В. Андрюшин, В.Р.Сабанин, Н.И.Смирнов.Управление и инноватика в теплоэнергетике. — М: МЭИ, 2011. — С. 15. — 392 с. — ISBN 978-5-38300539-2.

Принципиальная кинематическая схема — Википедия

Материал из Википедии — свободной энциклопедии

Принципиальная кинематическая схема  — это такая схема, на которой показана последовательность передачи движения от двигателя через передаточный механизм к рабочим органам машины (например, шпинделю станка, режущему инструменту, ведущим колёсам автомобиля и др.) и их взаимосвязь.

На кинематических схемах изображают только те элементы машины или механизма, которые принимают участие в передаче движения (зубчатые колёса, ходовые винты, валы, шкивы, муфты и др.) без соблюдения размеров и пропорций.

Стандарты, регламентирующие условные обозначения и выполнение кинематических схем:

  • ГОСТ 2.770-68 (2000) ЕСКД. Обозначения условные графические на схемах. Элементы кинематики.
  • ГОСТ 2.703-2011. ЕСКД. Правила выполнения кинематических схем.
  • ISO 3952 Kinematic diagrams — Graphical symbols.

Правила выполнения кинематических схем[править | править код]

Корпусные части составляющей единицы (машины или механизма) не показывают совсем или наносят их контур сплошными тонкими линиями. Пространственные кинематические механизмы изображают обычно в виде развёрнутых схем в ортогональных проекциях. Их получают путём размещения всех осей в одной плоскости. Такие схемы позволяют прояснить последовательность передачи движения, но не показывают действительного расположения деталей механизма. Кинематические схемы допускается выполнять в аксонометрии.

Все детали (звенья) на кинематических схемах изображают условно в виде графических символов (ГОСТ 2.770-68 (2000)), которые лишь раскрывают принцип их работы. Соединения смежных звеньев, которое допускает их относительное движение, называют кинематической парой. Наиболее распространённые кинематические пары: шарнир, ползун и направляющая, винт и гайка, шаровой шарнир. Допускается использовать нестандартные условные графические обозначения, но с соответствующими пояснениями на схеме. На кинематической схеме разрешается изображать отдельные элементы схем других видов, которые непосредственно влияют на их работу (например, электрические или гидравлические).

Кроме условных графических обозначений, на кинематических схемах дают указания в виде надписей, поясняющих изображённый элемент. Например, указывают тип и характеристику двигателя, диаметры шкивов, модуль и число зубьев зубчатых колёс и др. Взаимное расположение звеньев на кинематической схеме должно соответствовать начальному, среднему или рабочему положению исполнительных органов механизма или машины. Если звено при работе изделия меняет своё положение, то на схеме допускается указывать его крайние положения тонкими штрихпунктирными линиями. На кинематической схеме звеньям присваивают номера в порядке передачи движения, начиная от двигателя. Валы номеруют римскими цифрами, остальные элементы — арабскими. Порядковый номер элемента проставляют на полочке выносной линии. Под полочкой указывают основные характеристики и параметры кинематического звена.

На кинематических схемах валы, оси, стержни изображают сплошными основными линиями; зубчатые колёса, червяки, звёздочки, шкивы, кулачки — сплошными тонкими линиями.

Читать кинематическую схему начинают от двигателя, как источника движения всех подвижных деталей механизма. Определяя последовательно по условным обозначениям каждый элемент кинематической цепи, устанавливают его назначение и характер передачи движения.

  1. Артоболевский И. И. Теория машин и механизмов. М. Наука 1988.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *