Site Loader

Содержание

схема, как работает, характеристики, способы подключения

Твердотельное реле (ТТР) – полупроводниковое устройство, применяемое для создания контакта между низковольтными и высоковольтными цепями, является современной альтернативой традиционным пускателям и контакторам. Применяется в бытовой технике, промавтоматике, автомобильной электронике. Эти устройства могут иметь разные конструкции и схемы подключения, рассчитанные на применение в определенной группе приборов. В отличие от электромеханических аналогов электронные коммутаторы не имеют трущихся частей, а их основными узлами являются: симисторы, тиристоры, транзисторы.

Структура

В схему твердотельного реле входят:

  • Вход – первичная цепь, основные функции которой – прием и передача сигнала устройству, коммутирующему нагрузку.
  • Триггерная цепь – может быть отдельным элементом или входить в устройство оптической развязки твердотельного реле.
  • Оптическая развязка – изолирует входную и выходную цепи переменного тока. Конструкция опторазвязки определяет тип электронного коммутатора и принцип его действия.
  • Переключающая цепь – служит для передачи напряжения на нагрузку.
  • Цепь защиты – может быть внутренней или наружной, предотвращает появление нештатных режимов и ошибок.

Принцип работы твердотельных реле

Основная задача, решаемая применением твердотельных реле, – руководство автоматикой в сетях с напряжением 12-480 В, коммутация приборов с индуктивной нагрузкой. Рядовое исполнение коммутатора подразумевает наличие двух контактов обслуживаемой сети и двух управляющих проводов. При увеличении количества фаз число контактов и управляющих проводов увеличивается.

Замыкание и размыкание контактов, при которых подается или прекращается подача напряжения на нагрузку, осуществляются при участии активатора твердотельного реле. Его функции выполняют:

  • в устройствах на переменном токе – полупроводники тиристоры или симисторы;
  • в потребителях постоянного тока – транзисторы.

Если в электромеханическом реле при отключении контакты находятся в полностью разомкнутом состоянии, то в твердотельном коммутаторе отсутствие тока в цепи обеспечивают полупроводниковые приборы. При высоких напряжениях они могут давать токи «утечки», снижающие эффективность работы потребителей.

Характеристики твердотельных реле

Эти полупроводниковые устройства имеют комплекс преимуществ, обеспечивающий популярность их применения в современной электронике и автоматике:

  • малое энергопотребление – на 90% меньше, по сравнению с электромагнитными реле;
  • компактные габариты, обеспечивающие удобную транспортировку и монтаж;
  • конструкция, устойчивая к механическим воздействиям;
  • высокое быстродействие, благодаря которому устройство выгодно отличается от электромеханических коммутаторов;
  • бесшумность;
  • длительный рабочий период, отсутствие потребности в проведении периодического техобслуживания;
  • включение цепи без электромагнитных помех;
  • обеспечение надежной изоляции между входными и коммутационными цепями;
  • совместимость с большинством компонентов логических интегральных схем без использования усилителей сигнала, буферов, драйверов.

Основными недостатками этого прибора являются: высокая цена, необходимость использования радиаторов охлаждения и дорогостоящих предохранителей, вероятность появления оттоков «утечки» в отключенном состоянии.

Основные области применения

Твердотельные реле эффективны при необходимости коммутации индуктивной нагрузки. Они применяются:

  • в системах, регулирующих температуру при помощи ТЭНа;
  • для обеспечения постоянного термического режима техпроцесса;
  • для коммутирования управляющих цепей;
  • в цепях изменения скорости вращения электродвигателя;
  • для контроля нагрева, обеспечения нормальных рабочих режимов трансформаторов и других приборов;
  • в осветительных цепях для регулирования уровня освещения – на концертах, дискотеках, шоу.

Эти полупроводниковые устройства могут использоваться как в бытовых приборах, так и в промавтоматике, для функционирования которой требуется трехфазное напряжение.

Разновидности твердотельных реле

Эти полупроводниковые устройства разделяются по типу нагрузки на одно- и трехфазные. Однофазные твердотельные реле работают с токами 10-120 А, 100-500 А, фазовое управление осуществляется аналоговыми сигналами. С помощью трехфазных твердотельных реле управляют током сразу на трех фазах. Рабочий интервал тока – 10-120 А. Разновидностью трехфазных моделей являются коммутаторы реверсивного типа. Их отличия: бесконтактная коммутация и особая маркировка. Эти устройства эффективно соединяют и разъединяют каждую цепь по отдельности. Защитные компоненты предотвращают ложные срабатывания. Трехфазные устройства имеют более длительный эксплуатационный период, по сравнению с однофазными.

По характеру контролируемого и коммутируемого напряжения различают твердотельные реле:

  • Постоянного тока. Надежны, изготавливаются со световой индикацией, имеют широкий диапазон рабочих температур: от -30°C до +70°C.
  • Переменного тока. Для таких полупроводниковых устройств характерны: бесшумность работы, малый уровень электромагнитных помех, высокое быстродействие, энергосберегающие характеристики.
  • С ручным руководством. В этих моделях режим работы можно настраивать самостоятельно.

Классификация твердотельных реле по способу коммутации:

  • устройства для обеспечения мгновенного срабатывания;
  • модели для коммутации слабоиндуктивных, редуктивных, емкостных нагрузок;
  • с наличием управления по фазам – используются для осветительных приборов и нагревательных элементов.

Разновидности по конструкции:

  • разработанные для монтажа на DIN-рейки;
  • универсальные, монтируются на переходные линейки.

Какие параметры важны при выборе твердотельных реле?

Эти полупроводниковые устройства приобретают в соответствии с запланированной областью применения. При покупке учитывают:

  • мощность – запас мощности должен превышать величину, необходимую для обслуживания определенного оборудования, в несколько раз, если модель используется для запуска асинхронного двигателя, то запас должен составлять 6-10 раз;
  • материал изготовления корпуса, его соответствие условиям, в которых будет эксплуатироваться устройство;
  • габариты корпуса;
  • тип крепежных элементов;
  • моментальное или постепенное быстродействие;
  • наличие дополнительных эксплуатационных возможностей;
  • энергопотребление;
  • бренд.

Виды предохранителей для твердотельных реле

Для сохранения работоспособности этих устройств их используют в комплексе с различными типами предохранителей, различающихся между собой по эксплуатационным характеристикам. Эти устройства стоят достаточно дорого, их цена сопоставима со стоимостью самого реле. Однако такие затраты оправдываются надежностью работы приборов.

  • g R – быстро реагируют, работают в широком диапазоне мощностей.
  • g S – пригодны для полного интервала токов.
  • a R – эффективны для защиты от коротких замыканий.

Меньшим защитным диапазоном обладают предохранители классов B, С, D, но и стоят они гораздо дешевле, по сравнению с перечисленными выше аналогами.

Особенности подключения твердотельного реле

Включить прибор в общую цепь можно самостоятельно. Монтаж облегчает отсутствие пайки. Прибор подсоединяют винтовыми крепежными элементами.

При проведении монтажных работ необходимо:

  • избегать попадания металлических предметов, загрязнений, пыли;
  • не прилагать механические воздействия на корпус;
  • размещать устройство вдали от легковоспламеняющихся предметов;
  • перед пуском устройства в работу проверить правильность подключений.
  • Внимание! Во время эксплуатации нельзя прикасаться к корпусу устройства во избежание ожогов. При нагреве модели во время работы до температуры, превышающей +60°C, рекомендуется устанавливать ее на радиатор охлаждения. В основном высокий нагрев происходит при частых включениях электронного коммутатора.

    Возможные схемы подключения твердотельных реле

    Существует множество вариантов подключения твердотельного реле, конкретный способ выбирается, в зависимости от характеристик подключаемой нагрузки. Наиболее простые и распространенные схемы:

  • Нормально открытая. Нагрузка находится под напряжением в присутствии сигнала управления.
  • Нормально закрытая. Нагрузка находится под напряжением при отсутствии управляющего сигнала.
  • Схемы подключения контактов трехфазных твердотельных реле – «звезда» без нейтрали и с нейтралью, «треугольник».
  • Примеры обозначения твердотельных реле на схеме

    Схема твердотельного реле

    Видеообзор


    Была ли статья полезна?

    Да

    Нет

    Оцените статью

    Что вам не понравилось?


    Схема твердотельного реле

    Анатолий Мельник

    Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


    Твердотельное реле | Практическая электроника

    Что такое твердотельное реле

    Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) – это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, но имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют  своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.

    Виды ТТР

    Выглядеть ТТР могут по-разному. Ниже на фото слаботочные реле

    твердотельное реле для печатных платтвердотельное реле

    Такие релe используются в печатных платах и предназначены для коммутации (переключения)  малого тока и напряжения.

    На ТТР строят также сразу готовые модули входов-выходов, которые используются в промышленной автоматике

    твердотельное реле ардуино

    А вот так выглядят реле, используемые в силовой электронике, то есть в электронике, которая коммутирует большую силу тока. Такие реле используется в промышленности в блоках управления станков ЧПУ и других промышленных установках

    твердотельное реле однофазноетрехфазное твердотельное реле

    Слева однофазное реле, справа трехфазное.

    Если через коммутируемые контакты силовых  реле будет проходить приличный ток, то корпус реле будет очень сильно греться. Поэтому, чтобы реле не перегревались и не выходили из строя, их ставят  на радиаторы, которые рассеивают тепло в окружающее пространство.

    твердотельное реле на радиаторе

    ТТР по типу управления

    ТТР могут управляться с помощью:

    1) Постоянного тока. Его диапазон составляет от 3 и до 32 Вольт.

    2) Переменного тока. Диапазон переменного тока составляет от 90 и до 250 Вольт. То есть такими реле можно спокойно управлять с помощью сетевого напряжения 220 В.

    3) С помощью переменного резистора. Значение переменного резистора может быть в диапазоне от 400 и до 600 Килоом.

     ТТР по типу переключения

    С коммутацией перехода через ноль

    Посмотрите внимательно на диаграмму

    твердотельное реле с переходом через ноль

    Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток  достигнет нуля. Выключение происходит подобным образом.

    Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.

    Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:

    твердотельное реле схемауправление постоянным током

    Твердотельное релеуправление переменным током

    Мгновенного включения

    Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.

    твердотельное реле с мгновенным переключением

    В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока,  а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.

    Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:

    Твердотельное реле

    ТТР с фазовым управлением

    Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.

    твердотельное реле с фазовым управлением

    Примерная схема подключения выглядит вот так:

    твердотельное реле с фазовым управлением

    Работа твердотельного реле

    В гостях у нас ТТР фирмы FOTEK:

    Давайте разберемся с его обозначениями.  Вот небольшая табличка-подсказка для этих типов реле

    Твердотельное реле

    Давайте еще раз взглянем на наше ТТР

    SSR – это значит однофазное твердотельное реле.

    40 – это на какую максимальную силу тока она рассчитана. Измеряется в Амперах и в данном случае составляет 40 Ампер. 

    D – тип управляющего сигнала. От значения Direct Current – что с буржуйского – постоянный ток. Управление ведется постоянным током от 3 и до 32 Вольт. Этого диапазона хватит самому заядлому разработчику радиоэлектронной аппаратуры. Для особо непонятливых даже написано Input, показан диапазон и фазировка напряжения. Как вы видите, на контакт №3 мы подаем “плюс”, а на №4 мы подаем “минус”.

    А – тип коммутируемого напряжения. Alternative current – переменный ток. Цепляемся в этом случае к выводам №1 и №2. Можем коммутировать диапазон от 24 и  до 380 Вольт переменного напряжения.

    Для опыта нам понадобится лампа  накаливания на 220 Вольт и простая вилка со шнуром. Соединяем лампу со шнуром только в одном месте:

    В разрыв вставляем наше  твердотельное реле

    Втыкаем вилку в розетку и…

    Нет… не хочет… Чего-то не хватает…

    Не хватает управляющего напряжения! Выводим напряжение от Блока питания  от 3 и до 32 Вольт постоянного напряжения. В данном случае я взял 5 Вольт. Подаю на управляющие контакты и…

    О чудо! Лампочка загорелась!  Это значит, что контакт №1 замкнулся с контактом №2. О срабатывании реле нам также говорит и светодиод на корпусе самого реле. 

    Интересно, какую силу тока потребляют управляющие контакты реле? Итак, имеем на блоке 5 Вольт.

    А сила тока получилась 11,7 миллиампер! Можно управлять хоть микроконтроллером!

    Плюсы и минусы твердотельного реле

    Плюсы

    • включение  и выключение цепей без электромагнитных помех
    • высокое быстродействие
    • отсутствие шума и дребезга контактов
    • продолжительный период работы (свыше МИЛЛИАРДА срабатываний)
    • возможность работы во взрывоопасной среде, так как нет дугового разряда
    • низкое энергопотребление (на 95% (!) меньше, чем у обычных реле)
    • надёжная изоляция между входными и коммутируемыми цепями
    • компактная герметичная конструкция, стойкая к вибрации и ударным нагрузкам
    • небольшие размеры и хорошая теплоотдача (если конечно использовать термопасту и хороший радиатор)

    Минусы:

    Где купить твердотельное реле

    Любые виды твердотельных реле вы всегда можете найти на Али по этой ссылке.

    твердотельное реле купить

    При написании статьи использовалась информация, взятая по этой ссылке.

    принцип работы, управление и схемы

    В данной статье поговорим про твердотельное реле, обозначим его преимущество перед механическим реле. Рассмотрим управление и подключение твердотельного реле, принцип его работы и конструкцию, а так же разберем различные схемы.

    Описание

    В отличие от электромеханических реле (EMR), которые используют катушки, магнитные поля, пружины и механические контакты для управления и переключения питания, твердотельное реле или SSR не имеет движущихся частей, но вместо этого использует электрические и оптические свойства полупроводниковых полупроводников, выполняет его вход в функции изоляции и переключения выхода.

    Как и обычные электромеханические реле, твердотельные реле обеспечивают полную электрическую изоляцию между их входными и выходными контактами, а его выход действует как обычный электрический переключатель в том смысле, что он имеет очень высокое, почти бесконечное сопротивление в непроводящем (разомкнутом) и очень низком сопротивлении при проведении. Твердотельные реле могут быть предназначены для переключения как переменного, так и постоянного тока с помощью SCR, триак или переключающего транзисторного выхода вместо обычных механических нормально разомкнутых контактов. Купить твердотельное реле на Алиэкспресс:

    В то время как твердотельное реле и электромеханическое реле в основном схожи в том, что их низковольтный вход электрически изолирован от выхода, который переключает и контролирует нагрузку, электромеханические реле имеют ограниченный жизненный цикл контакта, могут занимать много места и имеют более низкие скорости переключения, особенно большие силовые реле и контакторы. Твердотельные реле не имеют таких ограничений.

    твердотельное реле

    Таким образом, основные преимущества твердотельных реле по сравнению с обычными электромеханическими реле состоят в том, что у них нет движущихся частей, изнашиваемых, и, следовательно, нет проблем с отскоком контактов, они могут переключать «ВКЛ» и «ВЫКЛ» гораздо быстрее, чем механические реле может двигаться, а также включаться при нулевом напряжении и отключаться при нулевом токе, что устраняет электрические помехи и переходные процессы.

    Полупроводниковые реле можно купить в стандартных готовых комплектах, от нескольких вольт или ампер до многих сотен вольт и ампер выходной коммутационной способности. Однако твердотельные реле с очень высоким номинальным током (плюс 150 А) все еще слишком дороги для покупки из-за их требований к силовым полупроводникам и теплоотдаче, и, как таковые, все еще используются более дешевые электромеханические контакторы.

    Подобно электромеханическому реле, небольшое входное напряжение, обычно от 3 до 32 вольт постоянного тока, может использоваться для управления очень большим выходным напряжением или током, например 240В, 10А. Это делает их идеальными для взаимодействия микроконтроллеров, PIC и Arduino, так как слаботочный 5-вольтный сигнал, скажем, от микроконтроллера или логического вентиля, может использоваться для управления конкретной нагрузкой цепи, и это достигается с помощью опто-изолятора.

    Принцип работы и конструкция твердотельного реле

    Одним из основных компонентов твердотельного реле (SSR) является оптоизолятор (также называемый оптопарой), который содержит один (или более) инфракрасный светодиод или светодиодный источник света, а также фоточувствительное устройство в один случай. Оптоизолятор изолирует вход от выхода.

    Светодиодный источник света подключен к входной секции SSR и обеспечивает оптическую связь через зазор с соседним фоточувствительным транзистором, парой Дарлингтона или симистором. Когда ток проходит через светодиод, он загорается, и его свет фокусируется через зазор на фототранзистор / фототриак.

    Таким образом, выход оптронного SSR включается при включении этого светодиода, как правило, с помощью низковольтного сигнала. Поскольку единственным входом между входом и выходом является луч света, высоковольтная изоляция (обычно несколько тысяч вольт) достигается с помощью этой внутренней оптоизоляции.

    Оптоизолятор не только обеспечивает более высокую степень изоляции входов / выходов, он также может передавать сигналы постоянного тока и низкочастотные сигналы. Кроме того, светодиод и фоточувствительное устройство могут быть полностью отделены друг от друга и оптически связаны с помощью оптического волокна.

    Входная схема SSR может состоять только из одного ограничивающего ток резистора, включенного последовательно со светодиодом оптоизолятора, или из более сложной цепи с выпрямителем, регулированием тока, защитой от обратной полярности, фильтрацией и т.д.

    Чтобы активировать или включить «ВКЛ» проданное реле состояния в проводимость, на его входные клеммы должно быть приложено напряжение, превышающее его минимальное значение (обычно 3 В постоянного тока) (эквивалентно катушке электромеханического реле). Этот сигнал постоянного тока может быть получен от механического переключателя, логического вентиля или микроконтроллера, как показано ниже.

    Входная цепь постоянного тока твердотельного реле

    Входная цепь постоянного тока твердотельного реле

    При использовании в качестве сигнала активации механических контактов, переключателей, кнопок, других контактов реле и т.д., используемое напряжение питания может быть равно минимальному значению входного напряжения SSR, тогда как при использовании твердотельных устройств, таких как транзисторы, вентили и микро-контроллеры, минимальное напряжение питания должно быть на один или два вольт выше напряжения включения SSR для учета внутреннего падения напряжения коммутационных аппаратов.

    Но помимо использования напряжения постоянного тока, либо ослабления, либо источника, для переключения твердотельного реле в проводящее состояние, мы также можем использовать синусоидальную форму волны, добавив мостовой выпрямитель для двухполупериодного выпрямления и схему фильтра на вход постоянного тока.

    Входная цепь переменного тока твердотельного реле

    Входная цепь переменного тока твердотельного реле

    Мостовые выпрямители преобразуют синусоидальное напряжение в двухполупериодные выпрямленные импульсы с удвоенной входной частотой. Проблема здесь заключается в том, что эти импульсы напряжения начинаются и заканчиваются с нуля вольт, что означает, что они упадут ниже минимальных требований к напряжению при включении порога входа SSR, в результате чего выход будет «включаться» и «выключаться» в каждом полупериоде.

    Чтобы преодолеть это беспорядочное срабатывание на выходе, мы можем сгладить выпрямленную рябь, используя сглаживающий конденсатор (C1) на выходе мостового выпрямителя. Эффект зарядки и разрядки конденсатора повысит постоянную составляющую выпрямленного сигнала выше максимального значения напряжения включения на входе твердотельных реле. Тогда, даже если используется постоянно изменяющаяся синусоидальная форма волны напряжения, входной сигнал SSR видит постоянное напряжение постоянного тока.

    Значения резистора падения напряжения R 1 и сглаживающего конденсатора C 1выбираются в соответствии с напряжением питания, 120 В переменного тока или 240 В переменного тока, а также входным сопротивлением твердотельного реле. Но что-то около 40 кОм и 10 мкФ подойдет.

    Затем с добавлением этой мостовой выпрямителя и сглаживающей конденсаторной цепи можно управлять стандартным твердотельным реле постоянного тока, используя источник переменного или неполяризованного постоянного тока. Конечно, производители уже производят и продают входные твердотельные реле переменного тока (обычно от 90 до 280 В переменного тока).

    Выход твердотельного реле

    Возможности переключения выхода твердотельного реле могут быть как переменного, так и постоянного тока, аналогичными его требованиям к входному напряжению. Выходная цепь большинства стандартных твердотельных реле сконфигурирована для выполнения только одного типа переключающего действия, дающего эквивалент нормально разомкнутого однополюсного однополюсного (SPST-NO) режима работы электромеханического реле.

    Для большинства твердотельных реле постоянного тока обычно используются твердотельные коммутационные устройства — силовые транзисторы, Дарлингтона и MOSFET, тогда как для твердотельного реле переменного тока, коммутационные устройства — это симисторные или двухсторонние тиристоры. Тиристоры предпочтительны из-за их высокого напряжения и тока. Один тиристор также может использоваться в схеме мостового выпрямителя, как показано на рисунке.

    Выходная цепь твердотельного реле

    Наиболее распространенным применением твердотельных реле является переключение нагрузки переменного тока, будь то управление мощностью переменного тока для включения / выключения, затемнение света, управление скоростью двигателя или другие подобные приложения, где необходимо управление мощностью, эти нагрузки переменного тока может легко управляться с помощью постоянного тока низкого напряжения с помощью твердотельного реле, обеспечивающего длительный срок службы и высокие скорости переключения.

    Одним из самых больших преимуществ твердотельных реле по сравнению с электромеханическим реле является его способность выключать «переменные» нагрузки переменного тока в точке нулевого тока нагрузки, тем самым полностью устраняя искрение, электрический шум и отскок контактов, связанные с обычными механическими реле и индуктивными нагрузками.

    Это связано с тем, что твердотельные реле переключения переменного тока используют SCR и триак в качестве выходного переключающего устройства, которое продолжает проводить после удаления входного сигнала до тех пор, пока переменный ток, протекающий через устройство, не опустится ниже своего порогового значения или не сохранит значение тока. Тогда выход SSR никогда не сможет выключиться в середине пика синусоидальной волны.

    Отключение при нулевом токе является основным преимуществом использования твердотельного реле, поскольку оно уменьшает электрические помехи и обратную эдс, связанные с переключением индуктивных нагрузок, которые видятся как искрение контактами электромеханического реле. Рассмотрим диаграмму формы выходного сигнала ниже типичного твердотельного реле переменного тока.

    Форма выходного сигнала твердотельного реле

    Форма выходного сигнала твердотельного реле

    При отсутствии входного сигнала ток нагрузки не протекает через SSR, поскольку он фактически выключен (разомкнут), а выходные клеммы видят полное напряжение питания переменного тока. При применении входного сигнала постоянного тока, независимо от того, какую часть синусоидального сигнала, положительного или отрицательного, проходит цикл, из-за характеристик переключения SSR при нулевом напряжении, выход включается только тогда, когда сигнал пересекает нулевую точку.

    Когда напряжение питания увеличивается в положительном или отрицательном направлении, оно достигает минимального значения, необходимого для полного включения выходных тиристоров или симистора (обычно менее чем около 15 вольт). Падение напряжения на выходных клеммах SSR соответствует падению напряжения переключающего устройства V T (обычно менее 2 вольт). Таким образом, любые высокие пусковые токи, связанные с реактивными или ламповыми нагрузками, значительно снижаются.

    Когда сигнал входного напряжения постоянного тока удаляется, выход не отключается внезапно, так как после срабатывания проводимости тиристор или триак, используемый в качестве переключающего устройства, остается включенным в течение оставшейся части полупериода, пока токи нагрузки не упадут ниже удерживающих устройств тока, в этот момент он выключается. Таким образом, высокая обратная ЭДС dv / dt, связанная с переключением индуктивных нагрузок в середине синусоиды, значительно снижается.

    Тогда основными преимуществами твердотельного реле переменного тока над электромеханическим реле является его функция пересечения нуля, которая включает SSR, когда напряжение нагрузки переменного тока близко к нулю вольт, таким образом подавляя любые высокие пусковые токи, поскольку ток нагрузки всегда будет запускаться от точки, близкой к 0 В, и присущей нулевой характеристике отключения тока тиристора или симистора. Поэтому существует максимально возможная задержка выключения (между удалением входного сигнала и отключением тока нагрузки) в один полупериод.

    Фазорегулирующее твердотельное реле

    Хотя твердотельные реле могут выполнять прямое переключение нагрузки при пересечении нуля, они также могут выполнять гораздо более сложные функции с помощью цифровых логических схем, микропроцессоров и модулей памяти. Другое превосходное применение твердотельного реле — в устройствах с диммером ламп, будь то дома, для шоу или концерта.

    Твердотельные реле с ненулевым включением (мгновенное включение) включаются сразу после подачи входного управляющего сигнала, в отличие от SSR пересечения нуля, который выше, и ожидает следующей точки пересечения нуля синусоидальной волны переменного тока. Это случайное переключение при пожаре используется в резистивных устройствах, таких как диммер ламп, и в устройствах, в которых нагрузка должна подаваться только в течение небольшой части цикла переменного тока.

    Форма сигнала с произвольным переключением

    Форма сигнала с произвольным переключением

    Хотя это позволяет контролировать фазу сигнала нагрузки, основная проблема случайного включения SSR заключается в том, что начальный скачок тока нагрузки в момент включения реле может быть высоким из-за переключающей мощности SSR, когда напряжение питания составляет близко к своему пиковому значению (90 o ). Когда входной сигнал удаляется, он перестает проводить, когда ток нагрузки падает ниже тока тиристоров или триаков, как показано на рисунке. Очевидно, что для твердотельного реле постоянного тока действие включения-выключения является мгновенным.

    Твердотельное реле идеально подходит для широкого диапазона применений ВКЛ / ВЫКЛ переключения , поскольку они не имеют подвижных частей или контактов в отличие от электромеханического реле (ЭМР). Существует много различных коммерческих типов на выбор для входных сигналов управления переменного и постоянного тока, а также для переключения выходов переменного и постоянного тока, так как они используют полупроводниковые переключающие элементы, такие как тиристоры, триаки и транзисторы.

    Но используя комбинацию хорошего оптоизолятора и симистора, мы можем сделать наше собственное недорогое и простое твердотельное реле для управления нагрузкой переменного тока, такой как нагреватель, лампа или соленоид. Поскольку для работы оптоизолятора требуется только небольшое количество входной / управляющей мощности, управляющий сигнал может поступать от PIC, Arduino, Raspberry PI или любого другого такого микроконтроллера.

    Пример твердотельного реле

    Предположим, нам нужен микроконтроллер с сигналом порта цифрового выхода всего лишь +5 В для управления нагревательным элементом 120 В переменного тока, 600 Вт. Для этого мы могли бы использовать опто-триационный изолятор MOC 3020, но внутренний триак может пропускать только максимальный ток (I TSM ) в пике 1 А на пике источника переменного тока 120 В, поэтому необходимо также использовать дополнительный переключающий триак.

    Сначала давайте рассмотрим входные характеристики оптоизолятора MOC 3020 (доступны другие опто-триаки). Спецификация оптоизоляторов говорит нам, что прямое напряжение (V F ) падения входного светодиода составляет 1,2 В, а максимальный прямой ток (I F ) составляет 50 мА.

    Светодиоду требуется около 10 мА, чтобы он мог достаточно ярко светиться до максимального значения 50 мА. Однако порт цифрового выхода микроконтроллера может выдавать максимум 30 мА. Тогда значение требуемого тока лежит где-то между 10 и 30 миллиампер. Следовательно:

    расчет резистора

    Таким образом, можно использовать резистор для ограничения последовательного тока со значением от 126 до 380 Ом. Поскольку порт цифрового выхода всегда переключается на +5 В и для уменьшения рассеивания мощности через светодиод оптопары мы выберем предпочтительное значение сопротивления 240 Ом. Это дает светодиодный прямой ток менее 16 мА. В этом примере подойдет любое предпочтительное значение резистора между 150 Ом и 330 Ом.

    Нагрузка нагревательного элемента составляет 600 Вт. Использование 120 В переменного тока даст нам ток нагрузки 5 ампер (I = P / V). Поскольку мы хотим управлять этим током нагрузки в обоих полупериодах (все 4 квадранта) формы сигнала переменного тока, нам потребуется триак переключения сети.

    BTA06 — это симистор 600 В на 6 ампер (I T (RMS) ), подходящий для общего / двухпозиционного переключения нагрузок переменного тока, но подойдет любой аналогичный симистор с номинальным напряжением 6–8 ампер. Кроме того, для этого переключающего триака требуется только 50 мА привода затвора для запуска проводимости, что намного меньше максимального значения 1 А для оптоизолятора MOC 3020.

    Учтите, что выходной триак оптоизолятора включился при пиковом значении (90 o ) среднеквадратичного напряжения питания 120 В переменного тока. Это пиковое напряжение имеет значение: 120 x 1,414 = 170Vpk. Если максимальный ток опто-триаков (I TSM ) составляет 1 А, то минимальное значение требуемого последовательного сопротивления составляет 170/1 = 170 Ом или 180 Ом до ближайшего предпочтительного значения. Это значение 180 Ом будет защищать выходной триак оптопары, а также затвор триака BTA06 при питании 120 В переменного тока.

    Если симистор оптоизолятора включается при значении пересечения нуля (0 o ) среднеквадратичного переменного напряжения питания 120 В , то минимальное напряжение, необходимое для подачи требуемого тока возбуждения затвора 50 мА, заставляющего переключающий триак в проводимость, будет: 180 Ом х 50 мА = 9,0 вольт. Затем симистор срабатывает, когда синусоидальное напряжение Gate-to-MT1 превышает 9 вольт.

    Таким образом, минимальное напряжение, требуемое после точки пересечения нуля формы сигнала переменного тока, должно составлять 9 вольт, при этом рассеяние мощности в этом последовательном затворном резисторе очень мало, поэтому можно безопасно использовать резистор номиналом 0,5 Ом с сопротивлением 0,5 Ом и номиналом 0,5 Вт. Рассмотрим схему ниже.

    Схема реле переменного тока

    Схема полупроводникового реле переменного тока

    Этот тип конфигурации оптопары формирует основу очень простого применения твердотельного реле, которое может использоваться для управления любой нагрузкой от сети переменного тока, такой как лампы и двигатели. Здесь мы использовали MOC 3020, который является изолятором со случайным переключением. Опто-триачный изолятор MOC 3041 имеет те же характеристики, но со встроенным обнаружением пересечения нуля, позволяющим нагрузке получать полную мощность без больших пусковых токов при переключении индуктивных нагрузок.

    Диод D 1 предотвращает повреждение из-за обратного подключения входного напряжения, в то время как резистор 56 Ом (R 3 ) шунтирует любые токи di / dt при отключенном симисторе, устраняя ложные срабатывания. Он также связывает терминал затвора с MT1, обеспечивая полное отключение симистора.

    Если используется входной сигнал ШИМ с широтно-импульсной модуляцией, частота переключения ВКЛ / ВЫКЛ должна быть установлена ​​не более 10 Гц для нагрузки переменного тока, иначе выходное переключение этой полупроводниковой релейной цепи может не выдержать.

    по ГОСТу, контактов реле, промежуточного и реле тока

    Содержание статьи:

    Для полноты информации об изделии и особенностях его работы используются электрические схемы. Пользователь не может запутаться при сборке благодаря внесению буквенно-графических маркировок в ЕСКД. Обозначение реле на схеме подчиняется ГОСТ 2.702-2011, где подробно описываются элементы устройства и расшифровываются значения.

    Маркировка релейной защиты

    Электромагнитное реле постоянного тока

    Чтобы обозначить релейную защиту, на чертежах применяются маркеры машин, приборов, аппаратов и самого реле. Все устройства изображают в условиях без напряжения во всех электролиниях. По типу назначения релейного прибора применяются три типа схем.

    Принципиальные схемы

    Принципиальный чертеж выполняется по отдельным линиям – оперативного тока, тока, напряжения, сигнализации. Реле на нем отрисовываются в расчлененном виде – обмотки находятся на одной части рисунка, а контакты – на другой. Маркировка внутреннего соединения, зажимов, источников оперативного тока на принципиальной схеме отсутствует.

    Сложные соединения сопровождаются надписями с указанием функционала отдельных узлов.

    Монтажная схема

    Пример монтажной схемы

    Маркировка устройств защиты производится на рабочих схемах, предназначенных для сборки панелей, управления или автоматики. Все приборы, зажимы, соединения или кабели отражают особенности подключения.

    Монтажная схема также называется исполнительной.

    Структурные схемы

    Позволяют выделить общую структуру релейной защиты. Обозначаться будут уже узлы и типы взаимных связей. Для маркировки органов и узлов применяются прямоугольники с надписями или специальные индексы с разъяснением цели применения конкретного элемента. Структурную схему также дополняются условными знаками логических связей.

    Условное обозначение

    На электрической схеме реле принято обозначать прямоугольником, от больших сторон которого отходят линии соленоидных выводов питания.

    Графические маркеры

    Условное обозначение реле на схемах

    Графический способ изображения элементов реализуется посредством геометрических фигур:

    • контакты – аналогично контактам переключателей;
    • устройства с контактами около катушки – соединение штриховой линии;
    • контакты в различных местах – порядковый номер рядом с прямоугольником;
    • полярное реле – прямоугольник с двумя выводами и точкой около разъема;

      Контактная группа реле

    • фиксирование коммутатора при срабатывании – жирная точка у неподвижного контакта;
    • замкнутые контакты реле после того, как снято напряжение – на обозначении замкнутого или разомкнутого контакта рисуют кружок;
    • магнитоуправляемые контакты (геркон) в корпусе – окружность;
    • количество обмоток – наклонные линии;
    • подвижный контакт – стрелочка;
    • однолинейная токопроводящая поверхность – прямая линия с выводами ответвления;

      Поляризованное реле

    • кольцевая или цилиндрическая токоотводящая поверхность – окружность;
    • перемычки (реле как делитель напряжения) для рассекания сети – линия с символами разъемного соединения;
    • перемычка переключения – П-образная скобка.

    Контакты реле могут подписываться.

    Буквенное обозначение

    УГО реле бывает недостаточно для правильного прочтения схемы. В этом случае используется буквенный способ маркировки. Код реле – английская литера К. Для наглядного понимания, что может обозначать буква на релейной схеме, стоит обратиться к таблице.

    БуквыРасшифровка
    AKБлок-реле/защитный комплекс
    AKZКомплект реле сопротивления
    KAРеле тока
    KATР. тока с БНТ
    KAWР. тока с торможением
    KAZТоковое реле с функциями фильтра
    KBР. блокировки
    KFР. частоты
    KHУказательное
    KLПромежуточное
    FПлавкий предохранитель
    XNНеразборное соединение
    XTРазборное соединение
    KQCРеле «вкл»
    KQTРеле «откл»
    KTР. времени
    KSGТепловое
    KVР. напряжения
    K 2.1, K 2.2, K 2.3Контактные группы
    XTКлеммы
    EЭлементы, к которым подключается реле
    NOНормально разомкнутые контакты
    NCНормально замкнутые контакты
    COMОбщие (переключающиеся) контакты
    mWМощность потребления
    mVЧувствительность
    ΩСопротивление обмотки
    VНоминал напряжения
    mAНоминальный ток

    Буквы можно использовать на графической схеме.

    Обозначения в зависимости от типов реле

    В зависимости от вида релейные устройства могут обозначаться на схемах по-разному.

    Тепловые модели реле

    Реле тепловой защиты применяются с целью обеспечения нормального режима работы потребителей. Приборы выключают электродвигатель мгновенно или через некоторое время, предотвращая повреждения изоляционной поверхности или отдельных узлов.

    На схемах тепловое реле обозначается как KSG и подключается на нормально-замкнутый контакт. Подключение производится по системе ТР – на выход низковольтного пускателя электродвигателя.

    Реле времени

    Обозначение реле времени

    Реле времени обозначается как KT и работает по принципу постановки на паузу при определенном воздействии. Прибор также может иметь цикличную активность.

    Для обозначения контактов, работающих на замыкание согласно ГОСТ 2.755-87 применяются:

    • дуга вниз – задержка после подачи напряжения;
    • дуга вниз – контакт, срабатывающий при возврате;
    • две дуги в противоположном направлении – задержка при подаче и снятии напряжения управления.

    Импульсные замыкающие контакты обозначаются так:

    • черточка внизу с диагональной угловой линией и стрелка без нижней части – импульсное замыкание при срабатывании;
    • черточка внизу с диагональной угловой линией и стрелкой без верхней части – импульсное замыкание при возврате;
    • черточка внизу с диагональной угловой линией и нормальной стрелкой – импульсное замыкание в момент срабатывания и возврата.

    Напряжение питания, подающееся на реле времени, на схемах маркируется как голубой график. Направление напряжения на приборы обозначается как серый график. Диапазон задержки срабатывания имеет обозначение в виде красных стрелок. Временной интервал отражает буква Т.

    Реле тока

    Реле тока на схеме

    Токовое реле контролирует ток и напряжение. Увеличение первого параметра свидетельствует о неполадках оборудования или линии.

    На схемах устройство маркируется как KA (первая буква – общая для реле, пускателя, контактора, вторая – конкретно для токовой модели). При наличии БНТ оно будет обозначаться KAT, торможения – KAW, фильтрации – KAZ. Катушку на чертежах изображают как прямоугольник, размер которого 12х6 мм. Контакты имеют обозначение нормально открытых или нормально закрытых.

    Обмотка напряжения маркируется как прямоугольник, разделенный на две части горизонтально. В меньшей указывается буква U, от большей вверх и вниз направлены по горизонтали ровные черточки.

    Обмотка тока указывается как прямоугольник, разделенный на два сектора в горизонтальном направлении. В большей по горизонтали вверху и внизу имеются две черточки. На меньшей прописывается буква I со значком больше (максимальный ток).

    Особенности обозначения электромагнитных реле на схемах

    Конструктивно электромагнитное реле является электромагнитом с одной или несколькими контактными группами. Их символы и формируют УГО прибора. Обмотка электромагнита отрисовывается как прямоугольник с линиями выводов по обеим сторонам. Маркеры контактов К находятся напротив узкой стороны обмотки и соединяются пунктиром (механическая связь).

    Контактный вывод можно изобразить с одной стороны, а контакты – около УГО коммутации. Привязку контактов к конкретному реле указывают в виде порядковой нумерации (К 1.1., К 1.2).

    Внутри прямоугольника могут указываться параметры или особенности конструкции. К примеру, в символе К 4 имеются две наклонные черточки, т.е. у реле – две обмотки.

    Модификации с магнитоуправляемыми контактами в герметичном корпусе для отличия от стандартных приборов обозначают окружностью. Это символ геркона. Принадлежность элемента к определенному устройству прописываются в виде букв контактов (К) и порядковых чисел (5.1, 5.2).

    Геркон, управляемый магнитом постоянного типа и не входящий в конструкцию релейной защиты, имеет кодировку автовыключателя – SF.

    Промежуточное реле

    Промежуточное реле на схеме

    Промежуточные релейные устройства применяются для коммутации электроцепи. Они усиливают электрический сигнал, распределяют электроэнергию, сопрягают радиотехнические элементы. Условный знак катушки – прямоугольник с литерой К и порядковым номером на чертеже.

    Обозначение контактов промежуточного реле на схеме выполняется при помощи буквы, но с двумя цифрами, которые разделены точкой. Первая свидетельствует о порядковом номере релейного прибора, вторая – о номере группы контактов данного прибора. Контакты, находящиеся около катушки, соединяются штриховкой.

    Маркировка электросхемы и выводов производится изготовителем. Она наносится на крышку, закрывающую рабочие органы. Под схемой прописываются контактные параметры – максимальный ток коммутации. Некоторые бренды номеруют выводы со сторон соединения.

    На схемах контакты изображаются в состоянии без подачи напряжения.

    Виды и обозначения релейных контактов

    Обозначения релейных контактов

    В зависимости от конструкции реле существует три типа контактов:

    • Нормально-разомкнутые. Размыкаются до подачи тока через катушку реле. Буквенное обозначение – НР или NO.
    • Нормально-замкнутые. Находятся в замкнутом положении до момента протекания тока через релейную катушку. Обозначаются буквами НЗ или NC.
    • Перекидные/переключающиеся/общие. Представляют собой комбинацию из контактов нормально-разомкнутого или нормально-замкнутого типа. Оснащаются общим приводом переключения. Буквенная символика – COM.

    На сегодняшний день распространены реле с перекидными контактами.

    Досконально изучать особенности маркировки не обязательно. Буквенно-графические символы можно выписать или распечатать, а затем использовать для сборки. Если геометрические фигуры покажутся сложными, всегда можно обратиться к буквенной маркировке.

    Программируемые реле

    ПР110 программируемое реле для дискретных локальных систем

    УГО ЕСКД
    УГО СПДС
    Бесконтактный датчик PNP типа
    Кнопка без фиксации с общим плюсом
    Поплавковый датчик уровня
    Контактор 220В (P)
    Лампа сигнализации (P)
    Подключение к ПК
    Подключение ПЛК в сеть RS485
    3D Модель ПР110-Х.8Д.Х.Х
    2D Модель ПР110-Х.8Д.Х.Х
    3D Модель ПР110-Х.12Д.Х.Х
    2D Модель ПР110-Х.12Д.Х.Х

    ПР114 программируемое реле с поддержкой аналоговых сигналов для локальных систем

    УГО ЕСКД
    УГО СПДС
    Датчик давления 4…20мА
    Датчик температуры 4…20мА
    Датчик напряжения 0..10В
    Твердотельное реле 0-10В (У)
    Твердотельное реле 4…20мА (И)
    Бесконтактный датчик PNP типа
    Кнопка без фиксации с общим плюсом
    Поплавковый датчик уровня
    Контактор 220В (Р)
    Промежуточное реле 24В (К)
    Симистор управление (С)
    Твердотельное реле (Т)
    Подключение к ПК
    Подключение в сеть RS485
    3D Модель ПР114-224.8Д4А
    2D Модель ПР114-224.8Д4А

    ПР200 программируемое реле с дисплеем

    УГО_ЕСКД
    УГО_СПДС
    Датчик влажности 0-10 В
    Датчик давления 4..20 мА
    Потенциометр
    Твердотельное реле 0-10 В
    Твердотельное реле 4..20 мА
    Бесконтактный датчик PNP типа
    Поплавковый датчик уровня
    Контактор 220 В
    Промежуточное реле
    Алгоритм 1 (2.М1.0.2)
    Алгоритм 2 (2.М1.0.3)
    Алгоритм 3 (2.М1.Д.2)
    Алгоритм 4 (2.М1.А.2)
    Алгоритм 5 (2.М1.А.3)
    Алгоритм 6 (3.М1.Д.2)
    Алгоритм 7 (3.М1.А.2)
    Алгоритм 8 (3.М1.А.3)
    Алгоритм 9 (4.М1.Д.2)
    Алгоритм 10 (4.М1.А.2)
    Алгоритм 11 (4.М1.А.3)
    3D Модель ПР200
    2D Модель ПР200

    ПР100 компактное программируемое реле для локальных систем автоматизации

    УГО_ЕСКД
    УГО_СПДС
    Датчик влажности 4…20мА
    Датчик температуры 4…20мА
    Датчик уровня 4…20мА
    Клапан с электромеханическим приводом 0-10В (U)
    Нормирующий преобразователь 4…20мА
    Кнопка без фиксации с общим минусом
    Поплавковый датчик уровня
    Контактор 220 В
    Лампа сигнализации
    Промежуточное реле 24В
    2D Модель ПР100
    3D Модель ПР100-24.0804
    3D Модель ПР100-24.1208
    3D Модель ПР100-230.0804
    3D Модель ПР100-230.1208

    ПРМ-24.1 модули расширения входов/выходов

    УГО ЕСКД
    УГО СПДС
    Кнопка без фиксации
    Переключатель с фиксацией
    Поплавковый датчик уровня
    Лампа сигнализации
    Нагреватели
    Управление контакторами
    2D Модель ПРМ-24.1
    3D Модель ПРМ-24.1

    ПРМ-220.1 модули расширения входов/выходов

    УГО ЕСКД
    УГО СПДС
    Кнопка без фиксации
    Переключатель с фиксацией
    Поплавковый датчик уровня
    Лампа сигнализации
    Нагреватели
    Управление контакторами
    2D Модель ПРМ-220.1.1

    ПРМ-Х.3 модули расширения входов/выходов

    УГО ЕСКД
    УГО СПДС
    Датчик влажности 4…20мА
    Датчик уровня 4…20мА
    Нормирующий преобразователь 4…20мА
    Термопара
    Термосопротивление

    Что такое твёрдотельное реле?

    Устройство и параметры твёрдотельных реле

    Радиоэлектроника развивается стремительными темпами и то, что совсем недавно использовалось повсеместно, в настоящее время кажется пережитком далёкой старины. Электромеханическое реле ещё активно используется, но на смену ему идёт принципиально новый электронный прибор – твёрдотельное реле.

    В англоязычной технической литературе твердотельное реле (ТТР), имеет сокращённое обозначение SSR (Solid State Relays).

    Твёрдотельное реле служит для управления силовыми цепями с помощью низковольтной цепи управления. В качестве коммутатора силовой цепи используются мощные ключи на полупроводниковых структурах, выполненных по типу: транзистора, тиристора или симистора.

    Твёрдотельное реле OMRON

    По сути, твёрдотельное реле является аналогом всем знакомого электромеханического, но выполненного по полупроводниковой технологии.

    Такие реле, в зависимости от типа, могут работать как в цепях переменного, так и постоянного тока.

    Принцип работы твёрдотельного реле.

    Работает твердотельное реле следующим образом: управляющий сигнал подаётся на светодиод. Оптическое излучение вызывает на фотоприёмнике (фотодиоде) появление ЭДС. Это напряжение подаётся на управляющую схему, которая вырабатывает сигнал для управления выходным ключом.

    Упрощённое устройство твёрдотельного реле

    Таким образом, вся работа твёрдотельного реле осуществляется в нескольких ступенях разделённых между собой:

    • Входная цепь (излучающий диод).

    • Оптическая развязка.

    • Фотодиод с триггером управления (схема управления).

    • Цепь коммутации (симистор).

    • Цепь защиты выходного ключа (варистор и т.п.).

    В зависимости от назначения и параметров твёрдотельного реле оно может иметь различное устройство. Как уже говорилось, в качестве силового ключевого элемента, который коммутирует ток нагрузки, может быть использован симистор, МДП-транзистор, тиристор, диод, биполярный транзистор или IGBT-транзистор. Благодаря этому в продаже можно найти твёрдотельное реле под любую задачу.

    Основных параметров у твёрдотельного реле немного:

    • Коммутируемое напряжение Uмакс;

    • Коммутируемый ток Iмакс;

    • Управляющий сигнал;

    • Скорость переключения.

    Качественные отличия твёрдотельных реле от электромеханических.

    Почему твёрдотельные полупроводниковые реле всё активней занимают место «классических» электромеханических? Как известно, у электромеханических реле недостатков много: большое время срабатывания, подгорание контактов (как следствие, низкая надёжность), дребезг контактов, искрение (вызывает помехи в работе аппаратуры).

    По сравнению с электромагнитными реле, твёрдотельные обладают рядом несомненных преимуществ:

    • Допускается не менее миллиарда переключений, что в тысячу раз превышает этот показатель у обычных электромеханических.

    • Совместимость с уровнями логических микросхем. То есть SSR можно управлять прямо с выхода микросхем.

    • Отсутствие контактов а, следовательно, и дребезга.

    • Бесшумная работа, вибростойкость, высокое быстродействие.

    • Очень малое энергопотребление.

    Следует отметить, что твёрдотельные реле очень чувствительны к превышению, как напряжения, так и тока. Поэтому, выбирая твердотельное реле необходимо всегда учитывать запас минимум в 20 %. Есть ещё два очень важных момента, на которые необходимо обращать внимание. Эти устройства очень боятся перегрева, а при работе полупроводниковая структура сильно нагревается, поэтому наличие радиатора необходимо. Очень часто коммутируемую цепь шунтируют варистором для защиты от импульсных выбросов.

    Маломощные твёрдотельные реле.

    Существует целая серия твердотельных реле рассчитанных на работу с небольшими токами и напряжениями. Их принято называть телекоммуникационными реле или MER (MicroElectronic Relay). Как правило, они рассчитаны на коммутацию нагрузки небольшой мощности.

    Маломощные полупроводниковые реле имеют очень небольшие размеры и прекрасно зарекомендовали себя, работая в многофункциональных телефонных аппаратах, контрольно-измерительной аппаратуре, модемах, приёмно-контрольных приборах систем охранной и пожарной сигнализации.

    Поскольку они работают в слаботочных системах, их внутренняя схемотехника заметно упрощена с целью снижения себестоимости. Особенно удобно их использование в системах оповещения о пожаре или несанкционированном проникновении. В этих системах требуется очень высокий уровень надёжности, который далеко не всегда могут обеспечить электромагнитные реле. Рассмотрим устройство слаботочного реле CPC1035.

    Внутреннее устройство твёрдотельного реле

    Как видно из рисунка, такое реле представляет собой комбинированное устройство. В его составе есть высокоэффективный излучающий AsGaAl-инфракрасный диод. Он является управляющей цепью (Control). Нагрузку (Load) коммутирует сдвоенный MOSFET транзистор. Благодаря сдвоенному MOSFET транзистору реле допускает коммутацию переменного тока. Как только на инфракрасный диод подаётся напряжение, он начинает излучать. Излучение принимается фотодиодной матрицей, в которой создаётся фото-ЭДС. Далее, полученное от фотоматрицы напряжение (фото-ЭДС), подаётся на управляющую схему. Та в свою очередь управляет ключом из полевых транзисторов. Цепь нагрузки начинает пропускать ток. Как видим, в основе любого твёрдотельного реле лежит полупроводниковая технология.

    Основные параметры CPC1035:

    • Коммутируемое переменное напряжение (Blocking Voltage) — 0…350 В;

    • Максимальный ток нагрузки (Load Current) — 100 мА;

    • Максимальное сопротивление ключа во включенном состоянии (Max On-resistance) — 35 Ом;

    • Величина управляющего тока — 2…50 мА (Ток управления — постоянный).

    Такие маломощные и миниатюрные реле активно используются в охранных датчиках. Вот, например, реле COSMO типа CPC1008 на плате датчика движения «Фотон-Ш». Оно подключается в охранный шлейф приёмно-контрольного прибора (например, ППКОП «Гранит») или к линии, которая подключена к пульту центрального наблюдения (ПЦН).

    Реле COSMO типа CPC1008

    Твёрдотельные реле серии CPC10xx также есть в составе охранного датчика «Астра-621». Это многофункциональный датчик. Он контролирует движение в охраняемой зоне за счёт пироэлектрического датчика и осуществляет контроль разбития окон за счёт чувствительного микрофона. На печатной плате прибора расположено два полупроводниковых реле типа CPC1016N. Одно срабатывает при детектировании движения в охранной зоне, а другое срабатывает при разбитии окон.

    SSR типа CPC1016N на печатной плате датчика

    Если приглядеться, то можно увидеть, что на печатной плате твёрдотельное реле обозначается как DA4 и DA5. Как известно, сокращением DA обычно указывают на схемах аналоговые микросхемы. Поэтому стоит понимать, что твёрдотельное реле это не отдельный электронный компонент, а по своей сути специализированная микросхема, наподобие ИК-приёмника.

    Маломощное твёрдотельное реле CPC1035 на печатной плате

     

    Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

    Также Вам будет интересно узнать:

     

    Практическое применение и схемы подключения твердотельного реле

    Классические пускатели и контакторы постепенно уходят в прошлое. Их место в автомобильной электронике, бытовой технике и промышленной автоматике занимает твердотельное реле – полупроводниковое устройство, в котором отсутствуют какие-либо подвижные части.

    Приборы имеют различные конструкции и схемы подключения, от которых зависят их сферы применения. Прежде чем использовать устройство, необходимо разобраться в его принципе действия, узнать об особенностях функционирования и подключения разных видов реле. Ответы на обозначенные вопросы подробно изложены в представленной статье.

    Содержание статьи:

    Устройство твердотельного реле

    Современные твердотельные реле (ТТР) представляют собой модульные полупроводниковые приборы, являющиеся силовыми электропереключателями.

    Ключевые рабочие узлы этих устройств представлены симисторами, тиристорами или транзисторами. ТТР не имеют подвижных частей, чем отличаются от электромеханических реле.

    Ключевые узлы твердотельных релеКлючевые узлы твердотельных реле

    Размер твердотельного реле во многом зависит от максимально допустимой нагрузки и возможности отводить тепло путем теплопередачи и конвекции (+)

    Внутреннее устройство этих приборов может сильно различаться в зависимости типа регулируемой нагрузки  и электрической схемы.

    Простейшие твердотельные реле включают такие узлы:

    • входной узел с предохранителями;
    • триггерная цепь;
    • оптическая (гальваническая) развязка;
    • переключающий узел;
    • защитные цепи;
    • узел выхода на нагрузку.

    Входной узел ТТР представляет собой первичную цепь с последовательно подключенным резистором. Предохранитель в эту цепь встраивается опционально. Задача узла входа – принятие управляющего сигнала и передача команды на коммутирующие нагрузку переключатели.

    При переменном токе для разделения контролирующей и основной цепи применяют гальваническую развязку. От её устройства во многом зависит принцип работы реле. Ответственная за обработку входного сигнала триггерная цепь может включаться в узел оптической развязки или располагаться отдельно.

    Защитный узел препятствует возникновению перегрузок и ошибок, ведь в случае поломки прибора может выйти из строя и подключенная техника.

    Основное предназначение твердотельных реле – замыкание/размыкание электрической сети с помощью слабого управляющего сигнала. В отличие от электромеханических аналогов, они имеют более компактную форму и не производят в процессе работы характерных щелчков.

    Принцип работы ТТР

    Работа твердотельного реле довольно проста. Большинство ТТР предназначено для управления автоматикой в сетях 20-480 В.

    Принципиальная схема работы твердотельного релеПринципиальная схема работы твердотельного реле

    Оптическая развязка позволяет создавать управленческие сигналы минимальной мощности, что критически важно для датчиков, работающих от автономных источников питания (+)

    При классическом исполнении в корпус прибора входит два контакта коммутируемой цепи и два управляющих провода. Их количество может изменяться при увеличении количества подключенных фаз. В зависимости от наличия напряжения в управляющей цепи, происходит включение или выключение основной нагрузки полупроводниковыми элементами.

    Особенностью твердотельных реле является наличие небесконечного сопротивления. Если контакты в электромеханических устройствах полностью разъединяются, то в твердотельных отсутствие тока в цепи обеспечивается свойствами полупроводниковых материалов.

    Поэтому при повышенных напряжениях возможно появление небольших токов утечки, которые могут негативно сказаться на работе подключенной техники.

    Классификация твердотельных реле

    Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

    По количеству подключенных фаз

    Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

    Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

    • однофазные;
    • трехфазные.

    Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

    Классическое трехфазное твердотельное релеКлассическое трехфазное твердотельное реле

    К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

    Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

    Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

    По виду рабочего тока

    Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

    В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

    • постоянным;
    • переменным.

    Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

    Твердотельное реле для постоянного токаТвердотельное реле для постоянного тока

    Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

    Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

    Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

    По конструктивным особенностям

    Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

    Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

    Крепление ТТР на DIN-рейкуКрепление ТТР на DIN-рейку

    Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

    Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

    По типу схемы управления

    Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

    Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

    1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
    2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
    3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

    Твердотельные реле различаются и по многим другим, менее значимым, параметрам. Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство.

    Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

    Преимущества и недостатки ТТР

    Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.

    Твердотельное реле для печатных платТвердотельное реле для печатных плат

    Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек

    К таким достоинствам относят:

    1. Низкое потребление электроэнергии (на 90% меньше).
    2. Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
    3. Высокая скорость запуска и отключения
    4. Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
    5. Не предполагается техническое обслуживание.
    6. Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
    7. Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
    8. Отсутствие электромагнитных помех при срабатывании.
    9. Исключается порча контактов вследствие их механического удара.
    10. Отсутствие прямого физического контакта между цепями управления и коммутации.
    11. Возможность регулирования нагрузки.
    12. Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
    13. Возможность использования во взрывоопасных средах.

    Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.

    Зависимость коммутационной способности ТТР от температурыЗависимость коммутационной способности ТТР от температуры

    Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)

    ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.

    К минусам относят:

    1. Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
    2. Высокая стоимость.
    3. Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
    4. Ограничения по использованию в условиях повышенной влажности.
    5. Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
    6. Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
    7. Возможность расплавления устройства от нагрева при коротком замыкании.
    8. Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.

    Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.

    Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.

    Возможные схемы подключений

    Схемы подключения твердотельных реле могут быть самые разнообразные. Каждая электрическая цепь строится, исходя из особенностей подключаемой нагрузки. В схему могут добавляться дополнительные предохранители, контроллеры и регулирующие устройства.

    Простейшая схема подключения релеПростейшая схема подключения реле

    Благодаря тому, что цепи управления и нагрузки в приборе не перекрываются, их электрические характеристики могут отличаться любыми параметрами (+)

    Далее будут представлены наиболее простые и распространенные схемы подключения ТТР:

    • нормально-открытая;
    • со связанным контуром;
    • нормально-закрытая;
    • трехфазная;
    • реверсивная.

    Нормально-открытая (разомкнутая) схема – реле, нагрузка в котором находится под напряжением при наличии управляющего сигнала. То есть подключенная техника оказывается в отключенном состоянии при обесточенных входах 3 и 4.

     

    Типы однофазных схем подключения ТТРТипы однофазных схем подключения ТТР

    Перед покупкой реле необходимо определиться с требуемым типом его первоначального состояния (замкнутое или разомкнутое), чтобы обеспечить правильную работу подключенной техники (+)

    Нормально-замкнутая схема – подразумевается реле, нагрузка в котором находится под напряжением при отсутствии управляющего сигнала. То есть подключенная техника оказывается в рабочем состоянии при обесточенных входах 3 и 4.

    Существует схема подключения твердотельного реле, в которой управляющее и нагрузочное напряжение одинаково. Такой способ можно использовать одновременно для работы в сетях постоянного и переменного тока.

    Трехфазные реле подключаются несколько по иным принципам. Контакты могут соединяться в вариантах «Звезда», «Треугольник» или «Звезда с нейтралью».

    Варианты подключения трехфазной нагрузкиВарианты подключения трехфазной нагрузки

    Выбор трехфазной схемы подключения реле во многом зависит от особенностей работы техники, подключенной к нему в качестве нагрузки

    Реверсные твердотельные реле применяются в электродвигателях в соответствующем режиме. Они изготавливаются в трехфазном варианте и включают два контура управления.

    Реле с двумя контурами управленияРеле с двумя контурами управления

    Если для реле важно соблюдение полярности подключения контактов, то на маркировке всегда будет указано, куда подключать фазу и ноль

    Собирать электрические цепи с ТТР необходимо только после их предварительной прорисовки на бумаге, потому что неверно подключенные устройства могут выйти из строя из-за короткого замыкания.

    Практическое применение устройств

    Сфера использования твердотельных реле довольно обширна. Из-за высокой надежности и отсутствия потребности в регулярном обслуживании их часто устанавливают в труднодоступных местах оборудования.

    Подключение температурного датчика в релеПодключение температурного датчика в реле

    Во многих реле подключение проводов управляющего контура требует соблюдения полярности, что необходимо учитывать в процессе монтажа оборудования

    Основными же сферами применения ТТР являются:

    • система терморегуляции с применением ТЭНов;
    • поддержание стабильной температуры в технологических процессах;
    • контроль работы трансформаторов;
    • регулировка освещения;
    • схемы датчиков движения, освещения,  и т.п.;
    • управление электродвигателями;
    • .

    С увеличением автоматизации бытовой техники твердотельные реле приобретают все большее распространение, а развивающиеся полупроводниковые технологии постоянно открывают новые сферы их применения.

    При желании, собрать твердотельное реле можно собственноручно. Подробная инструкция представлена в .

    Выводы и полезное видео по теме

    Представленные видеоролики помогут лучше понять работу твердотельных реле и ознакомиться со способами их подключения.

    Практическая демонстрация работы простейшего твердотельного реле:

    Разбор разновидностей и особенностей работы твердотельных реле:

    Тестирование работы и степени нагрева ТТР:

    Смонтировать электрическую цепь из твердотельного реле и датчика может практически каждый человек.

    Однако планирование рабочей схемы требует базовых знаний в электротехнике, потому что неправильное подключение может привести к удару током или короткому замыканию. Зато в результате правильных действий можно получить массу полезных в быту приборов.

    Есть, что дополнить, или возникли вопросы по теме подключения и применения твердотельных реле? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования таких устройств. Форма для связи находится в нижнем блоке.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *