Site Loader

Содержание

Трехфазное напряжение из однофазного за 5 минут

Трехфазное напряжение из однофазного
Получить трехфазное напряжение 380 В из однофазного 220 В у себя в гараже можно довольно просто. На это не потребуется много времени, всю схему можно подключить минут за 5 без лишней сложности.
К примеру, Вам необходимо запустить мощный двигатель 3 или 4 кВт. Казалось бы, можно его запитать по классической схеме от однофазной цепи через конденсатор, но не тут то было. При таком включении теряется заветная мощность процентов на сорок, плюс запуск его будет невероятно тяжелым, или даже не возможным, если двигатель изначально нагружен.
Именно для таких целей применяются расщепители фаз, которые помогают равномерно распределить все значения по всем трем фазам.
С помощью них можно запитывать не только моторы и установки с трехфазными асинхронными двигателями, но и любые другие потребители, требующие трехфазное напряжение 380 В.

Понадобится


Сделать простой расщепитель фаз можно из мощного мотора. Его мощность должна быть на 1,5 — 2 кВт больше питаемого устройства. К примеру, если нужно запитать компрессор на 3 кВт, то для схему нужно взять более мощный двигатель на 4,5 кВт и выше. В данном примере применен мотор на 5,5 кВт.

Схема расщепителя фаз


Трехфазное напряжение из однофазного
Как видите, схема невероятно проста. Сначала однофазное напряжение подается на двигатель повышенной мощности включенный по схеме звезда. Сдвиг фаз осуществляется конденсатором (классическая схема о которой говорилось выше). А уже с него снимаем равномерное трехфазное напряжение.

Как реализовано


Сначала подключение идет к мощному мотору (пускового конденсатора в кадре нет).
Трехфазное напряжение из однофазного
А уже через пакетный выключатель включаем мотор — нагрузку.
Трехфазное напряжение из однофазного

Запуск системы


Запускать систему следует обязательно следующим образом. Сначала подаем напряжение от однофазной сети на мощный двигатель. Его вал свободен от нагрузки. Мотор начинает постепенно раскручиваться. Через некоторое время его обороты достигнут оптимальных. Только после этого можно включить нагрузку щелкнув пакетник.
Подключенный двигатель в роли нагрузки без проблем раскрутиться даже под нагрузкой.

Что это дает и как работает?


Когда двигатель на 5,5 кВт раскрутился, он начнет равномерно делить всю энергию между фазами. Как только будет подключена нагрузка (3 кВт), которая в момент запуска потребляет колоссальную мощность. Всю эту нехватку энергии берет на себя мощный мотор, так как напряжение в сети на мгновение снижается, а инерция вала продолжает вращаться. Естественно, его скорость при нагрузке немного упадет. После раскрутки подключенного двигателя, скорость выражения вала мощного двигателя вернется в норму, создав плавный скачек в сети.
Если в двух словах, то двигатель в расщепителе имеет своеобразную роль трехфазного конденсатора или буфера, не допускающего резкую просадку напряжения, и равномерно распределяя сдвиги фаз по фазам без перекоса.

Смотрите видео


Трехфазное Напряжение из Однофазной Сети за 3 минуты

трехфазное напряжение из однофазного за 3 минутытрехфазное напряжение из однофазного за 3 минуты

Простому обывателю доступно лишь однофазное электричество. Для бытовых нужд этого вполне хватает, но приборы с мощность более 2,2 кВт требуют трехфазного подключения. Мощные двигатели обычно подключают к однофазной сети через конденсаторы.

Однако при таком способе подключения существует один значительный недостаток –  значительная потеря мощности. Чтобы этого избежать, можно сделать трехфазное напряжение из однофазного за 3 минуты с помощью самодельного расщепителя фаз.

Содержание:

Что нужно для получения трехфазного напряжения?

Рассеиватель фаз
Рассеиватель фаз

Рассеиватель фаз

Во-первых, понадобится трехфазный электродвигатель с мощностью большей, как минимум на 30%, чем у подключаемого оборудования. Так, например, для подключения 3кВт компрессора потребуется электродвигатель, как минимум на 4,5 кВт. Больше — лучше.

Также нужен пакетный переключатель и конденсатор для облегчения запуска ведущего двигателя.

back to menu ↑

Схема подключения

Рабочая схемаРабочая схема

Рабочая схема

1

Ведущий электродвигатель (расщепитель фаз) подключается к сети 220 В, — способ подключения (звезда, треугольник) не имеет значения. Запуск производится через конденсатор С=100 мкФ.

2

Далее к контактам обмоток ведущего двигателя через пакетный выключатель подключается трехфазное оборудование, — схема подключения (звезда или треугольник) не имеет значения.

Данная схема элементарна, но работает достаточно стабильно.

back to menu ↑

Запуск системы

Включаем через пакетник
Включаем через пакетник

Включаем через пакетник

1

Подаём напряжение 220 В на первый (ведущий) двигатель через конденсаторы, — облегчают запуск. Можно без них, но тогда необходимо придать первичное движение валу двигателя.

2

В течение нескольких секунд вал электромотора будет набирать крутящий момент, после этого, если пуск производился с конденсаторами, то их отключаем.

3

На обмотках ведущего мотора образовалось трехфазное напряжение около 200 В: на двух по 200, на одной около 190 В.

4

Включаем пакетный выключатель – ведомый электромотор запустился без проблем. Всё отлично работает.

5

Схему при необходимости можно и нужно доработать. Кстати, для стабилизации работы, т.е. для сглаживания нагрузки можно первый двигатель оснастить тяжелым маховиком, который не будет давать проседать нагрузке.

back to menu ↑

Заключение

Трехфазный двигательТрехфазный двигатель

Трехфазный двигатель

Этот простой способ был известен ещё в 60-х годах прошлого века. О чём не раз упоминалась в специализированной литературе: журнал МК, статья именно Синёва, №4 1972 год. В этом материале рассмотрены варианты корректировки напряжения по всем фазам.

back to menu ↑
Тематическое видео: Как сделать 3-ёх фазное напряжение в гараже

10 Total Score

Для нас очень важна обратная связь с нашими читателями. Оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Ваше мнение будет полезно другим пользователям.

Помогла ли Вам наша статья?

10

Добавить свой отзыв  |  Отзывы и комментарии

Трёхфазное напряжение из однофазного: схема и описание

Трёхфазное напряжение из однофазного: схема и описание изготовления расщепителя фаз.

В этой статье, мы подробно рассмотрим, как получить трехфазное напряжение 380 В из однофазного 220 В.

Сразу скажу, что эта схема использовалась ещё в 70-х годах, в те времена умельцы таким образом, подключали двигателя своих самодельных станков, так что ничего нового тут нет.

Всю схему можно подключить за 5 минут.

Например, Вам нужно запустить мощный двигатель на 3 или 4 кВт. Казалось бы, можно его подключить по классической схеме от однофазной цепи через конденсатор. Но при таком включении, теряется около 40%  мощности, плюс запуск его будет тяжелым, или даже не возможным, если двигатель изначально нагружен.

Именно для таких целей применяются расщепители фаз, которые помогают равномерно распределить все значения по всем трем фазам.
С помощью них можно запитывать не только моторы и установки с трехфазными асинхронными двигателями, но и любые другие потребители, требующие трехфазное напряжение 380 В.

Итак, нам понадобится мощный электродвигатель, его мощность должна быть на 1,5 — 2 кВт больше питаемого устройства. К примеру, если нужно запитать компрессор на 3 кВт, то для схемы нужно взять более мощный двигатель на 4,5 кВт и выше. В данном примере применен мотор на 5,5 кВт.

На рисунке показана схема расщепителя фаз.

Схема работает следующим образом: однофазное напряжение подается на двигатель повышенной мощности включенный по схеме звезда. Сдвиг фаз осуществляется конденсатором (классическая схема о которой говорилось выше). А уже с него снимаем равномерное трехфазное напряжение.

Подключаем электродвигатель, а через выключатель включаем второй двигатель — нагрузку.

Запускать систему следует обязательно следующим образом. Сначала подаем напряжение от однофазной сети на мощный двигатель. Его вал свободен от нагрузки. Мотор начинает постепенно раскручиваться. Через некоторое время его обороты достигнут оптимальных. Только после этого можно включить нагрузку щелкнув пакетник.
Подключенный двигатель в роли нагрузки без проблем раскрутиться даже под нагрузкой.

Когда двигатель на 5,5 кВт раскрутился, он начнет равномерно делить всю энергию между фазами. Как только будет подключена нагрузка (3 кВт), которая в момент запуска потребляет колоссальную мощность. Всю эту нехватку энергии берет на себя мощный мотор, так как напряжение в сети на мгновение снижается, а инерция вала продолжает вращаться. Естественно, его скорость при нагрузке немного упадет. После раскрутки подключенного двигателя, скорость выражения вала мощного двигателя вернется в норму, создав плавный скачек в сети.
Если в двух словах, то двигатель в расщепителе имеет своеобразную роль трехфазного конденсатора или буфера, не допускающего резкую просадку напряжения, и равномерно распределяя сдвиги фаз по фазам без перекоса.

Эта схема была подробно описана в журнале «Радио» №11, 1970 г.

Рекомендуем посмотреть видео, где подробно показана работа этой схемы.

Трехфазный двигатель в однофазной сети: 3 схемы

Владелец гаража или частного дома часто нуждается в работе станка либо наждака с асинхронным электродвигателем для обработки металлов, древесины. А в наличии имеется только напряжение 220 вольт.

Подключение трехфазного двигателя к однофазной сети в этом случае можно выполнить несколькими способами. Здесь я буду рассматривать три доступные и распространенные схемы конденсаторного запуска.

Все они не раз опробованы на личном опыте.

Содержание статьи

Сразу предупреждаю опытных электриков, открывших эту статью: материал подготовлен для начинающих мастеров. Поэтому он объемный. Если нет желания все читать, то вот вам краткие советы:

  • используйте схему треугольник, предварительно проверив исправность двигателя;
  • выбирайте рабочие конденсаторы из расчета 70 микрофарад на 1 киловатт мощности, а пусковые увеличьте в 2-3 раза;
  • в процессе наладки откорректируйте емкости по величине нагрузки и нагреву обмоток;
  • не забывайте соблюдать меры безопасности с электрическим током и инструментом.

Все остальное рекомендую новичкам внимательно прочитать и осмыслить в той последовательности, как я излагаю.

На своем опыте не раз убеждался, что первоначальная проверка технического состояния оборудования позволяет исключить многие ошибки, экономит общее время работы, значительно предотвращает травмы и аварии.

Трехфазный асинхронный двигатель: на что обратить внимание до его подключения

За небольшим исключением асинхронник нам достается в неизвестном состоянии. Очень редко на него есть свидетельство о проверке и заверенная гарантия от электролаборатории.

Даже в этом случае я рекомендую убедиться в его исправности лично.

Механическое состояние статора и ротора: что может мешать работе двигателя

Неподвижный статор состоит из трех частей: среднего корпуса и двух боковых крышек, стянутых шпильками. Обращайте внимание на зазор между ними, усилие стягивания гайками.

Асинхронный двигатель

Корпус должен быть плотно сжат. Внутри него на подшипниках вращается ротор. Попробуйте покрутить его от руки. Оцените приложенное усилие: как работают подшипники, нет ли биений.

Без должного опыта мелкие дефекты таким способом не выявить, но случай грубого заклинивания сразу проявится. Послушайте шумы: нет ли при вращении задевания ротором элементов статора.

После включения двигателя на холостой ход и непродолжительной работы еще раз послушайте звуки вращающихся частей.

В идеале лучше разобрать статор, оценить визуально его состояние, промыть загрязненные подшипники ротора и полностью заменить их смазку.

Подшипники ротора

Электрические характеристики статорных обмоток: как проверять схему сборки

Все основные параметры электродвигателя производитель указывает на специальной табличке, прикрепленной к корпусу статора.

Характеристики электродвигателя

Этим заводским характеристикам можно верить только в том случае, если вы уверены, что после завода никто из электриков не изменил схему подключения обмоток и не сделал непроизвольных ошибок. А случаи такие мне попадались.

Да и сама табличка со временем может стереться или потеряться. Поэтому предлагаю разобраться с технологией раскрутки ротора.

Для понимания электротехнических процессов, протекающих внутри статора двигателя, удобно представить его в виде обыкновенного тороидального трансформатора, когда на кольцевом сердечнике магнитопроводе симметрично расположены три равнозначные обмотки.

Схема статора собрана внутри закрытого корпуса, из которого выведены только шесть концов обмоток.

Схема статора

Они маркируются и подключаются на закрытом крышкой клеммнике для сборки по схеме звезды или треугольника типовой перестановкой перемычек.

Схема подключения обмоток

На правой части картинки показана сборка треугольника. Схему расположения перемычек для звезды публикую ниже.

Схема звезды
Электрические методики проверки схемы сборки обмоток

Но не все так однозначно, как может показаться на первый взгляд. Существует целый ряд двигателей с отклонением от этих правил.

Например, производитель может выпускать электродвигатели не универсального использования, а для работы в конкретных условиях с подключением обмоток по схеме звезды.

В этом случае он может собрать три конца обмоток внутри корпуса статора, а наружу вывести только четыре провода для подключения к потенциалам фаз и нуля.

Монтаж этих концов обычно выполняется в районе задней крышки. Для переключения обмоток на треугольник потребуется вскрывать корпус и делать дополнительные выводы.

Это не сложная работа. Но она требует бережного обращения с лаковым покрытием медного провода. При изгибах проволоки возможно его повреждение, что повлечет нарушение изоляции и создаст межвитковое замыкание.

После перемонтажа схемы рекомендую дополнительно покрывать внешние слои обмоток лаком, а затем хорошо просушить их до окончательной сборки теплым воздухом.

Что делать, если маркировка выводов отсутствует

На старом асинхронном двигателе провода могут быть сняты с клемм, а заводская маркировка утеряна. Попадались и такие экземпляры, когда из корпуса просто торчали наружу шесть концов. Их необходимо вызвонить и промаркировать.

Работу выполняем в два этапа:

  1. Проверяем принадлежность концов обмоткам.
  2. Определяем и маркируем каждый вывод.

На первом этапе работаем мультиметром или тестером в режиме омметра. Ставим первый щуп произвольно на один вывод, а вторым — ищем из пяти оставшихся проводов тот, где прибор покажет закороченную цепь. Помечаем оба конца, как принадлежащие к одной обмотке.

Как прозвонить обмотки

С оставшимися четырьмя выводами поступаем аналогично. В итоге мы получаем три пары проводов от каждой обмотки.

Как найти конец и начало обмотки: 2 способа

Можно вести поиск с помощью вольтметра:

  1. и батарейки;
  2. или источника пониженного переменного напряжения.

Первый метод основан на том, что импульс тока, поданный на одну из трех обмоток, трансформируется в двух остальных.

Для этого на произвольно выбранный конец К1 подключают минус батарейки, а плюсовым контактом кратковременно касаются второго вывода. По цепи проходит импульсный бросок тока и наводит ЭДС в двух других обмотках.

Как найти конец и начало обмотки

С помощью вольтметра постоянного тока по отклонению стрелки проверяется полярность наведенного напряжения в каждой обмотке. Началом помечается тот вывод, который соответствует положительному потенциалу (стрелка прибора движется вправо при замыкании и влево при размыкании цепи батарейкой).

После маркировки концов рекомендую сделать контрольную проверку правильности их нанесения подачей импульса на другую обмотку.

Второй способ основан на использовании источника переменного напряжения безопасной величины 12-36 вольт.

Начало и конец обмоток

Концы двух любых обмоток замыкают в параллель и на них подключают вольтметр. На оставшуюся третью обмотку подают переменное напряжение и смотрят на показание прибора.

Если наведенная ЭДС соответствует поданному напряжению, то эти две обмотки включены в одной полярности. Одинаково помечают их начала и концы. При нулевом показании вольтметра концы одной из обмоток необходимо вывернуть и сделать повторный замер.

Затем одну из промаркированных обмоток, например №3, соединяют с первой и подключают к ним вольтметр. На освободившуюся №2 снова подают переменное напряжение. По величине ЭДС на вольтметре судят о полярности выводов.

После окончания маркировки делают контрольный замер для проверки выполненной работы.

Когда нет под рукой понижающего трансформатора или безопасного блока питания, то опытный электрик с правом самостоятельной работы под напряжением, может воспользоваться обыкновенной лампой накаливания ватт на 60.

Ее используют в качестве делителя напряжения, подключая последовательно к одной обмотке электродвигателя. На собранную цепочку подают 220 вольт, а на двух других измеряют напряжение вольтметром.

Такая проверка опасна. Ею не стоит заниматься необученным людям: можно легко получить электрическую травму.

Как оценить состояние изоляции обмоток

Отдельная часть блогеров умалчивает о необходимости этой проверки. Они считают, что без нее можно обойтись в большинстве случаев.

Проверка изоляции

Однако до включения двигателя под напряжение я рекомендую:

  • взять мегаомметр с выходным напряжением на 1000 вольт;
  • проверить им изоляцию между каждой отдельной обмоткой и корпусом, а также между всеми обмотками;
  • если она выше 0,5 Мом, то считать стартер исправным. В противном случае придется его ремонтировать. Довольно часто помогает просушка сухим и теплым воздухом.

Проверку изоляции электродвигателя мегаомметром необходимо обязательно проводить до его подключения под нагрузку. Однако она не способна выявить повреждения диэлектрического слоя, вызывающие межвитковые замыкания обмотки.

При сборке двигателя каждая катушка статора мотается медным проводом одной длины и сечения. Поэтому все они имеют строго одинаковое резистивное сопротивление.

Если в обмотке возникло межвитковое замыкание, то его, как правило, можно определить замером мультиметра в режиме омметра. Для этого внимательно анализируйте и сравнивайте активные сопротивления каждой цепочки.

Как проверяют магнитное поле статора на заводе

При подаче напряжения на исправный электродвигатель создается вращающееся магнитное поле. Его визуально оценивают с помощью металлического шарика, который повторяет вращение.

Проверка статора

Я не призываю вас повторять такой опыт. Пример этот призван помочь понять, что работа асинхронного двигателя основана на взаимодействии магнитных полей статора и ротора.

Только правильное подключение обмоток обеспечивает вращение шарика или ротора.

Мощность электродвигателя и диаметр провода обмотки

Это две взаимосвязанных величины потому, что поперечное сечение проводника выбирается по способности противостоять нагреву от протекающего по нему току.

Чем толще провод, тем большую мощность можно передавать по нему с допустимым нагревом.

Если на двигателе отсутствует табличка, то о его мощности можно судить по двум признакам:

  1. Диаметру провода обмотки.
  2. Габаритам сердечника магнитопровода.

После вскрытия крышки статора проанализируйте их визуально.

Подключение трехфазного двигателя к однофазной сети по схеме звезды

Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…

Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.

Схема подключения звезды показана на картинке.

Схема подключения звезды

Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.

Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.

Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.

При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.

Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.

Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.

Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.

Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.

Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.

Схема треугольник: преимущества и недостатки

Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.

Схема подключения треугольник

За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.

Подключение двигателя по схеме треугольника в однофазной сети позволяет полезно использовать до 70-80% потребляемой мощности.

Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.

При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.

Для этого достаточно в обеих схемах (звезды или треугольника) поменять местами приходящие от сети провода на клеммной колодке. Ток потечет по обмотке в противоположную сторону. Ротор изменит направление вращения.

Как подобрать конденсаторы: 3 важных критерия

Трехфазный двигатель создает вращающееся магнитное поле статора за счет равномерного прохождения синусоид токов по каждой обмотке, разнесенных в пространстве на 120 градусов.

В однофазной сети такой возможности нет. Если подключить одно напряжение на все 3 обмотки сразу, то вращения не будет — магнитные поля уравновесятся. Поэтому на одну часть схемы подают напряжение, как есть, а на другую сдвигают ток по углу вращения конденсаторами.

Сложение двух магнитных полей создает импульс моментов, раскручивающих ротор.

От характеристик конденсаторов (величины емкости и допустимого напряжения) зависит работоспособность создаваемой схемы.

Для маломощных двигателей с легким запуском на холостом ходу в отдельных случаях допустимо обойтись только рабочими конденсаторами. Всем остальным движкам потребуется пусковой блок.

Обращаю внимание на три важных параметра:

  1. емкость;
  2. допустимое рабочее напряжение;
  3. тип конструкции.

Как подобрать конденсаторы по емкости и напряжению

Существуют эмпиреческие формулы, позволяющие выполнять простой расчет по величине номинального тока и напряжения.

Как подобрать конденсаторы

Однако люди в формулах часто путаются. Поэтому при контроле расчета рекомендую учесть, что для мощности в 1 киловатт требуется подбирать емкость на 70 микрофарад для рабочей цепочки. Зависимость линейная. Смело ей пользуйтесь.

Доверять всем этим методикам можно и нужно, но теоретические расчеты необходимо проверить на практике. Конкретная конструкция двигателя и прилагаемые нагрузки на него всегда требуют корректировок.

Конденсаторы рассчитываются под максимальное значение тока, допустимого по условиям нагрева провода. При этом расходуется много электроэнергии.

Если же электродвигатель преодолевает нагрузки меньшей величины, то емкость конденсаторов желательно снизить. Делают это опытным путем при наладке, замеряя и сравнивая токи в каждой фазе амперметром.

Чаще всего для пуска асинхронного электродвигателя используют металлобумажные конденсаторы.

Конденсаторы металлобумажные

Они хорошо работают, но обладают низкими номиналами. При сборке в конденсаторную батарею получается довольно габаритная конструкция, что не всегда удобно даже для стационарного станка.

Сейчас
промышленностью выпускаются малогабаритны электролитические конденсаторы, приспособленные для работы с электродвигателями на переменном токе.

Конденсаторы для электродвигателя

Их внутреннее устройство изоляционных материалов приспособлено для работы под разным напряжением. Для рабочей цепочки оно составляет не менее 450 вольт.

У пусковой схемы с условиями кратковременного включения под нагрузку оно уменьшено до 330 за счет снижения толщины диэлектрического слоя. Эти конденсаторы меньше по габаритам.

Это важное условие следует хорошо понимать и применять на практике. Иначе конденсаторы на 330 вольт взорвутся при длительной работе.

Скорее всего для конкретного двигателя одним конденсатором не отделаться. Потребуется собирать батарею, используя последовательное и параллельное соединение их.

Последовательное и параллельное соединение конденсаторов

При параллельном подключении общая емкость суммируется, а напряжение не меняется.

Последовательное соединение конденсаторов уменьшает общую емкость и делит приложенное напряжение на части между ними.

Какие типы конденсаторов можно использовать

Номинальное напряжение сети 220 вольт — это действующая величина. Ее амплитудное значение составляет 310 вольт. Поэтому минимальный предел для кратковременной работы при запуске выбран 330 V.

Запас напряжения до 450 V для рабочих конденсаторов учитывает броски и импульсы, которые создаются в сети. Занижать его нельзя, а использование емкостей с большим резервом значительно увеличивает габариты батареи, что нерационально.

Для фазосдвигающей цепочки допустимо использовать полярные электролитические конденсаторы, которые созданы для протекания тока только в одну сторону. Схема их включения должна содержать токоограничивающий резистор в несколько Ом.

Схема подключения полярных конденсаторов

Без его использования они быстро выходят из строя.

Перед установкой любого конденсатора необходимо проверить его реальную емкость мультиметром, а не полагаться на заводскую маркировку. Особенно это актуально для электролитов: они зачастую преждевременно высыхают.

Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось

Это третья обещанная в заголовке конструкция, которую я реализовал два десятка лет назад, проверил в работе, а потом забросил. Она позволяет использовать до 90% трехфазной мощности двигателя, но обладает недостатками. О них позже.

Собирал я преобразователь трехфазного напряжения на мощность 1 киловатт.

Схема трехфазного преобразователя напряжения

В его состав входят:

  • дроссель с индуктивным сопротивлением на 140 Ом;
  • конденсаторная батарея на 80 и 40 микрофарад;
  • регулируемый реостат на 140 Ом с мощностью 1000 ватт.

Одна фаза работает обычным способом. Вторая с конденсатором сдвигает ток вперед на 90 градусов по ходу вращения электромагнитного поля, а третья с дросселем формирует его отставание на такой же угол.

В создании фазосдвигающего магнитного момента участвуют токи всех трех фаз статора.

Корпус дросселя пришлось собирать механической конструкцией из дерева на пружинах с резьбовой настройкой воздушного зазора для наладки его характеристик.

Конструкция дросселя

Конструкция реостата — это вообще «жесть». Сейчас его можно собрать из мощных сопротивлений, купленных в Китае.

Мощное сопротивление из Китая

Мне даже приходила мысль использовать водяной реостат.

Но я от нее отказался: уж слишком опасная конструкция. Просто намотал на асбестовой трубе толстую стальную проволоку для проведения эксперимента, положил ее на кирпичи.

Когда запустил двигатель циркулярной пилы, то он работал нормально, выдерживал приложенные нагрузки, нормально распиливал довольно толстые колодки.

Все бы хорошо, но счетчик намотал двойную норму: этот преобразователь берет такую же мощность на себя, как и двигатель. Дроссель и проволока неплохо нагрелись.

Из-за высокого потребления электроэнергии, низкой безопасности, сложной конструкции я не рекомендую такой преобразователь.

Меры безопасности при подключении трехфазного двигателя: напоминание

Сначала я повторюсь с рекомендацией использовать все подключения только через отдельный автоматический выключатель. Это очень важно.

Работы по наладке схемы под напряжением должны выполнять обученные люди. Знание ТБ — обязательное условие.

Использование разделительного трансформатора значительно сокращает риск попасть под действие тока. Поэтому используйте его при любых наладочных работах под напряжением.

Специальный инструмент электрика с диэлектрическими рукоятками не только облегчает работу, но и сохраняет здоровье. Не пренебрегайте им!

В заключение рекомендую посмотреть полезное видео владельца helper по подключению трехфазного двигателя к однофазной сети.

Если остались вопросы или заметили неточности, то воспользуйтесь разделом комментариев.

Как из 220 Вольт сделать 380 В: обзор методик и способов

Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?

Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.

Теория

На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.

В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.

Структура трёхфазного токаРис. 1. Структура трёхфазного тока

Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.

Способы получения 380 Вольт из 220

Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:

  • с помощью электронного преобразователя напряжения;
  • путём применения трансформатора;
  • использованием трёх фаз;
  • используя трёхфазный двигатель в качестве генератора;
  • пользуясь конденсаторной схемой.

Преобразователь напряжения

Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.

Преобразователь напряженияРис. 2. Преобразователь напряжения

Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.

Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).

Используя трансформатор

С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор.  преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.

Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.

Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.

Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.

Использование 3-х фаз

Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.

При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.

Использование электродвигателя

Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.

Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.

Пример подключения фазосдвигающего конденсатора см. на рис. 3.

Подключение пускового конденсатораРис. 3. Подключение пускового конденсатора

Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.

Трёхфазный ток от электромотораРис. 4. Трёхфазный ток от электромотора

Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.

Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.

Электродвигатель в качестве генератора

Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).

Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для  этого необходимо вращать вал с угловой скоростью 1500 об/мин.

Трёхфазный двигатель в качестве генератораРис. 5. Трёхфазный двигатель в качестве генератора

В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.

Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.

Выводы

Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:

  • стабильные параметры тока;
  • безопасная эксплуатация;
  • обеспечение заявленной выходной мощности;
  • компактность установки.

Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.

Как получить три фазы из одной

Как получить три фазы из одной
Всем привет! Сегодня я покажу как получить из обычной однофазной сети 220 В — трехфазную, причем без особых затрат. Но сначала расскажу о своей проблеме предшествующей поиску подобного решения.
У меня имелась советская мощная настольная циркулярная пила (2 кВт), которая подключалась к трехфазной сети. Мои попытки запитать ее от однофазной сети, как это обычно принято, не представлялось возможным: была сильная просадка мощности, грелись пусковые конденсаторы, грелся сам двигатель.
Благо в свое время я потратил должное время на поиск решения в интернете. Где я наткнулся на одно видео, где один парень сделал своеобразный расщепитель при помощи мощного электромотора. Далее он пустил по периметру своего гаража эту трехфазную сеть и подключил к ней все остальные приборы требующий трехфазного напряжения. Перед началом работ, приходил в гараж, запускал раздающий двигатель и до ухода он работал. В принципе, решение мне понравилось.
Решил повторить и сделать свой расщепитель. В роли двигателя взял старый советский на 3,5 кВт мощности, с обмотками включенными звездой.

Схема


Вся схема состоит всего из нескольких элементов: общий сетевой выключатель, кнопка для запуска, конденсатор на 100 мкФ и собственно мощного мотора.
Как получить три фазы из одной
Как все работает? Сначала подаем однофазное питание на раздающий мотор, пусковой кнопкой подключаем конденсатор, тем самым запуская его. Как только мотор раскрутился до нужных оборотов, конденсатор можно выключить. Теперь можно подключить к выходу расщепителя фаз нагрузку, в моем случае настольную циркулярку и ещё несколько трехфазных нагрузок.
Как получить три фазы из одной
Корпус устройства — рама выполнен из Г-образных уголков, все оборудование закреплено на кусок листа OSB. Сверху переделаны ручки для переноски всей конструкции, а на выход подключенная трехвыводная розетка.
Как получить три фазы из одной
После подключения пилы через такое устройство получилось существенное улучшение в работе, ничего не греется, мощности вполне хватает и не только на пилу. Ничего не рычит, не гудит, как это было раньше.
Только желательно брать раздающий мотор мощнее потребителей хотя бы на 1 кВт, тогда не будет заметно особой просадки мощности при резкой нагрузке.
Кто бы что не говорил про не чистый синус или это ничего не даст, советую их не слушать. Синус напряжения чистый и разбитый ровно на 120 градусов, в результате подключенная техника получает качественного напряжение, ввиду чего и не греется.
Вторая половина читателей которые будут говорить по 21-век и большое наличие частотных преобразователей трехфазного напряжения могу сказать, что мой выход в разы дешевле, так как старый мотор довольно просто найти. Можно взять даже негодный для нагрузки, со слабыми и почти разбитыми подшипниками.
Мой расщепитель фаз в холостом режиме потребляет не столь много: 200 — 400 Вт где-то, мощность подключенных инструментов вырастает в разы, по сравнению с обычной схемой подключения через пусковые конденсаторы.
В заключении хочу обосновать свой выбор данного решения: надежность, невероятная простота, небольшие затраты, высокая мощность.

Смотрите видео


Однофазное подключение для трехфазного двигателя: обзор способов

Среди поделок домашних умельцев часто встречаются станки и механизмы для обработки дерева, заточки инструментов, высверливания отверстий, измельчения круп, которые работают от асинхронных электродвигателей в бытовой сети 220 вольт.

Это уже практически вторая жизнь этих изделий. Первоначально они создавались для работы в составе промышленного оборудования и запитывались от трех фаз переменного тока с напряжением 380 вольт.

Относительная простота конструкции, надежность в работе, удобное управление удобными электромеханическими схемами, высокий ресурс при соблюдении условий эксплуатации делают эти двигатели привлекательными для мастеров.

Электродвигатель самодельного- деревообрабатывающего токарного станка
Однако, при переделке схемы и подключении двигателя в работу от однофазной сети встречается много технических трудностей, а конечный результат часто разочаровывает, не оправдывает ожидания домашнего мастера.

Почему это происходит рассказывается в этой статье, а как учесть особенности трехфазной конструкции для оптимальной переделки схемы читайте в ее продолжении. Для этого можете подписаться на получение новостей сайта. Форма расположена в правой колонке страницы.


Как устроен и работает трехфазный двигатель

Конструкция

Электродвигатель выполнен из двух отдельных частей:

  1. неподвижно установленного статора;
  2. вращающегося ротора.

Они между собой механически соединяются посредством подшипников, отделены очень небольшим рабочим зазором.

Для переделки двигателя на однофазное питание достаточно внести изменения в схеме подключения статора, а ротор трогать нет надобности. Поэтому его конструкцию рассматривать не будем.

Статор изготавливается в виде корпуса с вмонтированными:

  • сердечником-магнитопроводом;
  • тремя одинаковыми обмотками, разнесенными симметрично на 120O по углу с навитыми витками;
  • выходными клеммами.

Конструкция статора трехфазного электродвигателя
Провода обмоток выводятся на клеммные болты для подключения внешней сети. У отдельных моделей часть соединений может быть спрятана внутри корпуса, а на клемму приходить одной общей жилой. Этот прием иногда используется на двигателях с обмотками, смонтированными по схеме звезды. Второй способ их соединения называется треугольником.

Способы соединения обмоток для трехфазных электродвигателей
Начало навивки каждой обмотки производители обозначают C1, C2, C3 или h2, h3, h4, а их окончания C4, C5, C6 или K1, K2, K3. Встречаются и другие способы заводской маркировки, особенно на двигателях последних моделей или иностранной сборки.

Силовые кабели питания для подключения к схеме заводятся на клеммник. Его конструкция обычно содержит перемычки для изменения схемы подключения обмоток, но может быть и без них, как показано на фотографии.

Подключение проводов к асинхронному двигателю

Принцип работы

Его будем рассматривать на примере схемы звезды, ибо отличительные черты, особенности для треугольника сказываются незначительно. Для понимания происходящих процессов при работе их можно не учитывать.

Формы синусоид векторов напряжений и токов в асинхронном двигателе
На каждую обмотку (а они разнесены на 120 градусов), подводится собственное фазное напряжение. В своей симметричной системе эти вектора разведены на такой же угол.

Под действием приложенной ЭДС в обмотках, обладающих маленьким активным сопротивлением и равным индуктивным, создаются симметричные синусоидальные токи, повторяющие форму векторов напряжений.

Более наглядно эти процессы принято показывать расположением векторных величин на единичной комплексной плоскости.

Виды векторных диаграмм у трехфазного двигателя
Каждый ток, проходящий по своей обмотке, образует электромагнитное поле, индуцирующее в роторе токи, создающие собственное магнитное поле.

Поскольку вектора напряжений сети вращаются с промышленной частотой, то токи статора, повторяя это движение, создают вращающееся магнитное поле, которое воздействует на ротор, раскручивает его.

Симметричная конструкция статора обеспечивает создание от каждой обмотки одинаковых сил индукции, равномерно приложенных к ротору.

Эти принципы заложены в основу работы двигателя при питании током от трехфазной схемы. Далее рассмотрим, как они выполняются при питании от однофазной цепи.


Особенности работы трехфазного двигателя от однофазного напряжения

У домашнего мастера нет трех фаз напряжения, ему приходится обходиться одной. Если ее подать только в одну обмотку, то теоретически ротор можно раскрутить. Но пользу от этого извлечь не получиться: слишком маленькая механическая мощность не позволит совершать полезную работу.

Подключение одного и того же напряжения во все три обмотки тоже не имеет смысла. Из одной фазы необходимо делать три или хотя бы две. Для этих целей создают преобразователь.

Существующие в продаже инверторные установки, использующие сложные электрические схемы, большие алгоритмы и микропроцессорную технику для подобного преобразования, мы специально сейчас не рассматриваем. Это отдельная тема.

Преобразовать напряжение из одной фазы можно за счет:

  1. конденсаторной сборки;
  2. дроссельных устройств;
  3. изменения полярности напряжения;
  4. комплексного сочетания емкостей, индуктивностей и выравнивания амплитуд токов в фазах.

Принципы работы конденсаторных сборок

Для работы в цепях переменного тока лучше подходят металлобумажные конструкции конденсаторов с марками МБГП, МБГО, КБГ и других подобных с напряжением от 400 вольт и более. Из них методом параллельного подключения набирают определенную емкость.

Конденсаторы для запуска двигателя
Применять модели электролитических конструкций крайне нежелательно из-за опасности их взрыва при нагреве. Как вариант, можно использовать специальные схемы подключения, учитывающие полярность пропускаемого через них тока и ограничивающие его амплитуду. Но, это сложно и не очень надежно.

Использование конденсатора для запуска двигателя основано на опережении угла тока, проходящего через емкость, относительно вектора приложенного напряжения на девяносто градусов. При этом угол тока не доходит до оптимальной величины на 30O.

Принципы работы дроссельных устройств

На индуктивном сопротивлении ток отстает от вектора напряжения на такие же углы.

Векторные диаграммы тока и напряжения
В обеих ситуациях возникает не достающий до оптимального поворота вектора сектор, выделенный на картинке желтым цветом. Он влияет на возникновение противодействующих моментов, создающих торможение, снижает механическую мощность.

Сами дроссели в готовом для запуска двигателя виде промышленностью практически не создаются. Их требуется изготовить, приложить определённые усилия для выполнения расчётов, сборки, наладки. Это не всем мастерам по силам.

Принципы изменения полярности входного напряжения

Объясним его на примере двух обмоток схемы звезды с разобранной нейтралью, когда в них поочередно подается один вектор напряжения, но с разной полярностью.

Подача напряжений разной полярности в две разнесенные по углу обмотки
В итоге образуются два разных вектора тока, сдвинутых по углу. Даже такое небольшое смещение позволяет влиять на работу двигателя.

Принципы использования комплексного метода

Пользуясь поодиночке любым из трех рассмотренных способов невозможно обеспечить равномерное распределение векторов тока по обмоткам ни по углу, ни по амплитуде. Всегда возникает перекос.

Поэтому для создания полноценных условий работы двигателя необходимо использовать все три способа в комплексе. Многочисленные экспериментаторы создали более двух десятков отличающихся схем, но к единому мнению исследователи так и не пришли.

Одним из лучших методов создания преобразователя трехфазного напряжения является:

  1. сборка обмоток статора по схеме треугольника;
  2. подача напряжения прямой полярности на одну из обмоток;
  3. изменение направления вектора напряжения на других за счет индуктивностей и конденсаторов;
  4. выравнивание амплитуд токов в обмотках подбором токоограничивающих сопротивлений.

Хочется обратись внимание на последний пункт. Им часто пренебрегают, а зря. Одинаковые по величине токи формируют такие же силы индукции, образующие пропорциональные крутящие моменты. Нагрузка на ротор должна прикладываться не только симметрично, но и равномерно.

Способы распределения крутящих моментов
Когда этот принцип нарушается, то двигателю создаются неблагоприятные условия нагрузки.

Одна из оптимальных схем преобразователя напряжения, учитывающая выполнение перечисленных условий, представлена на нижерасположенной картинке.

Принципиальная схема трехфазного преобразователя напряжения на 1 кВт
Для ее реализации необходимо изготовить дроссель сложной конструкции с регулируемым воздушным зазором, который первоначально своими секциями перераспределяет напряжение по отдельным цепочкам для последующего изменения.

Механическая конструкция дросселя
Преобразователь с таким подключением дросселя создает устойчивую работу двигателя под номинальными нагрузками, обеспечивает относительно небольшие потери энергии при вращении ротора.

Но, подобная схема не нашла практического применения по ряду причин:

  • сложное самостоятельное изготовление и наладка;
  • необходимость использования дефицитных деталей;
  • повышенное потребление энергии самим преобразователем, превышающее мощность двигателя почти вдвое.

Особенно огорчает последний пункт, когда работу простого станка, созданного по сложной схеме своими руками за длительное время, требуется платить деньги, как за пользование сварочным оборудованием. Это настолько огорчает домашнего мастера, что он отказывается от дальнейшей эксплуатации созданного им устройства.

Промышленные предприятия тоже не используют этот метод из-за низкой экономической эффективности.

Продолжение темы, рассказывающей об оптимальных вариантах переделки асинхронного двигателя для его подключения к однофазной сети переменного тока, читайте в следующей статье. Рекомендуем не пропустить ее. Сейчас подошло время, чтобы подписаться на нашу рассылку.

А для закрепления материала рекомендуем просмотреть старый учебный фильм советских времен, хорошо рассказывающий об общем устройстве асинхронного двигателя и прекрасно объясняющий принципы его работы.

Возникающие у вас вопросы задавайте в комментариях.

Полезные товары

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *