Автоматический регулятор оборотов кулера
Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.
Схема
Схема крайне проста, содержит всего два транзистора, пару резисторов и термистор, но, тем не менее, замечательно работает. М1 на схеме – вентилятор, обороты которого будут регулироваться. Схема предназначена на использование стандартных кулеров на напряжение 12 вольт. VT1 – маломощный n-p-n транзистор, например, КТ3102Б, BC547B, КТ315Б. Здесь желательно использовать транзисторы с коэффициентом усиления 300 и больше. VT2 – мощный n-p-n транзистор, именно он коммутирует вентилятор. Можно применить недорогие отечественные КТ819, КТ829, опять же желательно выбрать транзистор с большим коэффициентом усиления. R1 – терморезистор (также его называют термистором), ключевое звено схемы. Он меняет своё сопротивление в зависимости от температуры. Сюда подойдёт любой NTС-терморезистор сопротивлением 10-200 кОм, например, отечественный ММТ-4. Номинал подстроечного резистора R2 зависит от выбора термистора, он должен быть в 1,5 – 2 раза больше. Этим резистором задаётся порог срабатывания включения вентилятора.
Изготовление регулятора
Схему можно без труда собрать навесным монтажом, а можно изготовить печатную плату, как я и сделал. Для подключения проводов питания и самого вентилятора на плате предусмотрены клеммники, а терморезистор выводится на паре проводков и крепится к радиатору. Для большей теплопроводности прикрепить его нужно, используя термопасту. Плата выполняется методом ЛУТ, ниже представлены несколько фотографий процесса.
shema.zip [2,09 Kb] (cкачиваний: 881)
После изготовления платы в неё, как обычно запаиваются детали, сначала мелкие, затем крупные. Стоит обратить внимание на цоколёвку транзисторов, чтобы впаять их правильно. После завершения сборки плату нужно отмыть от остатков флюса, прозвонить дорожки, убедиться в правильности монтажа.
Настройка
Теперь можно подключать к плате вентилятор и осторожно подавать питание, установив подстроечный резистор в минимальное положение (база VT1 подтянута к земле). Вентилятор при этом вращаться не должен. Затем, плавно поворачивая R2, нужно найти такой момент, когда вентилятор начнёт слегка вращаться на минимальных оборотах и повернуть подстроечник совсем чуть-чуть обратно, чтобы он перестал вращаться. Теперь можно проверять работу регулятора – достаточно приложить палец к терморезистору и вентилятор уже снова начнёт вращаться. Таким образом, когда температура радиатора равно комнатной, вентилятор не крутится, но стоит ей подняться хоть чуть-чуть, он сразу же начнёт охлаждать.
Терморегулятор для вентилятора своими руками – Поделки для авто
Поэтому нам необходимо обеспечить включение вентилятора при определенном нагреве радиатора (или жидкости в нем). Сама схема представлена на чертеже ниже, помимо включения при определенном нагреве схема обеспечивает плавное включение вентилятора и уменьшает звуковые шумы, что хорошо скажется на сроке службы вентилятора.
Основным элементом в схеме является терморезистор с отрицательным коэффициентом температурной зависимости. Рабочее сопротивление 5-50 кОм все зависит от марки терморезистора. Терморезистор приваривается непосредственно к радиатору. Операция очень ответственная, терморезистор обязательно должен касаться радиатора, при плохой сварке потом придется все переделывать, поэтому этому моменту уделяем особое внимание.
Все номиналы или их определение расписано в схеме, для подбора R1 замеряем мультиметром значение сопротивления терморезистора делим на 5. Полученный результат даст вам понять примерный диапазон значения переменного резистора. Устанавливаем необходимые значения резистора, распаиваем схему и начинаем отладку работы прибора.
Показанная на схеме RC цепочка указана штрихпунктирной линией, потому что не всегда требуется. В случае если при отладке схема будет «хондрить» ее надо будет довесить. Вращая переменный резистор и измеряя сторонним прибором температуру радиатора выставляем необходимую нам температуру включения вентилятора.
Вентилятор достаточно мощный прибор поэтому транзистор, коммутирующий ток через него, обязательно устанавливаем на теплоотвод или на корпус автомобиля, однако в этом случае необходимо обеспечить изоляцию корпуса транзистора от кузова, это обычно делается с помощью слюдяной прокладки. В качестве замены КТ815, можно взять КТ819 или иностранный аналог.
Автор; Ака Касьян
Похожие статьи:
Термостат для компьютерного вентилятора без микроконтроллера
Автор Instructables под ником Eriobis пользуется игровой консолью PlayStation (какой модели, не указывает) не по прямому назначению, а в качестве источника сигнала в аудиосистеме. Например, при помощи имеющегося в ней браузера можно слушать стриминговые сервисы и интернет-радиостанции. Это непрактично, так как даже в таком режиме консоль потребляет значительную мощность и нагревается. Заставить её меньше «жрать» какой-либо самоделкой невозможно, проще заменить на планшет, там тоже есть браузер. А вот охладить можно — обычным компьютерным вентилятором. Чтобы он не «молотил» непрерывно на полной мощности, можно применять какой-либо термостат. Ртутные сразу отпадают по понятной причине, остаются контактные и электронные. Из контактных подойдёт, например, YCE-TNO-00-60, ему всё равно, какой вентилятор коммутировать, с компьютерным он тоже справится. Но он коммутирует вентилятор резко, что может мешать слушать музыку. Ну а электронный термостат интереснее взять не готовый, а собранный своими руками.
Я уже переводил статью об одном таком устройстве, которое устроено достаточно сложно: микроконтроллер, дисплей, плавное регулирование оборотов вентилятора ШИМом. Оно подойдёт тем, кого не устраивает нагрев транзистора, управляющего вентилятором. Если же с этом недостатком смириться, можно применить к термостату KISS-принцип и повторить вслед за мастером такую схему:
Как обидно бывает, когда из двух компараторов или ОУ в микросхеме один не используется. С микросхемой TL081 обидно не будет — ОУ (который мастер ошибочно названо компаратором) в ней всего один. У первого делителя напряжения, подключённого к неинвертирующему входу ОУ, верхнее звено — NTC-термистор. Переставив звенья местами, можно приспособить схему к PTC-термистору. У второго делителя, подключённого к инвертирующему входу ОУ, нижнее звено — подстроечный резистор. К выходу ОУ подключён усилитель постоянного тока на одном транзисторе, который и управляет вентилятором. Двигатель вентилятора — с электронной коммутацией обмоток с синхронизацией от датчика Холла, потому и не нужен диод, включённый параллельно вентилятору в обратной полярности.
Собрав схему на куске макетной платы типа perfboard, мастер подключает к устройству блок питания и вентилятор. Поскольку транзистор работает в линейном режиме, ему необходим теплоотвод.
Проверив собранный термостат в действии, мастер размещает терморезистор так, чтобы он оперативно реагировал на нагрев консоли, а вентилятор — так, чтобы он эффективно её охлаждал. И настраивает термостат подстроечным резистором так, чтобы консоль не перегревалась, но вентилятор шумел не слишком громко.
Предлагаемый термостат подойдёт и для компьютерного вентилятора, охлаждающего Raspberry Pi, усилитель или другое электронное устройство.
Источник Доставка новых самоделок на почту
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Простые терморегуляторы в блоках питания — Все для «кулера» (Вентилятора) — Компьютер и электроника к нему!!!
Сначала — терморегулятор. При выборе схемы учитывались такие факторы, как ее простота, доступность необходимых для сборки элементов (радиодеталей), особенно применяемых в качестве термодатчиков, технологичность сборки и установки в корпус БП.По этим критериям наиболее удачной, на наш взгляд, оказалась схема В.Портунова [1]. Она позволяет уменьшить износ вентилятора и снизить уровень шума, создаваемого им. Схема этого автоматического регулятора частоты вращения вентилятора показана на рис.1. Датчиком температуры служат диоды VD1— VD4, включенные в обратном направлении в цепь базы составного транзистора VT1, VT2. Выбор в качестве датчика диодов обусловила зависимость их обратного тока от температуры, которая имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания. Немаловажную роль сыграла распространенность диодов и их доступность для радиолюбителей.
Резистор R1 исключает возможность выхода из строя транзисторов VTI, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.
Рис.1
Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1,VT2. Если при указанном нa схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить. Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой . Естественно, если при четырех диодах датчика частота вращения слишком высокая, число диодов следует уменьшить.
Рис.2
Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 c припаянными к его выводам резисторами R1, R2 и транзистором VT1 (рис.2) устанавливают выводом эмиттера в отверстие «+12 В вентилятора» платы БП (раньше туда подключался красный провод от вентилятора). Налаживание устройства сводится к подбору резистора R2 спустя 2.. 3 мин после включения ПК и прогрева транзисторов БП. Временно заменив R2 переменным (100-150 кОм) подбирают такое сопротивление, чтобы при номинальной нагрузке теплоотводы транзисторов блока питания нагревались не более 40 ºС.
Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру на ощупь можно, только выключив компьютер.
Простую и надежную схему предложил И. Лаврушов (UA6HJQ). Принцип ее работы тот же, что и в предыдущей схеме, однако в качестве датчика температуры применен терморезистор NTC (номинал 10 кОм некритичен). Транзистор в схеме выбран типа КТ503. Как определено опытным путем его работа является более устойчивой, чем других типов транзисторов. Подстроечный резистор желательно применить многооборотный, что позволит точнее настроить температурный порог срабатывания транзистора и, соответственно, частоту вращения вентилятора. Терморезистор приклеивается к диодной сборке 12 В. При отсутствии его можно заменить двумя диодами. Более мощные вентиляторы с током потребления больше 100 мА следует подключать через схему составного транзистора (второй транзистор КТ815).
Рис.3
Схемы двух других, относительно простых и недорогих регуляторов частоты вращения вентиляторов охлаждения БП, часто приводятся в интернете (CQHAM.ru). Их особенность в том, что в качестве порогового элемента применяется интегральный стабилизатор TL431. Довольно просто «добыть» эту микросхему можно при разборке старых БП ПК АТХ.
Автор первой схемы (рис.4) Иван Шор (RA3WDK). При повторении выявилась целесообразность в качестве подстроечного резистора R1 применять многооборотный того же номинала. Терморезистор крепится на радиатор охлаждаемой диодной сборки (или на ее корпус) через термопасту КПТ-80.
Рис.4
Подобную схему, но на двух включенных параллельно КТ503 (вместо одного КТ815) применил Александр (RX3DUR). При указанных на схеме (рис.5) номиналах деталей на вентилятор поступает 7В, повышаясь при нагреве терморезистора. Транзисторы КТ503 можно заменить на импортные 2SC945, все резисторы мощностью 0,25Вт.
Рис.5
Более сложная схема регулятора частоты вращения вентилятора охлаждения описана в [2]. Длительное время она с успехом применяется в другом БП. В отличие от прототипа в ней применены «телевизионные» транзисторы. Отошлю читателей к статье на нашем сайте «Еще один универсальный БП» и архиву, в котором представлен вариант печатной платы (рис.5 в архиве) и журнальный источник [2]. Роль радиатора регулируемого транзистора Т2 на ней выполняет свободный участок фольги, оставленный на лицевой стороне платы. Эта схема позволяет, кроме автоматического увеличения частоты вращения вентилятора при нагреве радиатора охлаждаемых транзисторов БП или диодной сборки, устанавливать минимальную пороговую частоту вращения вручную, вплоть до максимума.
Рис.6
Регулятор оборотов кулера с терморезистором
РадиоКот >Схемы >Аналоговые схемы >Бытовая техника >Регулятор оборотов кулера с терморезистором
Уважаемые коты, наступил март. Сегодня орал под окном… И вчера… и…
Но в прошлом месяце удалось собрать полезную и очень простую для повторения схему для регулирования оборотов вентилятора.
Переделывая импульсный блок питания ATX в регулируемый, столкнулся с проблемой охлаждения. Выходное напряжение 0-20 Вольт. Ток до 10А. Естественно до 3х вольт вентилятор не вращается и с выхода взять его не получится. Изучая вопрос, было решено делать регулируемый стабилизатор напряжения из того, что было под лапой. А именно термисторы из контроллера батареи ноутбука ACER и TL431, который не так давно выпаял из того же блока питания ATX.
Что нужно коту для счастья:
- Термистор (NTC) – сопротивление уменьшается при нагреве.
- TL431
- КТ805 (815,817,819 и др. n-p-n )
- Питаться все это дело будет от дежурки.
И так приступим:
Берем сметану из даташита:
Здесь по формуле видно что минимальное напряжение на выходе будет 2.5 вольт, т.к. TL-ка обладает источником опорного напряжения V(ref)=2.5в. При Таком напряжении кулер не крутится. Я его и хвостом и лапой подталкивал но нет… Заменяем R2 термистором.
Кошачим модель в Proteus используя аналог КТ805 – 2N3054:
Подстроечный резистор нужно взять >= сопротивлению термистора.
После сборки подключаем к питанию и подстроечником выставляем бесшумный режим при комнатной температуре. Термистор крепим на радиатор
Печатная плата рисовалась после сборки устройства, поэтому фото не выкладываю. Мой вариант платы не претендует на звание самой лучшей, но кому не захочется заниматься этим вполне сгодится. К тому же с таким количеством деталей можно использовать навесной монтаж.
Всем удачных разводок!
Файлы:
Печатная плата
Модель в proteus
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
Автоматическое управление вентилятором | Все своими руками
Опубликовал admin | Дата 22 января, 2016Не так давно попался в руки блок питания Enhance P520N от домашнего компьютера. Помимо основной платы блока питания, в ней обнаружилась еще небольшое устройство. Это был терморегулятор скорости вращения вентилятора. Схема простенькая, содержит всего два транзистора, четыре резистора, диод и конденсатор. Схема устройства показана на рисунке 1.
Данный регулятор можно применять не только для блоков питания, но и в усилителях мощности низкой частоты, сварочных аппаратах, мощных преобразователях, регуляторах мощности и т.д. Зачем зря жужжать, если все ПП (полупроводниковые приборы) холодные. Диод VD1, стоящий на плате и в указанной схеме по всей вероятности нужен только в конкретном ИИП, поэтому его можно убрать. На плате стоит диод 1N4002. Первый транзистор можно заменить на отечественный — КТ3102. Импортный транзистор C1384 по документации рассчитан на ток коллектора 1А, напряжение коллектор-эмиттер 60В, постоянная рассеиваемая мощность коллектора 1 ватт. Можно попробовать заменить на наш КТ814 с любой буквой или на КТ972. Электролитический конденсатор должен быть на напряжение 16 вольт.
Начальную скорость вращения вентилятора выбирают изменением величины сопротивления резистора R1. Схема работает следующим образом. Когда температура внутри контролируемого объема или непосредственно теплоотвода ПП невысокая, то транзистор VT2 призакрыт и вентилятор имеет не большую скорость вращения. При увеличении температуры начинает уменьшаться сопротивление терморезистора Rt, что в свою очередь приведет к уменьшению напряжения на базе VT1, начнет уменьшаться и ток коллектора этого транзистора. Уменьшение тока через первый транзистор приведет к увеличению тока база-эмиттер второго транзистора VT2 (уменьшится шунтирующее действие транзистора VT1 на переход база-эмиттер VT2). Транзистор VT2 начнет открываться, напряжение на вентиляторе начнет возрастать, Скорость его вращения увеличится.
Для большей универсальности в схему можно ввести стабилизатор напряжения, например, КР142ЕН8Б. У этой микросхемы максимальное входное напряжение во всем диапазоне температур равно 35 вольт.
Вид платы показан на фото 1, а рисунок печатной платы на рисунке 2.
В случае применения поверхностного монтажа, плату можно будет закрепить непосредственно на контролируемом теплоотводе для ПП, сделав в ней соответствующее отверстие для винта крепления.
Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:9 630