Site Loader

принцип работы цифрового устройства, простые схемы

На замену не совсем удобным аналоговым измерителям температуры, в основе работы которых лежит свойство жидкости расширяться и сжиматься, промышленность предложила дискретные устройства. Эти совсем несложные приборы обладают рядом неоспоримых преимуществ. Купить измеритель можно практически в любом магазине бытовой или климатической техники, но гораздо интереснее изготовить электронный термометр с выносным датчиком своими руками.

Суть устройства

Детали электронного термометра

Термометр, разговорный аналог — градусник, предназначен для измерения температуры окружающей среды. Первое устройство было изобретено в 1714 году немецким физиком Д. Г. Фаренгейтом. В основе своей конструкции он использовал прозрачную запаянную колбу, внутри которой находился спирт. После в качестве жидкости учёный применил ртуть. Но шкала аналогового измерителя, существующая и по сей день, была разработана лишь только через 30 лет шведским астрономом и метеорологом Андерс Цельсием. За начальные точки он предложил взять температуру тающего льда и кипения воды.

Интересным фактом является то, что изначально числом 100 была отмечена температура таяния льда, а за ноль взята точка кипения. Впоследствии шкалу «перевернули». По некоторым мнениям это сделал сам Цельсий, по другим — его соотечественники ботаник Линней и астроном Штремер.

Вскоре изготовление ртутных измерителей было широко налажено производством в промышленных масштабах. Со временем ртуть из-за своей ядовитости была заменена на спирт, а затем и вовсе был предложен новый тип устройства — цифровой. Сегодня, пожалуй, градусник стал неотъемлемым атрибутом любого жилища. По совету Всемирной организации здравоохранения была принята Минаматская конвенция, направленная на постепенный вывод из обихода ртутных градусников. Согласно ей в 2022 году использование ртути в измерителях будет полностью прекращено.

Поэтому из-за своих отличных характеристик термометр с цифровой схемой практически не имеет конкурентов. Предлагаемые в продаже спиртовые приборы проигрывают ему по точности и удобству восприятия данных.

Электронные модели могут располагаться в любом месте, ведь в контролируемом помещении необходимо расположить только небольшой датчик, подключённый к устройству. Этот тип используется во многих технологических процессах промышленности, например, строительных, аграрных, энергетических. С их помощью контролируется:

  • температура воздуха в производственных и жилых зданиях;
  • проверка нагрева сыпучих продуктов;
  • состояние вязких материалов.

Принцип работы

Перед тем как непосредственно приступить к изготовлению электронного термометра, следует разобраться в принципе его действия и определиться, из каких узлов будет состоять конструкция. Промышленно выпускаемые электронные градусники различаются по своим размерам и назначению. Но все они построены на однотипном принципе действия.

Проводимость материала изменяется в зависимости от температуры окружающей среды. Основываясь на этом и проектируется схема электронного градусника. Так, чаще всего в конструкции применяется термопара. Это электронный прибор, стоящий из двух сваренных между собой металлов. На поверхности каждого из них имеется контактная площадка, подключённая к измерительной схеме. При нагревании или охлаждении контактов возникает термоэлектродвижущая сила, появление и изменение которой регистрируется платой электроники.

В устройствах нового поколения вместо термочувствительного элемента используется кремниевый диод. Полупроводниковый радиоэлемент, у которого наблюдается зависимость вольт-амперной характеристики от температурного воздействия. Иными словами, при прямом включении (направление тока от анода к катоду) значение падения напряжения на переходе изменяется в зависимости от нагрева полупроводника.

Обработанные данные выводятся на дисплей, с которого уже визуально снимаются пользователем. Цифровые градусники позволяют измерять изменения температуры в диапазоне от -50 ° С до 100 ° С.

Всего же в конструкции простого термометра можно выделить пять блоков:

Схема электронного термометра

  1. Датчик — устройство, изменяющее свои параметры в зависимости от величины воздействующей на него температуры.
  2. Измерительные провода — используются для выноса датчика и его расположения в различных местах, требующих контроля над температурой. Чаще всего это небольшого сечения в диаметре проводники, даже необязательно экранированные.
  3. Плата электроники — содержит блок анализатора, фиксирующий изменения приходящего от датчика сигнала, а затем передающий его на экран.
  4. Дисплей — монохромный или цветной экран, предназначенный для отображения данных об измеренной температуре.
  5. Блок питания — собирается на типовых для радиоэлектроники интегральных микросхемах. Используется для стабилизации и преобразования питания, подающегося на все узлы платы.

Особенности изготовления

Сборка термометра своими руками

Человеку, увлекающемуся радиолюбительством, сделать электронный термометр своими руками по схеме не доставит трудностей, но в то же время обычному потребителю понадобится иметь хотя бы навыки паяния. Сегодня существует довольно много различных схем, отличающихся как сложностью повторения, так и дефицитностью радиодеталей.

При выборе схемы учитывают характеристики, которые она сможет обеспечить будущему измерительному устройству. В первую очередь — это диапазон измеряемых температур, а во вторую – погрешность. Конструктивно можно собрать проводную и беспроводную модель. При сборке второго типа используется радиомодуль, значительно удорожающий изделие.

Из-за использования чувствительных специализированных микросхем собирать навесным монтажом схему вряд ли получится. Поэтому предварительно изготавливается печатная плата. Делать её лучше из одностороннего фольгированного стеклотекстолита методом «лазерно-утюжной технологии».

Суть метода заключается в том, что с помощью, например, Sprint Layout, рисуется печатная схема устройства и распечатывается в зеркальном отображении в масштабе 1:1 на лазерном принтере. Затем, приложив отпечатанный рисунок изображением вниз к фольгированному слою, проглаживают чертёж разогретым утюгом. Из-за особенностей тонера изображение линий перенесётся на стеклотекстолит. Далее плата погружается в ванную с реактивом, например, FeCl3.

Как самостоятельно собрать термометр

В качестве индикатора можно использовать светодиодную матрицу, но лучше приобрести любой монохромный экран. Простой экран можно взять буквально за «копейки», например, подойдёт от старых системных блоков, выполненных в форм-факторе АТ. Если планируется конструкция с выносным датчиком, то неплохим вариантом будет использование шлейфа с диаметром проводника от 0,3 мм2, но в принципе подойдёт любой провод. При этом чем вынос датчика больше, тем большего сечения нужен и провод.

В схемотехнике некоторых термометров используются микроконтроллеры. Их применение позволяет упростить электрическую схему и повысить функциональность, но при этом требует навыков программирования и умения загружать прошивку. Для этого понадобится программатор, который можно также спаять самостоятельно, например, для LPT из пяти проводов.

Простой термометр

Конструкция простого термометра состоит всего из трёх деталей и тестера. В качестве датчика температуры в схеме используется LM35. Это интегральный прибор с калиброванным выходом по напряжению. Амплитуда на выходе датчика пропорциональна температуре. Точность измерений составляет 0,75° C. Запитывать интегральную микросхему можно как от однополярного источника, так и двухполярного. Предел измерений от -55 ° до 150° C.

Простой электронный термометр

В качестве мультиметра можно использовать стрелочный или цифровой прибор. К датчику согласно схеме подключают источник питания. Например, КРОНу или три соединённых последовательно пальчиковых батарейки. Измеритель же подключают к клеммам V и COM и переводят в режим измерения температуры. Потребление датчика при работе не превышает 10 мкА.

Диапазон измерения мультиметра устанавливается на два вольта. Отображённый на экране результат и будет соответствовать измеряемой температуре. Последняя цифра в числе обозначает десятые доли градуса.

При желании устройство можно сделать двухканальным. Для этого дополнительно необходимо будет изготовить механический или электронный переключатель.

Цифровая схема

Одна из самых простых схем состоит всего из нескольких элементов. В основе конструкции лежит использование датчика, выдающего значение температуры в цифровом коде. Стоимость термодатчика LM 335 не превышает 50 центов, при этом после калибровки его точность измерения составляет от 0,3 ° до 1,5° C. Датчик может измерять температуру от — 40 ° до 100° C. Выпускается он в двух корпусах — TO-92 и SOIC. В качестве аналога можно использовать отечественную микросхему К1019ЕМ1.

При монтаже длина соединительных проводов может достигать пяти метров. Калибровка схемы осуществляется изменением напряжения, подаваемым на вывод один. Необходимое значение рассчитывается по формуле:

Uвых = Vвых1 * T / To, где:

  • Uвых – напряжение на выходе микросхемы;
  • Uвых1 – напряжение на выходе при эталонной температуре;
  • T и To – измеряемая и эталонная температура.

Напряжение, формирующее выходной сигнал, зависит от температуры, поэтому питание, подающееся на датчик, должно осуществляться от источника тока. Собирается он на двух транзисторах КТ209 и не требует дополнительных настроек. Максимальный ток питания не превышает 5 мА. Увеличение выходного напряжения на 10 мВ соответствует приросту температуры на один градус.

Использование микроконтроллера

Применение в схеме самодельного термометра микроконтроллера подразумевает использование программы, управляющей его работой. В качестве микросхемы применяется ATmega8, а датчика температуры — DS18B20.

В схеме используется небольшое число радиодеталей. Она несложная и не нуждается после сборки в какой-либо наладке. Напряжение питания микроконтроллера составляет пять вольт. Для его стабилизации используется микросхема L7805. Транзисторы можно использовать любые с NPN структурой. В качестве индикатора подойдёт трёхразрядный сегментный дисплей с общим катодом.

Схема электронного термометра

Температура устройством может изменяться в интервале от -55 ° до 125º С с шагом в 0,1º С. Погрешность измерения не превышает 0,5º С. Обмен данными между датчиком и микроконтроллером происходит по шине 1-Wire. При большом расстоянии выноса измерительной микросхемы DS18B20 от ATmega8 необходимо подобрать подтягивающее сопротивление. Распаять его лучше непосредственно на вывод датчика.

При программировании все установки микроконтроллера оставляются заводскими, и фьюзы не изменяются. Затем к собранному термометру можно добавить ещё один датчик, а также часы. Но для этого необходимо будет обладать знаниями в программировании, чтобы дописать программный код.

Точный термометр

Как своими руками собрать электронный термометр

Применение в качестве датчиков полупроводниковых диодов и транзисторов характеризуется сложностью калибровки показаний, что в итоге приводит к погрешности результата измерений. Поэтому для получения точного результата в качестве измерителя применяется бифилярно намотанная катушка из тонкого проводника, размещённая в цилиндре, имеющем размеры порядка 4×20 мм.

Основой конструкции является микросхема ICL707 и светящийся индикатор. Питание можно подавать от любого источника с выходной амплитудой 12 В. На DA3 собран нормирующий преобразователь, изменяющий своё выходное напряжение в зависимости от сигнала, поступаемого с датчика.

Настройка заключается в выставлении на 36 ноге микросхемы напряжения, равного одному вольту. Делается это с помощью резисторов R3 и R4. Вместо датчика подключают резистор на 100 Ом. Изменением сопротивления R14 устанавливают нули на цифровом индикаторе. После чего устройство готово к измерениям.

Как своими руками собрать электронный термометр Загрузка…

СХЕМА ЦИФРОВОГО ТЕРМОМЕТРА

   Часто схемы собирают по остаточному принципу: что-то где-то завалялось — можно что-нибудь спаять. Это как раз тот случай, где ничего покупать не нужно, так как все детали термометра самые распространённые. Использование дешевых микросхем серии 176 (К176ЛА7 и К176ИЕ4), сделало возможным создание цифрового термометра, который при всей своей простоте обладает высокой повторяемостью и достаточной для бытовых целей точностью. Часто в последнее время ставят цифровые датчики температуры, но здесь им является обычный терморезистор с отрицательным ТКС и сопротивлением примерно 100кОм. 

Цифровой термометр своими руками

   Цифровой термометр был задуман изначально как бытовой, домашний, который всю свою жизнь должен провисеть где-нибудь у окошка. Владельца термометра, прежде всего, волнует, какая температура на улице. Поэтому термометр может иметь внешний датчик температуры, расположенный, например, на внешней стороне рамы окна или только внутренний, если нужен контроль температуры в помещении. 

   Часто надо посмотреть на термометр, когда условия освещения плохие — например, посреди ночи. Поэтому ЖК-индикаторы, даже с подсветкой, не подходят. Лучшую читаемость в условиях недостаточного освещения имеют светодиодные индикаторы типа АЛС. Параметры термометра в смысле погрешности измерений всецело определяются настройкой градуирования по образцовому термометру. Схема термометра, вместе со всей страницей из журнала радиоконструктор приводится ниже:

Цифровой термометр схема и описание

   Печатная плата конструкция корпуса термометра зависит от желаемого дизайна изделия, поэтому здесь не приводится. Фото моей платы приводится ниже.

Цифровой термометр на микросхемах

   Можно при необходимости питать цифровой термометр от батареек с напряжением 9В, а если предполагается использовать термометр только с сетевым питанием, то собирайте схему стабилизатора на 7808. Материал предоставил -igRoman-

   Форум по цифровым микросхемам

   Обсудить статью СХЕМА ЦИФРОВОГО ТЕРМОМЕТРА


Простой многоканальный термометр — Микроконтроллеры — Схемы на МК и микросхемах

Понадобился мне для дома простейший термометр для измерения, так сказать, «забортной» температуры. Наружного термометра за окном у меня нет, поэтому решил собрать простую схему с выносным датчиком для измерения уличной температуры, чтобы не выглядывая в окно и не рассматривая деления на наружном спиртовом термометре (если он имеется), сразу видеть уличную температуру на цифровом табло в помещении.

Схему долго не искал, сразу попался на глаза термометр на PIC-контроллере, автор которого Ondrej Slovak, и так как имеется нормальный программатор, решил собрать эту схему.
Чем она мне понравилась, ну довольно простая, мало деталей и возможность подключать к этому термометру несколько датчиков температуры, которые можно установить в разных местах. Например один в помещении, другой на улице.

Датчики температуры в этом термометре самые обычные, DS18B20. Термометр позволяет подключить к себе от одного, до пятнадцати подобных датчиков, для контроля за температурой в пятнадцати различных мест (может кому-то и понадобится).
Диапазон измерения температуры этого термометра от -55 до +125 ° C, разрешение 0,1 ° C, то есть хватит на все случаи жизни, только если не на крайнем Севере, где температура может опускать и ниже 55-ти градусов.
Температуры ниже -9,9 или выше +99,9 ° C, отображаются с разрешением в 1 ° C. Отрицательные температуры отображаются со знаком «-«, а положительные без знака.
В качестве цифрового индикатора температуры, применён 3-х разрядный светодиодный индикатор с общим анодом.
Отображение температуры различных датчиков происходит автоматически. Сначала анимацией отображается номер температурного датчика в шестнадцатеричном формате (цифры от 1 до 9 и буквы A,B,C,D,E,F) в течении 3 секунд, затем индикация температуры этого датчика (10 секунд).
Как это всё отображается на цифровом индикаторе, видно на анимационном рисунке ниже. Рисунок отображает температуру и номера всех пятнадцати (если они будут) подключенных к термометру датчиков.

 

Поиск подключенных датчиков происходит после включения питания термометра.
Если к термометру подключён только один датчик, то его номер не отображается и на индикатор выводится только температура этого датчика без всякой анимации.

Термометр собран на микроконтроллере PIC16F88, его так-же можно собрать и на микроконтроллере PIC16F628A. В прикреплённом архиве в конце статьи, имеются прошивки для этих двух микроконтроллеров.
Ниже приведена схема термометра в авторском варианте.

Все температурные датчики подключаются параллельно к одному шлейфу.
Если в процессе эксплуатации какой нибудь датчик выйдет из строя, или с ним нарушится электрический контакт, на индикаторе отобразится неисправность в следующем формате — Er.x. где х = номер неисправного датчика (смотри рисунок ниже).
Повреждение датчика или ошибка связи с датчиком, не сразу выводятся на индикатор, а после того, как до него дойдёт очередь.

Если при включении термометра ни один датчик не будет найден, на дисплее отображается ошибка — E.00.  Поиск датчиков при этом по-прежнему повторяется.

При включении термометра и первоначальном поиске датчиков, их серийные номера (первые 8 бит) загружаются и сохраняются в памяти микроконтроллера, и датчикам присваиваются номера (1- самому маленькому номеру и далее по возрастанию до F, если датчиков 15), и может случиться так, что два или более датчиков, которые подключены к термометру, могут иметь один и тот же байт (номер). В этом случае на индикаторе будет отображаться ошибка [E.02] и поиск датчиков будет повторяться.
Если будет отображаться такая ошибка, то нужно будет поочередным изъятием датчиков из термометра, определить, какие из них имеют одни и те же коды (ошибка пропадёт) и заменить этот датчик на другой.

 

В авторском варианте термометр собран на двухсторонней печатной плате, а если убрать ICSP разъем для внутрисхемного программирования, то на односторонней печатной плате (смотри на рисунке ниже).

Красным цветом на рисунке обозначены проводники на другой стороне платы, которые относятся только к ICSP разъему для внутрисхемного программирования.

Трёх-разрядный светодиодный индикатор, припаивается на противоположную сторону от установки панельки микроконтроллера.

Я особо заморачиваться не стал, и собрал термометр на макетной плате. Индикатор поставил зелёного цвета, такой индикатор более приятен для глаз, особенно в тёмное время суток.

Поставил ещё стабилизатор на пять вольт. Наружный датчик подсоединил к термометру гибкими проводами, длинной три метра, свитыми между собой наподобие витой пары.
Провода припаял к датчику, потом закрыл место пайки и частично сам датчик термо-усадочной трубкой, и потом сами выводы проводов залил ещё клеем для герметизации, так как датчик будет находиться на улице, и это необходимо для защиты его от воздействия всевозможных атмосферных осадков.

С обратной стороны монтаж сделал обычными проводами, в качестве резисторов 300 Ом, поставил резисторы SMD.
Естественно разъём для внутрисхемного программирования устанавливать не стал, он мне тан не нужен.
В качестве блока питания здесь можно использовать любую зарядку для сотового телефона (смартфона).
Я поставил вот такую зарядку, которая давно валялась дома без дела после замены телефона.

Можно поставить в термометр и второй датчик, для контроля температуры, например в помещении, в котором установлен термометр, но мне пока это без надобности, а если понадобится — так поставить второй датчик, дело пяти минут.

Скачать архив;
Архив

 

 

Термометр со шкальным индикатором


Термометр со шкальным индикатором, предложенный автором Instructables под ником badarsworkshop, предназначен для использования в помещении. На шкале из 30 светодиодов он отображает значения температур от +10 до +39 °C.

Построить такое устройство без микроконтроллера мастеру удалось на микросхемах двух видов. LM35 — это термодатчик с аналоговым выходом. Если напряжение в милливольтах на этом выходе поделить на 100, получится температура в градусах Цельсия. Так всё просто и понятно. И это правило соблюдается в диапазоне температур от 0 до 100 °C. Точность измерения в 0,25 градуса при комнатных температурах и 0,75 — во всём диапазоне делает микросхему непригодной для медицинских термометров, там нужна цена деления в 0,1 °C. Можно только грубо узнать, нормальная температура или повышенная, как при помощи устройства на термохромных красителях, но не более того. Зато для измерения температуры воздуха в помещении такой точности более чем достаточно. Есть и аналогичный датчик LM34, отличающийся тем, что измеряет температуру в градусах Фаренгейта. Ну а LM3914 — простейший АЦП, данные на выходе которого представлены не в двоичном коде, как это обычно бывает, а в позиционном. Поскольку один такой преобразователь может управлять 10 светодиодами, для получения диапазона от +10 до +39 °C с ценой деления в 1 °C пришлось применить три микросхемы.


Схема термометра приведена ниже, как видно из неё, входы всех трёх АЦП соединены параллельно, только пределы измерения у них выставлены по-разному при помощи многооборотных подстроечных резисторов.Термометр со шкальным индикатором

А это — цоколёвки применённых микросхем:

Термометр со шкальным индикатором
Термометр со шкальным индикатором

Мастер готовит необходимые для сборки термометра компоненты:

Термометр со шкальным индикатором

И начинает собирать. Ставит на макетную плату типа breadboard (при наличии навыков пайки подойдёт и perfboard) все три микросхемы АЦП:

Термометр со шкальным индикатором

Затем — светодиоды и перемычки. По мнению переводчика, монохромная шкала будет смотреться лучше, но мастер считает по-другому. Перемычек требуется немного, так как цоколёвка микросхем почти совпадает с позиционным кодом. Но почти — не значит совсем.

Термометр со шкальным индикатором
Термометр со шкальным индикатором

Наступает очередь резисторов — постоянных и многооборотных подстроечных:

Термометр со шкальным индикатором

Вслед за ними мастер устанавливает термодатчик с обвязкой — резистором и двумя конденсаторами, один из которых полярный. При желании можно сделать датчик выносным.

Термометр со шкальным индикатором
Термометр со шкальным индикатором

Мастер добавляет диод для защиты схемы от переполюсовки источника питания (на схеме не показан) и ещё несколько перемычек:

Для желающих перенести схему на печатную плату мастер приводит ссылку на архив. А также на оригинальный проект, где устройство выполнено на такой плате и с применением шкальных индикаторов. Но мастер решает оставить всё так, на breadboard’е. Тоже можно, но какой-нибудь корпус придумать очень желательно в любом случае.

Многие привыкли, что аналоговые электронные термометры необходимо настраивать, помещая термодатчик то в тающий лёд, то в кипящую воду. Здесь этого не требуется, так как применён датчик с известной и линейной характеристикой. Достаточно поточнее выставить на подвижных контактах подстроечных резисторов напряжения, указанные на схеме рядом с ними. И периодически проверять, не «уползли» ли. При точно выставленных напряжениях термометр измеряет температуру правильно.


Источник Термометр со шкальным индикатором Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Простой цифровой термометр своими руками с датчиком на LM35

Для изготовления этого простого цифрового термометра необходим температурный датчик LM35, цифровой вольтметр (любой недорогой китайский цифровой мультиметр), два маломощных диода, один резистор и несколько батареек (либо элемент типа «Крона»). Из этих компонентов можно быстро собрать простой цифровой многофункциональный термометр с диапазоном температур от -40 до +150 градусов Цельсия. Для измерения только положительных температур диоды и резистор не нужны.

Точность измерения температуры 0,1 градуса Цельсия, т.е. термодатчик для многих применений можно назвать прецизионным. Для этого универсального цифрового термометра использованы полупроводниковые датчики температуры LM35DZ/NOPB для температуры от 0 до +100°C и LM35CZ/NOPB для температуры от -40 до +110°С в корпусах TO-92. В datasheets некоторых производителей LM35 указана верхняя измеряемая температура +150 градусов Цельсия.

Термометр для измерения положительных температур

Такой электронный измеритель температуры можно быстро сделать своими руками. Достаточно подключить Крону (или три пальчиковые батарейки, соединенные последовательно) к датчику, а датчик к вольтметру, как показано на рисунке – и термометр готов. Датчик потребляет от источника питания ток не более 10 мкА, поэтому батарейку можно не отключать длительное время.

Схема подключения LM35 для измерения плюсовой температуры и «распиновка» датчика

Диапазон использования такого цифрового датчика очень широк:
— термометр комнатный
— термометр уличный
— термометр для воды и других жидкостей
— термометр для инкубатора
— термометр для бани и сауны
— термометр для аквариума
-термометр для холодильника
— термометр для автомобиля
— цифровой многоканальный термометр и т.д.

Термометр уличный электронный

Схема цифрового термометра для измерения температуры от минус 40 до плюс 110 градусов Цельсия с однополярным источником питания. Диоды маломощные кремниевые – КД509, КД521 и т.д. Диапазон измерения тестера надо устанавливать на 2 вольта (2000 мВ), последняя цифра будет показывать десятые доли градуса, ее следует отделить точкой.

Для воды и других жидкостей датчик термометра следует сделать герметичным, для этого его можно залить силиконовым герметиком, либо поместить в медную трубку с внутренним диаметром 6 мм со сплющенным и запаянным концом. Запаянный конец трубки надо заполнить термопастой. Затем припаять к датчику провода, изолировать контакты и вставить датчик в трубку – протолкнуть до упора, чтобы он находился в теплопроводящей пасте. Таким образом получаем щуп-термометр. Если инерционность термометра не является критичной, датчик можно вставить в пластиковую трубку и загерметизировать ее концы.

Схема электронного термометра с двумя датчиками

Термометр легко сделать многоканальным. Для этого можно использовать как механические, так и электронные аналоговые переключатели. Ниже, для примера приведена схема двухканального термометра для плюсовых температур с использованием «перекидного» тумблера.

Этот прибор показывает уличную температуру, датчик висит за закрытой форточкой. Время на сборку заняло 30-40 минут.

Так выглядит прибор сзади. Собран градусник по схеме с одним источником питания, двумя диодами и резистором. Поскольку отрицательное смещение на диодах составляет порядка 2-х вольт, а минимальное напряжение питания датчика 4 вольта, в качестве БП использованы спаянные последовательно 5 батареек ААА. Датчики припаяны к неэкранированным проводам длиной 2,5 метра.

На этом фото показаны два термометра. Датчик первого размещен в холодильной камере, а второго — в морозильной камере этого же холодильника. Точка на индикаторе мультиметра нарисована черным маркером.

Измерил температуру своего тела – полный порядок. Подключил точно такой же другой прибор (без точки на индикаторе) к этому же датчику и огорчился, прибор «врет» в большую сторону на 0,2 градуса. В кипящей воде не пробовал: не готовы герметичные щупы. Перед замерами батарейки в обоих приборах заменил на одинаковые новые.

На основе этого термодатчика можно сделать простой регулятор температуры, добавив компаратор с регулируемым или фиксированным порогом срабатывания и силовой ключ (оптосимистор, реле …), который будет включать нагреватель. Для построения термостата (инкубатора, например) такая схема не пойдет, LM35 необходимо подключать к устройству с функцией ПИД-регулятора, например, ТРМ210.

  • Напряжение на светодиоде
  • Схема светодиодной лампы на 220в
  • Лампа ЭРА А65 13Вт
  • Как паять светодиодную ленту
  • Светодиодная лента на 220 в
  • Простое зарядное устройство
  • Разрядное устройство для автомобильного аккумулятора
  • Схема драйвера светодиодов на 220
  • Подсветка для кухни из ленты
  • Подсветка рабочей зоны кухни
  • LED лампа Selecta g9 220v 5w
  • Светодиодная лампа ASD LED-A60
  • Общедомовой учет тепла
  • Схема диодной лампы 5 Вт 220в
  • Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр

    Обычно в недорогих мультиметрах отсутствует функция измерения температуры. Но этот недостаток легко и недорого можно устранить, при том еще очень быстро. Получим довольно точный приборчик для измерения температуры состоящий всего из нескольких радиодеталей.
    Основу будет составлять специальная микросхема типа LM35 полученная с Алиэкспресс (цена примерно 30р).

    Этот датчик темпратуры выглядит как обычный транзистор в пластмассовом корпусе ТО92(бывает исполнение в других корпусах: ТО-46, TO-220 и SO). Температуру она может измерить от -55 до +150°C.

    Благодаря практически линейной зависимости температуры от выходного сигнала обеспечиваются довольно точные показания. Например—при +20°C на выходе датчика будет 200 мВ, а при +100°C-1000 мВ.
    Схема использования LM35 при измерении температуры от +2 до+150°C.
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Схема использования LM35 при измерении температуры от -55 до+150°C.
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Для изготовления этой самоделки понадобятся:
    — датчик LM35 -1шт;
    — тестер -1шт;
    — подстроечный многооборотный резистор любой от 10 кОм до 100 кОм – 1 шт;
    — макетная плата;
    — металлический корпус от конденсатора МБМ или металлическая трубка -1шт;
    — силиконовый герметик;
    — батарейка «Крона» или любая на напряжение от 3 В;
    — цифровой вольтметр-1шт;
    — соединительные провода ;
    — паяльник;
    — клемник.

    Шаг 1.Сборка приставки к тестеру.
    Будем собирать основную плату электронного термометра.
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    От макетной платы отрежем кусок нужного размера, чтобы разместилась батарейка, клемник и подстроечный резистор. Можно сделать и печатную плату или произвольно распаять схему на любом диэлектрическом материале.
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Соединения с обратно стороны платы можно сделать проводами навесным монтажом.
    К клемнику подключаем датчик температуры и выводы на мультиметр. Если датчик будет использоваться на улице или во влажной среде его надо поместить в защитный чехол. Я сделал его из корпуса конденсатора типа МБМ-удалил из него фольгу и поместил туда сам датчик. Для герметизации залил силиконовым герметиком.
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр

    Шаг 2. Настройка и проверка приставки.
    Подключаем питание и подстроечным резистором настраиваем показания по другому термометру. Мультиметр включен на предел измерения 200 мВ. Далее сравнил показания поместив датчик в холодную и горячую воду. Разница оказалась в десятые доли градуса.

    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    На этом настройка закончена, можно пользоваться термометром LM35 как приставкой к тестеру.

    Шаг 3. Переделка вольтметра в термометр.
    Также можно применить эту приставку как базовую и сделать электронный цифровой термометр из электронного вольтметра.

    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Он был включен по двухпроводной схеме- подключаем к источнику напряжения и он питается от него и показывает значение напряжения. Нужно переделать его на трехпроводную схему-питание отдельно и измерительный вход отдельно. Это сделать просто, надо удалить резистор R3 (сопротивление 0 Ом). Это даст еще возможность (если применять вольтметр по его прямому назначению) расширить предел измерения. По двухпроводной схеме включения пределы измерения от 4 до 30 В, по трехпроводной составит от 0 до 100 В.
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Припаиваем выход температуры из приставки на LM35 к процессору (в точку указанной в фото). Заклеиваем горящюю точку на вольтметре черной изолентой, после второй цифры вольтметра наклеиваем белую точку.
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Остается подстроечным резистором выставить реальную температуру на вольтметре. Также проверим показания по образцовому термометру.
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Последним шагом изготовления самоделки будет размещение в подходящем корпусе. Нашел небольшую распредкоробку – в нее как раз уместилась и платка и вольтметр. Наружу выходят провода датчика и питания. Можно запитать схему и от аккумулятора и разместить его в корпусе, тогда прибор будет полностью автономен.
    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр
    Датчик LM35 имеет большую сферу применения. Он применяется в бортовых компьютерах автомобилей, в терморегуляторах, прекрасно сочетается с Ардуино. Все зависит от ваших потребностей и фантазий.

    В видео подробней показано как сделать приставку для бюджетного тестера и переделать вольтметр в термометр.

    Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр Доставка новых самоделок на почту

    Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

    *Заполняя форму вы соглашаетесь на обработку персональных данных

    Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

    Радиосхемы. — Термометр на логической микросхеме

    Термометр на логической микросхеме

    категория

    Логические микросхемы и их применение

    материалы в категории

    И. ЦАПЛИН, г. Краснодар
    Радио, 2003 год, № 3

    Описываемые в статье термометры построены необычно: в первом из них термочувствительный элемент (терморезистор) включен в интегрирующую цепь, во втором — в дифференцирующую. Изменение постоянных времени этих цепей под действием на термистор температуры окружающей среды преобразуется в изменение скважности прямоугольных импульсов, в результате чего изменяется эффективное напряжение на выходе устройства, которое регистрируется микроамперметром. Приборы выполнены на широко распространенных цифровых микросхемах и доступны для повторения даже начинающим радиолюбителям.

    Термочувствительный элемент в аналоговых термометрах чаще всего включают в измерительный мост. Такой датчик температуры имеет существенный недостаток, связанный с необходимостью ограничения тока через мост значениями, исключающими саморазогрев образующих его резисторов. Кроме того, нередко предъявляются довольно высокие требования к стабильности напряжения, подаваемого на измерительный мост. Для усиления сигнала, снимаемого с моста, и стабилизации подаваемого на него напряжения во многих аналоговых термометрах используют операционные усилители. Это усложняет конструкцию и налаживание подобных устройств.

    От названных недостатков свободен предлагаемый импульсный термометр. Он содержит генератор прямоугольных импульсов, интегрирующую цепь с термочувствительным элементом, формирователь импульсов и стрелочный индикатор, регистрирующий эффективное напряжение, пропорциональное скважности импульсов. Наиболее подходят для такого прибора КМОП цифровые микросхемы: у них напряжение низкого уровня практически не отличается от 0, а высокого — от напряжения питания.

    Принципиальная схема термометра изображена на рис. 1.

    На элементах DD1.1, DD1.2 собран генератор прямоугольных импульсов с частотой следования около 60 кГц и скважностью 2. От генератора колебания поступают на интегрирующую цепь RK1R2C2. В зависимости от сопротивления терморезистора (далее термистора) RK1 изменяется постоянная времени интегрирующей цепи и, соответственно, длительность импульсов, поступающих на вход формирователя, выполненного на элементах DD1.3 и DD1.4. Длительность импульсов на выходе элемента DD1.4 пропорциональна температуре и определяет эффективное напряжение, регистрируемое прибором РА1. Подстроенный резистор R1 служит для установки «нуля», R2 — для регулировки чувствительности (она максимальна при его минимальном сопротивлении). При номинале термистора не более 5 кОм зависимость сопротивления от температуры близка к линейной в интервале от -20 до +50 °С. Погрешность измерения не превышает ±1 °С.

    Стабильность напряжения питания (а следовательно, и амплитуды импульсов) обеспечивает параметрический стабилизатор на элементах VD1 и R3. Потребляемый термометром ток не превышает 7 мА.

    Все детали, кроме термистора RK1 и микроамперметра РА1, размещают на печатной плате, изготовленной в соответствии с рис. 2

    Плата рассчитана на применение постоянных резисторов МЛТ, проволочных подстроечных резисторов СП5-3, конденсаторов КМ-6 (С1 и С2 — желательно группы М47 или М75). Термистор RK1 — КМТ17 с отрицательным ТКС. Микроамперметр РА1 — М4387 или любой другой с током полного отклонения стрелки до 1 мА и внутренним сопротивлением не менее 500 Ом.

    При налаживании термистор помещают в ванночку с тающим льдом и подстроечным резистором R1 устанавливают стрелку прибора РА1 на нулевую отметку шкалы. Затем датчик переносят в воду, нагретую до температуры +50 °С, и подстроечным резистором R2 добиваются отклонения стрелки до последней отметки.

    Для измерения температуры в более широком интервале, например, от -60 до +150 °С, параллельно термистору сопротивлением R или последовательно с ним следует включить резистор сопротивлением 3R или 1/3R соответственно. Чувствительность устройства после такой доработки, разумеется, уменьшится, а погрешность измерения может возрасти до ±3…5 °С. Если необходима более высокая точность, указанный диапазон измеряемых температур следует разбить на два-три поддиапазона и провести линеаризацию термистора в каждом поддиапазоне. В этом случае погрешность измерения можно уменьшить до ±1 …1,5 °С.


     

    У микросхем ТТЛ, ТТЛШ, по сравнению с микросхемами серии КМОП, логические уровни существенно отличаются от идеальных значений. Кроме того, у базовых элементов микросхем этих серий весьма значительны входные токи. Поэтому термометр на таких микросхемах следует собрать по схеме, показанной на рис. 3.

    Колебания прямоугольной формы с частотой повторения 60 кГц, вырабатываемые генератором на элементах DD1.1, DD1.2, поступают на входы буферных элементов DD1.3 и DD1.4. Они устраняют взаимное влияние дифференцирующих цепей C2R3RK1 и C3R4 и уменьшают нагрузку на генератор, что благоприятно сказывается на стабильности его частоты. Элемент DD1.6 формирует последовательность, в которой длительность импульсов определяется «образцовой» дифференцирующей цепью R4C3, a DD1.5 — последовательность, в которой она зависит от сопротивления терморезистора RK1, входящего в измерительную дифференцирующую цепь RK1R3C2. В результате через прибор РА1 течет пульсирующий ток, эффективное значение которого пропорционально температуре окружающей среды. При номиналах элементов дифференцирующих цепей, указанных на схеме, диоды VD1, VD2 можно исключить. Однако, если используются резисторы меньших номиналов и конденсаторы С1 — СЗ большей емкости, для защиты инверторов DD1.5, DD1.6 от пробоя эти диоды необходимы.

    В термометре используют детали тех же типов, что и в предыдущем. Вместо К555ЛН1 допустимо применение микросхем К155ЛН1, К155ЛНЗ, К155ЛН5, К1533ЛН6. Диод КД521А можно заменить другим диодом этой серии, а также серии КД522.

    Все детали, кроме термистора RK1 и микроамперметра РА1, размещают на печатной плате (рис. 4).

    Настройка термометра сводится к установке резистором R3 максимальной температуры, а резистором R4 — нулевой. В интервале температур от -20 до +50 °С погрешность измерения не превышает ±1 °С.

    Этим термометром можно измерять температуру тела. Предварительно прибор необходимо откалибровать в интервале +36. ..+40 °С. Для этого термистор помещают в подогретое до +36 °С вазелиновое масло и подстроечным резистором R4 устанавливают стрелку микроамперметра на нулевую отметку шкалы. Затем, повысив температуру масла до +40 СС, резистором R3 устанавливают стрелку на последнее деление шкалы. Эти операции необходимо повторить два-три раза для лучшей воспроизводимости результатов измерения. (При калибровке этого прибора следует использовать именно вазелиновое масло, а не воду, поскольку из-за высокой электропроводности водных растворов результаты измерений существенно искажаются). После калибровки термистор помещают в стеклянную трубку, запаянную с одной стороны, и заливают эпоксидной смолой. Такая конструкция датчика исключает погрешность при измерении температуры, вызванную электрическим контактом термистора с кожей пациента.

    В интервале температур от +36 до +40 °С температурная зависимость сопротивления термистора практически линейна. При использовании в качестве С1—СЗ термостабильных конденсаторов (например, слюдяных или фторопластовых) погрешность измерения в этом интервале не превысит ±0,1 °С.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *