Site Loader

Инверторы, умножители напряжения: схемы, принцип работы, диаграммы

рис. 2.87Инверторы— это устройства, преобразующие постоянный ток в переменный. Изобразим упрощенную схему инвертора на биполярных транзисторах (рис. 2.87), где имеет место соотношение uc1 = uc2 = ½ uвх

В схеме часто используют электролитические конденсаторы (большой емкости). Транзисторы работают в ключевом режиме:

включаются и выключаются поочередно. На выходе схемы возникает переменное напряжение.

Умножители напряжения 

Умножители напряжения преобразуют переменное напряжение в постоянное, причем выходное постоянное напряжение значительно превышает амплитуду входного переменного напряжения. Различают симметричные и несимметричные умножители напряжения.

Рассмотрим схему симметричного удвоителя напряжения (схему Латура) (рис. 2.88). рис. 2.88 Диоды включаются в разные полупериоды входного напряжения. В те полупериоды, когда uвх< 0, включается диод D

1 и заряжается конденсатор С1 в другие полупериоды (uвх< 0), включается диод D2 и заряжается конденсатор С2.
Напряжения на конденсаторах при холостом ходе приближаются к амплитудному значению Uвx.m входного напряжения, поэтому uвых= 2Uвx.m
Схема несимметричного удвоителя напряжения имеет вид, показанный на рис. 2.89. рис. 2.89
В отрицательные полупериоды входного напряжения (uвх< 0) через диод D1 заряжается конденсатор С1 до амплитудного значения входного напряжения, а в положительные полупериоды (uвх> 0) через диод D2 под действием суммы напряжений uвхи uc1, действующих согласно, заряжается конденсатор С2 до удвоенного амплитудного значения входного напряжения.

Аналогичным образом строят утроители (рис. 2.90, а), учетверители (рис. 2.90, б) и другие умножители напряжения. рис. 2.90
В этих схемах напряжение на конденсаторе С1 равно амплитудному значению входного напряжения, а на всех остальных конденсаторах — удвоенному амплитудному значению входного напряжения. Входное напряжение на такие умножители поступает обычно с вторичной обмотки трансформатора, и тогда такое устройство называют выпрямителем с умножением напряжения. Обычно они применяются в высоковольтных выпрямителях, потребляющих небольшой ток (единицы миллиампер), например для питания кинескопов телевизоров.

Рассмотренные ранее выпрямители являлись нерегулируемыми, так как величина выходного постоянного напряжения однозначно определялась входным напряжением выпрямителя.

Управляемые выпрямители позволяют регулировать выходное напряжение. Они, как правило, построены на основе однооперационных (обычных, незапираемых) тиристоров.

Для примера рассмотрим схему однофазного двухполупериодного управляемого выпрямителя со средней точкой (рис. 2.91).

 

Однофазного двухполупериодного управляемого выпрямителя

рис. 2.91
Если импульсы управления подаются сразу после появления на тиристорах положительных напряжений, то схема будет работать точно так же, как схема на диодах.
Изобразим временную диаграмму выходного напряжения для случая, когда импульсы управления подаются с некоторой задержкой по отношению к указанным моментам времени (рис. 2.92, жирная линия). рис. 2.92
Через tвкл

обозначена указанная выше задержка. Часто временные диаграммы подобных схем изображают, откладывая по горизонтальной оси не время t, а величину ωt (ω — круговая частота). Тогда указанной задержке соответствует определенный угол αвкл сдвига по фазе между напряжением на тиристоре и импульсами управления, причем αвкл = ω · tвкл
Угол αвкл называют углом управления. Для рассматриваемой схемы угол управления, как легко заметить, может изменяться в пределах от 0 до π (от 0 до 180 град.). Чем больше угол управления, тем меньше среднее напряжение на выходе выпрямителя.

Пунктиром изображена временная диаграмма, соответствующая отсутствию задержки.

принцип работы, расчет схемы :: SYL.ru

Все чаще и чаще радиолюбители стали интересоваться схемами питания, которые построены по принципу умножения напряжения. Этот интерес связан с появлением на рынке миниатюрных конденсаторов с большой емкостью и повышением стоимости медного провода, который используется для намотки катушек трансформаторов. Дополнительным плюсом упомянутых устройств являются их малые габариты, что значительно снижает конечные размеры проектируемой аппаратуры. А что же представляет собой умножитель напряжения? Этот прибор состоит из подключенных определенным образом конденсаторов и диодов. По сути, это преобразователь переменного напряжения низковольтного источника в высокое постоянное напряжение. А зачем нужен умножитель напряжения постоянного тока?

умножитель напряжения постоянного тока

Область применения

Такое устройство нашло широкое применение в телевизионной аппаратуре (в источниках анодного напряжения кинескопов), медицинском оборудовании (при питании мощных лазеров), в измерительной технике (приборы измерения радиации, осциллографы). Кроме того, оно используется в устройствах ночного видения, в электрошоковых приборах, бытовой и офисной аппаратуре (ксерокопировальные аппараты) и т. д. Умножитель напряжения завоевал такую популярность благодаря возможности формировать напряжение до десятков и даже сотен тысяч вольт, и это при незначительных размерах и массе устройства. Еще один немаловажный плюс упомянутых приборов – это простота изготовления.

Типы схем

Рассматриваемые устройства делятся на симметричные и несимметричные, на умножители первого и второго рода. Симметричный умножитель напряжения получается путем соединения двух несимметричных схем. У одной такой схемы меняется полярность конденсаторов (электролитов) и проводимость диодов. Симметричный умножитель обладает лучшими характеристиками. Одним из главных достоинств является удвоенное значение частоты пульсаций выпрямляемого напряжения.

умножитель напряжения

Принцип работы

На фото показана простейшая схема однополупериодного прибора. Рассмотрим принцип работы. При действии отрицательного полупериода напряжения через открытый диод Д1 начинает заряжаться конденсатор С1 до амплитудного значения поданного напряжения. В тот момент, когда наступает период положительной волны, заряжается (через диод Д2) конденсатор С2 до удвоенного значения поданного напряжения. При начале следующего этапа отрицательного полупериода происходит заряд конденсатора С3 — также до удвоенного значения напряжения, а при смене полупериода и конденсатор С4 также заряжается до указанного значения. Запуск устройства осуществляется за несколько полных периодов напряжения переменного тока. На выходе получается постоянная физическая величина, которая складывается из показателей напряжений последовательных, постоянно заряжаемых конденсаторов С2 и С4. В результате получим величину, в четыре раза большую, чем на входе. Вот по такому принципу и работает умножитель напряжения.

умножитель напряжения расчет

Расчет схемы

При расчете необходимо задать требуемые параметры: выходное напряжение, мощность, переменное входное напряжение, габариты. Не следует пренебрегать и некоторыми ограничениями: входное напряжение не должно превышать 15 кВ, частота его колеблется в пределах 5-100 кГц, значение на выходе — не более 150 кВ. На практике применяют устройства с выходной мощностью 50 Вт, хотя реально сконструировать умножитель напряжения с выходным показателем, приближающимся к 200 Вт. Значение выходного напряжения напрямую зависит от тока нагрузки и определяется по формуле:

U вых = N*U вх – (I (N3 + +9N2 /4 + N/2)) / 12FC, где

I – ток нагрузки;

N – число ступеней;

F – частота входного напряжения;

С – емкость генератора.

Таким образом, если задать значение выходного напряжения, тока, частоты и количества ступеней, возможно высчитать необходимую емкость конденсаторов.

УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ

   В современных электронных аппаратурах умножители напряжения нашли широкое применение. Умножитель напряжение — это устройство которое позволяет получить от переменного напряжение — высоковольтное постоянное. Умножители напряжения нашли широкие применения в самых разных аппаратах, где нужно иметь высокое напряжение. В основном умножители используют в телевизионной технике, в электрошоковых устройствах, в медицинских приборах и во многом другом. Умножитель напряжения состоит из конденсаторов и диодов, для получения напряжения свыше киловольта, нужно использовать специальные высоковольтные диоды и неполярные конденсаторы.

Умножитель напряжения - схема

   В современной электронике существует несколько типов применяемых умножителей напряжения это последовательные у параллельные умножители напряжения. Умножители напряжение могут повышать переменное входное напряжение в десятки раз, на выходе умножителя образуются высоковольтные импульсы постоянного тока. Умножитель низковольтного напряжения (на выходе меньше киловольта) могут состоять из конденсаторов постоянного тока. Главный недостаток умножителей напряжения — это маленькая сила тока на выходе, также если в умножитель напряжение добавить слишком много секций конденсаторов, то в таком случае последние секции не будут нормально заряжаться и напряжение на выходе может быть ниже ожидаемого.

Умножители напряжения - модель устройства

   Умножитель напряжения, или генератор Кокрофта-Уолтона был назван в честь двух изобретателей, которые в 1932 году построил первый умножитель напряжения. Генератор был сооружен для исследования в ядерной физике, за что и изобретатели в 1951 году получили нобелевскую премию. Но иногда создателя умножителя напряжения считают швейцарского физика Генриха Грейнахера. Обычно на вход напряжение подаётся с выхода высокочастотного трансформатора и повышается до нужной величины в генераторе Кокрофта-Уолтона.

Умножители напряжения - схемы различных вариантов

   Умножители напряжения также применяются в лазерной технике также для подсветки больших дисплеях. Радиолюбителями умножитель очень часто применяется в высоковольтных конструкциях, например в люстре Чижского, самодельных электрошокерах, в ионизаторах воздуха, счётчиках Гейгера. В последнее время маленькие умножители напряжение стали использовать в электронных устройствах для питания микросхем. Умножитель по сравнениями с другими видами преобразователей напряжения работает бесшумно, выделение тепла на нем не наблюдается, но мощность на выходе слишком маленькая. Пожалуй с ознакомлением умножителей напряжения достаточно, думаю принцип его работы и области применения понятны, по возникшим вопросам обращайтесь на форум — Артур Касьян (АКА).

   Форум по радиолюбительской теории

   Обсудить статью УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ


Генератор Кокрофта — Уолтона — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 июля 2019; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 июля 2019; проверки требуют 3 правки.

Генера́тор Ко́крофта — Уо́лтона [1] — один из типов умножителя напряжения, устройство для преобразования относительно низкого переменного напряжения или пульсирующего напряжения в высоковольтное постоянное напряжение.

Принципиальная схема умножителя данного типа была разработана в 1919 году швейцарским физиком Генрихом Грайнахером. По этой причине каскадный удвоитель данного типа иногда называют умножителем Грайнахера[1].

Более известно, что умножитель был построен в 1932 году Джоном Кокрофтом и Эрнстом Уолтоном для использования его в качестве высоковольтного источника напряжения в ускорителе заряженных частиц, предназначенного для проведения эксперимента по искусственному расщеплению атомных ядер (практически одновременно такой же эксперимент впервые в СССР был проведен в УФТИ), поэтому иногда умножитель напряжения называют генератором Кокрофта — Уолтона[1].

Простой умножитель из двух секций. Двухполупериодный умножитель Умножитель напряжения УН 9-27 1,3 (обозначения: 9 кВ входное напряжение, 27 кВ — выходное, выходной ток — 1,3 мА). Умножитель напряжения УН 9/27 в телевизоре производства СССР серии 3УСЦТ.

Умножитель напряжения преобразует переменное, пульсирующее напряжение в высокое постоянное напряжение. Умножитель строится из лестницы конденсаторов и диодов. В отличие от трансформатора такой метод не требует тяжёлого сердечника и серьёзной изоляции, так как напряжения на всех ступенях равны. Используя только конденсаторы и диоды, генераторы такого типа могут преобразовывать относительно низкое напряжение в очень высокое, при этом оказываясь много легче и дешевле по сравнению с трансформаторами. Ещё одним преимуществом является возможность снять напряжение с любой ступени схемы, так же как в многоотводном трансформаторе.

Uвых = 2 Uвх * n
где

  • n — число каскадов
  • Uвх — амплитуда входящего переменного напряжения,
  • Uвых — выходящее постоянное напряжение

Несмотря на свои теоретические недостатки и ограничения, умножитель напряжения стал такой же классикой в электронной схемотехнике для получения высокого постоянного напряжения как и двухполупериодный выпрямитель (диодный мост) для получения постоянного тока из переменного. На принципиальных электрических схемах его даже не рисуют подробно, а изображают в виде специального значка. Промышленность выпускает очень широкий ассортимент модульных «умножителей напряжения» с заранее заданными параметрами, без которых не обходятся большинство устройств с ЭЛТ, появившихся до изобретения ТДКС: монитор, телевизор, индикатор радара или осциллографа.

На практике умножитель имеет ряд недостатков. Если в умножитель добавляется слишком много секций, напряжение в последних секциях будет ниже ожидаемого, в основном из-за ненулевого импеданса конденсаторов в нижних секциях. Практически невозможно питание умножителя непосредственно напряжением промышленной частоты, так как в этом случае требуются конденсаторы большой ёмкости, что сильно ухудшает массогабаритные показатели устройства. Пульсации выпрямленного тока также усиливаются, что в некоторых случаях неприемлемо. Обычно на вход напряжение подаётся с выхода высокочастотного высоковольтного трансформатора и повышается до нужной величины в умножителе.

Существуют умножители на напряжения от нескольких сотен вольт до нескольких мегавольт.

Умножители применяются во многих областях техники, в частности для электрической накачки лазера, в источниках высокого напряжения систем рентгеновского излучения, лампах бегущей волны, ионных насосах, электростатических системах, ионизаторах воздуха, ускорителях частиц, копировальных аппаратах, осциллографах, телевизорах и во многих других устройствах, где необходимо постоянное высокое напряжение с небольшой силой тока.

Умножитель напряжения

Умножители напряжения сейчас используются во многих видах аппаратуры. Это устройство, с помощью которого можно преобразовать переменное напряжение в постоянное высоковольтное. В большинстве случаев умножители используются в телевизионных устройствах, в медицинском оборудовании и т. д. Он сделан из диодов и конденсаторов, чтобы получить напряжение больше киловольта, необходимо применять специальные для этого высоковольтные диоды и неполярные конденсаторы.

Схема умножителя напряжения

Умножители напряжения делятся на два основных типа, этопараллельные и последовательные. Умножители напряжения способны увеличивать переменное напряжение на входе в несколько десятков раз, на выходе умножителя появляются высоковольтные импульсы постоянного тока. Умножитель низковольтного напряжения (это когда меньше киловольта на выходе) может быть изготовлен из конденсаторов постоянного тока. Самый важный недостаток умножителя напряжения, это совсем небольшая сила тока на выходе, а если в умножитель напряжения установить много секций конденсаторов, то тогда последние секции хорошо заряжаться не будут и на выходе может оказаться меньше ожидаемого.

Умножитель напряжения (он же генератор Кокрофта-Уолтона) был назван в честь двух физиков, они в 1932 году создали самый первый умножитель напряжения. Вообще в первую очередь этот генератор был изготовлен для исследований в ядерной физике, за это изобретатели в 1951 году оказались обладателями нобелевской премии. Некоторые считаю, что его первым создал швейцарский учёный — физик Генриха Грейнахера. На вход напряжение идёт с выхода высокочастотного трансформатора и увеличивается до необходимой величины в генераторе Кокрофта-Уолтона.

Они используются в лазерном оборудовании и в подсветке на больших экранах. Радиолюбителями умножитель напряжения может понадобиться в высоковольтных устройствах, допустим на люстре Чижского, «самопальных» шокерах, для ионизации воздуха и в счётчике Гейгера. Крошечные умножители напряжения служат ещё для питания микросхем. Умножитель напряжеения хорош тем, что от него нет шума, тепло от него не исходит, но при этом мощность на выходе очень мала.

Вообще конечно штука довольно интересная. Теперь вам понятно, что это такое и принцип работы.

Умножители напряжения схема | Техника и Программы

До недавнего времени умножители напряжения недооценивали. Многие разработчики рассматривают эти схемы с точки зрения ламповой техно­логии, и поэтому упускают некоторые прекрасные возможности. Хоро­шо известно, каким удачным решением стало применение утроителей и учетверителей напряжения в телевизорах. К счастью, нам не надо ре­шать задачи, касающиеся рентгеновского излучения в ИИП, но схема умножения напряжения часто может быть полезна для дальнейшего со­кращения габаритов после того, как достигнут очевидный предел обыч­ными методами, использующими высокочастотную коммутацию и удале­ны трансформаторы, работающие с частотой 60 Гц. В других случаях умножители напряжения могут обеспечить изящный способ получения дополнительного выходного напряжения, используя одну вторичную об­мотку трансформатора.

Многие учебники подробно останавливаются на недостатках умножи­телей напряжения. Утверждается, что у них плохая стабильность напряже­ния и они слишком сложны. Констатация этих недостатков имеет под со­бой почву, но основана она на опыте применения ламповых схем, которые всегда работали с синусоидальными напряжениями с частотой 60 Гц. Свой­ства умножителей напряжения значительно улучшаются, когда они рабо­тают с прямоугольными, а не с синусоидальными напряжениями, и осо­бенно при работе с высокими частотами. При частоте переключения 1 кГц, и тем более при 20 кГц, умножитель напряжения заслуживает переоценки его возможностей. Учитывая, что для прямоугольного колебания пиковое и среднее квадратичное значение равны, конденсаторы в схеме умножите­ля имеют намного большее время накопления заряда, по сравнению со случаем синусоидальных колебаний. Это проявляется в повышении ста­бильности напряжения и улучшении фильтрации. Известно, что очень хо­рошая стабильность возможна и при синусоидальном напряжении, но толь­ко за счет конденсаторов большой емкости. Некоторые полезные схемы умножителей напряжения показаны на рис. 16.4. Два различных изображе­ния одной и той же схемы на рис. (А) показывает, что способ начертания схемы может иногда вводить в заблуждение.

Хотя стабильность теперь не является большой проблемой в умно­жителях напряжения, очень хорошая стабильность вовсе не обязательна в системе, где об окончательной стабилизации выходного постоянного напряжения позаботятся один или несколько контуров обратной связи. В частности, некоторые умножители напряжения очень хорошо работа­ют при 50-процентном рабочем цикле инвертора. Соответствующие ум­ножители напряжения рекомендуются в качестве нестабилизированного источника питания, обычно предшествующего схеме стабилизации с пет­лей обратной связи. Как правило, такое использование связано с преоб­разователем постоянного напряжения в постоянное. Например, напря­жение сети с частотой 60 Гц можно выпрямить и удвоить. Затем это постоянное напряжение используется в мощном преобразователе посто­янного напряжения в постоянное, который можно выполнить в виде импульсного стабилизатора. Заметьте, что этот метод дает возможность получить высокое выходное напряжение без трансформатора, работаю­щего на частоте 60 Гц.

Умножитель напряжения облегчает создание хорошего инвертора. Трансформатор инвертора лучше всего работает с коэффициентом трансформации около единицы. Значительные отклонения от этой вели­чины, особенно при повышении напряжения, часто приводят к появле­нию достаточно большой индуктивности рассеяния в обмотках транс­форматора, что вызывает неустойчивую работу инвертора. Так, те, кто экспериментировали с инверторами и преобразователями хорошо знают, что наиболее вероятным сбоем в работе даже простой схемы являются колебания, частота которых отличается от расчетной. А индуктивность рассеяния может легко привести к разрушению переключающих транзи­сторов. Этой проблемы можно избежать, применяя умножитель напря­жения, чтобы использовать трансформатор с коэффициентом трансфор­мации около единицы.

Рис. 16.4. Схемы умножителей напряжения. Обе схемы на рис. (А) электрически идентичны. Обратите внимание на допустимые и запре­щенные варианты заземления различных цепей – в некоторых случаях генератор и нагрузка не могут использовать одну и ту же точку зазем­ления.

Когда мы имеем дело с напряжениями синусоидальной формы, сле­дует помнить, что умножители напряжения оперируют с пиковым значе­нием напряжения. Таким образом, так называемый удвоитель напряжения, работающий с входным напряжением, имеющим эффективное значение 100 В, даст на выходе напряжение холостого хода 2 х 1,41 х 100 = 282 В. Таким образом, если емкость конденсаторов велика, а нагрузка относи­тельно небольшая, то результат больше похож на утроение входного эф­фективного значения напряжения. Подобное рассуждение справедливо и для других умножителей.

Если принять равными емкости всех конденсаторов и синусоидаль­ное напряжение на входе, то умножители напряжения должны иметь ве­личину (ocr не менее 100, где (0=2К /, рабочая частота выражена в гер­цах, емкость в фарадах, а – эффективное сопротивление в омах, соответствующее самой низкоомной нагрузке, которая может быть под­ключена. В этом случае выходное напряжение составит не менее 90% от максимально достижимого постоянного напряжения и будет относитель­но слабо изменяться. Для напряжения прямоугольной формы величина cocr может быть значительно меньше 100.

При выборе схемы умножения напряжения следует уделить внима­ние заземлению. На рис. 16.4, символ генератора обычно представляет вторичную обмотку трансформатора. Заметьте, что если один из выво­дов нагрузки должен быть заземлен, то в однополупериодных схемах возможно заземление одного вывода трансформатора, а в двухполупери­одных вариантах нет. Двухполупериодные схемы удобны для получения источников с двуполярным выходом, у которых один выход имеет поло­жительный потенциал относительно земли, а другой – отрицательный, и на каждом выходе имеется половина полного выходного напряжения.

Схемы, показанные на рис. 16.4(A), идентичны и являются двухполу­периодными выпрямителя с удвоением напряжения. Схема на рис. В представляет собой однополупериодный выпрямитель с удвоением на­пряжения. Схема рис. С работает как однополупериодный утроитель. Двухполупериодный учетверитель показан на рис. D, а однополупериод­ный учетверитель на рис. Е. Подобные умножители напряжения, нахо­дят широкое применение в телевизионных источниках питания обратно­го хода, обеспечивающих кинескопы высоким напряжением. Они используются также в счетчиках Гейгера, лазерах, электростатических сепараторах и т.д.

Хотя двухполупериодные умножители напряжения имеют лучшую стабильность и меньшие пульсации, чем однополупериодные, практи­чески различия становятся небольшими, если используются прямоу­гольные колебания высокой частоты. Используя конденсаторы большой емкости, всегда можно улучшить стабильность напряжения и уменьшить пульсации. Вообще, при частоте 20 кГц и выше, наличие у однополупе­риодных умножителей общей точки заземления оказывает определяю­щее влияние на выбор конструктора.

Соединяя большое число элементарных каскадов, можно получать очень высокие постоянные напряжения. Хотя этот способ не нов, ре­ально осуществить его, используя полупроводниковые диоды, оказалось проще, чем с прежними ламповыми выпрямителями, которые осложня­ли задачи изоляции и стоимости из-за цепей накала. Два примера много­каскадных умножителей напряжения показаны на рис. 16.5. Они умно­жают амплитудное значение входного переменного напряжения в восемь раз. В схеме на рис. 16.5А, ни на одном конденсаторе напряжение не превышает величины 2К Отличительной особенностью схемы, изобра­женной на рис. 16.5В является общая точка земли для входа и выхода. Однако номинальные напряжения конденсаторов должны постепенно повышаться по мере того, как они приближаются к выходу схемы. Хотя при частоте 60 Гц это приводит к увеличению габаритов и стоимость, но при высоких частотах эти недостатки менее чувствительны. Диоды в обе­их схемах должны выдержать пиковое входное напряжение Е, но для на­дежности следует применять диоды с номинальным напряжением, по крайней мере, в несколько раз выше, чем Е, В этих схемах обычно ис­пользуются конденсаторы, имеющие одинаковые емкости. Чем больше емкость конденсаторов, тем лучше стабильность и меньше пульсации. Однако конденсаторы большой емкости накладывают повышенные тре­бования к диодам в отношении максимальных значений токов.

Схема, показанная на рис. 16.6, оказалась очень полезной для при­менения в электронике. Заметьте, что она работает от однополярной последовательности импульсов. Это схема умножителя напряжения Кок-рофта-Уолтона, которая часто встречается в литературе. Хотя все кон­денсаторы могут иметь одну и ту же емкость и одно и то же номиналь­ное напряжение Е, но лучше воспользоваться следующим подходом:

Сначала рассчитываем емкость выходного конденсатора

где /q — выходной ток в амперах, а / – длительность однополярного им­пульса в микросекундах. Пусть в качестве примера = 40 мА. Если Вы принимаете, что частота равна 20 кГц, то t составляет половину величи­ны обратной 20 кГц, или

В качестве напряжения V принимается максимальная величина пульсаций. Разумной можно считать величину 100 мВ, тогда

Рис. 16.5. Два варианта многокаскадного умножителя напряжения. (А) В этой схеме ни на одном конденсаторе нет напряжения выше 2Е. (В) Особенностью этой схемы является общая точка заземления для входа и выхода.

По мере приближения ко входу схемы емкость конденсаторов посте­пенно увеличивается в несколько раз по сравнению с емкостью после­днего конденсатора С^. Эти вычисления простые, но могут оказаться не­верными, если на них не обратить пристального внимания. Отметьте числа, стоящие рядом с конденсаторами в схеме на рис. 16.6. Это коэф­фициенты, на которые надо умножать емкость С^, чтобы получить фак­тическую величину емкости. Таким образом, емкость конденсатора, обозна­ченного номером 2 равна 2С^ или в нашем примере 10 мкФ х 2 =20 мкФ. Конденсатор имеет емкость 5С^ или 50 мкФ. А первый конденсатор имеет емкость IIС^ или ПО мкФ.

Откуда берутся эти числа? Они представляют относительные значе­ния токов вдоль цепи. Если рядом с конденсаторами нет чисел, пока­занных на рис. 16.6, Вы можете определить их, используя выражение (2/1-1). Здесь п представляет коэффициент умножения входного напря­жения. Очевидно, что в умножителе на шесть л = 6. Вы начинаете с входного конденсатора и находите, что 2п—\ = 11. Затем продолжаете вдоль нижнего ряда конденсаторов, получая последовательно 2/1-3, 2/2-5, 2/1-7, 2/2-9 и, наконец, для – (2/2-11). Затем, следуя этой про­цедуре, начинаем с первого конденсатора слева в верхнем ряду. На сей раз, множители С^, следующие: 2/2-2, 2/2-4, 2/2-6, 2/2-8 и, наконец, для правого замыкающего конденсатора 2/2-10.

Рис. 16.6. Умножитель напряжения на шесть, работающий от источ­ника однополярных импульсов. Назначение чисел рядом с конденса­торами объяснено в тексте.

То, что конденсаторы около входа имеют большую емкость, чем те, ко­торые ближе к выходу, связано, с перекачкой заряда, который естественно должен быть достаточно большим на входе. В течение одного цикла про­исходит 2/2—1 переносов заряда. При каждом из таких переносов, происхо­дит естественная потеря энергии. Эти потери энергии минимальны, если емкости конденсаторов рассчитаны так, как было сказано выше.

Первое испытание любого умножителя напряжения должно прово­диться с переменным автотрансформатором или с каким-нибудь другим устройством, позволяющим плавно повышать входное напряжение. В противном случае скачком тока могут быть разрушены диоды. Строгость соблюдения этого правила зависит от таких факторов, как емкость кон­денсаторов, уровень мощности, частота, ESR конденсаторов и, конечно, номинальный пиковый ток диодов. Возможно, на входе умножителя не­обходимо поместить терморезистор, или резистор, включаемый с помо­щью реле. С другой стороны, во многих случаях можно обойтись вообще без защиты, потому что вполне доступны диоды, работающие с большими пиковыми токами. Иногда, защита «невидима», например, трансформатор на входе просто не может обеспечить большой скачок тока.

При работе с высокими напряжениями величина прямого падения напряжения на диодах не существенна. При низком напряжении накап­ливающееся падение напряжения на диодах может помешать достиже­нию требуемого выходного напряжения и существенно понизить к.п.д. умножителя напряжения. Следует убедиться, что время обратного вос­становления диодов совместимо с частотой входного напряжения. Ина­че, рассчитанный коэффициент умножения напряжения будет «загадоч­но» отсутствовать.

мир электроники — Умножитель напряжения

Электронные устройства

  материалы в категории

Ну многие, наверняка, слышали такое слово: умножитель. Некоторые даже знают как он выглядел в старых телевизорах… Да чего там знают: даже и меняли сами когда-то…

А вот как работает умножитель напряжения сейчас мы и разберемся.


Ну в общем-то по самому названию «умножитель напряжения» и так понятно что так  называют устройство, на выходе которого можно получить напряжение, в любое число раз превышающее напряжение на его входе.

Кстати: выпускаемые промышленность умножители так и маркировались: указывался  коэффициент умножения и выходное напряжение. Например УН9/27 обозначает: умножение в 9 раз, на выходе 27 кВольт.

Еще один момент: умножить можно лишь переменное напряжение, но на выходе мы получим уже постоянное. Другими словами, умножитель — это устройство, преобразующее переменное напряжение в постоянное, превышающее амплитуду входного переменного напряжения. К числу достоинств можно отнести небольшие габариты и массу, стабильность работы. К недостаткам же относятся низкий ток нагрузки, небольшой КПД и, как следствие, небольшая мощность. Умножители напряжения чаще применяют в устройствах, где не требуется значительный ток в нагрузке, но важно высокое напряжение. Самый яркий пример- применение умножителя в кинескопных телевизорах: с его помощью получают напряжение для аквадага кинескопа (25 кВ) и напряжение для фокусировки кинескопа (около 8 кВ).

Итак, начнем с простого: удвоитель напряжения. Схема на рисунке ниже:


В отрицательный полупериод входного напряжения конденсатор С1 заряжается до амплитудного значения входного напряжения — Um.
Во время положительного полупериода начинает заряжаться С2 до значения UC2 = Um + UC1 = 2Um, т. е. на выходе получается удвоенное значение амплитуды входного напряжения. Все очень просто.

Если прилепить еще один диод с конденсатором, то получится утроитель напряжения:


В положительный полупериод С1 заряжается через VD1 до значения Um. В следующий полупериод С2 заряжается через VD2 до значения, равного сумме напряжений на конденсаторе С1 и Um, т. е. UC2 = UC1 + Um = 2Um.
В следующий (третий) положительный полупериод, когда прошла повторная зарядка С1 через диод VD1, диод VD2 закрывается, кондер С2 разряжается через диод VD3 на С3, зарядив последний до 2Um, т. е. до удвоенного амплитудного значения. По окончанию заряда С1 нагрузка окажется под суммарным напряжением кондеров С1 и С3.
Поскольку на С3 удвоенное значение напряжения, на нагрузке выделяется напряжение Uвых = UC1 + UC3 = 3Um.

Ну и так далее: добавляя по диоду с конденсатором получаем следующий коэффициент умножения.

Внимание: до амплитудного значения напряжения заряжается только первый конденсатор.
На каждом последующем напряжение больше на величину входного. Другими словами, необходимо обеспечить защиту схемы от электрического пробоя, т. е. использовать диоды и конденсаторы на соответствующее напряжение.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *