Инверторы, умножители напряжения: схемы, принцип работы, диаграммы
Инверторы— это устройства, преобразующие постоянный ток в переменный. Изобразим упрощенную схему инвертора на биполярных транзисторах (рис. 2.87), где имеет место соотношение uc1 = uc2 = ½ uвх
В схеме часто используют электролитические конденсаторы (большой емкости). Транзисторы работают в ключевом режиме:
включаются и выключаются поочередно. На выходе схемы возникает переменное напряжение.
Умножители напряжения
Умножители напряжения преобразуют переменное напряжение в постоянное, причем выходное постоянное напряжение значительно превышает амплитуду входного переменного напряжения. Различают симметричные и несимметричные умножители напряжения.
Рассмотрим схему симметричного удвоителя напряжения (схему Латура) (рис. 2.88). Диоды включаются в разные полупериоды входного напряжения. В те полупериоды, когда uвх< 0, включается диод D1 и заряжается конденсатор С1 в другие полупериоды (uвх< 0), включается диод D2 и заряжается конденсатор С2.
Напряжения на конденсаторах при холостом ходе приближаются к амплитудному значению Uвx.m входного напряжения, поэтому uвых= 2Uвx.m
Схема несимметричного удвоителя напряжения имеет вид, показанный на рис. 2.89.
В отрицательные полупериоды входного напряжения (uвх< 0) через диод D1 заряжается конденсатор С1 до амплитудного значения входного напряжения, а в положительные полупериоды (uвх> 0) через диод D2 под действием суммы напряжений uвхи uc1, действующих согласно, заряжается конденсатор С2 до удвоенного амплитудного значения входного напряжения.
Аналогичным образом строят утроители (рис. 2.90, а), учетверители (рис. 2.90, б) и другие умножители напряжения.
В этих схемах напряжение на конденсаторе С1 равно амплитудному значению входного напряжения, а на всех остальных конденсаторах — удвоенному амплитудному значению входного напряжения. Входное напряжение на такие умножители поступает обычно с вторичной обмотки трансформатора, и тогда такое устройство называют выпрямителем с умножением напряжения. Обычно они применяются в высоковольтных выпрямителях, потребляющих небольшой ток (единицы миллиампер), например для питания кинескопов телевизоров.
Рассмотренные ранее выпрямители являлись нерегулируемыми, так как величина выходного постоянного напряжения однозначно определялась входным напряжением выпрямителя.
Управляемые выпрямители позволяют регулировать выходное напряжение. Они, как правило, построены на основе однооперационных (обычных, незапираемых) тиристоров.
Для примера рассмотрим схему однофазного двухполупериодного управляемого выпрямителя со средней точкой (рис. 2.91).
Однофазного двухполупериодного управляемого выпрямителя
Если импульсы управления подаются сразу после появления на тиристорах положительных напряжений, то схема будет работать точно так же, как схема на диодах.
Изобразим временную диаграмму выходного напряжения для случая, когда импульсы управления подаются с некоторой задержкой по отношению к указанным моментам времени (рис. 2.92, жирная линия).
Через tвкл обозначена указанная выше задержка. Часто временные диаграммы подобных схем изображают, откладывая по горизонтальной оси не время t, а величину ωt (ω — круговая частота). Тогда указанной задержке соответствует определенный угол αвкл сдвига по фазе между напряжением на тиристоре и импульсами управления, причем αвкл = ω · tвкл
Угол αвкл называют углом управления. Для рассматриваемой схемы угол управления, как легко заметить, может изменяться в пределах от 0 до π (от 0 до 180 град.). Чем больше угол управления, тем меньше среднее напряжение на выходе выпрямителя.
Пунктиром изображена временная диаграмма, соответствующая отсутствию задержки.
принцип работы, расчет схемы :: SYL.ru
Все чаще и чаще радиолюбители стали интересоваться схемами питания, которые построены по принципу умножения напряжения. Этот интерес связан с появлением на рынке миниатюрных конденсаторов с большой емкостью и повышением стоимости медного провода, который используется для намотки катушек трансформаторов. Дополнительным плюсом упомянутых устройств являются их малые габариты, что значительно снижает конечные размеры проектируемой аппаратуры. А что же представляет собой умножитель напряжения? Этот прибор состоит из подключенных определенным образом конденсаторов и диодов. По сути, это преобразователь переменного напряжения низковольтного источника в высокое постоянное напряжение. А зачем нужен умножитель напряжения постоянного тока?
Область применения
Такое устройство нашло широкое применение в телевизионной аппаратуре (в источниках анодного напряжения кинескопов), медицинском оборудовании (при питании мощных лазеров), в измерительной технике (приборы измерения радиации, осциллографы). Кроме того, оно используется в устройствах ночного видения, в электрошоковых приборах, бытовой и офисной аппаратуре (ксерокопировальные аппараты) и т. д. Умножитель напряжения завоевал такую популярность благодаря возможности формировать напряжение до десятков и даже сотен тысяч вольт, и это при незначительных размерах и массе устройства. Еще один немаловажный плюс упомянутых приборов – это простота изготовления.
Типы схем
Рассматриваемые устройства делятся на симметричные и несимметричные, на умножители первого и второго рода. Симметричный умножитель напряжения получается путем соединения двух несимметричных схем. У одной такой схемы меняется полярность конденсаторов (электролитов) и проводимость диодов. Симметричный умножитель обладает лучшими характеристиками. Одним из главных достоинств является удвоенное значение частоты пульсаций выпрямляемого напряжения.
Принцип работы
На фото показана простейшая схема однополупериодного прибора. Рассмотрим принцип работы. При действии отрицательного полупериода напряжения через открытый диод Д1 начинает заряжаться конденсатор С1 до амплитудного значения поданного напряжения. В тот момент, когда наступает период положительной волны, заряжается (через диод Д2) конденсатор С2 до удвоенного значения поданного напряжения. При начале следующего этапа отрицательного полупериода происходит заряд конденсатора С3 — также до удвоенного значения напряжения, а при смене полупериода и конденсатор С4 также заряжается до указанного значения. Запуск устройства осуществляется за несколько полных периодов напряжения переменного тока. На выходе получается постоянная физическая величина, которая складывается из показателей напряжений последовательных, постоянно заряжаемых конденсаторов С2 и С4. В результате получим величину, в четыре раза большую, чем на входе. Вот по такому принципу и работает умножитель напряжения.
Расчет схемы
При расчете необходимо задать требуемые параметры: выходное напряжение, мощность, переменное входное напряжение, габариты. Не следует пренебрегать и некоторыми ограничениями: входное напряжение не должно превышать 15 кВ, частота его колеблется в пределах 5-100 кГц, значение на выходе — не более 150 кВ. На практике применяют устройства с выходной мощностью 50 Вт, хотя реально сконструировать умножитель напряжения с выходным показателем, приближающимся к 200 Вт. Значение выходного напряжения напрямую зависит от тока нагрузки и определяется по формуле:
U вых = N*U вх – (I (N3 + +9N2 /4 + N/2)) / 12FC, где
I – ток нагрузки;
N – число ступеней;
F – частота входного напряжения;
С – емкость генератора.
Таким образом, если задать значение выходного напряжения, тока, частоты и количества ступеней, возможно высчитать необходимую емкость конденсаторов.
УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ
В современных электронных аппаратурах умножители напряжения нашли широкое применение. Умножитель напряжение — это устройство которое позволяет получить от переменного напряжение — высоковольтное постоянное. Умножители напряжения нашли широкие применения в самых разных аппаратах, где нужно иметь высокое напряжение. В основном умножители используют в телевизионной технике, в электрошоковых устройствах, в медицинских приборах и во многом другом. Умножитель напряжения состоит из конденсаторов и диодов, для получения напряжения свыше киловольта, нужно использовать специальные высоковольтные диоды и неполярные конденсаторы.
В современной электронике существует несколько типов применяемых умножителей напряжения это последовательные у параллельные умножители напряжения. Умножители напряжение могут повышать переменное входное напряжение в десятки раз, на выходе умножителя образуются высоковольтные импульсы постоянного тока. Умножитель низковольтного напряжения (на выходе меньше киловольта) могут состоять из конденсаторов постоянного тока. Главный недостаток умножителей напряжения — это маленькая сила тока на выходе, также если в умножитель напряжение добавить слишком много секций конденсаторов, то в таком случае последние секции не будут нормально заряжаться и напряжение на выходе может быть ниже ожидаемого.
Умножитель напряжения, или генератор Кокрофта-Уолтона был назван в честь двух изобретателей, которые в 1932 году построил первый умножитель напряжения. Генератор был сооружен для исследования в ядерной физике, за что и изобретатели в 1951 году получили нобелевскую премию. Но иногда создателя умножителя напряжения считают швейцарского физика Генриха Грейнахера. Обычно на вход напряжение подаётся с выхода высокочастотного трансформатора и повышается до нужной величины в генераторе Кокрофта-Уолтона.
Умножители напряжения также применяются в лазерной технике также для подсветки больших дисплеях. Радиолюбителями умножитель очень часто применяется в высоковольтных конструкциях, например в люстре Чижского, самодельных электрошокерах, в ионизаторах воздуха, счётчиках Гейгера. В последнее время маленькие умножители напряжение стали использовать в электронных устройствах для питания микросхем. Умножитель по сравнениями с другими видами преобразователей напряжения работает бесшумно, выделение тепла на нем не наблюдается, но мощность на выходе слишком маленькая. Пожалуй с ознакомлением умножителей напряжения достаточно, думаю принцип его работы и области применения понятны, по возникшим вопросам обращайтесь на форум — Артур Касьян (АКА).
Форум по радиолюбительской теории
Обсудить статью УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ
Генератор Кокрофта — Уолтона — Википедия
Материал из Википедии — свободной энциклопедии
Генера́тор Ко́крофта — Уо́лтона [1] — один из типов умножителя напряжения, устройство для преобразования относительно низкого переменного напряжения или пульсирующего напряжения в высоковольтное постоянное напряжение.
Принципиальная схема умножителя данного типа была разработана в 1919 году швейцарским физиком Генрихом Грайнахером. По этой причине каскадный удвоитель данного типа иногда называют умножителем Грайнахера[1].
Более известно, что умножитель был построен в 1932 году Джоном Кокрофтом и Эрнстом Уолтоном для использования его в качестве высоковольтного источника напряжения в ускорителе заряженных частиц, предназначенного для проведения эксперимента по искусственному расщеплению атомных ядер (практически одновременно такой же эксперимент впервые в СССР был проведен в УФТИ), поэтому иногда умножитель напряжения называют генератором Кокрофта — Уолтона[1]
Умножитель напряжения преобразует переменное, пульсирующее напряжение в высокое постоянное напряжение. Умножитель строится из лестницы конденсаторов и диодов. В отличие от трансформатора такой метод не требует тяжёлого сердечника и серьёзной изоляции, так как напряжения на всех ступенях равны. Используя только конденсаторы и диоды, генераторы такого типа могут преобразовывать относительно низкое напряжение в очень высокое, при этом оказываясь много легче и дешевле по сравнению с трансформаторами. Ещё одним преимуществом является возможность снять напряжение с любой ступени схемы, так же как в многоотводном трансформаторе.
Uвых = 2 Uвх * n
где
- n — число каскадов
- Uвх — амплитуда входящего переменного напряжения,
- U
Несмотря на свои теоретические недостатки и ограничения, умножитель напряжения стал такой же классикой в электронной схемотехнике для получения высокого постоянного напряжения как и двухполупериодный выпрямитель (диодный мост) для получения постоянного тока из переменного. На принципиальных электрических схемах его даже не рисуют подробно, а изображают в виде специального значка. Промышленность выпускает очень широкий ассортимент модульных «умножителей напряжения» с заранее заданными параметрами, без которых не обходятся большинство устройств с ЭЛТ, появившихся до изобретения ТДКС: монитор, телевизор, индикатор радара или осциллографа.
На практике умножитель имеет ряд недостатков. Если в умножитель добавляется слишком много секций, напряжение в последних секциях будет ниже ожидаемого, в основном из-за ненулевого импеданса конденсаторов в нижних секциях. Практически невозможно питание умножителя непосредственно напряжением промышленной частоты, так как в этом случае требуются конденсаторы большой ёмкости, что сильно ухудшает массогабаритные показатели устройства. Пульсации выпрямленного тока также усиливаются, что в некоторых случаях неприемлемо. Обычно на вход напряжение подаётся с выхода высокочастотного высоковольтного трансформатора и повышается до нужной величины в умножителе.
Существуют умножители на напряжения от нескольких сотен вольт до нескольких мегавольт.
Умножители применяются во многих областях техники, в частности для электрической накачки лазера, в источниках высокого напряжения систем рентгеновского излучения, лампах бегущей волны, ионных насосах, электростатических системах, ионизаторах воздуха, ускорителях частиц, копировальных аппаратах, осциллографах, телевизорах и во многих других устройствах, где необходимо постоянное высокое напряжение с небольшой силой тока.
Умножитель напряжения
Умножители напряжения сейчас используются во многих видах аппаратуры. Это устройство, с помощью которого можно преобразовать переменное напряжение в постоянное высоковольтное. В большинстве случаев умножители используются в телевизионных устройствах, в медицинском оборудовании и т. д. Он сделан из диодов и конденсаторов, чтобы получить напряжение больше киловольта, необходимо применять специальные для этого высоковольтные диоды и неполярные конденсаторы.
Схема умножителя напряжения
Умножители напряжения делятся на два основных типа, этопараллельные и последовательные. Умножители напряжения способны увеличивать переменное напряжение на входе в несколько десятков раз, на выходе умножителя появляются высоковольтные импульсы постоянного тока. Умножитель низковольтного напряжения (это когда меньше киловольта на выходе) может быть изготовлен из конденсаторов постоянного тока. Самый важный недостаток умножителя напряжения, это совсем небольшая сила тока на выходе, а если в умножитель напряжения установить много секций конденсаторов, то тогда последние секции хорошо заряжаться не будут и на выходе может оказаться меньше ожидаемого.
Умножитель напряжения (он же генератор Кокрофта-Уолтона) был назван в честь двух физиков, они в 1932 году создали самый первый умножитель напряжения. Вообще в первую очередь этот генератор был изготовлен для исследований в ядерной физике, за это изобретатели в 1951 году оказались обладателями нобелевской премии. Некоторые считаю, что его первым создал швейцарский учёный — физик Генриха Грейнахера. На вход напряжение идёт с выхода высокочастотного трансформатора и увеличивается до необходимой величины в генераторе Кокрофта-Уолтона.
Они используются в лазерном оборудовании и в подсветке на больших экранах. Радиолюбителями умножитель напряжения может понадобиться в высоковольтных устройствах, допустим на люстре Чижского, «самопальных» шокерах, для ионизации воздуха и в счётчике Гейгера. Крошечные умножители напряжения служат ещё для питания микросхем. Умножитель напряжеения хорош тем, что от него нет шума, тепло от него не исходит, но при этом мощность на выходе очень мала.
Вообще конечно штука довольно интересная. Теперь вам понятно, что это такое и принцип работы.
Умножители напряжения схема | Техника и Программы
До недавнего времени умножители напряжения недооценивали. Многие разработчики рассматривают эти схемы с точки зрения ламповой технологии, и поэтому упускают некоторые прекрасные возможности. Хорошо известно, каким удачным решением стало применение утроителей и учетверителей напряжения в телевизорах. К счастью, нам не надо решать задачи, касающиеся рентгеновского излучения в ИИП, но схема умножения напряжения часто может быть полезна для дальнейшего сокращения габаритов после того, как достигнут очевидный предел обычными методами, использующими высокочастотную коммутацию и удалены трансформаторы, работающие с частотой 60 Гц. В других случаях умножители напряжения могут обеспечить изящный способ получения дополнительного выходного напряжения, используя одну вторичную обмотку трансформатора.
Многие учебники подробно останавливаются на недостатках умножителей напряжения. Утверждается, что у них плохая стабильность напряжения и они слишком сложны. Констатация этих недостатков имеет под собой почву, но основана она на опыте применения ламповых схем, которые всегда работали с синусоидальными напряжениями с частотой 60 Гц. Свойства умножителей напряжения значительно улучшаются, когда они работают с прямоугольными, а не с синусоидальными напряжениями, и особенно при работе с высокими частотами. При частоте переключения 1 кГц, и тем более при 20 кГц, умножитель напряжения заслуживает переоценки его возможностей. Учитывая, что для прямоугольного колебания пиковое и среднее квадратичное значение равны, конденсаторы в схеме умножителя имеют намного большее время накопления заряда, по сравнению со случаем синусоидальных колебаний. Это проявляется в повышении стабильности напряжения и улучшении фильтрации. Известно, что очень хорошая стабильность возможна и при синусоидальном напряжении, но только за счет конденсаторов большой емкости. Некоторые полезные схемы умножителей напряжения показаны на рис. 16.4. Два различных изображения одной и той же схемы на рис. (А) показывает, что способ начертания схемы может иногда вводить в заблуждение.
Хотя стабильность теперь не является большой проблемой в умножителях напряжения, очень хорошая стабильность вовсе не обязательна в системе, где об окончательной стабилизации выходного постоянного напряжения позаботятся один или несколько контуров обратной связи. В частности, некоторые умножители напряжения очень хорошо работают при 50-процентном рабочем цикле инвертора. Соответствующие умножители напряжения рекомендуются в качестве нестабилизированного источника питания, обычно предшествующего схеме стабилизации с петлей обратной связи. Как правило, такое использование связано с преобразователем постоянного напряжения в постоянное. Например, напряжение сети с частотой 60 Гц можно выпрямить и удвоить. Затем это постоянное напряжение используется в мощном преобразователе постоянного напряжения в постоянное, который можно выполнить в виде импульсного стабилизатора. Заметьте, что этот метод дает возможность получить высокое выходное напряжение без трансформатора, работающего на частоте 60 Гц.
Умножитель напряжения облегчает создание хорошего инвертора. Трансформатор инвертора лучше всего работает с коэффициентом трансформации около единицы. Значительные отклонения от этой величины, особенно при повышении напряжения, часто приводят к появлению достаточно большой индуктивности рассеяния в обмотках трансформатора, что вызывает неустойчивую работу инвертора. Так, те, кто экспериментировали с инверторами и преобразователями хорошо знают, что наиболее вероятным сбоем в работе даже простой схемы являются колебания, частота которых отличается от расчетной. А индуктивность рассеяния может легко привести к разрушению переключающих транзисторов. Этой проблемы можно избежать, применяя умножитель напряжения, чтобы использовать трансформатор с коэффициентом трансформации около единицы.
Рис. 16.4. Схемы умножителей напряжения. Обе схемы на рис. (А) электрически идентичны. Обратите внимание на допустимые и запрещенные варианты заземления различных цепей – в некоторых случаях генератор и нагрузка не могут использовать одну и ту же точку заземления.
Когда мы имеем дело с напряжениями синусоидальной формы, следует помнить, что умножители напряжения оперируют с пиковым значением напряжения. Таким образом, так называемый удвоитель напряжения, работающий с входным напряжением, имеющим эффективное значение 100 В, даст на выходе напряжение холостого хода 2 х 1,41 х 100 = 282 В. Таким образом, если емкость конденсаторов велика, а нагрузка относительно небольшая, то результат больше похож на утроение входного эффективного значения напряжения. Подобное рассуждение справедливо и для других умножителей.
Если принять равными емкости всех конденсаторов и синусоидальное напряжение на входе, то умножители напряжения должны иметь величину (ocr не менее 100, где (0=2К /, рабочая частота выражена в герцах, емкость в фарадах, а – эффективное сопротивление в омах, соответствующее самой низкоомной нагрузке, которая может быть подключена. В этом случае выходное напряжение составит не менее 90% от максимально достижимого постоянного напряжения и будет относительно слабо изменяться. Для напряжения прямоугольной формы величина cocr может быть значительно меньше 100.
При выборе схемы умножения напряжения следует уделить внимание заземлению. На рис. 16.4, символ генератора обычно представляет вторичную обмотку трансформатора. Заметьте, что если один из выводов нагрузки должен быть заземлен, то в однополупериодных схемах возможно заземление одного вывода трансформатора, а в двухполупериодных вариантах нет. Двухполупериодные схемы удобны для получения источников с двуполярным выходом, у которых один выход имеет положительный потенциал относительно земли, а другой – отрицательный, и на каждом выходе имеется половина полного выходного напряжения.
Схемы, показанные на рис. 16.4(A), идентичны и являются двухполупериодными выпрямителя с удвоением напряжения. Схема на рис. В представляет собой однополупериодный выпрямитель с удвоением напряжения. Схема рис. С работает как однополупериодный утроитель. Двухполупериодный учетверитель показан на рис. D, а однополупериодный учетверитель на рис. Е. Подобные умножители напряжения, находят широкое применение в телевизионных источниках питания обратного хода, обеспечивающих кинескопы высоким напряжением. Они используются также в счетчиках Гейгера, лазерах, электростатических сепараторах и т.д.
Хотя двухполупериодные умножители напряжения имеют лучшую стабильность и меньшие пульсации, чем однополупериодные, практически различия становятся небольшими, если используются прямоугольные колебания высокой частоты. Используя конденсаторы большой емкости, всегда можно улучшить стабильность напряжения и уменьшить пульсации. Вообще, при частоте 20 кГц и выше, наличие у однополупериодных умножителей общей точки заземления оказывает определяющее влияние на выбор конструктора.
Соединяя большое число элементарных каскадов, можно получать очень высокие постоянные напряжения. Хотя этот способ не нов, реально осуществить его, используя полупроводниковые диоды, оказалось проще, чем с прежними ламповыми выпрямителями, которые осложняли задачи изоляции и стоимости из-за цепей накала. Два примера многокаскадных умножителей напряжения показаны на рис. 16.5. Они умножают амплитудное значение входного переменного напряжения в восемь раз. В схеме на рис. 16.5А, ни на одном конденсаторе напряжение не превышает величины 2К Отличительной особенностью схемы, изображенной на рис. 16.5В является общая точка земли для входа и выхода. Однако номинальные напряжения конденсаторов должны постепенно повышаться по мере того, как они приближаются к выходу схемы. Хотя при частоте 60 Гц это приводит к увеличению габаритов и стоимость, но при высоких частотах эти недостатки менее чувствительны. Диоды в обеих схемах должны выдержать пиковое входное напряжение Е, но для надежности следует применять диоды с номинальным напряжением, по крайней мере, в несколько раз выше, чем Е, В этих схемах обычно используются конденсаторы, имеющие одинаковые емкости. Чем больше емкость конденсаторов, тем лучше стабильность и меньше пульсации. Однако конденсаторы большой емкости накладывают повышенные требования к диодам в отношении максимальных значений токов.
Схема, показанная на рис. 16.6, оказалась очень полезной для применения в электронике. Заметьте, что она работает от однополярной последовательности импульсов. Это схема умножителя напряжения Кок-рофта-Уолтона, которая часто встречается в литературе. Хотя все конденсаторы могут иметь одну и ту же емкость и одно и то же номинальное напряжение Е, но лучше воспользоваться следующим подходом:
Сначала рассчитываем емкость выходного конденсатора
где /q — выходной ток в амперах, а / – длительность однополярного импульса в микросекундах. Пусть в качестве примера = 40 мА. Если Вы принимаете, что частота равна 20 кГц, то t составляет половину величины обратной 20 кГц, или
В качестве напряжения V принимается максимальная величина пульсаций. Разумной можно считать величину 100 мВ, тогда
Рис. 16.5. Два варианта многокаскадного умножителя напряжения. (А) В этой схеме ни на одном конденсаторе нет напряжения выше 2Е. (В) Особенностью этой схемы является общая точка заземления для входа и выхода.
По мере приближения ко входу схемы емкость конденсаторов постепенно увеличивается в несколько раз по сравнению с емкостью последнего конденсатора С^. Эти вычисления простые, но могут оказаться неверными, если на них не обратить пристального внимания. Отметьте числа, стоящие рядом с конденсаторами в схеме на рис. 16.6. Это коэффициенты, на которые надо умножать емкость С^, чтобы получить фактическую величину емкости. Таким образом, емкость конденсатора, обозначенного номером 2 равна 2С^ или в нашем примере 10 мкФ х 2 =20 мкФ. Конденсатор имеет емкость 5С^ или 50 мкФ. А первый конденсатор имеет емкость IIС^ или ПО мкФ.
Откуда берутся эти числа? Они представляют относительные значения токов вдоль цепи. Если рядом с конденсаторами нет чисел, показанных на рис. 16.6, Вы можете определить их, используя выражение (2/1-1). Здесь п представляет коэффициент умножения входного напряжения. Очевидно, что в умножителе на шесть л = 6. Вы начинаете с входного конденсатора и находите, что 2п—\ = 11. Затем продолжаете вдоль нижнего ряда конденсаторов, получая последовательно 2/1-3, 2/2-5, 2/1-7, 2/2-9 и, наконец, для – (2/2-11). Затем, следуя этой процедуре, начинаем с первого конденсатора слева в верхнем ряду. На сей раз, множители С^, следующие: 2/2-2, 2/2-4, 2/2-6, 2/2-8 и, наконец, для правого замыкающего конденсатора 2/2-10.
Рис. 16.6. Умножитель напряжения на шесть, работающий от источника однополярных импульсов. Назначение чисел рядом с конденсаторами объяснено в тексте.
То, что конденсаторы около входа имеют большую емкость, чем те, которые ближе к выходу, связано, с перекачкой заряда, который естественно должен быть достаточно большим на входе. В течение одного цикла происходит 2/2—1 переносов заряда. При каждом из таких переносов, происходит естественная потеря энергии. Эти потери энергии минимальны, если емкости конденсаторов рассчитаны так, как было сказано выше.
Первое испытание любого умножителя напряжения должно проводиться с переменным автотрансформатором или с каким-нибудь другим устройством, позволяющим плавно повышать входное напряжение. В противном случае скачком тока могут быть разрушены диоды. Строгость соблюдения этого правила зависит от таких факторов, как емкость конденсаторов, уровень мощности, частота, ESR конденсаторов и, конечно, номинальный пиковый ток диодов. Возможно, на входе умножителя необходимо поместить терморезистор, или резистор, включаемый с помощью реле. С другой стороны, во многих случаях можно обойтись вообще без защиты, потому что вполне доступны диоды, работающие с большими пиковыми токами. Иногда, защита «невидима», например, трансформатор на входе просто не может обеспечить большой скачок тока.
При работе с высокими напряжениями величина прямого падения напряжения на диодах не существенна. При низком напряжении накапливающееся падение напряжения на диодах может помешать достижению требуемого выходного напряжения и существенно понизить к.п.д. умножителя напряжения. Следует убедиться, что время обратного восстановления диодов совместимо с частотой входного напряжения. Иначе, рассчитанный коэффициент умножения напряжения будет «загадочно» отсутствовать.
мир электроники — Умножитель напряжения
Электронные устройства
материалы в категории
Ну многие, наверняка, слышали такое слово: умножитель. Некоторые даже знают как он выглядел в старых телевизорах… Да чего там знают: даже и меняли сами когда-то…
А вот как работает умножитель напряжения сейчас мы и разберемся.
Ну в общем-то по самому названию «умножитель напряжения» и так понятно что так называют устройство, на выходе которого можно получить напряжение, в любое число раз превышающее напряжение на его входе.
Кстати: выпускаемые промышленность умножители так и маркировались: указывался коэффициент умножения и выходное напряжение. Например УН9/27 обозначает: умножение в 9 раз, на выходе 27 кВольт.
Еще один момент: умножить можно лишь переменное напряжение, но на выходе мы получим уже постоянное. Другими словами, умножитель — это устройство, преобразующее переменное напряжение в постоянное, превышающее амплитуду входного переменного напряжения. К числу достоинств можно отнести небольшие габариты и массу, стабильность работы. К недостаткам же относятся низкий ток нагрузки, небольшой КПД и, как следствие, небольшая мощность. Умножители напряжения чаще применяют в устройствах, где не требуется значительный ток в нагрузке, но важно высокое напряжение. Самый яркий пример- применение умножителя в кинескопных телевизорах: с его помощью получают напряжение для аквадага кинескопа (25 кВ) и напряжение для фокусировки кинескопа (около 8 кВ).
Итак, начнем с простого: удвоитель напряжения. Схема на рисунке ниже:
В отрицательный полупериод входного напряжения конденсатор С1 заряжается до амплитудного значения входного напряжения — Um.
Во время положительного полупериода начинает заряжаться С2 до значения UC2 = Um + UC1 = 2Um, т. е. на выходе получается удвоенное значение амплитуды входного напряжения. Все очень просто.
Если прилепить еще один диод с конденсатором, то получится утроитель напряжения:
В положительный полупериод С1 заряжается через VD1 до значения Um. В следующий полупериод С2 заряжается через VD2 до значения, равного сумме напряжений на конденсаторе С1 и Um, т. е. UC2 = UC1 + Um = 2Um.
В следующий (третий) положительный полупериод, когда прошла повторная зарядка С1 через диод VD1, диод VD2 закрывается, кондер С2 разряжается через диод VD3 на С3, зарядив последний до 2Um, т. е. до удвоенного амплитудного значения. По окончанию заряда С1 нагрузка окажется под суммарным напряжением кондеров С1 и С3.
Поскольку на С3 удвоенное значение напряжения, на нагрузке выделяется напряжение Uвых = UC1 + UC3 = 3Um.
Ну и так далее: добавляя по диоду с конденсатором получаем следующий коэффициент умножения.
Внимание: до амплитудного значения напряжения заряжается только первый конденсатор.
На каждом последующем напряжение больше на величину входного. Другими словами, необходимо обеспечить защиту схемы от электрического пробоя, т. е. использовать диоды и конденсаторы на соответствующее напряжение.