Site Loader

12. Устройство трехфазного трансформатора.

Для преобразования тока трехфазной системы можно вос­пользоваться группой из трех однофазных трансформаторов, обмотки которых могут быть соединены либо звездой (рис. 7.4, а), либо треугольником (рис. 7.4, б). В этом случае каж­дый трансформатор работает независимо от остальных как обычный однофазный трансформатор, включенный в одну из фаз трехфазной системы.

а

б

На практике значительно чаще применяют трехфазные трансформаторы, выполненные на одном магнитопроводе (рис. 7.5). При этом три магнитных потока, возбуждаемые токами в первичных обмотках, замыкаются через два других стерж­ня сердечника.

При изготовлении трехфазных трансформаторов на каж­дый стержень его сердечника навивают по две обмотки: низ­кого напряжения, а поверх нее —высокого напряжения. Вы­воды обмоток принято обозначать следующим образом: на­чала обмоток — заглавными буквами латинского алфавита А, В и С для обмоток высокого напряжения и строчными буквами а, b и с для обмоток низкого напряжения; концы обмоток — буквами X,YиZ для обмоток высокого напряже­ния и буквами

х, у и z — для обмоток низкого напряжения.

Обмотки трехфазного трансформатора обычно соединяют звездой или треугольником. Наиболее простым и дешевым является первый способ.

13. Способы соединения обмоток трехфазных транс­форматоров.

Обмотки трехфазного трансформатора обычно соединяют звездой или треугольником. Наиболее простым и дешевым является первый способ. В этом случае каждая обмотка и ее изоляция при заземлении нулевой точки должны быть рассчитаны только на фазное напряжение и линейный ток. Поскольку число витков обмотки трансформатора прямо про­порционально напряжению, то при соединении звездой каж­дая обмотка требует меньшего количества витков при боль­шем сечении провода; при этом изоляция проводников дол­жна быть рассчитана лишь на фазное напряжение. Такое соединение широко применяется для трансформаторов не­большой и средней мощности. Соединение звездой наибо­лее желательно для высокого напряжения, так как изоля­ция рассчитывается лишь на фазное напряжение. Соедине­ние треугольником удобнее при больших токах и в тех слу­чаях, когда нагрузки могут быть подключены без нулевого провода.

Применяется также комбинированное включение трехфаз­ных трансформаторов (первичные обмотки соединены звез­дой, а вторичные — треугольником, или наоборот). Соедине­ние звезда/треугольник часто используют для трансформа­торов большой мощности в тех случаях, когда на стороне низкого напряжения не требуется нулевой провод.

Из соотношений в трехфазной системе следует, что при трехфазной трансформации только отношение фазных на­пряжений всегда приближенно равно отношению чисел вит­ков первичной и вторичной обмоток. Отношение же линей­ных напряжений зависит от способа соединения обмоток трансформатора. При одинаковом способе соединения (звез­да/звезда или треугольник/треугольник) отношение линей­ных напряжений равно фазному коэффициенту трансформа­ции. Но при комбинированных способах соединения (звез­да/треугольник или треугольник/звезда) отношение линей­ных напряжений меньше или больше этого коэффициента в (корень из 3) раз. Это дает возможность регулировать вторичное ли­нейное напряжение трансформатора соответствующим из­менением схемы соединения его обмоток.

Трехфазный трансформатор. Его устройство и схема.

Для трансформирования энергии в трехфазных системах используют либо группу из трех однофазных трансформаторов (именно так и работают мощные однофазные трансформаторы, устанавливаемые на крупных электростанциях), у которых первичные и вторичные обмотки соединяются звездой или треугольником, либо один трехфазный трансформатор с общим магнитопроводом.

Устройство трехфазного трансформатора

Трехфазные трансформаторы могут иметь различные схемы соединения первичных и вторичных обмоток. Все начала первичных обмоток трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток — малыми буквами: а, Ь, с. Концы обмоток обозначаются соответственно: X, У, Z и х, у, z. Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.

Наибольшее распространение имеют соединения обмоток по схеме «звезда» (Y) и «треугольник» (D), причем первичные и вторичные обмотки могут иметь как одинаковые, так и различные схемы. Если при соединении обмоток «звездой» нулевая точка выводится, то такое соединение называют «звезда c нулем» (Yо).

Самым простым и дешевым из них является соединение обеих обмоток трансформатора звездой (Y/Y), при котором каждая из обмоток и ее изоляция (при глухом заземлении нейтральной точки) должны быть рассчитаны только на фазное напряжение и линейный ток; так как число витков обмотки трансформатора прямо пропорционально напряжению, то, следовательно, соединение обмоток звездой требует в каждой из обмоток меньшего количества витков, но большего сечения проводников с изоляцией, рассчитанной лишь на фазное напряжение.

Схема трехфазного трансформатора

На рисунке приведено устройство трехфазного трансформатора при соединении обеих обмоток звездой (Y/Y). Такое соединение широко применяют для трансформаторов небольшой и средней мощности (примерно до 1800 кВ-А). Соединение звездой является наиболее желательным для высокого напряжения, так как при нем изоляция обмоток рассчитывается лишь на фазное напряжение. Чем выше напряжение и меньше ток, тем относительно дороже обходится соединение обмоток треугольником.

Соединение обмоток треугольником конструктивно удобнее при больших токах. По этой причине соединение Y/D широко применяется для трансформаторов большой мощности в тех случаях, когда на стороне низшего напряжения не требуется нейтрального провода.

При трехфазной трансформации только отношение фазных напряжений U/U всегда приближенно равно отношению чисел витков первичной и вторичной обмоток w1/w2; что же касается линейных напряжений, то их отношение зависит от способа соединения обмоток трансформатора. При одинаковом способе соединения (Y/Y

или D/D) отношение линейных напряжений также равно коэффициенту трансформации. Однако при различном способе соединения (Y/D или D/Y) отношение линейных напряжений меньше или больше этого коэффициента в √3 раз. Это дает возможность регулировать вторичное линейное напряжение трансформатора соответствующим изменением способа соединения его обмоток.

§ 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов

Рис. 1.20. Трансформаторная группа (а) и трехфазный трансформатор (б)

Трансформирование трехфазной системы напряжений можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу (рис. 1.20, а). Однако относительная громоздкость, большой вес и повышенная стоимость — недостаток трансформаторной группы, поэтому она применяется только в установках большой мощности с целью уменьшения веса и габаритов единицы оборудования, что важно при монтаже и транспортировке трансформаторов.

Рис. 1.21. Трехстержневой магнитопровод и векторные диаграммы

В установках мощностью примерно до 60000 кВ-А обычно применяют трехфазные трансформаторы (рис. 1.20, б), у которых обмотки расположены на трех стержнях, объединенных в общий магнитопровод двумя ярмами (см. рис. 1.2). Но полученный таким образом магнитопровод является несимметричным: магнитное сопротивление потоку средней фазы ФВ меньше магнитного сопротивления потокам крайних фаз ФА и Фс (рис. 1.21, а).

Так как к первичным обмоткам трехфазного трансформатора подводится симметричная система напряжений

и то в магнитопроводе трансформатора возникают магнитные потоки и , образующие также симметричную систему (рис. 1.21, 6). Однако вследствие магнитной несимметрии магнитопровода намагничивающие токи отдельных фазовых обмоток не равны: намагничивающие токи обмоток крайних фаз (
и ) больше намагничивающего тока обмотки средней фазы . Кроме того, токи и оказываются сдвинутыми по фазе относительно соответствующих потоков и на угол α. Таким образом, при симметричной системе трехфазного напряжения, подведенного к трансформатору, токи х.х. образуют несимметричную систему (рис. 1.21, в).

Для уменьшения магнитной несимметрии трехстержневого магнитопровода, т.е. уменьшения магнитного сопротивления потокам крайних фаз, сечение ярм делают на 10—15% больше сечения стержней, что уменьшает их магнитное сопротивление. Несимметрия токов х.х. трехстержневого трансформатора практически не отражается на работе трансформатора, так как даже при небольшой нагрузке различие в значениях токов , и становится незаметным.

Таким образом, при симметричном питающем напряжении и равномерной трехфазной нагрузке все фазы трехфазного трансформатора, выполненного на трехстержневом магнитопроводе, практически находятся в одинаковых условиях. Поэтому рассмотренные выше уравнения напряжений, МДС и токов, а также схема замещения и векторные диаграммы могут быть использованы для исследования работы каждой фазы трехфазного трансформатора.

Обмотки трехфазных трансформаторов принято соединять по следующим схемам: звезда; звезда с нулевым выводом; треугольник; зигзаг с нулевым выводом. Схемы соединения обмоток трансформатора обозначают дробью, в числителе которой указана схема соединения обмоток ВН, а в знаменателе — обмоток НН. Например, Y/A означает, что обмотки ВН соединены в звезду, а обмотки НН — в треугольник.

Рис. 1.22. Соединение обмоток в зигзаг

Соединение в зигзаг применяют только в трансформаторах специального назначения, например в трансформаторах для выпрямителей (см. § 5.2). Для выполнения соединения каждую фазу обмотки НН делят на две части, располагая их на разных стерж­нях. Указанные части обмоток соединяют так, чтобы конец одной части фазной обмотки был присоединен к концу другой части этой же обмотки, расположенной на другом стержне (рис. 1.22, а). Зигзаг называют равноплечным, если части обмоток, располагаемые на разных стержнях и соединяемые последовательно, одинаковы, и неравноплечными, если эти части неодинаковы. При соединении в зигзаг ЭДС отдельных частей обмоток геометрически вычитаются (рис. 1.22, б).

Выводы обмоток трансформаторов принято обозначать следующим образом: обмотки ВН — начало обмоток А, В, С, соответствующие концы X, Y, Z; обмотки НН — начала обмоток а, Ь, с, соответствующие концы х, у, z.

При соединении обмоток звездой линейное напряжение больше фазного (), а при соединении обмоток треугольником линейное напряжение равно фазному (Uл = Uф ).

Отношение линейных напряжений трехфазного трансформатора определяется следующим образом:

Схема соединения обмоток

Y/Y

∆/Y

∆/∆

Y/∆

Отношение линейных напряжений

Таким образом, отношение линейных напряжений в трехфазном трансформаторе определяется не только отношением чисел витков фазных обмоток, но и схемой их соединений.

Пример 1.3. Трехфазный трансформатор номинальной мощностью Sном =100 кВ-А включен по схеме Y/∆. При этом номинальные линейные напряжения на входе и выходе трансформатора соответственно равны: U1ном = 3,0 кВ, U2ном = 0,4 кВ. Определить соотношение витков wllw2 и номинальные значения фазных токов в первичной I и вторичной I обмотках.

Решение. Фазные напряжения первичных и вторичных обмоток

Требуемое соотношение витков в трансформаторе w1/w2 = U/U= 1,73/0,4 = 4,32.

Номинальный фазный ток в первичной обмотке (соединенной в звезду)

I1Ф = I1ном=SHOM/(√3U1ном) = 100/(√3·3,0) = 19,3 А.

Номинальный фазный ток во вторичной обмотке (соединенной в треугольник)

I = I2ном /√З = SHOM /(3 U2ном) = 100/(З • 0,4) = 8,33 А.

Таким образом, соотношение фазных токов I/ I =83,3/19,3 = 4,32 равно соотношению витков в обмотках трансформатора.

Подключение обмоток трехфазного трансформатора. Какие бывают схемы соединения обмоток трансформатора

Ремонт силовых трансформаторов и пусконаладочные работы

Компания ЗАО «Спецмаркет» выполняет установку, монтаж, наладку, а также ремонты силовых трансформаторов любой сложности . Ремонт силовых трансформаторов является одним из основных направлений деятельности предприятия «Спецмаркет». Также наша компания выполняет испытания первичного оборудования (силовых трансформаторов, масляных, вакуумных выключателей, ошиновки, трансформаторов напряжения, тока и др. оборудования) станций и подстанций любых классов напряжений. По всем вопросам обращайтесь через форму

Схема соединений обмоток

Соединение звезда — звезда. Присоединении первичных и вторичных обмоток звездою ток в обмотках равен линейному току; напряжение же каждой фазы в раз меньше линейного напряжения. Последнее обстоятельство имеет следствием то, что изоляция обмоток может быть взята с учетом только лишь фазного напряжения, а число витков фазы может быть взято в раз меньше, чем это требовалось бы при соединении треугольником. Таким образом трансформатор с соединением обмоток звезда — звезда является наиболее дешевым. В эксплуатационном же отношении трансформатор с соединением звезда-звезда имеет существенные недостатки. Одним из недостатков его является необеспеченность в отношении симметрии напряжений при несимметричной нагрузке. Если первичная обмотка имеет нейтральный провод, соединенный с генератором (рис. 146а), то нагрузка одной фазы почти не вызывает нарушений симметрии трансформатора. В рассматриваемом случае токи идут только по обмоткам одною стержня, причем ампервитки вторичной обмотки целиком компенсируются ампервитками первичной обмотки, т. е.

Нарушения магнитного состояния трансформатора почти не получается. Если бы мы привели вторичную обмотку к первичной, т. е. положили то токи в соответствующих фазах (на рис. 146а в фазах А и а) были бы равны между собою, т. е.. Наличие нейтрального провода со стороны первичной цепи несомненно удорожает систему, а потому такая система почти и не применяется.

Предположим теперь, что нейтральный провод со стороны первичной цепи отброшен. В таком случае при загрузке одной фазы вторичной обмотки (на рис. 146b фазы а) во всех фазах первичной обмотки пойдут токи. В сопряженной фазе первичной обмотки, т.е. в фазе А ток будет равен а в двух других фазах по

В указанных соотношениях между токами легко убедиться из рассмотрения рис. 147, на котором схематически изображен сердечник трансформатора с первичными катушками и одною вторичною катушкою на среднем стержне. Мы имеем, во-первых, что сумма ампервит-ков одного окна, т. е. действующих на рис. 147 по пунктирной линии t, должна быть равна нулю; во-вторых, в сопряженной первичной фазе ток вдвое больше тока в двух других первичных фазах (по закону Кирхгофа), в-третьих, направление токов в несопряженных первичных фазах прямо противоположно направлению тока в сопряженной первичной фазе, потому что в первых двух фазах токи идут от концов фаз к началам В и с, а в последней фазе от начала фазы А к концу. Вследствие этого направления токов в сечениях первичных фаз будут такими, какими они показаны на рис. 147. Написав равенство ампервитков для одного окна

где I X — ток в сопряженной первичной фазе, получаем, что

Из рассмотрения рис. 147 мы видим, что на всех сердечниках нет уравновешенности ампервитков. На крайних стержнях имеются ампервитки первичной обмотки, но нет ампервитков вторичной обмотки. На среднем стержне вторичные ампервитки преобладают над первичными. Если всмотреться в действия неуравновешенных ампервитков, то мы заметим, что во всех стержнях они действуют в одну сторону; на рис. 147 вниз. Это значит, что неуравновешенные ампервитки создадут добавочное магнитное поле, которое во всех стержнях будет направлено в одну сторону и будет замыкаться через воздух. Добавочное магнитное поле, меняясь с частотою тока, индуктирует во всех фазах первичной и вторичной обмоток электродвижущие силы одной фазы, которые в первичной обмотке вместе с электродвижущими силами, индуктируемыми главным магнитным потоком, уравновешивают первичное напряжение

Во вторичной обмотке те же электродвижущие силы вместе с электродвижущими силами главного потока дают фазные электродвижущие силы.

Нетрудно показать, что фазные электродвижущие силы в этом случае получаются неравными. Пусть треугольник АВС на рис. 148 представляет треугольник приложенного первичного напряжения, а -электродвижущие силы добавочного магнитного потока. Если бы нулевая точка О треугольника напряжений ABC не сдвинулась со своего места, то фазные электродвижущие силы с первичной стороны должны были определяться векторами . Этими векторами определялись бы по величине и магнитные потоки в трех стержнях, так как электродвижущие силы пропорциональны вызвавшим их потокам. Магнитные потоки в сердечнике трехфазного трансформатора соединены звездой, а потому к ним приложимо свойство давать в сумме в каждый момент времени нуль, т. е. Ф 1 + Ф 2 +Ф 3 = О. Это значит, что векторы должны дать замкнутый равносторонний треугольник. Но последние векторы не могут дать замкнутого равностороннего треугольника. Такой треугольник мы получим, если сместим нейтральную точку О в точку на расстоянии . В этом случае векторы уже дадут замкнутый равносторонний треугольник. Таким образом в результате добавочного потока нулевая точка обмотки смещается на величину добавочной электродвижущей силы. Последнее явление совершенно подобно тому, что имеет место при холостой работе трансформатора с несимметричною магнитною системою, когда смещение нулевой точки выражалось величиной фазного напряжения. Имея в виду, что полный ток нагрузки больше тока холостой работы раз в 20, то при несимметричной нагрузке с полным током смещение нулевой точки выразится фазного напряжения. Такое большое смещение нулевой точки вызывает большое неравенство в фазных напряжениях, что, конечно, представляет большое неудобство с эксплуатационной точки зрения. В том случае, когда нейтраль первичной звезды не может быть соединена с нейтралью генератора, рассматриваемое соединение не рекомендуется брать при трансформировании тока отдельными однофазными трансформаторами или одним трехфазным трансформатором броневого типа, так как в фазных напряжениях получаются значительные третьи гармоники. Оно не рекомендуется даже и при передачах звезда — звезда на звезда — треугольник при условии заземления нейтралей высокого напряжения, потому что замыкающиеся в этом случае через землю токи третьей гармоники могут причинить большие расстройства в соседних телефонных и телеграфных линиях.

При трансформировании трехфазным трансформатором стержневого типа третьи гармоники, как мы видели и ранее, проявляются значительно слабее, а потому соединение звезда-звезда в данном случае будет допустимо. Группа звезда- звезда применяется при небольших распределительных сетях с мало нагруженным вторичным нулевым проводом. При высоких напряжениях эта группа применяется только при наличии третичной обмотки, соединенной треугольником. Эта последняя необходима для прохождения третьей гармоники намагничивающего тока; она же может дать ток для защитных приспособлений в случае короткого замыкания главной обмотки.

В. Звезда-зигзаг. Для того чтобы в соединении обмоток трансформаторов звезда-звезда избавиться в известной мере от добавочного магнитного потока при несимметричной нагрузке применяют соединение вторичных обмоток звезда-зигзаг. Ес

Конструкции трехфазных трансформаторов

Трансформирование трехфазной системы напряжений можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу. Однако относительная громоздкость, большой вес и повышенная стоимость — недостаток трансформаторной группы. Поэтому она применяется только в установках большой мощности с целью уменьшения массы и габаритов единицы оборудования, что важно при монтаже и транспортировке трансформаторов. Такой тип получил название — трансформатор с раздельной магнитной системой. Трансформатор, у которого обмотки расположены на трех стержнях, называется трансформатором с объединенной магнитной системой.

Вустановках мощностью примерно до 60 000 кВА обычно применяют трехфазные трансформаторы, у которых обмотки расположены на трех стержнях, объединенных в общий магнитопровод двумя ярмами. Но полученный таким образом магнитопровод является несимметричным: магнитное сопротивление потоку средней фазы Фв меньше магнитного сопротивления потокам крайних фаз ФА и Фс .

Так как к первичным обмоткам трехфазного трансформатора подводится симметричная система напряжений UA, UB и UC, то в магнитопроводе трансформатора возникают магнитные потоки ФA, ФB и ФC, образующие также симметричную систему. Однако вследствие магнитной несимметрии магнитопровода намагничивающие токи отдельных фазных обмоток не равны: токи обмоток крайних фаз (IОА и IОС) больше тока средней фазы (IОВ).

Кро­ме того, токи IОА и IОС оказываются сдвинутыми по фазе относи­тельно соответствующих потоков Фа и Фс на угол α. Таким об­разом, при симметричной системе трехфазного напряжения, подведенного к трансформатору, токи х.х. образуют несиммет­ричную систему.

Для уменьшения магнитной несимметрии трехстержневого магнитопровода, т. е. уменьшения магнитного сопротивления потокам крайних фаз, сечение ярм делают на 10—15% больше сечения стерж­ней, что уменьшает их магнитное сопротивление. Несимметрия токов х.х. трехстержневого трансформатора практически не отражается на работе трансформатора, так как даже при небольшой нагрузке разли­чие в значениях токов IОА , IОВ и IОС становится незаметным.

Таким образом, при симметричном питающем напряжении и равномерной трехфазной нагрузке все фазы трехфазного трансформатора, выполненного на трехстержневом магнитопроводе, практически находятся в одинаковых условиях. Поэтому рассмотренные выше уравнения напряжений, МДС и токов, а также схема замещения и векторные диаграммы могут быть использованы для исследования работы каждой фазы трехфазного трансформатора.

Параллельная работа трансформаторов

Для увеличения мощности трансформаторы включают параллельно. Существуют условия параллельного включения трансформаторов:

1) Трансформаторы должны иметь одинаковые значения напряжения “холостого хода” или коэффициенты трансформации. При несоблюдении этого условия возникает уравнительный ток (IУР), обусловленный разностью вторичных напряжений DU,

где Rвн1, Rвн2 – внутренние сопротивления трансформаторов. При этом трансформатор с более высоким вторичным напряжением “холостого хода” оказывается перегруженным.

2) Трансформаторы должны принадлежать к одной группе соединений. Если это условие не выполняется, то появляется уравнительный ток, обусловленный разностной ЭДС трансформатора:

3) Трансформаторы должны иметь одинаковые значения напряжения короткого замыкания. Трансформатор с меньшим напряжением короткого замыкания перегружается.

Трехобмоточный трансформатор: описание, схемы, мощность, обмотки

Обычный трансформатор преобразовывает первичное напряжение U1 во вторичное U2. Нередко одного выходного напряжения для питания электроприемников бывает недостаточно. Задача создания третьего среднего напряжения СН (U3), наряду с высоким напряжением ВН (U1) и трансформируемым низким (U2), решается установкой трехобмоточного трансформатора с дополнительной третьей обмоткой на магнитопроводе. Этот электрический аппарат заменяет собой два двухобмоточных трансформатора.

Общее описание и назначение

Если взять двухобмоточный трансформатор и на стержень намотать проводом витки дополнительной катушки индуктивности, наводимое в ней напряжение будет пропорционально числу витков. В зависимости от исполнения вторичные катушки могут быть одинаковой или разной мощности.

Cхема 3-х обмоточного трансформатора

Cхема 3-х обмоточного трансформатора

Существуют 2 вида трансформаторов подобного типа:

  • с 1-й первичной и 2-мя вторичными обмотками – самый распространенный вид;
  • с 2-мя первичными и 1-ой вторичной обмоткой – этот вид задействован в трансформаторных группах электростанций.

Условное обозначение 3-х обмоточного трансформатора

Условное обозначение 3-х обмоточного трансформатора

Номинальной мощностью 3-х обмоточного аппарата считается параметр самой мощной его катушки, которой в данном типе электрических устройств является обмотка ВН. Размещение силового 3-х обмоточного устройства с невысокой мощностью любой из обмоток в электрических цепях экономически не оправдано. Поэтому мощности вторичных катушек ВН, СН и НН аппарата в процентах от Pном обычно составляют:

  • 100;100;100%;
  • 100;100;66,7%;
  • 100;66,7;100%;
  • 100;66,7;66,7%.

Конструкция и принцип действия

Конструктивно первичную катушку 3-х обмоточного силового трансформатора обычно располагают в середине между двумя вторичными, чтобы ослабить влияние обмоток между собой. Если нулевой вывод заземляется, то она называется «глухозаземленной», в ином случае именуют «обмоткой с изолированной нейтралью».

 Вторичную катушку с более низким напряжением (НН) размещают ближе к стержню устройства.

При подобном расположении напряжение КЗ между обмотками ВН и СН минимально. Это позволяет снизить  потери мощности при передаче в сеть СН. Одновременно значение напряжения КЗ между ВН и НН относительно большое, что ограничивает силу тока короткого замыкания в сети НН низшего напряжения.

трехобмоточный трансформатор

3-х обмоточные преобразователи переменного напряжения нашли широкое применение в силовой энергетике. В маркировке изделий они обозначаются третьей буквой «Т» в буквенно-цифровом коде. Очень часто требуется иметь третье более низкое, чем U2 значение для подачи менее мощным электроприемникам или, расположенным вблизи подстанций, потребителям электроэнергии.

Стандартными условиями эксплуатации изделий считается температура не выше 35ºС и влажность воздуха ≤65%, обеспечиваемые в отапливаемом помещении. Товарные позиции этого типа изготовляются как для нужд народного хозяйства, так и экспортируются в страны с умеренным/ тропическим климатом.

На понижающих подстанциях для раздельного питания электрических сетей в радиусе 10–15 км задействуют  электротехнические изделия с выходными параметрами 6–10 кВ, а в радиусе до 50-60 км применяют 35 кВ трансформаторы. 3-х обмоточные преобразователи только с более низким значением параметров используется в измерительной технике и радиотехнике, автоматике и средствах релейной защиты.

трехобмоточный трансформатор

Разновидности

Однофазный

Однофазные трехобмоточные трансформаторы для силовых линий обычно изготавливают мощностью 5000–40000 кВт с напряжением обмоток:

  • ВН – с значениями 110–121 кВ;
  • CН – от 34,5 до 38,5 кВ;
  • НН – в диапазоне 3,15–15,7 кВ.

Однофазный

Типовой однофазный 3-х обмоточный преобразователь, например, классов напряжения 15, 20, 24 и 35 кВ предназначен для встраивания в пофазно-экранированные токопроводы сетей 50/60Гц. Конструкция изделия включает следующие составные части и комплектующие:

  • бак с крышкой из немагнитной стали, задвижкой и пробкой, заполненный трансформаторным маслом;
  • магнитопровод из электротехнической стали;
  • активную часть, состоящую из обмоток, изоляции и крепежных элементов;
  • плоского контакта на крышке бака первичного вводного напряжения;
  • заземляющего ввода первичной обмотки и вводов вторичной обмотки на боковой стенке бака.

однофазный трансформатор

Электрические аппараты большой мощности (≤40000 кВа), рассчитанные на работу в интервале 110–121 кВ дополнительно могут оснащаться:

  • выхлопной трубой для защиты бака от разрыва парами масла и газовым реле, отключающим подачу электропитания при внутривитковом замыкании в трансформаторе;
  • расширителя с воздухоосушителем и термосифонным фильтром для поддержания требуемого уровня масла и предотвращения попадания влаги из атмосферы;
  • системами естественной/принудительной циркуляции воздуха или масла.

Экономическая эффективность применения изделия состоит в том, что при 3-х обмоточном исполнении первичный ток равен не арифметической, а геометрической сумме приведенных вторичных токов. Трехобмоточные (многообмоточные) аппараты целесообразно применять вместо двухобмоточных в том случае, если нагрузки ЛЭП/обслуживаемых электрических сетей соизмеримы, то есть отличаются друг от друга не более чем в 5 раз.

Многообмоточный трансформатор

Трехфазный

В трехфазных преобразователях переменного напряжения на каждую трансформируемую фазу приходится 3 обмотки. В  таком трансформаторе с общим магнитопроводом обмоток рабочие процессы протекают для каждой фазы аналогично, только со сдвигом во времени. На первичные обмотки поступает переменное фазное напряжение, вторичные обмотки соединены с нагрузкой. Поэтому для описания работы электрического аппарата исследуется только одна рабочая фаза.

Трехфазные 3-х обмоточные преобразователи для силовых линий обычно изготавливают мощностью 5600–31500 кВт и напряжениями катушек  аналогичным тем, которые используются в однофазных аппаратах. Трансформаторы получили наибольшее распространение на электрических подстанциях. По сравнению с группой однофазных трансформаторов при той же мощности они позволяют экономить 12–15% электроэнергии и 20–25% активных материалов в стоимостном выражении. Это конкурентное преимущество изделий подобного типа учитывается при изготовлении аппаратов массовых серий.

Трехфазный трансформатор

Схемы замещения

Схема замещения 3-х обмоточного трансформатора представлена ввиде трехлучевой звезды, состоящей из активных R и реактивных X сопротивлений обмоток. Все сопротивления в схеме приведены к напряжению высшей обмотки. На первичные зажимы подключена ветвь намагничивания (на схеме она соединена с корпусом), состоящая из B – активной  и G – реактивной проводимости.

Проводимость В возникает ввиду потерь в стали части мощности на перемагничивание и вихревые токи, G отражает мощность намагничивания. За номинальную Pном катушек трансформатора принимается мощность его первичной обмотки. Мощность обмоток трансформатора СН и НН и коэффициент трансформации выбирается под потребности конкретного объекта энергопотребления. Электрический аппарат рассчитывается на соответствующую мощность (диаметр и количество витков, электрическую прочность изоляции, размер и материал магнитопровода). С учетом  нагрева при работе  выбирается соответствующая модель.

Схема

Проведение опытов короткого замыкания

Чтобы определить значения параметров этой схемы, необходимо провести 1 опыт холостого хода и 3 опыта с коротким замыканием. Если первый опыт необходим для определения B и G и не отличается от опыта двухобмоточного аналога, то опыты короткого замыкания проводятся с целью определения паспортных данных напряжения короткого замыкания U к и потерь активной мощности ∆Р к на соответствующих катушках трансформатора в режиме короткого замыкания:

  • U к вн, ∆Р к вн – закорочивается обмотка НН и подается питание на обмотку ВН;
  • U к сн, ∆Р к сн – коротится обмотка НН и питание подается со стороны обмотки СН;
  • U к вс, ∆Р к вс – накоротко замыкаются клеммы катушки СН и запитывается обмотка ВН.

Трехфазный трансформатор короткое замыкание

В результате решения системы уравнений выводится значение U к каждой из обмоток:

уравнение обмоток

При определении ∆Р к следует учитывать значение активной мощности, содержащееся в справочнике для конкретной модели трансформатора. Обычно приводится параметр для самой мощной обмотки. Очень часто в источниках дается одно значение ∆Рк, определенное из опыта КЗ, выполненного для наиболее мощных обмоток, обычно ∆Рк вс. Потери мощности в каждой катушке определяются с учетом соотношения номинальных мощностей обмоток S ном %, выраженных в процентах.  Потери активной мощности ∆Рк в обмотках СН и НН рассчитываются из пропорций:

уравнение обмоток

При соотношениях всех мощностей обмоток 100 %:

∆Рк в = ∆Рк с = ∆Рк н = 0,5 ∆Рк вс,

Если соотношение 100 %, 100 %, 66,7 %, то:

  • ∆Рк в = ∆Рк с = 0,5 ∆Рк вс;
  • ∆Рк н = 1,5 ∆Рк в.

Применять вычисления придется только для электрических аппаратов, производимых ранее. Они  могли иметь мощность обмоток НН и СН в полтора раза меньше, чем мощность катушки ВН.

В последние годы отечественные производители выпускают трехобмоточные трансформаторы с одинаковой мощностью обмоток 100%.

Схемы соединений обмоток трехфазных трансформаторов

При соединении обмоток трехфазных трансформаторов как двухобмоточных, так и трехобмоточных применяют различные схемы соединения. Однако в силовых трансформаторах как повышающих, так и понижающих, главных образом применяются схемы соединения в звезду, треугольник и зигзаг—звезду. Для практических целей в энергосистемах не требуется большого количества схем соединений обмоток. Так, для мощных трансформаторов применяется одно соединение обмоток ВН и СН— в звезду с выведенной нейтралью (Y0), а для обмоток НН — в треугольник (А).
ГОСТ 12022-66 предусматривает для трансформаторов мощностью 25, 40, 63 и 100 кВА с ПБВ (с переключением ответвлений обмотки трансформатора без возбуждения — т. е. после отключения всех обмоток трансформатора от сети) и для трансформаторов мощностью 63, 100, 160 и 250 кВА с ПБВ и РПН (с регулированием напряжения путем переключения ответвлений обмотки трансформатора под нагрузкой при следующем сочетании напряжений па стороне ВН и НН (кВ)  на стороне обмотки низшего напряжения соединение в зигзаг—звезду.
Соединение в зигзаг — звезду дает возможность при несимметрии нагрузки на стороне НН сглаживать на стороне ВН эту неравномерность. Кроме того, схема зигзага допускает иметь три напряжения, например 127, 220 и 380 е.
Другие схемы соединений обмоток для силовых трансформаторов применяются крайне редко. Область применения таких схем ограничивается трансформаторами специального назначения (электропечными, для питания ртутных выпрямительных установок, для преобразования частоты, числа фаз переменного тока, электросварочными и др.).
а) Соединение обмоток в звезду
Если соединить концы или начала обмоток трех фаз вместе, то получится соединение в звезду. На рис. 3,а показаны обмотки НН, соединенные в звезду. В нулевой точке соединены все концы обмоток у, z, а к началам а, Ьу с— подводится напряжение от трехфазной сети или генератора. На рис. 3,6 показано то же соединение обмоток НН в звезду, но только в нулевую точку соединены другие концы обмоток, которые прежде присоединялись к сети. При независимой друг от друга работе трансформаторов подобное «переворачивание» одной из обмоток, соединенной в звезду, не имеет значения, по параллельная работа таких трансформаторов, как это будет доказано далее, невозможна. В звезду могут быть соединены различные обмотки трансформатора как ВН и СН, так и НН. Нулевая точка звезды может быть выведена на крышку трансформатора (рис. 3,б).
По схеме звезда или звезда с выведенной нулевой точкой соединяются обычно обмотки ВН как повышающих, так и понижающих трансформаторов различной мощности.
Соединение обмотки НН в звезду
Рис. 3. Соединение обмотки НН в звезду.
а — одна схема соединения; б — другая схема соединения; в — соединение в звезду с выведенной нулевой точкой; г — векторная диаграмма линейных э. д с.
Обмотки ВН при напряжениях 110 кВ и выше предпочтительно соединять в звезду с выведенной нулевой точкой, что дает возможность заземления нейтрали. При этом можно выполнить один конец каждой из фаз, прилегающий к нейтрали, с пониженной изоляцией.
Обмотки СН соединяются большей частью по схеме Y0.
Обмотки НН соединяются в звезду с выведенной нулевой точкой у понижающих трансформаторов тогда, когда напряжение этой обмотки 230 или 400 в при мощностях до 560 кВА. В звезду без выведения нулевой точки обмотки НН соединяются крайне редко, например, у понижающих трансформаторов мощностью 1 000—5 600 кВА при сочетании напряжений обмоток ВН и НН 10 000/6 300 е.
Обычно обмотки НН повышающих трансформаторов, а также большей части понижающих мощных соединяются в треугольник.
Векторная диаграмма линейных э. д. с. для соединения обмоток в звезду строится следующим образом. Откладываем в масштабе вектор ах (рис. 3,г). Так как мы знаем, что концы обмоток л*, //, г электрически соединены, то из точки х под углом 120° к ах откладываем в том же масштабе вектор by. Далее из точки у под углом 120° к вектору by откладываем вектор сг.
При соединении обмотки в звезду с выведенной пулевой точкой можно получить два напряжения (фазное и лилейное). Если измерять напряжение между нулем и какой-либо фазой, то получим напряжения, называемые фазными ((Уф). На рис. 3,г они изображены векторами ха, yb и гс.
Напряжения, измеренные между фазами а и ft, b и с, с и а, называются линейными (междуфазными) напряжениями (U). Эти напряжения па рис. 5-3,г изображены в масштабе ab, be и са. Так как в треугольнике abx угол между векторами ха и yb равен 120°, то зависимость между линейным и фазным напряжениям  будет U = = Uфv3 , т. е. линейное напряжение в v3 раз больше фазного. Если трансформатор, обмотки НН которого включены в звезду, имеет линейное напряжение 220 в, то фазное напряжение будет:
Соединение обмотки НН в звезду
б) Соединение обмоток в треугольник
Если соединить конец фазы а (точку х) с началом фазы с, конец фазы с (точка z) с началом фазы b и конец фазы b (точка у) с началом фазы а, то получится соединение в треугольник (рис. 4,а). Соединение в треугольник можно осуществить (рис. 4,6) иначе, соединяя конец фазы а с началом фазы b, конец фазы b с началом фазы с и конец фазы с с началом фазы а.
Векторная диаграмма линейных э. д. с. при соединении обмоток в треугольник по схеме рис. 4,а будет равносторонним треугольником рис. 4,в и г. При соединении в треугольник фазные напряжения будут равны линейным.
В мощных трансформаторах принято одну из обмоток всегда соединять в треугольник. Делается это по следующим соображениям:
Как известно, намагничивающий ток трансформатора имеет несинусоидальную форму, т. е. содержит высшие гармонические. Наибольший удельный вес имеет третья гармоническая. Если все обмотки трансформатора соединить в звезду, то третья гармоническая в намагничивающем токе образоваться не может, так как она будет направлена во всех фазах одинаково: (3 • 120° = 360° = = 0°) и поэтому форма кривой фазного напряжения исказится, что может привести к нежелательным явлениям в эксплуатации. По этим соображениям принято одну из обмоток обязательно соединять в треугольник. Если же почему-либо требуется построить мощный двухобмоточный трансформатор или автотрансформатор с соединением обмоток звезда — звезда (например, трехфазный автотрансформатор), то он снабжается дополнительной третьей обмоткой, соединенной в треугольник, которая в некоторых случаях может даже не иметь внешних выводов.
Соединение обмоток НН в треугольник
Рис. 4. Соединение обмоток НН в треугольник.
а — первая схема соединения обмоток в треугольник, б — вторая схема соединения обмоток в треугольник; в — вектора линейных э. д. с фаз a, b и с; г —векторная диаграмма линейных э д с

Обычно в треугольник соединяется обмотка низшего напряжения.
В мощных трансформаторах номинальный ток обмотки НН часто составляет несколько тысяч ампер и конструктивно бывает легче выполнить соединение обмотки в треугольник, так как фазный ток при той же мощности получается в v 3 раз меньшим, чем при соединении в звезду.
В треугольник соединяются обмотки НН всех повышающих и понижающих двухобмоточных и трехобмоточных трехфазных трансформаторов мощностью 5 600 кВА и больше, понижающих трансформаторов мощностью до 5 600 кВА, имеющих на стороне НН напряжения 38,5; 11; 10,5; 6,6; 6,3; 3,3; 3,15 и 0,525 кВ, а также обмотки НН всех мощных однофазных двухобмоточных и трехобмоточных трансформаторов, предназначающихся для соединения в трехфазные группы. Обмотки ВН и СН силовых повышающих и понижающих трансформаторов обычно в треугольник не соединяются.
в) Соединение обмоток в зигзаг — звезду (равноплечий и неравноплечий зигзаг)
Равноплечий зигзаг может быть получен, если соединить по одной из трех схем рис. 5,а, бив концы и начала шести полуобмоток с одинаковыми числами витков (а следовательно, и э. д. е.), расположенных по две полуобмотки на каждой фазе трансформатора.
Соединение обмотки НН в равноплечий зигзаг
Рис. 5. Соединение обмотки НН в равноплечий зигзаг.
а —первая схема соединения; б — вторая схема соединения; в — третья схема соединения; г — векторная диаграмма э. д. с. звезды нижних полукатушек; д — векторная диаграмма линейных э. д. с.
Построим векторную диаграмму соединений обмоток в зигзаг согласно схеме рис. 5,а. Начнем построение с нижних полуобмоток, соединенных в звезду. Векторная диаграмма для этих полуобмоток представлена на рис. 5,г. Согласно схеме рис. 5,а начало а’ нижней полуобмотки электрически соединено с концом zr верхней.
Вектор г’с должен пойти в направлении, противоположном вектору zc’, а потому из точки а’г’ (рис. 5,д) откладываем вектор zrc в направлении, противоположном вектору zc’.

Аналогичным образом строим векторы остальных частей обмоток. Обмотка при соединении в зигзаг обычно выполняется двухслойной, причем каждый слой имеет свободные начала и концы.
Один из слоев обмотки наматывают правой намоткой, другой — левой. Делается это для удобства выполнения соединений в зигзаг. При соединении обмотки в зигзаг мы можем получить три различных напряжения.

Схема равноплечего зигзага применяется для нормальных силовых понижающих трансформаторов, для мощностей 25, 40, 63, 100, 160 и 250 кВА в случае, когда при большой несимметрии нагрузок фаз необходимо на стороне питания иметь схему звезды.
Неравноплечий зигзаг получается, если по схемам а, б и в (рпс. 5-5) соединить концы и начала полуобмоток с неодинаковым числом витков. На рис. 6,а и б даны две схемы соединения в неравноплечий зигзаг при отношении числа витков в полуобмотках 1 : 2.
Схема неравноплечего зигзага применяется иногда иностранными фирмами для трансформаторов специального назначения. В нормальных силовых трансформаторах наши заводы эту схему не применяют.
г) Соединение обмоток по схеме А
Если соединить обмотки трансформатора, как показано на рис. 7,а, то получится соединение по схеме А. Схему, как это видно из векторной диаграммы
Соединение обмотки по схеме А
Рис. 7. Соединение обмотки по схеме А.
а — схема соединений обмоток; б — векторная диаграмма.
(рис. 7,6), можно представить как треугольник а’Ьс’, у которого две стороны а’b и cfb имеют дополнительные витки (а’а и с’с).
Для того чтобы получить соединения обмоток, отвечающих векторной диаграмме рис. 7,6, принимают соотношения числа витков на фазах трансформатора, которые должны удовлетворять следующим трем условиям:
Соединение обмотки по схеме А
т. е. обмотка фазы с должна иметь 2/3 числа витков обмоток фаз а и b.
Нулевой вывод берется от середины обмотки фазы с, и, кроме того, число витков дополнительных участков фаз а и b должно быть одинаково и составлять Уз общего числа витков этих фаз.
Соединение обмотки по схеме А

Рис. 8. Соединение обмоток в скользящий треугольник.
а — схема соединений обмоток; б—векторная диаграмма.
Эта схема не имеет применения в нормальных силовых трансформаторах и применяется только там, где необходимо иметь соединение обмоток в треугольник и в то же время требуется иметь нулевую точку.
д) Соединение обмоток в скользящий треугольник
На рис. 8 даны схема соединения обмотки и векторная диаграмма скользящего треугольника. Из рассмотрения схемы видно, что изменяя положение концов
а’b’с’ (рис. 8,а) и «скользя» ими по обмотке из крайнего верхнего положения к нижнему, можно перейти от треугольника к звезде. При этом могут быть получены все промежуточные положения. Это дает возможность, так же как в схеме неравноплечего зигзага, иметь различные углы сдвига фаз (ф).
Схема скользящего треугольника применяется иногда для трансформаторов, питающих электрические печи. В силовых трансформаторах эта схема не применяется.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *