Усилительной каскад с общим эмиттером (ОЭ)
2.2. Усилительной каскад с общим эмиттером (ОЭ)
2.2.1. Усилители
Усилитель это устройство, преобразующее сигнал малой мощности в сигнал большей мощности за счёт энергии источника питания.
Следует отметить, что именно увеличение мощности выходного сигнала, по сравнению с мощностью входного, является характерной особенностью усилителя и отличает его от других преобразующих устройств, в которых изменяется либо напряжение, или электрический ток, а мощность остаётся постоянной (точнее уменьшается, т.к. КПД любого устройства меньше единицы). Примером такого устройства может служить повышающий трансформатор, преобразующий входное напряжение в более высокое выходное, при этом мощность выходного сигнала, за счёт потерь, будет ниже, чем мощность входного.
Рис. 2.11. Обобщённая структурная схема многокаскадного усилителя
Применяемые на практике усилители являются достаточно сложными устройствами, которые содержат в себе ряд усилительных каскадов, обеспечивающих не только усиление входного сигнала, но и согласование с источником и потребителем сигнала.
Усилительный каскад это минимальный функциональный блок, обеспечивающий усиление сигнала. Обычно в его состав входят один или несколько усилительных элементов (электронный прибор, обеспечивающий усиление сигнала – транзистор или электронная лампа), цепи обратной связи, элементы обеспечивающие режим по постоянному току, и т.д.
На рис. 2.11 приведена обобщённая структурная схема многокаскадного усилителя. В общем случае усилитель состоит из входного каскада (с коэффициентом усиления КВХ), одного или нескольких каскадов предварительного усиления (КПУ1 . . . КПУn), и выходного каскада (КВЫХ). Основной задачей входного и выходного каскадов является согласование усилителя с источником сигнала и нагрузкой, обычно это делается с целью обеспечения согласованного режима рабо-
14 | 2. Теоретическое введение |
|
|
ты цепи2. Каскады предварительного усиления предназначены для повышения уровня сигнала до необходимого. Если необходимый уровень выходного сигнала нельзя получить с помощью одного каскада, то ставят дополнительные каскады, в количестве, необходимом для получения нужного уровня выходного сигнала.
Важнейшей величиной, характеризующей усилительный каскад, является коэффициент усиления, равный отношению уровня выходного сигнала к уровню входного. Различают три коэффициента усиления – коэффициент усиления по напряжению, току и мощности:
КU = | UВЫХ | , КI = | IВЫХ | , | КP = | PВЫХ | = | IВЫХUВЫХ | = КU КI | |
UВХ | IВХ | PВХ | IВХUВХ | |||||||
|
|
|
|
|
|
Исходя из определения усилителя (стр. 13) любой усилитель увеличивает мощность входного сигнала, и значит основным коэффициентом усиления должен быть коэффициент усиления по мощности, однако при проектировании усилителей акцент ставится на усиление одной из трёх величин, поэтому различают усилители напряжения, тока и мощности. Наиболее часто требуется усиление напряжения, поэтому в литературе наиболее распостранён КU , и, в ряде случаев, он принимается за определение коэффициента усиления вообще.
При расчёте коэффициента усиления многокаскадного усилителя коэффициенты усиления всех каскадов перемножаются:
КU = КU1 КU2 . . . КUn
Помимо коэффициента усиления, в широко используются ампли- тудно–частотная (АЧХ) и амплитудная характеристики усилителя.
Амплитудно-частотная характеристика (АЧХ) (рис. 2.12) показывает зависимость коэффициента усиления усилителя от частоты.
Для анализа АЧХ усилителя наибольший интерес представляет участок, на котором коэффициент усиления практически не зависит от частоты и обозначается КСР. Этот участок ограничен в области низких частот нижней граничной частотой fН, а в области высоких — верхней граничной частотой fВ (рис. 2.12). Значения fН и fВ определяются величиной коэффициента частотных искажений,
2В согласованном режим работы выходное сопротивление источника сигнала равно входному сопротивлению нагрузки (например выходное сопротивления источника сигнала и входное сопротивление входного каскада). В этом случае обеспечивается максимальная мощность.
2.2. Усилительной каскад с общим эмиттером (ОЭ) | 15 |
Рис. 2.12. Амплитудно-частотная характеристика усилителя |
|
равного отношению коэффициента усиления на средней частоте (fСР), к коэффициенту усиления на нижней (fН) или верхней (fВ) частоте:
M = KUСР или M = KUСР .
KUН KUВ
Обычно допустимые значения коэффициентов частотных искажений не превышают величину √2.
Частоты меньше fН и выше fВ образуют области частотных искажений и не используются в работе усилителя.
Полоса пропускания усилителя f, характеризует диапазон частот, на котором коэффициент искажений M не превышает допустимые значения и определяется как разность между верхней и нижней частотой усилителя:
f= fВ − fН
Взависимости от величин fН и fВ усилители делятся на:
1.Усилители медленно изменяющихся сигналов (или усилители постоянного тока, УПТ) – у них нижняя частота АЧХ мала и
приближается к 0 (fН → 0) а верхняя частота может достигать
103 . . . 108Гц
2.Усилители низкой частоты (УНЧ) – нижняя частота равна десяткам герц, верхняя достигает сотен килогерц (для усилителей звуковой частоты (УЗЧ) — fВ = 15 . . . 20кГц)
3.Усилители высокой частоты (УВЧ) – диапазон частот начинается от сотен килогерц и простирается до десятков и сотен мегагерц
UВХmax
Рис. 2.13. Амплитудная характеристика усилителя
16 | 2. Теоретическое введение |
|
|
4.Широкополосные усилители (ШПУ) – усиливают частоты от десятков герц до сотен мегагерц (в основном применяются в импульсной технике)
5.Узкополосные или избирательные усилители – применяются для усиления сигналов в узком диапазоне частот (в идеале усиливается одна частота).
| UВЫХ, В |
|
| Амплитудная характеристика | ||
| С | усилителя (рис. 2.13) характеризует | ||||
|
| B |
| зависимость выходного напряжения | ||
|
|
|
|
| от входного на средних частотах. | |
|
|
|
|
|
| При отсутствии входного сигна- |
|
|
|
|
|
| ла (UВХ = 0) на выходе мы имеем |
| A |
|
|
|
| напряжение UШ, обусловленное вну- |
UШ |
|
| UВХ, MВ | тренними шумами усилителя. Мини- | ||
|
|
| мальное входное напряжение долж- | |||
|
|
|
| но быть не менее чем в 2–3 ра- | ||
| UВХmin UВХmax |
|
| |||
|
|
| за больше уровня внутренних шумов |
(UВХmin > 2 . . . 3UШ). Прямолинейный участок A–B является рабочим. Уча-
сток B–C обусловлен нелинейностью усилительных элементов при высоком уровне сигнала.
Таким образом, при уровне входного сигнала меньше UВХmin мы не сможем отличить полезный сигнал от помех, а в случае UВХ >
выходной сигнал будет иметь нелинейные искажения.
2.2.2. Усилительный каскад с ОЭ
Усилительный каскад с общим эмиттером (рис. 2.14) является одним из самых распостранённых и применяется в каскадах предварительного усиления многокаскадных усилителях.
Название схемы «с общим эммитером»означает, что вывод эмиттера является общим для входной и выходной цепи. В этом случае вывод эмиттера называется общим (обозначается , также используется термин „земля“), а все потенциалы измеряются относительно него.
Усилительный каскад с общим эмиттером работает следующим образом:
1. При увеличении входного напряжения (UВХ ↑) ширина p − n
2.2. Усилительной каскад с общим эмиттером (ОЭ) | 17 |
|
|
перехода между коллектором и базой уменьшается, в результате возрастает ток в цепи эмиттера (IЭ ↑, см. рис. 2.3), а выходное сопротивление транзистора (между коллектором и эмиттером) уменьшается (RВыхТр ↓), а следовательно уменьшается и падение напряжения на выходе транзистора (IЭ RВыхТр = UВых ↓).
2.При уменьшении входного напряжения (UВХ ↓) ширина p −n перехода между коллектором и базой увеличивается, в результате
чего ток в цепи эмиттера уменьшается (IЭ ↓, см. рис. 2.3), а выходное сопротивление транзистора (между коллектором и эмит-
тером) увеличивается (RВыхТр ↑), а следовательно увеличивается и падение напряжения на выходе транзистора (IЭ RВыхТр =
UВых ↑).
Таким образом, мы видим, что усилительный каскад с общим эмиттером сдвигает фазу выходного сигнала, относительно входного на 180о.
Характер изменения выходного напряжения, при изменении входного от минимального до максимального, определяется статической нагрузочной характеристикой:
Рис. 2.14. Усилительной EК = UКЭ + RКIК каскад с общим
эмиттером
Это выражение получено на основе II за-
кона Кирхгофа (рис. 2.14) и из него хорошо видна роль резистора RК−фактически он определяет характер изменения выходного сигнала, при его отсутствие (RК = 0), напряжение на выходе усилителя будет определятся исключительно источником питания:
EК = UКЭ.
При (RК 6= 0), падение напряжения на RК будет зависеть от величины тока коллектора IК, связанного с величиной тока базы коэффициентом β: IК = βIБ. Отсюда следует, что напряжение на выходе каскада будет по форме повторять напряжение на входе.
Статическая нагрузочная характеристика определяет закон изменения выходного сигнала и строится на выходной характеристике транзистора. Эта характеристика является прямой линией, для
18 | 2. Теоретическое введение |
|
|
построения которой достаточно двух точек, например точек её пересечения с осями. Выходная характеристика транзистора показывает зависимость IК от UК, поэтому рассмотрим значения нагрузочной характеристике при IК = 0 (точка „c”) и UK = 0 (точка „d”) (рис. 2.15):
UК = EК |IК=0
EК
IК =
RК UK=0
Величина э.д.с. источника питания EК выбирается несколько меньше максимально допустимого напряжения на коллекторе, задаваемого в характеристиках транзистора, в пределах EК = (0, 7 . . . 0, 9)UКmax
Характер нагрузочной характеристики и коэффициент усиления, при заданной э.д.с. источника питания EК, определяется величиной нагрузочного резистора RК который, обеспечивает необходимый уровень падения напряжения на выходе каскада и ограничивает ток коллектора.
Рис. 2.15. Нагрузочная | Рис. 2.16. Нагрузочная характеристика с |
характеристика | ограничениями (штриховкой выделена |
| область с недопустимыми значениями |
| выходного сигнала) |
Положение точек „с” и „d” ограничено сверху максимально допустимыми значениями тока (IКmax), напряжения (UКЭmax) и мощности (PКmax), которые задаются паспортными данными транзистора (рис. 2.16).
Нагрузочная характеристика является основой графоаналитического метода расчёта усилительного каскада.
Биполярные транзисторы.Часть 3.Усилительный каскад. | HomeElectronics
Здравствуйте, продолжим знакомство с биполярными транзисторами. В предыдущем посте был рассмотрен транзистор в качестве электронного ключа. Но это ещё не все возможности биполярных транзисторов, можно сказать даже ключевой режим работы – это лишь малая доля в схемах, где используются транзисторы. В львиной доле транзисторных схем транзистор используется в качестве усилительного прибора. В данных схемах транзистор используется в так называемой активной области. Транзистор в качестве усилительного прибора, включается в усилительный каскад, который кроме транзистора содержит ещё цепи питания, нагрузку и цепи связи с последующим каскадом.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Схемы включения транзистора
Для биполярных транзисторов возможны три схемы включения, которые обладают способностью усиливать мощность: с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК). Схемы отличаются способом включения источника сигнала и нагрузки (RН).
Схема с общим эмиттером
Схема с общей базой
Схема с общим коллектором.
Для всех схем включения транзистора при отсутствии сигнала, подаваемого от источника (еГ), необходимо установить начальный режим по постоянному току – режим покоя. При этом как и говорилось в предыдущем посте эмиттерный переход должен быть открытым, а коллекторный – закрытым. Для транзисторов p-n-p это достигается подачей отрицательного напряжения на коллектор (коллекторного напряжения E0C) и отрицательного напряжения на базу (напряжения смещения E0B). Для транзисторов n-p-n полярность этих напряжений должна быть противоположной. Режим покоя транзистора опредяляется положением его рабочей точки, которое зависит от тока эмиттера IE (практически равного току коллектора IС и зависящего от E0B) и от напряжения E0C.
Усилительные параметры транзистора
Усилительные свойства транзисторов для малого переменного сигнала оцениваются с помощью различных систем параметров, связывающих входные токи и напряжения, но нормируются только два основных параметра: h21e и fТ (или fh31b). Зная параметр транзистора h21e для заданного режима покоя IE, можно с помощью следующих формул определить основные параметры усилительного каскада в области НЧ:
где S — проводимость транзистора, re — сопротивление эмиттера транзистора.
Таким образом, можно вычислить значения |K| — коэффициент усиления напряжения транзистора, |Ki| — коэффициент усиления тока транзистора, ZВХ — входное сопротивление транзистора:
Параметры усилительного каскада | Схема включения | ||
ОЭ | ОБ | ОК | |
|K| | S*RH | S*RH | S*RH /( 1 + S*RH) |
|Ki| | h21e | h21e/(1 + h21e) | h21e |
ZВХ | h21e*re | re | h21e*RH |
Области применения усилительных каскадов ОЭ, ОБ и ОК определяются их свойствами.
Каскад с общим эмиттером обеспечивает усиление, как по напряжению, так и по току. Его входное сопротивление порядка сотен Ом, а выходное – десятков кОм. Отличительная особенность – изменяет фазу усиливаемого сигнала на 180°. Обладает лучшими усилительными свойствами по сравнению с ОБ и ОК и поэтому является основным типом каскада для усиления малых сигналов.
Каскад с общей базой обеспечивает усиление только по напряжению (практически такое же, как ОЭ). Входное сопротивление каскада в (1+h21e) раз меньше, чем ОЭ, а выходное – в (1+h21e) раз больше. В отличие от ОЭ каскад ОБ не изменяет фазы усиливаемого сигнала. Малое входное сопротивление каскада ОБ ограничивает его применение в УНЧ: практически он используется только как элемент дифференциального усилителя.
Каскад с общим коллектором обеспечивает усиление только по току (практически такое же, как ОЭ). В отличие от ОЭ каскад ОК не изменяет фазы усиливаемого сигнала. При К = 1 каскад ОК как бы повторяет усиливаемое напряжение по величине и фазе. Поэтому такой каскад называется эмиттерным повторителем. Входное сопротивление ОК зависит от сопротивления нагрузки RH и велико (почти в h21e раз больше RH), а выходное сопротивление зависит от сопротивления источника сигнала RГ и мало (почти в h21e раз меньше RГ). Каскад ОК благодаря большому входному и малому выходному сопротивлению находит применение как в предварительных, так и в мощных УНЧ.
Цепи питания биполярных транзисторов
Для обеспечения заданного режима работы биполярного транзистора требуется установить положение точки покоя, определяемое током покоя IС. С этой целью на электроды транзистора должны быть поданы два напряжения: коллекторное и напряжение смешения базы. Полярность этих напряжений зависит от структуры транзистора. Для транзисторов p-n-p оба этих напряжения должны быть отрицательными, а для n-p-n – положительными, относительно эмиттера транзистора.. Величины коллекторного и базового напряжения должны быть различны; кроме того, различными оказываются и требования к стабильности этих напряжений. Поэтому используются две отдельные цепи питания – коллектора и базы.
Питание коллектора
Цепи питания коллектора содержат элементы, показанные ниже.
В многокаскадных усилителях коллекторные цепи всех каскадов подключаются параллельно к одному общему источнику E0C. В этом случае цепь питания коллектора содержит развязывающий фильтр RфCф. Назначение такого фильтра – устранить паразитную обратную связь через общий источник питания. При питании от сети переменного тока, кроме того, уменьшаются пульсации напряжения питания. Резистор Rф включают последовательно с нагрузкой RН, и на нём теряется часть коллекторного напряжения. Поэтому рекомендуется сопротивление Rф выбирать исходя из допустимого падения напряжения:
Напряжение между коллектором и эмиттером транзистора UCE выбирается в пределах
При этом минимальное значение UC не должно быть менее 0,5 В, иначе рабочая точка переходит в область насыщения и возрастают нелинейные искажения.
Схема цепей питания базы
Цепи питания базы содержат элементы, показанные ниже
Схема с фиксированным током
Схема с фиксированным напряжением
Схема с автоматическим смещением
Заданный режим работы транзистора устанавливается путём подачи на его базу требуемого напряжения смещения UB или создания в цепи базы требуемого тока смещения IB. В обоих случаях между эмиттером и базой устанавливается напряжение UBE,равное (в зависимости от IB) 0,1…0,3 В (для германиевых транзисторов) или 0,5…0,7 В (для кремниевых). Смещение базы может осуществляться от общего с коллектором источника питания E0C или от отдельного источника питания базовых цепей E0В.
При питании от E0C смещение базы может быть фиксированным (по току или напряжению) или автоматическим. Схемы с фиксированным током и с фиксированным напряжением не обеспечивают стабильности рабочей точки транзистора при изменении температуры.
Расчёт усилительного каскада
Схема с автоматическим смещением, получившая наибольшее распространение, содержит три резистора: Rb1, Rb2 и RE. За счёт отрицательной обратной связи создаваемой RE в цепи эмиттера, достигается требуемая стабилизация рабочей точки. Блокировочный конденсатор CE используется для устранения нежелательной обратной связи по переменному току. Схема эффективна как для германиевых, так и для кремниевых транзисторов. Для определения величин Rb1, Rb2 и RE должны быть известны напряжение источника питания E0C и ток покоя IС. Ориентировочные значения Rb1, Rb2 и RE могут быть определены с помощью приведённых ниже формул.
Входящие в вышеприведённые формулы b, c и UBE зависят от типа транзистора и режима его работы.
Для германиевых транзисторов выбираются: b ≈ 0,2; с – в пределах 3…5; UBE – в пределах 0,1…0,2.
Для кремниевых транзисторов: b ≈ 0,1; с – в пределах 10…25; UBE – в пределах 0,6…0,7.
При увеличении c и уменьшении b стабильность схемы снижается. Большие значения UBE выбирают для больших значений IС.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Сравнение схем включения транзисторов | Основы электроакустики
Сравнение схем включения транзисторов
Схемы включения биполярных транзисторов. Сравнительные данные свойств транзисторов в схемах с ОБ, ОК и ОЭ приведены в табл. 132. В схеме с общей базой эмиттерный переход включен в прямом направлении, поэтому при незначительных изменениях напряжения ДUэ сильно меняется ток ДIэ, вследствие чего входное сопротивление транзистора rвх = ДUэ/ДIэ при UK=const мало (десятки омов). Коллекторный переход включен в обратном направлении, поэтому изменения напряжения на этом переходе ДUк незначительно влияют на изменения тока ДIк, вследствие чего выходное сопротивление гвых = ДUк/ДIк при Iэ=const велико (до нескольких мегаомов). Большое различие входных и выходных сопротивлений затрудняет согласование каскадов в многокаскадных усилителях.
Таблица 132
Параметры | Сравнительные показатели свойств транзисторов в схемах | ||
с общей базой | с общим эмиттером | с общим коллектором | |
Коэффициенты передачи по току | 0,6 — 0,95
| Десятки — сотни | Больше, чем в схеме с ОЭ |
усиления по напря жению | Тысячи | Меньше, чем в схеме с ОБ | 0,7 — 0,99 |
усиления по мощности | Менее чем на схеме с ОЭ | Большое (тысячи) | Меньше, чем в схеме с ОЭ |
Сопротивление: |
|
|
|
входное
| Малое (единицы — десятки омов) | Большое (десятки —тысячи омов) | Большое (сотни килоомов)
|
выходное
| Большое (тысячи омов — единицы мегаомов) | Сотни омов, — десятки килоомов | Единицы омов — десятки килоомов |
Сдвиг фаз | 0° | 180° | 0° |
В схеме с ОБ входным (управляющим) является ток Iэ, а выходным — ток Iк. Последний всегда меньше тока эмиттера, так как часть инжектируемых носителей заряда рекомбинирует в базе, поэтому а=ДIк/ДIэ<1. Коэффициент усиления по напряжению Kн в схеме велик, поскольку изменения токов на входе ДIэ и выходе ДIк почти одинаковы, а rВЫх>rвх. Коэффициент усиления по мощности также велик (Kм=аKн=1000). Эмиттерный переход включается в проводящем направлении, поэтому изменения тока 13, а следовательно, и тока Iк происходят без фазового сдвига (Ф=0°).
В схеме с общим эмиттером управляющим служит ток базы Is — Is — Iк. Поскольку большинство носителей зарядов, инжектируемых эмиттером, достигает коллекторной области [Iк= (0,9 ч-0,99) Iэ] и лишь незначительная часть рекомбинирует в базе, ток базы мал: Iб=(0,01-0,1) Iэ. При этих условиях Kтэ = ДIк/ДIб>Kтб=ДIк/ДIэ и составляет 10 — 150. Усиление по напряжению примерно такое же, как и в схеме с ОБ. Благодаря высокому коэффициенту передачи тока эта схема обеспечивает большое (Kм до 10000) усиление по мощности.
Напряжение в схеме с ОЭ на входе U3 и выходе UK одного порядка, поэтому гВх=ДUэ/ДIэ здесь больше, чем в схеме с ОБ, и достигает десятков — тысяч омов. В этой схеме напряжение коллекторного источника Ек частично приложено к эмиттерному переходу, поэтому изменения ДUк вызывают большие изменения тока ДIк, вследствие чего rвых=ДUк/ДIк при Iб=const меньше, чем в схеме с ОБ, что облегчает согласование каскадов в многокаскадных усилителях.
В схеме с ОЭ положительные полуволны подводимого напряжения сигнала действуют в противофазе с напряжением смещения, поэтому ток Iэ, а следовательно, и Iк уменьшаются; отрицательные полуволны сигнала действуют согласованно с напряжением смещения, и токи 1д и Iк возрастают. В результате напряжение сигнала, снимаемое с нагрузки в выходной цепи, будет (по отношению к общей точке схемы) противофазным с напряжением подводимого сигнала (т. е. ф=180°).
В схеме с общим коллектором входным является ток Iб, а выходным Iэ. Так как во входной цепи проходит малый ток базы, входное сопротивление rВX=ДUвх/ДIвх достигает десятков килоомов, Выходное напряжение в схеме приложено к эмиттерному переходу, поэтому малые изменения этого напряжения вызывают большие изменения Iэ, вследствие чего rВых=ДUвых/ДIвых мало (десятки омов).
Напряжение подводимого сигнала Uвх и выходное напряжение Uвых в схеме действуют встречно, т. е. U36 = Uвx — Uвых. Для получения на эмиттерном переходе требуемого напряжения необходимо скомпенсировать выходное напряжение, что достигается при Uвх>Uвых. В этих условиях схема с ОК не дает усиления по напряжению (Kн<1). Коэффициент передачи по току Kт=ДIэ/ДIб =ДIэ/(ДIэ — ДIк) = 1/(1 — а) здесь несколько больше, чем в схеме с ОЭ. Отсутствие усиления по напряжению приводит к снижению усиления по мощности против схем с ОБ и ОЭ.
В схеме отрицательные полуволны подводимого напряжения сигнала Uвх действуют встречно напряжению смещения, поэтому результирующее прямое напряжение на эмиттерном переходе и ток Iэ=Iб+Iк уменьшаются. При этом напряжение сигнала, снимаемое с нагрузки в цепи эмиттера, повторяет фазу напряжения подводимого сигнала, т. е. Ф=0 (эмиттерный повторитель).
Схема с ОИ является инвертирующим усилителем, способным усиливать сигналы по напряжению и току и обладает сравнительно небольшими междуэлектродными емкостями, (Сзи=1-20 пФ; Сзс=0,5-8 пФ; Сси<Сзи). Входная емкость СВх.и = Сзи+СэС, проходная Спр.и = Сзс, выходная СВых.и=Сзс+ССи. Крутизна S характеристики Iс=Ф(Uз) представляет собой внешнюю проводимость прямой передачи и для транзисторов малой мощности составляет 0,5 — 10 мСм. Выходное сопротивление сравнительно велико (обычно многократно превышает сопротивление нагрузки), поэтому коэффициент усиления каскада &»5Rн достигает десятков единиц. Входное сопротивление (если пренебречь областями очень низких и высоких частот) .носит емкостной характер; входная емкость Свх= — Сэя+SRнСзс. Поскольку междуэлектродные емкости малы, на параметры схемы существенно влияют емкости монтажа См= 1-5-3 пФ. Общая шунтирующая емкость С0=СЕ1+См определяет частоту верхнего среза fв.ср=1/(2пС0Rн).
Схема с ОЗ подобно схеме с ОБ не изменяет полярности сигнала и обеспечивает его-усиление по напряжению аналогично усилению сигнала в схеме с ОИ. Входное сопротивление гвх= U3m/Iит вследствие потребления от источника сигнала сравнительно большого тока Iст=Iит=SUзот оказывается незначительным. Выходное сопротивление rвых~rси(1+SRи) из-за влияния отрицательной обратной связи по току (элементом которой является внутреннее сопротивление источника сигнала RИ) велико. Влияние емкостной составляющей входной проводимости мало (так как она шунтирована сравнительно большой активной проводимостью gВх=1/rвх=S), поэтому каскад с ОЗ более широкополосен, чем схема с ОИ.
Схема с ОС не меняет фазу входного сигнала на выходе (истоковый повторитель), значительно усиливает ток (но не может усиливать напряжение), обладает высоким активным входным сопротивлением, малой входной емкостью СВх = Сзс+С3и(1 — K), где K. = Ucm/UC3m=SRн/(1+SRн), и небольшим выходным сопротивлением r=l/S (близким к входному сопротивлению схемы с, ОЗ), большой широкополосностью благодаря малой входной емкости.
Схемы составных транзисторов. Составной транзистор представляет собой комбинацию двух (и более) транзисторов, соединенных таким образом, что число внешних выводов этой комбинированной схемы равно числу выводов одиночного транзистора. Составной транзистор, выполненный по схеме сдвоенного эмиттер-ного повторителяне изменяет полярности сигнала, обладает большим коэффициентом передачи тока hzi=hziVihziVz, имеет большое входное и малое выходное сопротивления.
Составной транзистор в виде усилителя на разноструктурных (р-n-р и n-р-n) транзисторах содержит два каскада с ОЭ с глубокой последовательной ООС по напряжению. Поскольку каждый каскад изменяет полярность сигнала, в целом схема представляет собой неинвертирующий усилитель. С выхода схемы напряжение подается на вход (эмиттер первого транзистора) в про-тивофазе с входным сигналом, подводимым к цепи базы. Приведенный составной транзистор обладает свойствами эмиттерного повторителя. Его коэффициент усиления меньше единицы, а из-за ОС входное сопротивление велико, выходное мало. Точкой малого выходного сопротивления является коллектор транзистора V2, так как от него начинается цепь ОС по напряжению, поэтому вывод коллектора транзистора V2 играет роль эмиттера составного транзистора, а вывод эмиттера V2 — роль его коллектора. При выбранных структурах транзисторов, VI и V2 схема обладает свойствами р-n-р-транзистора.
Составной транзистор, выполненный по каскодной схеме представляет собой усилитель, в котором транзистор VI включен по схеме с ОЭ, a V2 — по схеме с ОБ. Схема эквивалентна одиночному транзистору, включенному по схеме с ОЭ с пара* метрами, близкими к параметрам транзистора VI. Последний обладает высоким выходным сопротивлением, что обеспечивает транзи« стору V2 получение широкой полосы частот
До сих пор мы рассматривали влияние цепей обратной связи только на режим работы транзистора по постоянному току (как средства обеспечения стабильного положения исходной рабочей точки при наличии внешних дестабилизирующих факторов). Теперь, проведя подробный анализ, мы можем сделать некоторые выводы о влиянии обратной связи на усилительные и другие свойства каскада с ОЭ. В схеме на рис. 5.1 имеет место отрицательная обратная связь по току нагрузки. Она обеспечивается включением в эмиттерную цепь транзистора сопротивления \(R_Э\). Увеличение тока нагрузки приводит к повышению падения напряжения на этом резисторе, что, в свою очередь, вызывает уменьшение напряжения, прикладываемого к эмиттерному переходу, т.е. входного напряжения транзисторного звена. В рабочей полосе частот для переменного входного сигнала действие данной обратной связи оказывается довольно существенным. Во-первых, из формулы (5.1) видно, что входное сопротивление транзистора rвх увеличивается на величину, равную \((1+ \beta) R_Э\). Учитывая, что значение коэффициента передачи тока базы \(\beta\), как правило, достаточно велико, то даже при относительно незначительной величине сопротивления \(R_Э\) входное сопротивление транзистора rвх для сигнала в рабочей полосе частот увеличивается настолько, что часто перестает оказывать определяющее влияние на полное входное сопротивление усилительного каскада \(R_{вх}\), которое теперь в основном зависит от сопротивления цепи делителя напряжения \(R_Б\). Нельзя сказать, что это явление вредное. Ведь высокое входное сопротивление означает, что данный каскад будет оказывать минимальное влияние на режимы работы и параметры каскада усиления, предшествующего ему. Кроме того, увеличится чувствительность, поскольку теперь слабые сигналы будут наводить бóльшие по амплитуде напряжения на входе каскада, выделяясь из общего шумового фона. Однако в диапазоне СВЧ, когда требуется точное согласование импедансов, рост входного сопротивления полезен далеко не всегда и может привести к потере устойчивости усилителя. Да и упомянутое выше повышение чувствительности также необязательно является положительным явлением. Ведь если в схеме уровень полезного сигнала наверняка превышает уровень помех и является оптимальным при некоторой известной чувствительности усилительного каскада, то повышение чувствительности ведет только к бóльшему усилению сигналов помех, но не полезного сигнала. Как видно из формул (5.2), (5.3), рассматриваемый вид обратной связи не оказывает влияния на выходное сопротивление, а также на коэффицент усиления по току в рабочей полосе частот усилительного каскада с ОЭ (на самом деле выходное сопротивление все-таки незначительно увеличивается). А вот коэффициент усиления по напряжению, определяемый соотношением (5.4), изменяется очень сильно. Действительно, стоящее в этом соотношении в знаменателе входное сопротивление Rвх, как мы уже выяснили, здорово увеличивается, что означает пропорциональное падение коэффициента усиления по напряжению. Учет ряда допущений привел нас к формуле (5.5), в которой уже явно видна зависимость \({K_I}_\sim\) от величины сопротивления в цепи эмиттера \(R_Э\). Если увеличение входного сопротивления мы сочли скорее полезным, чем вредным, то падение коэффициента усиления по напряжению однозначно можно считать нежелательным эффектом. Правда, он все-таки сопровождается рядом явлений, которые положительно влияют на другие параметры усилителя. А именно: увеличивается динамический диапазон, уменьшаются линейные и нелинейные искажения, расширяется полоса пропускания. На практике разработчик довольно часто встает перед дилеммой: либо повышать коэффициент усиления, либо снижать уровень искажений. Истина как всегда лежит где-то посередине, и в зависимости от условий применения и назначения усилителя приходится искать некий компромисс между двумя крайностями. И вот здесь пришло время снова вспомнить о конденсаторе \(C_Э\), показанном на рис. 5.1, 5.2 пунктиром. Каково бы ни было значение резистора \(R_Э\), которое выбирается исходя из требований к температурной стабильности рабочей точки каскада по постоянному току, мы всегда (если только речь не идет об усилителе постоянного тока) можем скорректировать его влияние в рабочей полосе частот. Достигается это включением разнообразных \(RC\)-цепочек вместо одиночного сопротивления \(R_Э\). Если мы шунтируем это сопротивление конденсатором \(C_Э\) (как показано на рис. 5.1), чье эквивалентное сопротивление в рабочей полосе частот пренебрежимо мало, то оказывается, что действие обратной связи на частоте полезного сигнала полностью блокируется (отсюда и название — блокировочный конденсатор), эмиттер транзистора на эквивалентной схеме оказывается заземленным и схема становится полностью отвечающей своему названию — схема с общим эмиттером. Но, как мы уже выяснили ранее, иногда нам могут оказаться нужны те полезные эффекты, которые привносит влияние обратной связи. Чтобы снова не бросаться в крайности, мы можем разделить сопротивление \(R_Э\) на два сопротивления, включенных последовательно, а шунтирующий конденсатор подключить только к одному из них, как показано на рис. 5.3,а. Теперь по постоянному току обратная связь обеспечивается через два последовательно включенных резистора \(R_{Э 1} + R_{Э 2}\), а по переменному току в рабочей полосе частот — только через резистор \(R_{Э 1}\), поскольку суммарное сопротивление цепочки \(R_{Э 2} C_{бл}\) в рабочей полосе частот ничтожно мало. Варьируя соотношение сопротивлений \(R_{Э 1}\) и \(R_{Э 2}\) (но оставляя постоянной их сумму), мы можем установить необходимую нам глубину ООС в рабочей полосе частот, оставляя неизменным режим работы каскада по постоянному току. Возможен и еще один вариант, показанный на рис. 5.3,б. По своим параметрам он ничем не отличается от варианта на рис. 5.3,а, только пути протекания токов в нем другие. По постоянному току здесь задействовано только сопротивление \(R_{Э 1}\), а по переменному — параллельное включение сопротивлений \(R_{Э 1}\) и \(R_{Э 2}\).
Рис. 5.3. Варианты включения RC-цепочек в эмиттерную цепь транзистора в каскаде с ОЭ
До сих пор мы подразумевали, что емкость блокировочного конденсатора выбирается из такого расчета, чтобы его эквивалентное сопротивление в рабочей полосе частот усилителя было ничтожно мало. Но иногда может потребоваться коррекция частотной характеристики усилителя, а делать это особенно удобно, включая корректирующие элементы в цепи обратной связи. Например, если нам необходимо скорректировать частотную характеристику апериодического усилителя с целью придания ей более линейного вида, мы можем так подобрать емкость блокировочного конденсатора, чтобы его эквивалентное сопротивление в рабочем диапазоне частот было сравнимо по величине с сопротивлением резистора \(R_Э\). Тогда по мере уменьшения частоты сигнала общее эквивалентное сопротивление в цепи обратной связи будет заметно расти, соответственно будет изменяться в сторону уменьшения теоретический коэффициент усиления по напряжению. Реальная частотная характеристика усилительного каскада перестает плавно убывать с ростом частоты, выпрямляется и становится линейной (естественно, максимальной линеаризации можно добиться только при правильном подборе емкости блокировочного конденсатора). В звено обратной связи могут включаться и гораздо более сложные конструкции, чем были описаны выше. Очень удобно иногда оказывается использовать данную возможность формирования полосы пропускания при построении разнообразных узкополосных усилителей. Включая вместо одиночного блокировочного конденсатора последовательный резонансный контур, мы обеспечиваем большой коэффицент усиления каскада (малое эквивалентное сопротивление в цепи эмиттера) на частотах вблизи резонансной частоты контура и малый коэффициент усиления (большое эквивалентное сопротивление в цепи эмиттера) на всех остальных частотах. Таким образом, частотная характеристика всего усилительного каскада будет в основном определяться частотной характеристикой примененного в цепи обратной связи колебательного контура (ее ширина будет зависеть от добротности контура). На рис. 5.4 представлен пример такого усилительного каскада, являющегося выходным каскадом усилителя записи кассетного магнитофона.
Рис. 5.4. Оконечный каскад усилителя записи кассетного магнитофона
|
Каскодный усилитель — Википедия
Материал из Википедии — свободной энциклопедии
Каско́дный усили́тель — электронный усилитель, содержащий два активных трёхэлектродных элемента, первый из которых для малого сигнала включен по схеме с общим эмиттером (истоком — для полевых транзисторов, катодом — для электровакуумных триодов), а второй — по схеме с общей базой (затвором, сеткой).
Каскодный усилитель обладает повышенной стабильностью работы и малой входной и проходной ёмкостью, расширенной полосой усиливаемых частот.
Название усилителя — акроним, произошло со времён ламповой схемотехники от соединения частей слов из словосочетания «КАСКад через катОД» (англ. «CASCade to cathODE»)[1]. Иногда каскодный усилитель называют просто «каскод».
Впервые прямое соединение для прохождения сигнала с анода триода предыдущего усилительного каскада на катод последующего каскада предложили Р. У. Хикман (Hickman R. W.) и Ф. В. Хант (Hunt F. V.) в статье обсуждающей схемотехнику ламповых стабилизаторов напряжения, опубликованной в журнале Review of Scientific Instruments в 1939 г.[1] и они же предложили термин «каскод», оговаривая, что термин новый и не принятый. Сейчас этот термин общепринят в электронике.
Наиболее часто применяется комбинации ОЭ (с общим истоком (ОИ)) — ОБ (общим затвором (ОЗ)). Это так называемая каскод-последовательная схема.
Поскольку входное сопротивление каскада с ОБ пренебрежимо мало по сравнению с выходным сопротивлением предыдущего каскада с ОЭ, то можно считать, что каскад ОЭ (в цепь коллектора которого включён эмиттер каскада ОБ) работает в режиме короткого замыкания на выходе для малого сигнала. При этом каскод усилитель обеспечивает усиление как идеализированный каскад ОЭ, в котором этот воображаемый транзистор имеет очень большое выходное коллекторное сопротивление, иначе говоря, коэффициент усиления каскода при прочих равных условиях выше, чем у реального каскада ОЭ, причём коэффициент усиления по напряжению увеличивается при увеличении коллекторного резистора и максимален при применении в качестве коллекторного резистора какого-либо электронного генератора тока, например, токового зеркала.
Главным преимуществом каскода является то, что его выход развязан от коллектора усилительного транзистора ОЭ и изменение нагрузки не влияет на коэффициент усиления β.
Следствием изолирования цепи коллектора ОЭ с помощью каскада ОБ является уменьшение входной ёмкости, а значит, увеличение входного сопротивления на высоких частотах (увеличение частотного диапазона каскода по сравнению с ОЭ). Кроме того, так как коллекторное напряжение каскада ОБ практически неизменно, это приводит к существенному ослаблению отрицательной обратной связи с выхода на вход усилителя через проходную ёмкость, что почти полностью подавляет нежелательное, с точки зрения усиления на высоких частотах, действие эффекта Миллера.
По вольт-амперным характеристикам и частотным свойствам каскод аналогичен ламповым тетродам и пентодам (в которых экранирующая и защитная сетки выполняют ту же роль, что и усилитель ОБ в каскоде — снижают ёмкость анод — управляющая сетка и подавляют эффект Миллера).
Каскодная схема широко применялась в ламповой высокочастотной технике, так, например, входной усилитель высокой частоты в блоках ПТК ламповых телевизоров часто выполннялся по этой схеме.