Мультиплексор (электроника) — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 октября 2018; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 октября 2018; проверки требуют 3 правки. Схема мультиплексора 2-к-1.Mультипле́ксор — устройство, имеющее несколько сигнальных входов, один или более управляющих входов и один выход. Мультиплексор позволяет передавать сигнал с одного из входов на выход; при этом выбор желаемого входа осуществляется подачей соответствующей комбинации управляющих сигналов.
Аналоговые и цифровые[1][2] мультиплексоры значительно различаются по принципу работы. Первые электрически соединяют выбранный вход с выходом (при этом сопротивление между ними невелико — порядка сотен или десятков ом). Вторые же не образуют прямого электрического соединения между выбранным входом и выходом, а лишь «копируют» на выход логический уровень (‘0’ или ‘1’) с выбранного входа. Аналоговые мультиплексоры иногда называют
Устройство, противоположное мультиплексору по своей функции, называется демультиплексором. В случае применения аналоговых мультиплексоров (с применением ключей на полевых транзисторах) не существует различия между мультиплексором и демультиплексором; такие устройства могут называться коммутаторами.
Схематически мультиплексор можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют
Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных входов n{\displaystyle n} и числом адресных входов m{\displaystyle m} действует соотношение n=2m{\displaystyle n=2^{m}}, то такой мультиплексор называют полным. Если n<2m{\displaystyle n<2^{m}}, то мультиплексор называют неполным.
Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, то есть могут блокировать действие всего устройства.
В качестве управляющей схемы обычно используется дешифратор. В цифровых мультиплексорах логические элементы коммутатора и дешифратора обычно объединяются.
Обобщённая схема мультиплексора[править | править код]
Обобщённая схема мультиплексора.Входные логические сигналы Xi поступают на входы внутреннего коммутатора и через коммутатор передаются на выход Y. На вход управляющей схемы подаётся слово адресных сигналов Ak (от англ. Address). Мультиплексор также может иметь дополнительный управляющий вход E (от англ. Enable), иногда этот вход обозначают на схемах CS (от англ. Chip Select — «выбор микросхемы»), который разрешает или запрещает прохождение входного сигнала на выход Y. Логический уровень разрешающего сигнала в разных конкретных моделях мультиплексоров может быть как логическая 1, так и логический 0, но в подавляющем количестве типов мультиплексоров выпускаемых промышленностью разрешающий сигнал логический 0. В разных типах мультиплексоров при запрещающем состоянии передачи на входе E на выходе Y может быть состояние 0 или 1.
Кроме этого, некоторые мультиплексоры имеют выход, который может принимать три состояния: два логических состояния 0 и 1, и третье состояние — отключённый выход (высокоимпедансное состояние, часто говорят, Z-состояние — выходное сопротивление велико, выходной внутренний логический вентиль отключается от выхода специальным внутренним ключом). Такое техническое решение облегчает наращивание количества входных сигналов мультиплексора каскадированием нескольких микросхем мультиплексоров, при этом выходы микросхем просто электрически соединяются. Перевод мультиплексора в третье состояние производится подачей на вход OE (от англ. Output Enable) логической 1, чаще логического 0 — опять же зависит от модели конкретного мультиплексора.
Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры могут использоваться для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и заканчивая последним.
Мультиплексоры обозначают сочетанием MUX (от англ. multiplexer), а также MS (от англ. multiplexer selector).
Условное графическое обозначение (УГО) мультиплексора «4 в 1».Мультиплексоры и демультиплексоры: схемы, принцип работы
Мультиплексором — называют комбинационное устройство, обеспечивающее передачу в желаемом порядке цифровой информации, поступающей по нескольким входам на один выход. Мультиплексоры обозначают через MUX (от англ. multiplexor), а также через MS (от англ. multiplex or selector).
Схематически мультиплексор можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства. Кроме информационных входов в мультиплексоре имеются адресные входы и, как правило, разрешающие (стробирующие). Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных входов n и числом адресных входов m действует соотношение n = 2m, то такой мультиплексор называют полным. Если n< 2m, то мультиплексор называют неполным.
Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, т. е. могут блокировать действие всего устройства.
Функционирование двухвходового мультиплексора
Рассмотрим функционирование двухвходового мультиплексора (2 →1), который условно изображен в виде коммутатора, а состояние его входов Х1Х2 и выхода Y приведено в таблице (рис. 3.41).
Исходя из таблицы, можно записать следующее уравнение:
Y = X1A + X2A
На рис. 3.42 показаны реализация такого устройства и его условное графическое обозначение.
Основой данной схемы являются две схемы совпадения на элементах И, которые при логическом уровне «1» на одном из своих входов повторяют на выходе то, что есть на другом входе.
Если необходимо расширить число входов, то используют каскадное включение мультиплексоров. В качестве примера рассмотрим мультиплексор с четырьмя входами (4 → 1), построенный на основе мультиплексоров (2 → 1).
Схема и таблица состояний такого мультиплексора приведены на рис.3.43.
Мультиплексоры являются универсальными логическими устройствами, на основе которых создают различные комбинационные и последовательностные схемы. Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры часто используют для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и кончая последним.
Мультиплексор как устройство сдвига
Рассмотрим пример использования мультиплексоров для реализации так называемого комбинационного устройства сдвига, обеспечивающего сдвиг двоичного, числа по разрядам. Принцип функционирования данного устройства понятен из схемы устройства и таблицы состояний его входов и выходов (рис. 3.44).
В обозначении мультиплексоров используют две русские буквы КП, например, промышленностью выпускаются такие мультиплексоры, как К155КП1, К531КШ8, К561КПЗ, К555КП17 и др.
Демультиплексором называют устройство, в котором сигналы с одного информационного входа, поступают в желаемой последовательности по нескольким выходам в зависимости от кода на адресных шинах. Таким образом, демультиплексор в функциональном отношении противоположен мультиплексору. Демультиплексоры обозначают через DMX или DMS.
Если соотношение между числом выходов n и числом адресных входов m определяется равенством n= 2m, то такой демультиплексор называется полным, при n< 2m демультиплексор является неполным.
Функционирование демультиплексора с двумя выходами
Рассмотрим функционирование демультиплексора с двумя выходами, который условно изображен в виде коммутатора, а состояние его входов и выходов приведено в таблице (рис. 3.45).
Из этой таблицы следует: Y1=X·А Y2 = X·А т. е. реализовать такое устройство можно так, как показано на рис. 3.46.
Для наращивания числа выходов демультиплексора используют каскадное включение демультиплексоров. В качестве примера (рис. 3.47) рассмотрим построение демультиплексоров с 16 выходами (1 → 16) на основе демультиплексоров с 4 выходами (1 → 4).
При наличии на адресных шинах А0 и А1 нулей информационный вход X подключен к верхнему выходу DМХ0 и в зависимости от состояния адресных шин А2 и А3 он может быть подключен к одному из выходов DMX1. Так, при А2 = А3 = 0 вход X подключен к Y0. При А0 = 1 и А1 = 0 вход X подключен к DMX2, в зависимости от состояния А2 и А3 вход соединяется с одним из выходов Y4 − Y7 и т.д.
Функции демультиплексоров
Функции демультиплексоров сходны с функциями дешифраторов. Дешифратор можно рассматривать как демультиплексор, у которого информационный вход поддерживает напряжение выходов в активном состоянии, а адресные входы выполняют роль входов дешифратора. Поэтому в обозначении как дешифраторов, так и демультиплексоров используются одинаковые буквы — ИД. Выпускают дешифраторы (демультиплексоры) К155ИДЗ, К531ИД7 и др.
При использовании КМОП-технологии можно построить двунаправленные ключи, которые обладают возможностью пропускать ток в обоих направлениях и передавать не только цифровые, но и аналоговые сигналы. Благодаря этому можно строить мультиплексоры-демультиплек-соры, которые могут использоваться либо как мультиплексоры, либо как демультиплексоры. Мультиплексоры-демультиплексоры обозначаются через MX. Среди выпускаемых мультиплексоров-демультиплексоров можно выделить такие, как К564КП1, К590КП1. Мультиплексоры-демультиплексоры входят в состав серий К176, К561, К591, К1564.
2-х и 4-х канальный мультиплексор: принцип работы и схема
В данной статье мы рассмотрим мультиплексор, подробно опишем принцип его работы, в каких целях используется, как изображается на схеме, а так же как подключается. Рассмотрим 2-х и 4-х канальный мультиплексор.
Описание и принцип работы
Мультиплексирование — это общий термин, используемый для описания операции отправки одного или нескольких аналоговых или цифровых сигналов по общей линии передачи в разное время или на разных скоростях, и как таковое устройство, которое мы используем для этого, называется мультиплексором. Приобрести мультиплексор вы можете на Алиэкспресс:
Мультиплексор, сокращенно «MUX» или «MPX», представляет собой комбинационную логическую схему, предназначенную для переключения одной из нескольких входных линий на одну общую выходную линию с помощью управляющего сигнала. Мультиплексоры работают как быстродействующие многопозиционные поворотные переключатели, соединяющие или контролирующие несколько входных линий, называемых «каналами», по одному за раз.
Мультиплексоры могут представлять собой либо цифровые схемы, выполненные из высокоскоростных логических элементов, используемых для переключения цифровых или двоичных данных, либо они могут быть аналоговыми типами, использующими транзисторы, полевые МОП-транзисторы или реле для переключения одного из входов напряжения или тока на один выход.
Основным типом мультиплексора является однонаправленный поворотный переключатель, как показано на рисунке.
Поворотный переключатель, также называемый пластинчатым переключателем, поскольку каждый слой переключателя известен как пластина, представляет собой механическое устройство, вход которого выбирается вращением вала. Другими словами, поворотный переключатель — это ручной переключатель, который можно использовать для выбора отдельных линий данных или сигналов, просто повернув его входы «ВКЛ» или «ВЫКЛ». Итак, как мы можем выбрать каждый ввод данных автоматически с помощью цифрового устройства.
В цифровой электронике мультиплексоры также известны как селекторы данных, поскольку они могут «выбирать» каждую входную линию и состоят из отдельных аналоговых переключателей, заключенных в единый пакет ИС, в отличие от селекторов «механического» типа, таких как обычные переключатели и реле.
Они используются в качестве одного из методов уменьшения количества логических элементов, требуемых в конструкции схемы, или когда требуется, чтобы одна линия данных или шина данных передавали два или более различных цифровых сигналов. Например, один 8-канальный мультиплексор.
Как правило, выбор каждой входной линии в мультиплексоре контролируется дополнительным набором входов, называемых линиями управления, и в соответствии с двоичным состоянием этих управляющих входов, либо «ВЫСОКИМ», либо «НИЗКИМ», соответствующий вход данных подключается напрямую к выходу. Обычно мультиплексор имеет четное количество 2 n строк ввода данных и количество «управляющих» входов, которые соответствуют количеству входов данных.
Обратите внимание, что мультиплексоры отличаются по работе от кодеров. Кодеры могут переключать n-битный шаблон ввода на несколько выходных строк, которые представляют двоичный кодированный (BCD) выходной эквивалент активного входа.
Мы можем построить простой мультиплексор 2 в 1 из базовых логических «НЕ И» элементов, как показано на рисунке.
2-х канальный мультиплексор
Вход А этого простого мультиплексора схемы 2-1, построенной из стандартных логических элементов действует, чтобы контролировать какой вход (I 0 или I 1 ) передается на выход Q.
Из приведенной выше таблицы истинности мы можем видеть, что, когда вход выбора данных A в логике 0, вход I 1 передает свои данные через схему мультиплексора логического элемента «НЕ И» на выход, в то время как вход I 0 блокируется. Когда выбор данных A в логике 1, происходит обратное, и теперь вход I 0 передает данные на выход Q, в то время как вход I 1 блокируется.
Таким образом, применяя либо логическую «0», либо логическую «1» в точке A, мы можем выбрать соответствующий вход, I 0 или I 1, при этом схема будет немного похожа на однополюсный переключатель двойного хода (SPDT).
Поскольку у нас есть только одна линия управления, (A), то мы можем переключать только 2 1 входа, и в этом простом примере 2-входной мультиплексор соединяет один из двух 1-битных источников с общим выходом, создавая 2-в-1 мультиплексор. Мы можем подтвердить это в следующем булевом выражении.
и для нашей схемы 2-входного мультиплексора можно упростить к:
Мы можем увеличить количество входных данных, которые будут выбраны в дальнейшем, просто следуя той же процедуре, и более крупные схемы мультиплексоров могут быть реализованы с использованием меньших 2-в-1 мультиплексоров в качестве их основных строительных блоков. Таким образом, для мультиплексора с 4 входами нам потребуется две строки выбора данных, поскольку 4 входа представляют 2 2 линии управления данными, дающие схему с четырьмя входами, I 0 , I 1 , I 2 , I 3 и двумя линиями выбора данных A и B, как показано.
4-х канальный мультиплексор
Булевое логическое выражение для этого мультиплексора 4-в-1 с входами от A до D и линиями выбора данных a, b задается как:
В этом примере в любой момент времени только один из четырех аналоговых переключателей замкнут, соединяя только один из входных линий от A до D к одному выходу Q. То, какой переключатель замкнут, зависит от входного кода адресации в строках « a » и « b ».
Таким образом, для этого примера, чтобы выбрать вход B для выхода в точке Q, адрес двоичного входа должен быть « a » = логическая «1» и « b » = логический «0». Таким образом, мы можем показать выбор данных через мультиплексор как функцию битов выбора данных, как показано.
Выбор входной линии мультиплексора
Добавление большего количества линий адреса управления (n) позволит мультиплексору управлять большим количеством входов, поскольку он может переключать 2 n входов, но каждая конфигурация линии управления будет подключать только ОДИН вход к выходу.
Тогда реализация вышеуказанного логического выражения с использованием отдельных логических элементов потребует использования семи отдельных элементов, состоящих из элементов «И» , «ИЛИ» и «НЕ», как показано.
4-канальный мультиплексор с использованием логических элементов
Символ, используемый в логических схемах для идентификации мультиплексора, выглядит следующим образом:
Символ мультиплексора на схеме
Мультиплексоры не ограничиваются простым переключением нескольких различных входных линий или каналов на один общий выход. Существуют также типы, которые могут переключать свои входы на несколько выходов и иметь конфигурации 4-к-2, 8-к-3 или даже 16-к-4 и т.д. И пример простого двухканального 4-входного мультиплексора (4- к-2) приводится ниже:
Здесь, в этом примере, 4 входных канала переключаются на 2 отдельные выходные линии, но возможны и более крупные конфигурации. Эту простую конфигурацию 4-в-2 можно использовать, например, для переключения аудиосигналов для стерео предварительных усилителей или микшеров.
Регулируемый усилитель
Наряду с отправкой параллельных данных в последовательном формате по одной линии передачи или соединению, другое возможное использование многоканальных мультиплексоров — в устройствах цифрового аудио в качестве микшеров или где, например, усиление аналогового усилителя может регулироваться цифровым образом.
Усилитель с цифровой регулировкой
Здесь усиление напряжения инвертирующего операционного усилителя зависит от соотношения между входным резистором R IN и его резистором обратной связи Rƒ, как определено в руководствах по операционному усилителю.
Один 4-канальный SPST-переключатель, сконфигурированный как мультиплексор 4-к-1 канала, соединен последовательно с резисторами, чтобы выбрать любой резистор обратной связи для изменения значения Rƒ . Комбинация этих резисторов будет определять общее усиление напряжения усилителя ( Av ). Затем усиление напряжения усилителя можно отрегулировать цифровым способом, просто выбрав соответствующую комбинацию резисторов.
Цифровые мультиплексоры иногда также называют «селекторами данных», поскольку они выбирают данные для отправки на выходную линию и обычно используются в коммуникационных или высокоскоростных коммутационных сетях, таких как приложения LAN (локальная вычислительная сеть) и интернет.
Некоторые интегральные микросхемы имеют один инвертирующий элемент, подключенный к выходу, чтобы обеспечить положительный логический выход (логическая «1») на одном элементе и дополнительный отрицательный логический выход (логическая «0») на другом элементе.
Можно сделать простые схемы мультиплексора из стандартных элементов «И» и «ИЛИ», как мы видели выше, но обычно мультиплексоры / селекторы данных доступны в виде стандартных пакетов ic, таких как общий мультиплексор с 8 входами в 1 TTL 74LS151 или TTL 74LS153 Dual Мультиплексор 4 входа на 1 линию. Схемы мультиплексора с гораздо большим числом входов могут быть получены путем каскадного соединения двух или более устройств меньшего размера.
Краткий обзор мультиплексора
Мультиплексоры являются коммутационными цепями, которые просто переключают или направляют сигналы через себя, и, будучи комбинационной схемой, они не имеют памяти, поскольку нет пути обратной связи по сигналам. Мультиплексор является очень полезной электронной схемой, которая используется во многих различных устройствах, таких как маршрутизация сигналов, передача данных и приложения управления шиной данных.
При использовании с демультиплексором параллельные данные могут передаваться в последовательной форме по одному каналу передачи данных, например по оптоволоконному кабелю или телефонной линии, и снова преобразовываться в параллельные данные. Преимущество состоит в том, что требуется только одна последовательная строка данных вместо нескольких параллельных линий данных. Поэтому мультиплексоры иногда называют «селекторами данных», так как они выбирают данные в линию.
Мультиплексоры также могут использоваться для коммутации аналоговых, цифровых или видеосигналов, причем ток переключения в аналоговых цепях питания ограничен величиной от 10 мА до 20 мА на канал, чтобы уменьшить тепловыделение.
В следующей статье о комбинационных логических устройствах мы рассмотрим противоположность мультиплексора, называемого демультиплексором, который занимает одну входную линию и соединяет ее с несколькими выходными линиями.
НОУ ИНТУИТ | Лекция | Функциональные узлы комбинаторной логики. Мультиплексоры
Аннотация: Рассматривается принцип действия мультиплексоров.
Мультиплексор (селектор) — это логическая схема, производящая выбор одного из нескольких информационных входов в соответствии с выбранным адресом и коммутацию выбранного информационного входа с единственным информационным выходом.
На рис. 6.1 показаны УГО мультиплексоров. Здесь MS — функциональное обозначение мультиплексора, А — входные линии адреса, D — входные информационные линии, Е — разрешающий вход, Y — выходная информационная линия. Связь между количеством выбираемых входных информационных линий N и входных линий адреса n та же, что у дешифратора [1]: N=2n.
Принцип действия мультиплексора рассмотрим на примере ИМС, производящей выбор «1 из 4». УГО данного мультиплексора приведено на рис. 6.1,б, а его функциональная схема — на рис. 6.2. Здесь, А1 и А0 — входные линии адреса, D3, D2, D1 и D0 — входные информационные линии.
При наличии активного разрешающего сигнала (в нашем примере вход Е прямой, поэтому логика положительная и активный разрешающий сигнал равен 1) на адресные линии подается двоичный код адреса. При этом на выход Y будет копироваться информация с выбранного в соответствии с этим адресом информационного входа. Так, если А1А0=002=010, на выход Y подается информация с линии D0 ; если А1А0=012=110, то с линии D1, если А1А0=102=210, то с линии D2 ; а при А1А0=112=310 — с линии D3. Таким образом, таблицу истинности данного мультиплексора можно представить в виде табл. 6.1.
Как и для дешифратора, разрешающий вход Е мультиплексора может иметь активный нулевой уровень.
Рис. 6.2. Функциональная схема мультиплексора, обеспечивающего выбор «один из четырех»
Разрешающий сигнал | Входной код адреса | Информация на выходе | Режим работы | |
---|---|---|---|---|
E | А1 | А0 | Y | |
0 | 0 | 0 | 0 | Коммутации информационных линий нет |
0 | 1 | |||
0 | 1 | 0 | ||
0 | 1 | 1 | ||
1 | 0 | 0 | D0 | Передача с D0 на Y |
1 | 1 | D1 | Передача с D1 на Y | |
1 | 1 | 0 | D2 | Передача с D2 на Y |
1 | 1 | 1 | D3 | Передача с D3 на Y |
Каскадное соединение мультиплексоров
Рассмотрим пример. Необходимо синтезировать схему мультиплексора, обеспечивающего выбор «1 из 16» на базе мультиплексоров «1 из 4».
Для выбора одного информационного входа из шестнадцати ( 16=24 ) необходимы 4 входные линии адреса: А3, А2, А1 и А0 (рис. 6.3). Четыре базовых мультиплексора обеспечивают выбор в зависимости от кода, поданного на А1 и А0, соответственно: первый — одного из сигналов D0, D1, D2 или D3, второй — из сигналов D4, D5, D6 или D7, третий — из сигналов D8, D9, D10 или D11, четвертый — из сигналов D12, D13, D14 или D15. Пятый мультиплексор обеспечивает выбор одного из этих ранее выбранных сигналов в зависимости от кода, подаваемого на А3 и А2. Например, при подаче А3А2А1А0=1110
Закономерность построения каскада мультиплексоров аналогична каскадированию дешифраторов. Но построение начинается со входной (а не выходной, как у дешифраторов) очереди каскада. На адресные линии всех мультиплексоров этой очереди подключается соответствующее разрядности базового мультиплексора количество линий адреса. Принципиальное отличие каскада мультиплексоров состоит в том, что все входящие в него мультиплексоры работают одновременно (разрешающий сигнал Е подается на все мультиплексоры сразу).
На рис. 6.3 и 6.4 показаны схемы с одной очередью. При малой разрядности базового мультиплексора количество очередей увеличивается — рис. 6.5. А на рис. 6.6 показана схема каскада мультиплексоров на 16 входов на базе «1 из 8», в которой адресные линии А1 и А2 (и, соответственно информационные линии D2-D7 ) выходного мультиплексора ( MS2.1 ) не используются в данной схеме, они остаются в резерве (на рис. 6.6 они заземлены, а в общем случае они могут быть подключены к другой схеме). В данной схеме показано состояние линий адреса и данных, соответствующее заданию: на линии адреса состояние 11
При синтезе каскада мультиплексоров рекомендуется придерживаться следующей последовательности действий:
- Нарисовать базовый мультиплексор.
- Определить количество мультиплексоров в первой части каскада (общее количество информационных входов схемы разделить на количество входов данных базового мультиплексора) и нарисовать входную часть каскада.
- Нарисовать входную адресную шину каскада нужной разрядности (из расчета N=2n, где N — количество информационных входов схемы, n — количество необходимых входных линий адреса).
- Соединить входные адресные линии мультиплексоров первой очереди и младшие разряды входной адресной шины.
- Определить количество мультиплексоров в следующей очереди каскада, равное количеству мультиплексоров предыдущей очереди, деленное на количество информационных линий одного мультиплексора.
- Объединить разрешающие сигналы всех мультиплексоров.
МУЛЬТИПЛЕКСОР: СХЕМА И РАБОТА
Мультиплексор на микросхеме К155КП5
Мультиплексор – это прибор, который позволяет организовать передачу информации с нескольких входов на один выход, таким образом можно осуществить, например, опрос нескольких датчиков подключенных к одному порту микроконтроллера [1]. Работу приборов данного типа рассмотрим на примере микросхемы К155КП5 [2-4]
Данный конкретный мультиплексор имеет группу из восьми информационных входов I1-I8 и группу из трех адресных S0-S2 входов. На адресные входы подается двоичное число, которое кодирует номер того информационного входа, который в данной конкретной ситуации будет подключен к выходу мультиплексора. Питание подается на 14 выход микросхемы К514ИД2, общий провод 7. Питание осуществляется от стабилизированного источника питания напряжением 5В.
В данной работе код для адресных входов формируется при помощи счетчика DD1 [5], который считает импульсы с мультивибратора [6]. Информационные входы подключены таким образом, чтобы на выходе мультиплексора чередовался высокий и низкий логические уровни.
В целом, данная схема получается относительно сложной с большим количеством непаянных контактов, это приводит к тому, что мультиплексор иногда отказывается работать даже при правильной сборке из-за ненадежного контакта в одном из разъемов. Поэтому данную лабораторную работу, как и предыдущую работу о дешифраторах [8], можно использовать для обучения студентов поиску неисправностей в электрических схемах. Но все же в данном конструктивном исполнении макетной схемы, видимо 3-4 микросхемы являются разумным пределом, и собирать более сложные конструкции на модулях данной конструкции нецелесообразно.
Видео работы мультиплексора
Литература
- Ямпольский В.С. Основы автоматики и электронно-вычислительной техники – М. Просвещение, 1991
- http://www.chipinfo.ru/dsheets/ic/155/kp5.html
- http://esxema.ru/?p=2375
- https://eandc.ru/pdf/mikroskhema/k155kp5.pdf
- http://radioskot.ru/publ/nachinajushhim/schetchik_na_mikroskheme/5-1-0-1372
- http://radioskot.ru/publ/nachinajushhim/multivibrator_na_ehlementakh_i_ne/5-1-0-1366
- http://radioskot.ru/publ/nachinajushhim/samodelnye_moduli_dlja_izuchenija_mikroskhem/5-1-0-1352
- http://radioskot.ru/publ/nachinajushhim/deshifrator_semisegmentnogo_indikatora/5-1-0-1373
Архив с файлами и документацией тут. Специально для Радиосхемы.ру — Denev.
Форум
Обсудить статью МУЛЬТИПЛЕКСОР: СХЕМА И РАБОТА
схема, из чего состоит, применение
Мультиплексор представляет собой комбинированное цифровое устройство, обеспечивающее поочередную передачу на один выход нескольких входных сигналов. Он позволяет передавать (коммутировать) сигнал с желаемого входа на выход, в этом случае выбор требующегося входа реализуется определенной комбинацией управляющих сигналов. Число мультиплексных входов принято называть количеством каналов, их может быть от 2 до 16, а число выходов называют разрядами мультиплексора, обычно это 1 — 4.
Мультиплексоры по способу передачи сигналы различают на:
— аналоговые;
— цифровые.
Так, аналоговые устройства при помощи непосредственного электрического соединения подключают вход к выходу, в таком случае его сопротивление составляет порядка нескольких единиц – десятков Ом. Их поэтому называют коммутаторами или ключами. Цифровые (дискретные) же устройства не имеют прямой электрической связи входа и выхода, они только копируют на выход сигнал – «0» или «1».
Принцип действия мультиплексора
В общем виде принцип действия мультиплексора можно объяснить на примере коммутатора, обеспечивающего соединение входов с выходом устройства. Работа коммутатора обеспечивается на основе управляющей схемы, в которой существуют адресные и разрешающие входы. Сигналы с адресных входов указывают, какой именно информационный канал соединен с выходом. Разрешающие входы применяют для увеличения возможностей – увеличения разрядности, синхронизации с протеканием работы прочих механизмов и пр. Для создания управляющей схемы мультиплексора обычно используют дешифратор адреса.
Сфера применения мультиплексора
Мультиплексоры предназначены для использования в качестве универсального логического элемента при реализации любых функций, число которых равных количеству адресных входов. Их широко используют с целью коммутации отдельных шин, отходящих линий или их групп в энергетике. В микропроцессорных системах их устанавливают на удаленные объекты для реализации возможности передачи информации по одной линии от нескольких, размещенных на удаленном расстоянии друг от друга датчиков. Также мультиплексоры в схемотехнике используют в делителях частоты, при создании схем сравнения, счетчиков, генераторов кодов и пр., для трансформации параллельного двоичного кода в последовательный.
Число каналов мультиплексоров, выпускаемых отечественной промышленностью сегодня, обычно насчитывает 4, 6, 10 и 16. Для построения схем, имеющих большее число входов, используют так называемую схему каскадного дерева, которая позволяет создавать устройства с произвольным числом входных линий на основе серийно выпускаемых мультиплексоров.
как работает, схема, 1-к-4 демультиплексор
В данной статье мы рассмотрим демультиплексор, подробно опишем как он работает, как обозначается на схеме, выбор входных линий демультиплексора, рассмотрим 1-к-4 демультиплексор.
Как работает демультиплексор
Распределитель данных, более известный как Демультиплексор, является полной противоположностью мультиплексору, который мы рассмотрели в предыдущей статье.
Демультиплексор принимает одну единственную линию ввода данных, а затем переключает его в любой из ряда отдельных выходных линий по одному за раз. Демультиплексор преобразует последовательный сигнал данных на входе до параллельных данных на своих выходных линиях, как показано ниже.
Демультиплексор 1-к-4
Булево выражение для этого демультиплексора 1-к-4, приведенное выше, с выходами от A до D и строками выбора данных a, b, имеет вид:
Функция демультиплексора заключается в переключении одной общей строки ввода данных на любую из 4 строк выходных данных от A до D в нашем примере выше. Как и в случае мультиплексора, отдельные полупроводниковые переключатели выбираются двоичным адресным кодом на входных контактах « a » и « b », как показано.
Выбор выходной линии демультиплексора
Как и в предыдущей схеме мультиплексора, добавляя больше входов адресной строки, можно переключать больше выходов, давая от 1 до 2 n выходов линии данных.
Некоторые стандартные микросхемы демультиплексора также имеют дополнительный вывод, который отключает или предотвращает передачу входа на выбранный выход. Также некоторые имеют встроенные защелки на своих выходах для поддержания логического уровня на выходе после изменения адресных входов.
Однако в схемах стандартного типа декодера адресный вход будет определять, какой из отдельных выходных данных будет иметь то же значение, что и входные данные со всеми другими выходными данными, имеющими значение логического «0».
Реализация вышеуказанного логического выражения с использованием отдельных логических элементов потребует использования шести отдельных элементов, состоящих из элементов «И» и «НЕ», как показано ниже.
4-канальный демультиплексор с использованием логических элементов
Символ, используемый в логических схемах для идентификации демультиплексора, выглядит следующим образом.
Символ демультиплексора на схеме
Опять же, как и в предыдущем примере мультиплексора, мы также можем использовать демультиплексор для цифрового управления усилением операционного усилителя, как показано.
Усилитель с цифровой регулировкой
Схема выше иллюстрирует, как обеспечить регулируемое / переменное усиление операционного усилителя с цифровым управлением с использованием демультиплексора. Коэффициент усиления инвертирующего операционного усилителя зависит от соотношения между входным резистором R IN и его резистором обратной связи Rƒ как определено в руководствах по операционному усилителю.
Аналоговые переключатели с цифровым управлением демультиплексора выбирают входной резистор для изменения значения R IN . Комбинация этих резисторов будет определять общее усиление напряжения усилителя ( Av ). Затем усиление напряжения инвертирующего операционного усилителя можно отрегулировать цифровым способом, просто выбрав соответствующую комбинацию входных резисторов.
Доступные стандартные пакеты ИС демультиплексора: TTL — 74LS138 от 1 до 8 выходов демультиплексора, двойной 1-к-4 демультиплексор TTL 74LS139 или КМОП CD4514 1-к-16 демультиплексор.
Другим типом демультиплексора является 24-контактный 74LS154, который является демультиплексором / декодером от 4 до 16 строк. Здесь отдельные выходные позиции выбираются с использованием 4-битного двоичного кодированного входа. Как и мультиплексоры, демультиплексоры также могут каскадно соединяться для формирования демультиплексоров более высокого порядка.
В отличие от мультиплексоров, которые преобразуют данные из одной строки данных в несколько строк, и демультиплексоров, которые преобразуют несколько строк в одну строку данных, существуют устройства, которые преобразуют данные в несколько строк и из них, и в следующей статье об устройствах комбинационной логики мы рассмотрим кодеры, которые преобразуют несколько строк ввода в несколько строк вывода, преобразовывая данные из одной формы в другую.