Site Loader

Содержание

Как работает коллекторный двигатель со щеточным механизмом в бытовой технике

Пылесос, кофемолка, дрель, перфоратор, триммер — далеко не полный перечень оборудования, в котором используется преобразование электрической энергии в механическую для работы бытовых устройств.

Они содержат сложные технические узлы, требуют умелого обращения, периодического осмотра, правильного обслуживания. При небрежной работе возникают различные поломки.

Материал статьи представляет советы домашнему мастеру, работающему с электрическими инструментами или планирующему самостоятельный ремонт электродвигателя с щеточным механизмом и коллектором. Текст наглядно дополняется схемами, картинками и видеороликом.

Предоставленная информация собрана с целью привлечь внимание пользователей к правилам эксплуатации бытовых приборов с коллекторным двигателем. Она поможет осознанно фиксировать возникающие дефекты работающей схемы, оперативно устранять их.


Содержание статьи

Компоновка и принцип работы

Подвижная часть коллекторного двигателя, как и любого другого, механически сбалансирована и закреплена в подшипниках вращения, вмонтированных в неподвижную станину.

Коллекторный электродвигатель
Стационарный статор и вращающийся ротор имеют собственные обмотки из изолированного провода. По ним протекает электрический ток, создающий магнитные поля со своими полюсами: северным N и южным S.

При взаимодействии этих двух электромагнитных полей создается вращение ротора.

Поскольку к обеим обмоткам необходимо постоянно подводить напряжение, а ротор вращается, то для него смонтировано специальное устройство: коллектор с щеточным механизмом.

Электрическая схема

Для практических работ удобно пользоваться двумя видами ее представления:

  1. упрощенным;
  2. более подробным.

Упрощенное отображение

Способ позволяет очень просто представить подключение всех обмоток двигателя к схеме электрической сети.

Упрощенная электрическая схема болгарки
Выключатель разрывает оба потенциала фазы и нуля или один из них. Через щетки с коллектором создается цепь тока по обмоткам ротора.

Принципиальная схема

В зависимости от конструктивных особенностей обмотки статора и ротора могут иметь дополнительные отводы для питания различных устройств управления и автоматики коллекторного двигателя или обходиться без них.

Принцип подключения электродвигателя болгарки
Термозащита исключает перегревание изоляции обмоток двигателя. Она снимает напряжение питания при срабатывании датчика, останавливая вращение ротора и исполнительного механизма.

Тахогенератор позволяет судить о скорости вращения ротора. У отдельных двигателей его заменяют датчиком Холла. Для передачи сигналов к этим устройствам тоже используются контакты коллекторных пластин.


Проблемные места конструкции

Чаще всего неисправности могут возникнуть в:

  • подшипниках:
  • щеточном коллекторном узле;
  • слое изоляции обмоток и проводов.

Подшипники

Их расположение выполняется по краям ротора с таким условием, чтобы максимально передавать осевую нагрузку крутящего момента.

У обычного бытового инструмента они могут повреждаться по двум основным причинам:

  1. от неправильного приложения нагрузки:
  2. в результате загрязнения.

Подшипники коллекторного двигателя

Направления приложенных усилий

Подшипники бытового электроинструмента, как правило, не предназначены для восприятия боковых нагрузок. От частого их приложения, например, когда при работе дрелью нагружают не конец сверла, а прорезают щелевые отверстия его боком, на подшипниковый механизм передаются биения вала, создающие дополнительные люфты шариков в обоймах.

Работа в загрязненной среде

Коллекторный двигатель имеет воздушную систему охлаждения. Крыльчатка, надетая на ротор, забирает воздух через специальные щели в кожухе двигателя и прогоняет его по всему корпусу для отвода излишнего тепла от нагревающихся обмоток. Теплые потоки выбрасываются через специальные отверстия.

Если в помещении создана пыльная среда, то она будет засасываться внутрь корпуса и проникнет на подшипники и коллекторно-щеточный механизм. Возникнет абразивное воздействие на соприкасающихся при вращении частях, их преждевременный износ, а также нарушение электрической проводимости на контактах щеток.

Использование коллекторного двигателя не по назначению, например, сбор потока строительной пыли бытовым пылесосом вместо строительного, наиболее частая причина его поломки.

Отчего искрят щетки

Конструктивные особенности

При работе двигателя происходит постоянное трение щеток о контактные пластины коллектора, что требует периодического осмотра.

Осмотр щеток и коллектора ротора двигателя
На рабочих поверхностях медных площадок появляется незначительный слой угольной пыли, как показано на фотографии. Это связано с расходом материала и износом щеток.

Этот процесс идет всегда при работе коллекторного двигателя. Даже при нормальном скольжении щетки создается незначительный разрыв цепи электрического тока. А это всегда связано с искрообразованием из-за возникновения переходных процессов и появлением микроскопических дуг. К тому же обмотки обладают высоким индуктивным сопротивлением.

Поэтому полностью исправный щеточный механизм при номинальной работе искрит, что не заметно взглядом, но ощущают чувствительные электронные приборы: телевизоры, компьютеры и другая техника. В схему их питания всегда устанавливают помехоподавляющие фильтры. Примером служит приведенная на сайте электрическая схема микроволновой печи с выделенным фрагментом зеленого цвета.

Принципиальная электрическая схема микроволновой печи

Износ материала щеток

Прижимаемая к коллекторной пластине токоведущая часть выполнена из угля. Ее объём изнашивается, а длина уменьшается. При этом ослабляется усилие нажима, создаваемое расправляемой пружиной.

Щетки коллекторного двигателя
Этот процесс может учитывается или не приниматься во внимание в разных конструкциях коллекторных двигателей.

Раритетные образцы

На старом двигателе выпуска 1960 года, приведенном в качестве примера, сжатие пружины осуществляется усилием завинчивания диэлектрической крышки.

Раритетный коллекторный двигатель
Процесс установки щетки показан ниже.

Установка щетки

Двигатель пылесоса

Описанная в статье об изготовлении самодельного триммера конструкция щеточного механизма имеет винт фиксации корпуса щетки.

Щеточный механизм самодельного триммера
Его установка показана на очередной фотографии. Обратите внимание, что сама щетка неоднократно стачивалась в процессе длительной работы и заменялась выточенным из угольного электрода батарейки по форме предыдущей.

Последовательность установки самодельной щетки

При самостоятельном изготовлении щеток обращайте внимание на плотность ее входа в гнездо и перпендикулярное положение к оси вала. Если она будет меньшего размера, то при работе возникнет перекос. Он приведет к излишнему искрению и снижению ресурса двигателя.

Поэтому желательно использовать заводские щетки от производителя.
Существуют и другие технические решения этого вопроса.

Как проверить степень износа щетки

Основной метод связан с визуальным осмотром. В интернете можно встретить советы, рекомендующие прижать при работе двигателя щетку отверткой и оценить изменение оборотов ротора.

Это опасная операция, выполнять которую может только обученный и опытный персонал потому, что:

  • необходимо пользоваться защитными средствами: работа выполняется под напряжением;
  • существует вероятность создания короткого замыкания, ибо проверять придется обе щетки по очереди или одновременно и использовать отвертки с изолированными стержнями и наконечниками.

Если внешний осмотр показал, что длина щетки сильно уменьшена или рабочая поверхность имеет сколы, то ее необходимо просто заменить.

Загрязненный коллектор

Образование излишнего слоя угольной пыли с хорошими токопроводящими свойствами на пластинах может стать причиной их замыкания. Необходимо ее удалять не только с внешней поверхности, но и из промежутков между ними.

Загрязненный коллектор
Графитовую пыль можно стереть слегка смоченной в спирте или бензине мягкой ветошью или убрать тонкой деревянной палочкой.

Когда коллекторные пластины потеряли первоначальную форму и стали с выемками, то их восстанавливают наждачной шкуркой с самым мелким зерном на токарных станках. Это сложная операция, требующая специального оборудования, но она способна продлить ресурс коллекторного двигателя.

Межвитковые замыкания в обмотках

Их образование на статоре или роторе резко снижает индуктивное сопротивление, ведет к появлению дополнительных искр между различными секциями коллектора и щеток. Возникает дополнительный перегрев.

Обмотка ротора

Поврежденную секцию в отдельных случаях можно наблюдать визуально по изменению цвета. Для выполнения электрических замеров потребуется точный омметр. Технологию проверки демонстрирует видео владельца altevaa TV “Проверка якоря коллекторного двигателя”.

Ремонт поврежденной обмотки ротора — операция сложная. Иногда проще купить новый.

Обмотка статора

Неисправность можно выявить замером активной составляющей электрического сопротивления по мостовой схеме у каждой полуобмотки. Но это тоже довольно сложно.

Пробой диэлектрического слоя изоляции

Кратко коснемся причин образования дефектов и защитных устройств, которыми необходимо пользоваться.

Как возникают неисправности

Медные провода жил всех обмоток покрыты слоем лака, который может повреждаться от:

  • неосторожно приложенных механических нагрузок;
  • при повышенной температуре.

От этих же факторов возникают дефекты изоляции питающих проводов с полихлорвиниловым покрытием.

В результате этих воздействий появляются следующие неисправности электрической схемы:

  • межвитковое замыкание, создающее дополнительный путь для протекания тока утечек, который значительно снижает рабочие характеристики двигателя;
  • короткое замыкание, способное выжечь провода.
Защитные устройства
Термореле

Встроенная во многие коллекторные двигатели функция защиты от перегрева работает автоматически. Когда оборудование отключается от его частой работы, то необходимо искать причину завышения температуры. К сожалению, часть пользователей старается заблокировать термореле. Это приводит к поломке с трудно восстанавливаемым ремонтом.

Автоматический выключатель

Ликвидация короткого замыкания и перегруза внутри электрической схемы двигателя возложена на бытовой автомат, питающий силовую розетку. Он устанавливается в квартирном щитке и по своим техническим характеристикам должен соответствовать рабочему и аварийному режиму коллекторного двигателя.

Автоматический выключатель

Без защиты налаженным автоматическим выключателем пользоваться инструментом с коллекторным двигателем опасно для жизни.

УЗО

Устройство защитного отключения предназначено для защиты работающего персонала от воздействия токов утечек, проникающих на открытые металлические или случайно контактирующие токопроводящие части корпуса.

Принцип работы УЗО

УЗО предотвращает стекание потенциала фазы через тело человека на землю. Оно тоже устанавливается в квартирном щитке.

Для закрепления материала рекомендуем посмотреть ролик владельца slavnatik “Почему искрит болгарка”.

Напоминаем, что сейчас вам удобно задать вопросы в комментариях и поделиться статьей с друзьями в соц сетях.

Полезные товары

Коллекторный двигатель переменного тока: схема подключения

Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

Особенности конструкции и принцип действия

Конструкция коллекторного двигателяПо сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными, благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.

Схема подключения коллекторного двигателя

Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

Схема управления работой электродвигателя

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора,
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя,
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления,
  • в результате ротор вращается равномерно при любых нагрузках,
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Принцип работы схемы управления коллекторным двигателем

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

  • компактные габариты,
  • увеличенный пусковой момент, «универсальность» работа на переменном и постоянном напряжении,
  • быстрота и независимость от частоты сети,
  • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.

Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

  • снижение долговечности механизма,
  • искрение между и коллектором и щетками,
  • повышенный уровень шумов,
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

Коллекторный электродвигатель переменного тока — устройство

В бытовой технике, ручном электроинструменте, автомобильном электрооборудовании и системах автоматики очень часто применяется коллекторный электродвигатель переменного тока, схема подключения которого, как и устройство схожи с двигателями постоянного возбуждения постоянного тока.

Столь распространенное применение их объясняется компактностью, небольшим весом, невысокой стоимостью и простотой управления. В этом сегменте наиболее востребованы двигатели с высокой частотой и малой мощностью.

Принцип работ и конструктивные особенности

Коллекторный электродвигатель переменного тока

Устройство это достаточно специфичное, обладающее в силу схожести с машинами постоянного тока, похожими характеристиками и присущими им достоинствами.

Отличие от двигателей постоянного тока состоит в материале корпуса статора, изготовленном из листов электротехнической стали, благодаря чему удается добиться снижения потерь на вихревые токи.

Чтобы двигатель мог работать от обычной сети, т.е. 220 в, обмотки возбуждения соединяются последовательно.

Эти двигатели, называемые универсальными благодаря тому, что работают они от переменного и постоянного тока, бывают одно- и трехфазными.

Видео: Универсальный коллекторный двигатель

Из чего состоит конструкция?

Устройство электродвигателя переменного тока включает помимо ротора и статора:

  • тахогенератор;
  • щеточно-коллекторный механизм.

Ток якоря взаимодействует с магнитным потоком обмотки возбуждения, вызывая в коллекторном механизме вращение ротора. Ток подается через щетки на коллектор, являющийся узлом ротора и соединенным с обмоткой статора последовательно. Он собран из пластин, имеющих в сечении форму трапеции.

Продемонстрировать принцип работы такого двигателя можно с помощью хорошо известного со школьной программы опыта с вращающейся рамкой, которую поместили между разноименными полюсами магнитного поля. Она вращается под воздействием динамических сил, когда по ней протекает ток. При изменении направления тока, рамка не меняет направления вращения.

Примести к выходу из строя механизма могут высокие обороты холостого хода, вызванные максимальным моментом при последовательном подсоединении обмоток возбуждения.

Схема подключения (упрощенная)

Типовая схема подключения предусматривает вывод на контактную планку до десяти контактов. Протекающий по одной из щеток ток L поступает на коллектор и якорь, затем переходит на обмотки статора через вторую щетку и перемычку, выходя на нейтраль N.

Реверса мотора подобный способ подключения не предусматривает, поскольку подсоединение обмоток параллельное приводит к одновременной смене полюсов магнитных полей. В итоге, направление момента всегда одинаково.

Коллекторный электродвигатель переменного тока - схема подключения

Изменить направление вращения возможно, если поменять на контактной планке местами выхода обмоток. Напрямую двигатель включают, когда вывода ротора и статора подсоединены щеточно-коллекторный механизм. Для включения второй скорости используются выводы половины обмотки. Нельзя забывать, что с момента такого подключения мотор работает на максимальную мощность, поэтому время его эксплуатации не может превышать 15 секунд.

Видео: Подключение и регулировка оборотов двигателя от стиральной машины

Управление двигателем

На практике применяют различные способы регулирования работы двигателя. Это может быть электронная схема, где регулирующим элементом выступает симистор, который на мотор «пропускает» заданное напряжение. Работает он как мгновенно срабатывающий ключ, открываясь, когда на его затвор поступает управляющий импульс.

Управление двигателем

В основе принципа действия, реализованного в схемах с симистором, лежит двухполупериодное фазовое регулирование, где к импульсам, которые поступают на электрод, привязано напряжение, подаваемое на двигатель. При этом, частота, с которой вращается якорь, прямо пропорциональна напряжению, подаваемому на обмотки.

Упрощенно этот принцип можно описать такими пунктами:

  • на затвор симистора подается сигнал от электронной схемы;
  • затвор открывается, ток течет по обмоткам статора, вызывая вращение якоря мотора М;
  • мгновенные величины частоты вращения преобразуются тахогенератором в электрические сигналы, формируя с импульсами управления обратную связь;
  • как следствие, вращение ротора при любых нагрузках, остается равномерным;
  • с помощью реле R и R1 осуществляется реверс мотора.

Тиристорана фазоимпульсная схема

Другая схема – тиристорана фазоимпульсная.

Преимущества машин и недостатки

К достоинствам относят:

  • небольшие размеры;
  • универсальность, т.е. работу на напряжении постоянном и переменном;
  • большой пусковой момент;
  • независимость от сетевой частоты;
  • быстроту;
  • мягкую регулировку оборотом в широком диапазоне при варьировании напряжением питания.

Недостатки связаны и использованием щеточно-коллекторного перехода, влекущего:

  • уменьшение срока службы механизма;
  • возникновение между щетками и коллектором искры;
  • высокий уровень шума;
  • большое число коллекторных элементов.

Основные неисправности

Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.

Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.

Чтобы продлить срок службы двигателя, необходимо соблюдение двух условий – профессиональный изготовитель и грамотный пользователь, т.е. строгое соблюдение режима работы.

Видео: Коллекторный электрический двигатель

 

Тиристорана фазоимпульсная схема

Схема подключения коллекторного электродвигателя — Морской флот

Нередки случаи, когда необходимо подключить электродвигатель к сети 220 вольт — это происходит при попытках приобщить оборудование к своим нуждам, но схема не отвечает техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на 220 вольт.

Почему так происходит? Например, в гараже необходимо подключение асинхронного электродвигателя на 220 вольт, который рассчитан на три фазы. При этом необходимо сохранить КПД (коэффициент полезного действия), так поступают в случае, если альтернативы (в виде движка) просто не существует, потому как в схеме на три фазы легко образуется вращающееся магнитное поле, которое обеспечивает создание условий для вращения ротора в статоре. Без этого КПД будет меньше, по сравнению с трехфазной схемой подключения.

Когда в однофазных движках присутствует только одна обмотка, мы наблюдаем картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для пуска не происходит, пока собственноручно не раскрутить вал. Для того чтобы вращение могло происходить самостоятельно, добавляем вспомогательную пусковую обмотку. Это вторая фаза, она перемещена на 90 градусов и толкает ротор при включении. При этом двигатель все равно включен в сеть с одной фазой, так что название однофазного сохраняется. Такие однофазные синхронные моторы имеют рабочую и пусковую обмотки. Разница в том, что пусковая действует только при включении заводя ротор, работая всего три секунды. Вторая же обмотка включена все время. Для того чтобы определить где какая, можно использовать тестер. На рисунке можно увидеть соотношение их со схемой в целом.

Подключение электродвигателя на 220 вольт: мотор запускается путем подачи 220 вольт на рабочую и пусковую обмотки, а после набора необходимых оборотов нужно вручную отключить пусковую. Для того чтобы фазу сдвинуть, необходимо омическое сопротивление, которое и обеспечивают конденсаторы индуктивности. Встречается сопротивление как в виде отдельного резистора, так и в части самой пусковой обмотки, которая выполняется по бифилярной технике. Она работает так: индуктивность катушки сохраняется, а сопротивление становиться больше из-за удлиненного провода из меди. Такую схему можно наблюдать на рисунке 1: подключение электродвигателя 220 вольт.

Схема подключения коллекторного электродвигателя

Рисунок 1. Схема подключения электродвигателя 220 вольт с конденсатором

Существуют также моторы, у которых обе обмотки непрерывно подключены к сети, они называются двухфазные, потому как поле внутри вращается, а конденсатор предусмотрен, чтобы сдвигать фазы. Для работы такой схемы, обе обмотки имеют провод с равным друг другу сечением.

Схема подключения коллекторного электродвигателя на 220 вольт

Где можно встретить в быту?

Электрические дрели, некоторые стиральные машинки, перфораторы и болгарки имеют синхронный коллекторный двигатель. Он способен работать в сетях с одной фазой даже без пусковых механизмов. Схема такая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй – в статоре. Два кончика, которые остались, необходимо присоединить к питанию в 220 вольт.

Схема подключения коллекторного электродвигателя

Подключение электродвигателя 220 вольт с пусковой обмоткой

  • Такая схема исключает блок электроники, а следовательно – мотор сразу же с момента старта, будет работать на полную мощность – на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе;
  • существуют электромоторы с двумя скоростями. Их можно определить по трем концам в статоре, выходящим из обмотки. В этом случае скорость вала при подключении уменьшается, а риск деформации изоляции при старте – увеличивается;
  • направление вращения можно изменить, для этого следует поменять местами окончания подключения в статоре или якоре.

Схема подключения электродвигателя 380 на 220 вольт с конденсатором

Есть еще один вариант подключения электродвигателя мощность в 380 Вольт, который приходит в движение без нагрузки. Для этого также необходим конденсатор в рабочем состоянии.

Один конец подключается к нулю, а второй — к выходу треугольника с порядковым номером три. Чтобы изменить направление вращения электромотора, стоит подключить его к фазе, а не к нулю.

Схема подключения коллекторного электродвигателя

Схема подключения электродвигателя 220 вольт через конденсаторы

В случае когда мощность двигателя более 1,5 Киловатта или он при старте работает сразу с нагрузкой, вместе с рабочим конденсатором необходимо параллельно установить и пусковой. Он служит увеличению пускового момента и включается всего на несколько секунд во время старта. Для удобства он подключается с кнопкой, а все устройство — от электропитания через тумблер или кнопку с двумя позициями, которая имеет два фиксированных положения. Для того чтобы запустить такой электромотор, необходимо все подключить через кнопку (тумблер) и держать кнопку старта, пока он не запустится. Когда запустился – просто отпускаем кнопку и пружина размыкает контакты, отключая стартер

Схема подключения коллекторного электродвигателя

Специфика заключается в том, что асинхронные двигатели изначально предназначаются для подключения к сети с тремя фазами в 380 В или 220 В.

Схема подключения коллекторного электродвигателя

Р = 1,73 * 220 В * 2,0 * 0,67 = 510 (Вт) расчет для 220 В

Р = 1,73 * 380 * 1,16 * 0,67 =510,9 (Вт) расчет для 380 В

По формуле становится понятно, что электрическая мощность превосходит механическую. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля.

Существуют два типа обмотки — звездой и треугольником. По информации на бирке мотора можно определить какая система в нем использована.

Это схема обмотки звездой

Схема подключения коллекторного электродвигателя

Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в 220 В, а двух других — линейного напряжения 380 В. Такой двигатель можно приспособить под однофазную сеть по рекомендациям на бирке: узнать для какого напряжения созданы обмотки, можно соединять их звездой или треугольником.

Схема обмотки треугольником проще. По возможности лучше применить ее, так как двигатель будет терять мощность в меньшем количестве, а напряжение по обмоткам всюду будет равно 220 В.

Это схема подключения с конденсатором асинхронного двигателя в однофазную сеть. Включает рабочие и пусковые конденсаторы.

Схема подключения коллекторного электродвигателя

  • применяем конденсаторы, ориентируясь на напряжение, минимум 300 или 400 В;
  • емкость рабочих конденсаторов набирается путем параллельного их соединения;
  • вычисляем таким образом: каждые 100 Вт — это еще 7 мкФ, учитывая, что 1 кВт равен 70 мкФ;
  • это пример параллельного соединения конденсаторов
    Схема подключения коллекторного электродвигателя
  • емкость для пуска должна превышать в три раза емкость рабочих конденсаторов.

После прочтения статьи, рекомендуем ознакомиться с техникой подключения трехфазного двигателя в однофазную сеть:

Благодаря своим компактным размерам, коллекторный двигатель получил широкое распространение в конструкциях ручного электроинструмента. Он успешно применяется взамен конденсаторного однофазного асинхронного двигателя в стиральных машинах. Массовое применение коллекторных двигателей обусловлено их высокой мощностью, простотой в управлении и обслуживании. Независимо от внешних различий и типов креплений, все они имеют одинаковый принцип действия.

Устройство и принцип работы

Прежде всего, это однофазный электродвигатель, где осуществляется последовательное возбуждение обмоток. Для его работы может использоваться переменный или постоянный ток. По этой причине, коллекторный электродвигатель считается универсальным.

Схема подключения коллекторного электродвигателя

Большинство таких электродвигателей имеют в своей конструкции основные элементы в виде статора вместе с обмоткой возбуждения, а также ротора и двух щеток в качестве скользящего контакта. Большая роль во всей конструкции отводится тахогенератору. Его магнитный ротор закрепляется в торце роторного вала, а фиксация катушки осуществляется с помощью стопорного кольца или крышки.

Схема подключения коллекторного электродвигателя

Все конструктивные элементы электродвигателя объединены в общей конструкции. Их соединяют две алюминиевые крышки, непосредственно образующие корпус двигателя. Для вывода контактов, присутствующих во всех элементах используется клеммная колодка, позволяющая легко включать их в общую электрическую схему. Для работы ременной передачи на роторный вал запрессовывается шкив.

Подключение и управление

В основе работы данного вида двигателей лежат взаимодействующие магнитные поля, присутствующие в статоре и роторе, при прохождении через них электрического тока. Коллекторный двигатель имеет последовательную схему, по которой подключаются обмотки. Контактная колодка позволяет задействовать до десяти контактов, увеличивая количество вариантов подключения.

Схема подключения коллекторного электродвигателя

Простейшее подключение можно выполнить, зная лишь расположение выводов в статоре и щетках. При нормальном подключении устанавливаются средства электрической защиты и устройства, позволяющие ограничивать ток. Поэтому, прямое подключение от сети должно производиться не более чем на 15 секунд.

Управление коллекторным двигателем осуществляется с помощью специальной электронной схемы. В этой схеме всю силовую регулировку выполняет симистор, подающий напряжение на двигатель в необходимом количестве и подключаемый последовательно с ним.

Пылесос, кофемолка, дрель, перфоратор, триммер — далеко не полный перечень оборудования, в котором используется преобразование электрической энергии в механическую для работы бытовых устройств.

Они содержат сложные технические узлы, требуют умелого обращения, периодического осмотра, правильного обслуживания. При небрежной работе возникают различные поломки.

Материал статьи представляет советы домашнему мастеру, работающему с электрическими инструментами или планирующему самостоятельный ремонт электродвигателя с щеточным механизмом и коллектором. Текст наглядно дополняется схемами, картинками и видеороликом.

Предоставленная информация собрана с целью привлечь внимание пользователей к правилам эксплуатации бытовых приборов с коллекторным двигателем. Она поможет осознанно фиксировать возникающие дефекты работающей схемы, оперативно устранять их.

Компоновка и принцип работы

Подвижная часть коллекторного двигателя, как и любого другого, механически сбалансирована и закреплена в подшипниках вращения, вмонтированных в неподвижную станину.


Стационарный статор и вращающийся ротор имеют собственные обмотки из изолированного провода. По ним протекает электрический ток, создающий магнитные поля со своими полюсами: северным N и южным S.

При взаимодействии этих двух электромагнитных полей создается вращение ротора.

Поскольку к обеим обмоткам необходимо постоянно подводить напряжение, а ротор вращается, то для него смонтировано специальное устройство: коллектор с щеточным механизмом.

Электрическая схема

Для практических работ удобно пользоваться двумя видами ее представления:

Упрощенное отображение

Способ позволяет очень просто представить подключение всех обмоток двигателя к схеме электрической сети.


Выключатель разрывает оба потенциала фазы и нуля или один из них. Через щетки с коллектором создается цепь тока по обмоткам ротора.

Принципиальная схема

В зависимости от конструктивных особенностей обмотки статора и ротора могут иметь дополнительные отводы для питания различных устройств управления и автоматики коллекторного двигателя или обходиться без них.


Термозащита исключает перегревание изоляции обмоток двигателя. Она снимает напряжение питания при срабатывании датчика, останавливая вращение ротора и исполнительного механизма.

Тахогенератор позволяет судить о скорости вращения ротора. У отдельных двигателей его заменяют датчиком Холла. Для передачи сигналов к этим устройствам тоже используются контакты коллекторных пластин.

Проблемные места конструкции

Чаще всего неисправности могут возникнуть в:

  • подшипниках:
  • щеточном коллекторном узле;
  • слое изоляции обмоток и проводов.

Подшипники

Их расположение выполняется по краям ротора с таким условием, чтобы максимально передавать осевую нагрузку крутящего момента.

У обычного бытового инструмента они могут повреждаться по двум основным причинам:

  1. от неправильного приложения нагрузки:
  2. в результате загрязнения.

Направления приложенных усилий

Подшипники бытового электроинструмента, как правило, не предназначены для восприятия боковых нагрузок. От частого их приложения, например, когда при работе дрелью нагружают не конец сверла, а прорезают щелевые отверстия его боком, на подшипниковый механизм передаются биения вала, создающие дополнительные люфты шариков в обоймах.

Работа в загрязненной среде

Коллекторный двигатель имеет воздушную систему охлаждения. Крыльчатка, надетая на ротор, забирает воздух через специальные щели в кожухе двигателя и прогоняет его по всему корпусу для отвода излишнего тепла от нагревающихся обмоток. Теплые потоки выбрасываются через специальные отверстия.

Если в помещении создана пыльная среда, то она будет засасываться внутрь корпуса и проникнет на подшипники и коллекторно-щеточный механизм. Возникнет абразивное воздействие на соприкасающихся при вращении частях, их преждевременный износ, а также нарушение электрической проводимости на контактах щеток.

Использование коллекторного двигателя не по назначению, например, сбор потока строительной пыли бытовым пылесосом вместо строительного, наиболее частая причина его поломки.

Отчего искрят щетки

Конструктивные особенности

При работе двигателя происходит постоянное трение щеток о контактные пластины коллектора, что требует периодического осмотра.


На рабочих поверхностях медных площадок появляется незначительный слой угольной пыли, как показано на фотографии. Это связано с расходом материала и износом щеток.

Этот процесс идет всегда при работе коллекторного двигателя. Даже при нормальном скольжении щетки создается незначительный разрыв цепи электрического тока. А это всегда связано с искрообразованием из-за возникновения переходных процессов и появлением микроскопических дуг. К тому же обмотки обладают высоким индуктивным сопротивлением.

Поэтому полностью исправный щеточный механизм при номинальной работе искрит, что не заметно взглядом, но ощущают чувствительные электронные приборы: телевизоры, компьютеры и другая техника. В схему их питания всегда устанавливают помехоподавляющие фильтры. Примером служит приведенная на сайте электрическая схема микроволновой печи с выделенным фрагментом зеленого цвета.

Износ материала щеток

Прижимаемая к коллекторной пластине токоведущая часть выполнена из угля. Ее объём изнашивается, а длина уменьшается. При этом ослабляется усилие нажима, создаваемое расправляемой пружиной.


Этот процесс может учитывается или не приниматься во внимание в разных конструкциях коллекторных двигателей.

Раритетные образцы

На старом двигателе выпуска 1960 года, приведенном в качестве примера, сжатие пружины осуществляется усилием завинчивания диэлектрической крышки.


Процесс установки щетки показан ниже.

Двигатель пылесоса

Описанная в статье об изготовлении самодельного триммера конструкция щеточного механизма имеет винт фиксации корпуса щетки.


Его установка показана на очередной фотографии. Обратите внимание, что сама щетка неоднократно стачивалась в процессе длительной работы и заменялась выточенным из угольного электрода батарейки по форме предыдущей.

При самостоятельном изготовлении щеток обращайте внимание на плотность ее входа в гнездо и перпендикулярное положение к оси вала. Если она будет меньшего размера, то при работе возникнет перекос. Он приведет к излишнему искрению и снижению ресурса двигателя.

Поэтому желательно использовать заводские щетки от производителя.
Существуют и другие технические решения этого вопроса.

Как проверить степень износа щетки

Основной метод связан с визуальным осмотром. В интернете можно встретить советы, рекомендующие прижать при работе двигателя щетку отверткой и оценить изменение оборотов ротора.

Это опасная операция, выполнять которую может только обученный и опытный персонал потому, что:

  • необходимо пользоваться защитными средствами: работа выполняется под напряжением;
  • существует вероятность создания короткого замыкания, ибо проверять придется обе щетки по очереди или одновременно и использовать отвертки с изолированными стержнями и наконечниками.

Если внешний осмотр показал, что длина щетки сильно уменьшена или рабочая поверхность имеет сколы, то ее необходимо просто заменить.

Загрязненный коллектор

Образование излишнего слоя угольной пыли с хорошими токопроводящими свойствами на пластинах может стать причиной их замыкания. Необходимо ее удалять не только с внешней поверхности, но и из промежутков между ними.


Графитовую пыль можно стереть слегка смоченной в спирте или бензине мягкой ветошью или убрать тонкой деревянной палочкой.

Когда коллекторные пластины потеряли первоначальную форму и стали с выемками, то их восстанавливают наждачной шкуркой с самым мелким зерном на токарных станках. Это сложная операция, требующая специального оборудования, но она способна продлить ресурс коллекторного двигателя.

Межвитковые замыкания в обмотках

Их образование на статоре или роторе резко снижает индуктивное сопротивление, ведет к появлению дополнительных искр между различными секциями коллектора и щеток. Возникает дополнительный перегрев.

Обмотка ротора

Поврежденную секцию в отдельных случаях можно наблюдать визуально по изменению цвета. Для выполнения электрических замеров потребуется точный омметр. Технологию проверки демонстрирует видео владельца altevaa TV “Проверка якоря коллекторного двигателя”.

Ремонт поврежденной обмотки ротора — операция сложная. Иногда проще купить новый.

Обмотка статора

Неисправность можно выявить замером активной составляющей электрического сопротивления по мостовой схеме у каждой полуобмотки. Но это тоже довольно сложно.

Пробой диэлектрического слоя изоляции

Кратко коснемся причин образования дефектов и защитных устройств, которыми необходимо пользоваться.

Как возникают неисправности

Медные провода жил всех обмоток покрыты слоем лака, который может повреждаться от:

  • неосторожно приложенных механических нагрузок;
  • при повышенной температуре.

От этих же факторов возникают дефекты изоляции питающих проводов с полихлорвиниловым покрытием.

В результате этих воздействий появляются следующие неисправности электрической схемы:

  • межвитковое замыкание, создающее дополнительный путь для протекания тока утечек, который значительно снижает рабочие характеристики двигателя;
  • короткое замыкание, способное выжечь провода.
Защитные устройства
Термореле

Встроенная во многие коллекторные двигатели функция защиты от перегрева работает автоматически. Когда оборудование отключается от его частой работы, то необходимо искать причину завышения температуры. К сожалению, часть пользователей старается заблокировать термореле. Это приводит к поломке с трудно восстанавливаемым ремонтом.

Автоматический выключатель

Ликвидация короткого замыкания и перегруза внутри электрической схемы двигателя возложена на бытовой автомат, питающий силовую розетку. Он устанавливается в квартирном щитке и по своим техническим характеристикам должен соответствовать рабочему и аварийному режиму коллекторного двигателя.

Без защиты налаженным автоматическим выключателем пользоваться инструментом с коллекторным двигателем опасно для жизни.

УЗО предотвращает стекание потенциала фазы через тело человека на землю. Оно тоже устанавливается в квартирном щитке.

Для закрепления материала рекомендуем посмотреть ролик владельца slavnatik “Почему искрит болгарка”.

Напоминаем, что сейчас вам удобно задать вопросы в комментариях и поделиться статьей с друзьями в соц сетях.

Устройство коллекторного электродвигателя: детали и схема автоподстройки

Чаще статор коллекторного двигателя снабжен двумя полюсами. Безотносительно, пылесос, кухонный комбайн, стиральная машина. Коллекторные двигатели поддаются регулировке, обладают приемлемыми стартовыми характеристиками, контрастируя большинству асинхронных. Для простых граждан недостаток один: шумность. Поэтому в холодильниках, вентиляторах ставится асинхронный двигатель. На вытяжках любые встретим. Рассмотрим устройство коллекторного двигателя.

Внешний вид коллекторного двигателя

Крышка отсека щёток

Крышка отсека щетки

Новичков волнует вопрос – способ идентификации коллекторного двигателя. Проще простого. Посмотрите фото болгарки, сделано специально для портала ВашТехник: боковины корпуса демонстрируют крышечки из изоляционного материала под шлицевую отвертку. Потрудившись открутить, внутри видим контактные площадки, пружина графитовой щетки. Ключевой признак коллекторного двигателя. Электрический инструмент снабжается приспособлениями быстрой замены графита, который считается расходным материалом.

Контактная площадка и пружина графитовой щётки

Контактная площадка и пружина графитовой щётки

Щетки коллекторного двигателя

В коробке прилагается запасной комплект. Фото крупным планом показывает запасные щетки. Каждая включает:

  1. Графитовый электрод. Форма широко варьируется в зависимости от типа двигателя. Графит точат надфилями, напильниками, получая заданные размеры. Не критично. Главное, избежать больших зазоров, форма держателя специально создана снизить люфт. Графитовый электрод стачивается, увеличивается искрение вплоть до появления кругового огня. Коллекторный двигатель сильно разогревается, дымится. Процесс может лицезреть настойчивый зритель Ютуба (см. англоязычный домен).
  2. Контактная латунная площадка служит для подсоединения питания. В бытовых инструментах чаще 230 вольт с одной оговоркой: часть периода синусоиды отсечена. Позволяет регулировать скорость (болгарки забудьте). Больше угол отсечки, ниже скорость движения вала. Регуляторная схема сформирована тиристором, подстраивается переменным резистором.
  3. Пружина протянута меж контактной площадкой и графитовым электродом. Служит целям прижатия. В результате графитовый электрод скользит, обегая коллектор, одновременно смазывая поверхность. Сопротивление щеток, показанных рисунком близко 7 Ом, сопоставимо с обмотками. На переменном токе расклад меняется. Наделенное индуктивностью сопротивление обмоток резко растет, щетки остаются прежними. Графит играет роль ограничительных резисторов, благодаря углероду, ток ротора бессилен подняться выше 15 А.
  4. Ключевой частью щеток назовем тросик высокой гибкости, составленный медными нитями. Хорошо гнется, по мере стачивания графитовой щетки процессом эксплуатации легко растягивается, достигая нужных размеров.
Запасные щётки

Запасные щетки

У коллекторного двигателя всегда имеются щетки. У некоторых асинхронных моторов присутствуют токосъемники, не делящиеся на секции (реже стоит коллекторный стартер, касается синхронных двигателей). Щеточный аппарат отличается конструкцией от демонстрируемого коллекторным двигателем. Асинхронный мотор выдает сравнительно тихая работа.

Щетки легко раскалываются вибрациями. Одна из причин, почему коллекторные двигатели в промышленности стараются не применять (сложно найти трехфазные модели). Вторая – токосъёмники легко забиваются пылью, требуя регулярной чистки. Впрочем, проблема наблюдается у асинхронных машин с фазным ротором. В последнем случае графитом обычно не пахнет. Итак, рассматриваем сегодня коллекторный однофазный электродвигатель.

Варисторы коллекторного двигателя

Коллекторные двигатели наделены одним неприятным свойством: искрят. Вызывает сильные помехи, идущие обратно в сети снабжения, главное не это. Искрение приводит к невыгодным условиям эксплуатации двигателя. Нужно гасить дугу варисторами. Корпус элементов чаще округлый, с двумя ножками. Одна (см. фото) присоединяется к контактной площадке щетки (непосредственно, посредством латунных переходников), вторая припаивается к корпусу.

Варистор на ножках

Варистор системы защиты двигателя

Варисторов два, защищают коллекторный двигатель с обеих сторон. Механика работы следующая:

  • Повышенная нагрузка вала вызывает сильное искрение, потенциал щетки может значительно превышать среднее действующее значение 230 вольт.
  • Варисторы парно пробиваются, замыкают излишек на корпус, ток поглощается толщей металла, рассеиваясь тепловыми потерями.

Схему считаем бесполезной с точки зрения КПД. Мощность теряется даром. Известен фактор, использующий искрение на пользу.

Схема автоподстройки оборотов коллекторного двигателя

Тиристорная схема подстройки оборотов коллекторного двигателя

Тиристорная схема подстройки оборотов коллекторного двигателя

Уровень искрения определен скоростью вращения. Допустим, нагрузка вала мясорубки увеличилась. Обороты временно понижаются. Уровень искрения меняется, вызывая отклик специальной тиристорной схемы управления оборотами. Ключ изменяет угол отсечки напряжения, компенсируя действие нагрузки. Тиристорная схема, показанная фото, контролировала кухонный комбайн Philips. Видим массу защитных реле, не позволяющих включить прибор при открытых крышках, в разобранном виде.

Главной частью схемы выступает тиристор. На снимке отыщем по небольшому металлическому пластинчатому радиатору. Схема по цепочке обратной связи получает информацию о силе искрения, при помощи нее же происходит задание оборотов. Для реализации указанных функций плата содержит парочку переменных резисторов:

  1. Полукруглое сопротивление с крестообразной головкой послужит целям подстройки рабочего режима тиристора. Значение задается углом поворота лабораторией завода, в процессе эксплуатации изменению оператором не подлежит.
  2. Второй резистор переменный. Шлицевая головка связана с ручкой, красующейся на панели управления корпуса. Задается скорость вращения вала. Делается чаще ступенчато.

Сообразно назначению двигателя, питается сложным образом. Коричневый, белый проводки уходят на щетки ротора, прочими тремя задается режим скорости путем подпитки определенного числа витков катушек статора.

Коллектор двигателя, обмотки, сердечник

Внешний вид коллектора

Внешний вид коллектора

Название тип двигателей получил, благодаря наличию коллектора. Посмотрите фото: видим на валу массивный медный барабан, разделенный секциями: коллектор. Сформирован 24-х ламелями. К каждой подходит конец предыдущей и начало следующей обмотки. Идут, перекрещиваясь. Каждая обмотка ложится сразу на две соседние в круге ламели. Как понятно из сказанного, суммарное количество катушек равняется числу секций коллектора (24). Расположены в два слоя, первый лежит на поверхности в нишах сердечника, второй прячется внутри.

На одной половине оборота направление поля обмотки, допустим, положительное, на второй – отрицательное. Смена происходит в момент пересечения щеткой двух ламелей, к которым подходят концы катушки. Правильное распределение углов относительного положения щеток, полюсов статора, сдвига намотки якоря обеспечивает рациональную передачу мощности. Наибольшим моментом в данную долю секунды обладает катушка, перпендикуляр плоскости которой максимально приближен полюсу статора.

Сердечник и обмотки

Сердечник и обмотки

Сердечник сформирован 12-ю секциями. Каждая катушка наматывается через четыре провала. Например, занимает первую, шестую ниши. И так далее, по кругу, образуется четыре катушки. Следовательно, при намотке следует соблюдать аналогичный порядок. Важно правильно задать угол меж (двумя) контактными ламелями, куда подходят окончания провода, и плоскостью перпендикуляра катушки. Примерно 45 градусов, щетки расположены к полюсам статора примерно под этим же углом.

Катушки совершенно одинаковой длины, выполняются проводом единого сечения, протяженности. Коллектор считается симметричной конструкцией. Добавим к этому, мотор может питаться переменным и постоянным током. Устройство коллекторного электродвигателя таково, что в катушках направление поля меняется два раза за оборот. Означает, при питании постоянным током внутри процессы таковыми не являются.

Сердечник сформирован тонкими пластинами электротехнической стали, спрессованными, разделенными изоляционным лаком. Коллекторные электродвигатели переменного тока генерируют магнитное поле на статоре, разогревающее сталь. Причинами выступают вихревые токи, эффект перемагничивания. Температура быстро идет вверх. На основе явления действуют индукционные плиты. Разделение сердечника пластинами позволит снизить значимость перемагничивания вихревыми токами. Коллекторные электродвигатели постоянного тока намного проще, КПД выше.

Имеется второе отличие. При питании постоянным током для создания требуемой напряженности магнитного поля статора хватает меньшего количества витков. Поэтому во многих случаях (как и в нашем) обмотка делится двумя частями. Питание идет переменным током (требуется получить максимум оборотов) – в работу включаются все витки. В противном случае – определенная доля. Становится возможным подключение коллекторных электродвигателей к источнику питания. Важно, потому что многие асинхронные машины подобного обращения не терпят.

Статор коллекторного двигателя

Статор коллекторного двигателя

Статор коллекторного двигателя

Порядком затронули тему, рассказали, что обмотка статора делится на две части, сердечник собирается пластинами электротехнической стали, избегая вносить потери перемагничивания, вихревых токов. Осталось добавить: полюсов обычно два – северный, южный. Почему? В противном случае понадобилась бы иная конструкция ротора, коллектора.

Полюсы статора сдвинуты на некоторый угол относительно щеток пространственно. Сложно сказать, зачем в точности делается. Для описанной конструкции коллекторного двигателя изменять нельзя, углом сдвига щеток относительно полюсов статора и способом намотки задается правильное распределение полей. Часто неудовлетворительное, тогда выполняют компенсацию.

Принцип действия коллекторного электродвигателя достигает наилучшей фазы путем использования дополнительных обмоток статора. В их задачи входит исправление формы поля. Дополнительные обмотки меньше основных, число аналогичное, расположены меж главными полюсами. Компенсация реактивной ЭДС не требует большой напряженности поля. Витков дополнительных полюсов меньше, сердечник часто сплошной (снижает стоимость изготовления конструкции). Сечение провода часто демонстрирует вид полосы.

Преобладающая часть бытовой техники использует принцип работы коллекторного электродвигателя. В состав реальных приборов часто входят устройства контроля и защиты. В нашем случае термореле серии 3MP корейской фирмы Klixon. В исходном варианте приматывалось к обмотке посредством изоляционной ленты. Часто встретим аналогичного рода термопредохранители, датчики частоты оборотов. Без этого не работает стиральная машина (режим взвешивания белья).

Термореле

Термореле

Обзор заканчиваем, надеемся, повествование вышло интересным, про вращающееся магнитное поле речь велась не раз, не видим смысла повторяться.

Подключение коллекторного двигателя переменного тока

 Уважаемые посетители!!!

Мы вновь возвращаемся в мир занимательного —  как электротехника, так как считаю, что эти знания нам просто всем необходимы в нашей повседневной жизни.  

Подключение однофазного коллекторного двигателя — переменного тока

В этой теме необходимо понять, — как именно подключается однофазный коллекторный двигатель переменного тока, допустим, после его ремонта.   Электрическая схема рис.1  дает нам представление о характере электрических соединений, то-есть, здесь мы можем заметить, что две обмотки статора электродвигателя в электрической цепи состоят в последовательном соединении, а две обмотки ротора электродвигателя относительно внешнего источника напряжения — соединены параллельно и электрическая цепь для данного примера замыкается на обмотках ротора электродвигателя. 

рис.1

Кто разбирал из нас бытовые  потребители электроэнергии как:

  • пылесос;

  • электродрель

и далее, со мной согласятся, что для  электрической схемы \рис.1\ недостает еще одного элемента — конденсатора.   Следовательно, к данному названию типа двигателя можно еще добавить такое название как конденсаторный электродвигатель.   Если следовать логическому мышлению, то конденсатор в схеме электродвигателя в обязательном порядке соединяется с пусковой обмоткой статора, который служит для первоначального сдвига ротора.    Соответственно мы пришли к выводу, что конденсатор  непосредственно должен состоять в последовательном соединении с пусковой обмоткой.     Для примера, приведена схема однофазного двигателя с рабочей и пусковой обмотками  статора, где  сопротивление на каждой обмотке будет принимать свое значение \рис.2\.  

рис.2 

В зависимости от типов асинхронных  двигателей и их применения \рис.3\,  существуют следующие схемы подключения к однофазной сети:

рис.3

а) омический сдвиг фаз, биффилярный способ намотки пусковой обмотки;

б) емкостной сдвиг фаз с пусковым конденсатором;

в) емкостной сдвиг фаз с пусковым и рабочим конденсатором;

г) емкостной сдвиг фаз с рабочим конденсатором.

В схемах указаны следующие обозначения:

  • А — рабочая обмотка;

  • В — пусковая обмотка;

  • Ср — рабочий конденсатор;

  • Сп — пусковой конденсатор.

Перед подключением коллекторного однофазного двигателя, необходимо определить:

  • рабочую;
  • пусковую

обмотки статора.   Конденсатор,  с  его номинальными значениями по емкости и напряжению, и  соответствующими данными для определенного типа двигателя,  следует подключать к пусковой обмотке статора — последовательно.   Сопротивление обмоток статора принимает следующие средние значения:

  • рабочая обмотка 10-13 Ом;
  • пусковая обмотка 30-35 Ом;
  • общее сопротивление обмоток 40-45 Ом,

— для некоторых видов бытовой техники.   Выполняя замеры сопротивлений на выводах проводов обмоток статора   можно определить пусковую обмотку с ее средним значением.    То-есть,  сопротивление пусковой обмотки принимает среднее значение между рабочей обмоткой и общим сопротивлением двух обмоток — рабочей и пусковой.

Управление коллекторным двигателем — без реостата

Для управления коллекторным двигателем — без реостата, вполне подойдет пакетный переключатель, с помощью которого осуществляется переключение контактной группы —  в  переключателе \рис.4\. 

рис.4

В этом примере, в зависимости от переключения позиции,  будет изменяться направление вращения ротора электродвигателя, работа осуществляется с  постоянной скоростью и оборотами двигателя, изменяется только полярность обмоток статора.

 

 

переключатель кулачковый пакетный

Для управления скоростью вращения ротора электродвигателя,  можно воспользоваться симисторным регулятором скорости вращения.   Данное электроустановочное изделие как и все остальные, подбирается с учетом номинальных значений по силе тока и напряжению,  — учитывается подключаемая нагрузка \мощность потребителя электрической энергии\.

рис.5

Мощность потребителя, как наглядно видно из формулы \рис.5\,  это произведение силы тока и напряжения.   Для чего вообще необходимо проводить преварительные вычисления?   Нагрузка, как известно нам, подключается через автомат защитного отключения.   Чтобы установить и подключить автомат защитного отключения, принимается во внимание расчет по силе тока нагрузки \рис.6\.

рис.6

симисторный регулятор скорости вращения электродвигателя

В кратце, чтобы представить —  что из себя представляет симисторный регулятор,  опять-же нужно вспомнить основы электроники.    Симистор, состоящий в схеме управления, выполняет функцию регулирующего элемента — для питания электродвигателя \рис.7\.

 рис.7

На рисунке показаны выводы симистра:

При поступлении импульса на вход G — симистор открывается \рис.8\,  то-есть,  выполняет роль электронного ключа — для питания электродвигателя.

На фотоснимке показано изображение электронного модуля управления.   Электронный модуль управления встречается в стиральных машинах-автомат, работающих в заданом, автоматическом режиме.

 

электронный модуль управления стиральной машины индезит

 Подключение коллекторного двигателя — через реостат

 рис.9

В этом схематическом изображении \рис.9\ показано подключение нагрузки к выводным клеммам генератора через реостат.   Нагрузкой здесь является электрическая лампа накаливания.   Реостат в электрической схеме состоит в последовательном соединении, нагрузка \лампочка\ соединена в схеме параллельно.   Таким-же образом, вместо данной нагрузки можно подключить коллекторный двигатель, работающий от источников электрической энергии, таких как:

либо от внешнего источника энергии, то-есть, от электрической сети.   При подключении коллекторного двигателя нужно принимать во внимание электрическую схему обмоток статора, тип двигателя, как допустим для следующей схемы \рис.10\.

 рис.10

Электрическая схема представляет из себя схему универсального коллекторного двигателя, где двигатель может работать как от переменного так и от постоянного тока.

В свое время мною было изготовлено определенное количество электрических наждаков, электрические двигатели монтировались на платформу с последующим подключением, на вал ротора закреплялась насадка для установки наждачного круга, поэтому, в своей практике приходилось подключать различные типы электродвигателей.

 наждачный круг

Приведенный пример \по электрическим наждакам\, — тема довольно-таки тоже занимательная и полезная для наших бытовых нужд. 

  Остается пожелать Вам успешного проведения ремонта для различных видов  бытовой техники.

 

Коллекторный электродвигатель переменного тока схема подключения

Конструкция универсального электродвигателя

Конструкция универсального коллекторного электродвигателя не имеет принципиальных отличий от конструкции коллекторного электродвигателя постоянного тока с обмотками возбуждения, за исключением того, что вся магнитная система (и статор, и ротор) выполняется шихтованной и обмотка возбуждения делается секционированной. Шихтованная конструкция и статора, и ротора обусловлена тем, что при работе на переменном токе их пронизывают переменные магнитные потоки, вызывая значительные магнитные потери.

Секционирование обмотки возбуждения вызвано необходимостью изменения числа витков обмотки возбуждения с целью сближения рабочих характеристик при работе электродвигателя от сетей постоянного и переменного тока [2].

Универсальный коллекторный электродвигатель может быть выполнен как с последовательным, так и с параллельным и независимым возбуждением.

В настоящее время универсальные коллекторные электродвигатели выполняют только с последовательным возбуждением .

Таким образом, результирующий электромагнитный момент при работе двигателя от сети переменного тока пульсирует. Пульсации электромагнитного момента практически не нарушают работу двигателя. Объясняется это тем, что при значительной частоте пульсаций электромагнитного момента () и большом моменте инерции якоря вращение последнего оказывается равномерным.

Особенности универсального двигателя

Коэффициент полезного действия универсального двигателя при его работе от сети переменного тока более низкий, чем при его работе от сети постоянного тока. Другой недостаток универсального двигателя — тяжелые условия коммутации, вызывающие интенсивное искрение на коллекторе при включении двигателя в сеть переменного тока. Этот недостаток объясняется наличием трансформаторной связи между обмотками возбуждения и якоря, что ведет к наведению в коммутируемых секциях трансформаторной ЭДС, ухудшающей процесс коммутации в двигателе.

Наличие щеточно-коллекторного узла является причиной ряда недостатков универсальных коллекторных двигателей, особенно при их работе на переменном токе (искрение на коллекторе, радиопомехи, повышенный шум, невысокая надежность). Однако эти двигатели по сравнению с асинхронными и синхронными при частоте питающего напряжения f = 50 Гц позволяют получать частоту вращения до 10 000 об/мин и более (наибольшая синхронная частота вращения при f = 50 Гц равна 3000 об/мин) [3].

Области использования

Благодаря тому, что универсальный двигатель может иметь высокую скорость вращения при работе от однофазной сети переменного тока без использования дополнительных преобразовательных устройств, он получил широкое применение в таких домашних приборах как пылесосы, блендеры, фены и др. Так же универсальный электродвигатель широко используется в таких инструментах, как дрели и шуруповерты.

Благодаря тому, что скорость вращения универсального двигателя легко регулируется изменением величины питающего напряжения ранее он широко использовался в стиральных машинах. Сейчас благодаря развитию преобразовательной техники более широкое использование получают бесщеточные электродвигатели (СДПМ, АДКР) скорость вращения которых регулируется изменением частоты напряжения питания.

Мы часто встречаемся с электродвигателями. Они обеспечивают работу бытовой и строительной техники, являются составной частью производственного оборудования. Немалая часть устройств имеет в составе коллекторный двигатель. Это один из простых и недорогих движков, который имеет хорошие характеристики. Именно этим, да ещё невысокой ценой, обусловлена его популярность.

Что такое коллекторный двигатель и его особенности

Коллектором называют часть двигателя, контактирующую со щётками. Этот узел обеспечивает передачу электроэнергии в рабочую часть агрегата. Коллекторным называется двигатель, у которого хотя бы одна обмотка ротора соединена со щётками и коллектором. Коллекторные электродвигатели бывают:

  • постоянного тока;
  • переменного тока;
  • универсальные.

Коллекторный двигатель может быть постоянного и переменного тока. Есть универсальные модели, которые могут работать от источника напряжения любого типа

Последние универсальные, работают как от постоянного, так и от переменного тока. Они сохраняют популярность, даже несмотря на то, что наличие щёток отрицательный момент, так как щётки стираются и искрят. За этим узлом требуется постоянное наблюдение, техническое обслуживание. К плюсам коллекторных двигателей относят возможность плавной регулировки скорости в широких пределах, невысокую стоимость.

Как и другие электромоторы, коллекторный состоит из статора и ротора (часто называют «якорь»). Его отличительной чертой является наличие на валу коллекторного узла, через который на машину передаётся электропитание. Устройство коллекторных моторов постоянного и переменного тока похожи, но имеют определённые отличия, потому рассмотрим подробнее их по отдельности.

Общее устройство коллекторных двигателей

Как и любой электродвигатель, коллекторный преобразует электрическую энергию в механическую. Он состоит из неподвижной части – статора и подвижной – ротора. В статоре располагаются обмотки возбуждения, ротор отвечает за передачу возникающей механической энергии. Одна из составляющих частей ротора – вал. С одной стороны, на валу размещён коллекторный узел, с помощью которого на обмотки ротора передаётся электрическая энергия.

Коллекторный двигатель: устройство

Статор состоит из корпуса, который защищает компоненты мотора от повреждений. Сверху и снизу корпуса крепятся магнитные полюса. Они необходимы для поддержания магнитного потока между статором и ротором.

Ротор коллекторного двигателя

Ротор коллекторного двигателя состоит из вала, на который насаживается сборный магнитопровод. С одной стороны, на вал крепится коллекторный узел, с другой, лопасти вентилятора. Для обеспечения лёгкого вращения и для фиксации в корпусе на вал с двух сторон надеваются подшипники. Для нормальной работы электродвигателя, необходимо чтобы ротор был отлично сбалансирован. Потому к изготовлению этой части подходят особенно скрупулёзно.

Подвижная (вращающаяся) часть

Роторная обмотка

Сердечник ротора собирается из металлических пластин, отштампованных из магнитного металла. Толщина пластин 0,35-0,5 мм, каждая из них залита слоем диэлектрического лака, для избавления от паразитных токов. Пластины по внешнему краю имеют пазы, в которые затем укладываются витки медной проволоки. Эти пластины насаживаются на вал и закрепляются на нём, собирается пакет требуемого размера. Эта система является магнитопроводом.

Так выглядит ротор коллекторного двигателя

В пазы магнитопровода укладывается витки медного обмоточного провода. Выходы обмоток выводятся на коллекторный узел, где и происходит их переключение.

Как устроен коллекторный узел и как он работает

Коллекторный узел стоит рассмотреть подробнее. Иначе понять, как вращается ротор, сложно. Коллектор имеет цилиндрическую форму и набран из медных пластин (иногда называют ламелями), которые изолированы друг от друга слюдяными или текстолитовыми прокладками. Нет электрического контакта и с осью вала, к которому он крепится.

Коллектор имеет вид цилиндра, который набран из медных пластин. Пластины сделаны в виде секторов, разделены диэлектрическими прокладками

Получается, коллектор собран из медных секторов и без обмотки электрически друг с другом не связанных. К каждой пластине коллектора крепится вывод одной рамки обмотки ротора. К плоскости двух противоположных рамок коллектора прижимается две щетки. Они плотно прилегают к поверхности медной пластины коллектора, что даёт хороший контакт. На эти щётки подаётся потенциал, который и передаётся в тот виток обмотки ротора, который подключён к этим пластинам.

К парным пластинам коллектора прижимаются графитовые щетки

Так как ротор с некоторой скоростью вращается, одна пара пластин сменяется другой. Таким образом, напряжение передаётся на все обмотки ротора. При этом возникающие друг за другом поля поддерживают вращение ротора, «проталкивая» его в нужном направлении.

Принцип работы

Вот теперь, после того как рассмотрели устройство ротора, можно поговорить о том, как работает коллекторный двигатель. Собственно, принцип действия не отличается от других моторов, ротор начинает вращаться в магнитном поле благодаря наведенным на нём токам. Но как именно и почему эти тока наводятся? Для понимания надо вспомнить, как возникает электродвижущая сила в постоянном магнитном поле. Если в поле постоянного магнита ввести прямоугольную рамку, под действием возникающего в ней тока она начинает вращение. Направление вращения определяется по правилу буравчика. Для постоянного поля оно гласит так, если ввести правую руку в поле так, чтобы магнитные линии входили в ладонь, вытянутые пальцы укажут направление движения.

Иллюстрация к пояснению принципа работы коллекторного двигателя постоянного тока

Если посмотреть на устройство ротора, то видим, что каждая обмотка представляет собой такую рамку. Только состоит она не из одного провода, а из нескольких, но сути это не меняет. При помощи коллекторного узла, в какой-то момент времени, обмотка подключается к питанию, по ней протекает ток и вокруг проводника возникает магнитное поле. Оно взаимодействует с полем статора. В зависимости от типа, стоят там постоянные магниты или тоже протекает постоянный ток в обмотках, генерируя на полюсах собственное магнитное поле. Поля ротора и статора рассчитаны так, что при взаимодействии они «проталкивают» ротор в нужном направлении. Вот, коротко и без особых подробностей описание работы коллекторного двигателя постоянного тока.

Обмотки на роторе подключаются к пластинам коллектора. Когда с пластинами контактируют щетки, получаем замкнутый контур, по которому течет ток

Если немного вдуматься, можно понять, почему коллекторный двигатель позволяет легко и плавно регулировать скорость. Чем больше напряжение подается на обмотки ротора, тем более мощное поле генерирует статор, тем сильнее их взаимодействие и быстрее крутится ротор, так как его толкают с большей силой. Если напряжение уменьшить, взаимодействие меньше, результирующая скорость вращения тоже. Так что все что нужно регулировать напряжение, а это может даже простой потенциометр (переменное сопротивление).

Достоинства и недостатки

Как водится, начнём с перечисления плюсов. Достоинства коллекторных электромоторов такие:

  • Простое устройство.
  • Высокая скорость до 10 000 об/мин.
  • Хороший крутящий момент даже на малых оборотах.
  • Невысокая стоимость.
  • Возможность регулировать скорость в широких пределах.
  • Невысокие пусковые токи и нагрузки.

Схема коллекторного двигателя

Неплохие качества, но есть и недостатки, причём они не менее серьёзные. Минусы коллекторных электродвигателей такие:

  • Высокий уровень шумов при работе. Особенно на высоких скоростях. Щетки трутся о коллектор, дополнительно создавая шумы.
  • Искрение щёток, их износ.
  • Необходимость частого обслуживания коллекторного узла.
  • Нестабильность показателей при изменении нагрузки.
  • Высокая частота отказов из-за наличия коллектора и щёток, малый срок службы этого узла.

В целом, коллекторный двигатель неплохой выбор, иначе его не ставили бы на бытовой технике. Справедливости ради стоит сказать, что при нормальном качестве исполнения, работают такие двигатели годами. Могут и 10-15 лет проработать без проблем.

Коллекторный двигатель постоянного тока с магнитами

В коллекторных двигателях постоянного тока постоянное магнитное поле обеспечивают:

  • постоянные магниты;
  • обмотки возбуждения.

Магниты и обмотки располагаются на корпусе статора, и чаще всего, вверху и внизу. Если говорить о маломощных моторах, то более популярны коллекторные двигатели с постоянными магнитами. Они проще в производстве, дешевле, быстро реагируют на изменение напряжения, что позволяет плавно регулировать скорость. Недостаток моторов с постоянными магнитами является их невысокая мощность, а еще то, что со временем или при перегреве магниты теряют свои свойства и это приводит к ухудшению характеристик двигателя.

Устройство коллекторного двигателя постоянного тока

Такие моторы имеют небольшую мощность, от единиц до сотен Ватт. Они используются в технике, для которой важна плавная регулировка скоростей. Это обычно детские игрушки, некоторые виды бытовой техники (в основном вентиляторы). Недостатком коллекторного мотора с магнитами является постепенная потеря мощности, магниты со временем становятся слабее, и без того небольшая мощность падает. Но в последнее время появились новые магнитные сплавы с большой магнитной силой, позволяющие создавать двигатели с большой мощностью.

С обмотками возбуждения

Коллекторные двигатели постоянного тока с обмотками возбуждения нашли более широкое применение. От двигателей этого типа работает аккумуляторный электроинструмент: болгарки, дрели, шуруповерты т.д. Обмотки возбуждения делают из изолированного медного провода (в лаковой оболочке). В качестве основы используются канавки в полюсных наконечниках. На них как на основу наматываются обмотки.

Коллекторный двигатель с системой обмоточного возбуждения

Если посмотреть на устройство коллекторного двигателя, мы видим два несвязанных между собой устройства, ротор и обмотки возбуждения. От способа их подключения зависят характеристики и свойства двигателя. Различают четыре способа соединения ротора и обмоток возбуждения. Эти способы называют способами возбуждения. Вот они:

  • Независимое. Возможно только если напряжения на обмотке возбуждения и на якоре неравны (бывает очень редко). Если они равны, используется схема параллельного возбуждения.
  • Параллельное. Хорошо регулируется скорость, стабильная работа на низких оборотах, постоянные характеристики, независимы от времени. К недостаткам подключения этого типа относится нестабильность двигателя при падении тока индуктора ниже нуля.
  • Последовательное. При таком подключении нельзя включать двигатель с нагрузкой на валу ниже 25% от номинальной. При отсутствии нагрузки скорость вращения сильно возрастает, что может разрушить двигатель. Потому с ременной передачей такой тип подключения не используют, при обрыве ремня мотор разрушается. Схема последовательного возбуждения имеет высокий момент на низких оборотах, но не слишком хорошо работает на высоких, управлять скоростью сложно.
  • Смешанное. Считается одним из лучших. Хорошо управляется, имеет высокий крутящий момент на низких оборотах, редко выходит из-под контроля. Из недостатков самая высокая цена по сравнению с другими типами.

Способы подключения обмоток возбуждения

Коллекторные двигатели постоянного тока могут иметь КПД от 8-10% до 85-88%. Зависит от типа подключения. Но высокопродуктивные отличаются высокими оборотами (тысячи оборотов в минуту, реже сотни) и низким моментом, так что они идеальны для вентиляторов. Для любой другой техники используют низкооборотистые модели с малым КПД, либо к продуктивным моделям добавляют редуктор, другого решения пока не нашли.

Универсальные коллекторные двигатели

Несмотря на то, что коллекторный узел можно назвать самым слабым местом электродвигателя, подобные модели нашли широкое применение. Все благодаря невысокой цене и легкости управления скоростью. Коллекторные двигатели переменного тока стоят практически в любой бытовой технике, как крупной, так и мелкой. Миксеры, блендеры, кофемолки, строительные фены, даже стиральные машины (привод барабана).

Универсальный коллекторный двигатель работает от постоянного и переменного напряжения

По строению универсальные коллекторные двигатели не отличаются от моделей постоянного тока с обмотками возбуждения. Разница, безусловно есть, но она не в устройстве, а в деталях:

  • Схема возбуждения всегда последовательная.
  • Магнитные системы ротора и статора для компенсации магнитных потерь делают шихтованного типа (единая система без сплошных разрезов).
  • Обмотка возбуждения состоит из нескольких секций. Это необходимо, чтобы режимы работы на постоянном и переменном напряжении были схожи.

Работа коллекторных электродвигателей универсального типа основана на том, что если одновременно (или почти одновременно) поменять полярность питания на обмотках статора и ротора, направление результирующего момента останется тем же. При последовательной схеме возбуждения полярность меняется с очень небольшой задержкой. Так что направление вращения ротора остается тем же.

Достоинства и недостатки

Хотя универсальные коллекторные двигатели активно используются, они имеют серьёзные недостатки:

  • Более низкий КПД при работе на переменном токе (если сравнивать с работой на постоянном такого же напряжения).
  • Сильное искрение коллекторного узла на переменном токе.
  • Создают радиопомехи.
  • Повышенный уровень шума при работе.

Во многих моделях строительной техники

Но все эти недостатки нивелируются тем, что при частоте питающего напряжения в 50 Гц они могут вращаться со скоростью 9000-10000 об/мин. По сравнению с синхронными и асинхронными двигателями это очень много, максимальная их скорость — 3000 об/мин. Именно это обусловило использование этого типа моторов в бытовой технике. Но постепенно они заменяются современными бесщеточными двигателями. С развитием полупроводников их производство и управление становится всё более дешёвым и простым.

Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

  • Особенности конструкции и принцип действия
  • Упрощенная схема подключения
  • Управление работой двигателя
  • Преимущества и недостатки
  • Типичные неисправности

Особенности конструкции и принцип действия

По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными; благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.

Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора;
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя;
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления;
  • в результате ротор вращается равномерно при любых нагрузках;
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

  • компактные габариты;
  • увеличенный пусковой момент; «универсальность» — работа на переменном и постоянном напряжении;
  • быстрота и независимость от частоты сети;
  • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.

Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

  • снижение долговечности механизма;
  • искрение между и коллектором и щетками;
  • повышенный уровень шумов;
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *