Site Loader

Содержание

Схема высоковольтного генератора

Я как любитель всяких импульсных и особенно высоковольтных устройств решил сделать высоковольтный генератор (идея вообще-то была сделать люстру Чижевского). Подошел я к этому весьма творчески. Т.е. как всегда чужую готовую схему повторять неинтересно — надо что-то сочинить свое. Сначала я правда перепробовал кучу схем. На транзисторах делал — мне что-то не понравилось, да и транзисторы грелись сильно. Сделал обычную схему на тиристорах — трансформатор сильно трещит (можно его конечно залить эпоксидкой, но возиться не хотелось). Частота низкая импульсы короткие. Да и напряжения высокого какого хотел (а хотелось по больше) я не получил. И я решил пойти другим путем — чтобы треск или свист не был слышен, я решил поднять частоту за пределы слышимости, т.е. килогерц 20-30 и при этом сделать генератор на тиристоре. У меня для этого было несколько высокочастотных тиристоров ТЧ63. Мощная штука — частота до 33кГц, ток постоянный 63А, а импульсный ток килоампера полтора, т.е. для импульсных устройств подходит идеально.

Попробовал я сначала вот эту схему (с этим тиристором):

Но почему-то я не смог выжать с однопереходного транзистора больше 10 кГц, ну а свист — кому понравится. Хотя в принципе схема не плохая. Хотя недостаток был еще один — резистор R3 греется очень сильно, причем мне пришлось ставить два проволочных остеклованных по 7 Ватт каждый, и все равно нагрев чрезмерно большой. Меня это не устроило. Хотя на выходе получил достаточно большое напряжение — пробивало зазор в несколько миллиметров. К сожалению напряжение померить было нечем — проверял на глазок по ширине пробивного зазора. В разной литературе указывается по разному, но в большинстве принято считать для переменного напряжения примерно 1 мм на 1 кВ, а для постоянного 1 мм на 3 кВ. Хотя это зависит от частоты (для переменного тока) и от влажности и давления. У меня ширина пробоя оказалась миллиметров 10-12 для переменного тока (почему-то при попытке выпрямить или пропустить через умножитель напряжение падало настолько сильно, что зазор уменьшался почти до нуля). Меня все это совершенно не устроило. Вот тут я и ступил на путь создания «высоковольтного монстра».

Во-первых я собрал задающий генератор по стандартной, годами проверенной схеме. На двух транзисторах разной проводимости. Это позволило без труда сделать генератор коротких импульсов с частотой изменяемой в широких пределах от 1 кГц до 50-70 кГц. Трансформатор на ферритовом колечке диаметром 10-12 мм.

Затем порывшись в груде книг и учебников я выбрал другое включение конденсатора-тиристора-трансформатора (именно так кстати делается в электронных тиристорных схемах зажигания) ее преимущество в том, что этот вариант включения практически не боится короткого замыкания на выходе:

И самое главное вместо так непонравившегося мне греющегося резистора я поставил дроссель Др1 (кстати пусковой дроссель от лампы дневного света). Дроссели Др2 и Др3 в принципе защитные (по 16 витков на феррите), но можно их наверное не ставить (хотя Др3 — влияет на резонанс).

Когда я все это включил, то начал с минимальной частоты и напряжения питания вольт 30-50. Сначала я услышал писк и на выходе пробивало зазор в пару миллиметров. Затем я стал повышать частоту и при приближении к 18-20 кГц писк не стал слышен. А вот дальше произошло самое интересное. В какой-то момент система попала в резонанс. Я услышал мощное шипение, и между выходными проводами образовалась дуга длиной миллиметров в 45, причем это было не просто потрескивание с синей искрой — это была дуга с высокой энергией ярко сиреневого цвета — такой плазменный жгут или шнур. И это все при напряжении питания в 60 вольт (если честно, я больше 80 В дать просто побоялся). Я решил проверить как обычно на пробой плотного листа бумаги (с предыдущими схемами я баловался — симпатичные такие дырочки получались). Сказать, что ее пробило — это ничего не сказать — бумага вспыхнула сразу при касании к дуге. Т.е. энергия была очень высокой. Если я концы провода подносил ближе друг к другу — они на концах начинали плавиться (тут мне и пришла мысль, что сварочник надо делать именно на тиристорах и где-то на этой же частоте). Пробивался даже фторопласт. Причем в этой схеме я использовал строчный трансформатор от цветного лампового усилителя, а выходная обмотка там имеет мало витков и при обычно схеме на выходе получалось небольшое напряжение (у ч/б телевизоров строчник с более большим коэффициентом трансформации). Я подумал, а что если напряжение питания поднять до 220В — сколько будет тогда на выходе (хотя скорее всего пробило бы трансформатор).

Когда улеглись первые восторги, я начал замечать и недостатки это конструкции. Во-первых, через пару минут работы (а то и меньше) начинал разогреваться трансформатор (и довольно сильно) затем тиристор и даже диод (мощность-то прокачивалась ого-го). Во-вторых система оказалась очень чувствительна к изменениям частоты генератора (все-таки схема-то резонансная). Так же на резонанс влияло и изменение нагрузки. Но что хуже всего — при такой высокой частоте колебаний — я нигде не смог это применить. Выпрямить невозможно — пробовал ставить на выходе высоковольтные (12 кВ, 300 мА, исправные) диоды — они начинали нагреваться даже, если припаяны одним концом, а второй просто висит в воздухе (в пространство что ли излучают). Даже при подключении высоковольтного кабеля длиной всего сантиметров 20 — напряжение падало в десятки раз (может резонанс сбивается и регулировка частоты не помогает). Пробовал собрать умножитель на выходе — с тем же результатом.

Где применить такое я не знаю. Думал даже электрошокер сделать, но схема у меня работала вольт от 16-20 не меньше, да и мощность потребляла большую и размеры были приличные (тиристор довольно внушительных размеров, дроссель, мощный конденсатор, строчный трансформатор — это будет не миниатюрное устройство, а «ранцевый» вариант, если учесть, что батареек надо к нему штук 16), к тому же в шокере на выходе должно быть постоянное напряжение (а если все-таки переменка, то на маленькую частоту). Да и вообще я такое побоюсь применить — убьет еще кого ненароком или пробьет изоляцию и мне достанется. Короче забросил я этого монстра. Хотя идея была красивая.

Источник: http://radiolub.chat.ru/Monstr/monstr.htm

МОЩНЫЙ ТИРИСТОРНЫЙ ГЕНЕРАТОР

    МОЩНЫЙ ТИРИСТОРНЫЙ ГЕНЕРАТОР

  Тиристор – это самый мощный и неприхотливый, выдерживающий огромные перегрузки по току, электронный коммутатор. Поэтому весьма заманчиво использовать его в схемах мощных генераторов импульсов. При питании сетевым напряжением (без понижающего трансформатора или блока питания) в качестве задающих генераторов проще всего использовать релаксационные генераторы на транзисторах в лавинном режиме.

 

Генератор на 2-х тиристорах:

 Каждый тиристор запускается импульсами от своего генератора на транзисторах Т3 и Т4. Частота следования импульсов зависит от времязадающих элементов R2-C3 — для верхнего плеча и R3-C4 – для нижнего.

 

 

 

  Диоды D1,  D2 срезают импульсы напряжения самоиндукции от первичной обмотки трансформатора Tr1. Амплитуда этих импульсов примерно в 10 раз превышает напряжение питания. В некоторых случаях нам нужны эти импульсы, например, при использовании генератора для питания катушки Тесла или других высоковольтных устройств. В этом случае диоды

D1,  D2 не ставим, но выбираем тиристоры на соответствующее напряжение, либо снижаем напряжение источника питания.

Резистор R6 служит в качестве предохранителя.

  В качестве нагрузки может быть использован трансформатор, дроссель, резистор, лампочка… все, что угодно.

Область применения генератора? От построения различных, в том числе экзотических высоковольтных блоков питания до сварочных агрегатов, различных преобразователей. Например, при подключении в качестве нагрузки оооочень мощного динамика получится громкое гудение на заданной частоте, если динамик не сгорит и не лопнут барабанные перепонки.

  При выборе R2<< R3 получится такая последовательность импульсов (на активной нагрузке):

 

Генератор на 1-ом тиристоре:

Делитель осциллографа 1:100

Измерено на аноде Т1 относительно земли без диода D1 

 

На аноде Т1 относительно земли с диодом D1

 

5.7 Генераторы и формирователи на триодных тиристорах

Принципы построения импульсных схем на триодных тиристорах во многом сходны со схемами на диодных тиристорах. Отличие заключается в схемах цепей управления, куда для управления тиристорами необходимо подавать короткие импульсы тока, характеризуемые сравнительно малыми амплитудами по сравнению с амплитудами прямого тока тиристора.

Как и на диодных, на триодных тиристорах можно строить схемы мультивибраторов, одновибраторов, триггеров, однако наиболее широкое применение находят триодные тиристоры в схемах формирования мощных импульсов [11]. От транзисторных формирователей импульсов схемы на тиристорах отличаются простотой и высоким уровнем выходной мощности, достигающей до 10 кВт в импульсе при использовании одного тиристора средней мощности. В тиристорных устройствах фронт импульса тока в нагрузке формируется независимо от скорости нарастания входного сигнала.

Практическое распространение получили схемы формирователей на тиристорах с использованием колебательного разряда (заряда) накопительного конденсатора (ФТК), т. е. схемы с контуром ударного возбуждения. Такие схемы по сравнению с формирователями, в которых конденсатор разряжается или заряжается по экспоненциальному закону, надежнее в работе и обеспечивают большее быстродействие. Кроме того, колебательный разряд (заряд) конденсатора часто предопределен индуктивным характером нагрузки.

Типовая схема ФТК (рис. 5.7.1) основывается на тиристорном ключе по схеме рис. 5.31-а. При подаче запускающего импульса ubxi отпирается тиристор VS1 и происходит колебательный заряд накопительного конденсатора С. После изменения направления протекания тока в контуре L0 — Zн — С тиристор VS выключается и конденсатор С разряжается через резистор R.

Для уменьшения времени разряда конденсатораС к нему можно подключить тиристор VS2, на вход которого подается отпирающий импульс uвх2 задержанный относительно импульса на время

где Тк — период собственных колебаний напряжения на зарядном конденсаторе; tвыкл1 — время выключения тиристора VS1.

Выходные импульсы ФТК используются для запуска модуляторов радиолокационных станций и схем импульсного питания искровых камер, поджига импульсных ламп и игнитронов, управления силовыми тиристорами, возбуждения полупроводниковых оптических квантовых генераторов, импульсного питания магнитных элементов и т. д.

Расчет параметров схемы выполняется методами анализа электрических цепей по эквивалентным схемам, составляемым для двух состояний тиристора VS1. Этот расчет сводится к выбору параметров, обеспечивающих, во-первых, надежную работу формирователя, для чего должны быть выполнены условия гарантированного отпирания и выключения тиристора, и, во-вторых, требуемые выходные параметры формирователя (амплитуду, длительность выходного импульса и его фронтов).

Генераторы и формирователи на запираемых тиристорах. На запираемых тиристорах могут быть построены высокоэффективные схемы, которые не потребляют энергию в ждущем режиме, имеют большое входное и малое выходное сопротивления, позволяют получить достаточно мощные импульсы с крутыми фронтами.

Ждущие мультивибраторы показаны на рис. 5.7.2-а,-б. При включении тиристора VS1 (рис. 5.7.2-а) к нагрузке прикладывается напряжение источника питания E, конденсатор С заряжается через сопротивление R и диод VD2. Когда напряжение на конденсаторе достигает значения Uст + Uспр2, где U — напряжение стабилизации опорного диода VD1, Uспр2 – напряжение спрямления тиристораVS2, открывается. Это приводит к запиранию тиристора VS1 и отключению нагрузки от источника питания.

Длительность выходного импульса на нагрузке

Сопротивление R может изменяться согласно неравенствам

где Imax vd2 — предельная амплитуда прямого тока, протекающего через диод VD2; Iспр2 — ток спрямления тиристора VS2.

В схеме рис. 5.7.2-б для уменьшения времени восстановления схемы параллельно конденсатору подключен тиристор VSO, управляющий электрод которого через диод VDO соединен с землей. Отрицательный скачок напряжения на нагрузке, возникающий вследствие запирания тиристора VS1, через конденсатор прикладывается к катоду тиристора VSO, вызывая его отпирание по цепи управляющего электрода. Происходит форсированный разряд конденсатора С, и время восстановления устройства снижается до времени выключения тиристора VSO.

Две схемы усилителей-формирователей приведены на рис. 5.7.2- в,-г.

Схема рис. 5.7.2-в управляется импульсами отрицательной полярности. В исходном состоянии тиристоры VS2 и VS1 закрыты и устройство не потребляет энергии от источника Е. При подаче входного импульса по цепи земля — диод VD1 — управляющий переход тиристора VS1 — резисторы Rн, R3 протекает ток, переключающий тиристор VS1 в проводящее состояние. На нагрузке Rн формируется фронт выходного положительного импульса, а на триодный тиристор VS2 подается питающее напряжение Е, так как потенциал управляющего электрода тиристора VS1 повторяет потенциал его катода. В результате к аноду диода VD прикладывается положительное напряжение источника питания через резистор R1 и отрицательное напряжение uвх от входного импульса через резистор R2, которые подбираются так, что диод имеет запирающее смещение.

Схема усилителя на рис. 5.7.2-г запускается импульсами положительной полярности. В исходном состоянии тиристоры VS1 и VS2 и транзистор VT закрыты. Входной импульс открывает тиристор VS1. К нагрузке Rн прикладывается напряжение питания Е и формируется фронт выходного положительного импульса. Одновременно часть выходного напряжения прикладывается к эмиттеру транзистора VT, но последний остается закрытым, так как при наличии входного сигнала база транзистора имеет потенциал более положительный, чем эмиттер. По окончании действия входного импульса потенциал базы транзистора VT падает до нуля и транзистор переключается в состояние насыщения. Тиристор VS2 включается, обеспечивая запирание тиристора VS1.

Генераторы и формирователи на однопереходных транзисторах (двухбазовых диодах).Из-за простоты конструкции, стабильности параметров и универсальности характеристик однопереходные транзисторы (ОПТ) можно применять для реализации всех типовых схем импульсных устройств. Они наиболее широко используются в схемах генераторов. Генераторы на ОПТ характеризуются большим усилением по мощности, малым расходом энергии, простотой. Типовая схема релаксационного генератора показана на рис. 5.7.3-а.Принцип действия генератора основан на периодических процессах заряда и разряда конденсатора С1. Пока VS закрыт, конденсатор С1 заряжается через сопротивление R3. Включение происходит при достижении на эмиттере напряжения включения VS. Сопротивление между эмиттером и базой Б1 уменьшается до сопротивления насыщения rнас и конденсатор разряжается через сопротивление rнас+R1. С этого момента ток в эмиттерной цепи поддерживается за счет разряда конденсатора до тех пор, пока он не станет равным Iв. В этой точке сопротивления базы Б1 резко увеличивается и конденсатор вновь начинает заряжаться. Диаграмма, характеризующая работу схемы, приведена на рис. 5.7.3-б. Чтобы ОПТ VS работал в релаксационном режиме, нагрузочная прямая должна пересекать эмиттерную характеристику на участке отрицательного сопротивления.

Всхеме ждущего мультивибратора на рис. 5.7.4-а в устойчивом состоянии однопереходный транзистор включен, так как на его эмиттер через сопротивление R2 подключено напряжение Е > Uп и конденсатор С быстро заряжается через сопротивления Rн, R4 и эмиттерный переход VS1 до напряжения Е. Это состояние схемы устойчиво. С приходом короткого входного импульса ивх в момент t1(рис. 5.7.4-б) тиристор VS2 открывается, конденсатор С подключается к эмиттеру VS1 отрицательным напряжением и он запирается. Начинается перезаряд С через сопротивления R2, R4 и открытый тиристор VS2. Такое состояние схемы сохраняется до тех пор, пока напряжение на конденсаторе в момент t2 не достигнет величины напряжения переключения ОПТ VS1, равного ηЕ, после чего он открывается и конденсатор С обратным напряжением, равным ηЕ, подключается к тиристору VS2, запирая его. Состояние схемы полностью восстановится после заряда конденсатора по цепи Rn — R4 — эмиттерный переход открытого ОПТ VS1.

Лекция 15. Применение динисторов и не запираемых тиристоров. Генератор пилообразного напряжения. Регулируемый выпрямитель. Закрывание тиристора в цепи постоянного тока

15.1. Генератор пилообразного напряжения (гпн)

Динистор можно использовать для получения линейно возрастающего напряжения, например, в генераторе развёртки осциллографа. Схема генератора пилообразного напряжения представлена на рис. 15.1.

Рис. 15.1. Схема генератора пилообразного напряжения

Схема представляет собой интегрирующую RC-цепочку, в которой параллельно конденсатору подключён динисторVD. Принцип работы схемы рассмотрим по её временной диаграмме, представленной на рис. 15.2.

Рис. 15.2. Временная диаграмма работы генератора пилообразного напряжения

На вход схемы подают напряжение Uвх, которое значительно (не менее чем в три раза) превышает напряжение включения динистораUвкл. Это делается для того, чтобы напряжение на конденсаторе С на рабочем участке кривой заряда увеличивалось линейно. Штрих пунктирной линией показано изменение напряжения на конденсаторе, когда оно приближается по величине кUвх.

Номинал резистора Rвыбирается таким образом, чтобы токполучился меньше, чем ток удержания динистора.

Как только на вход схемы будет подано напряжение, конденсатор С начнёт заряжаться, и напряжение на нём будет возрастать. Когда напряжение на конденсаторе достигнет Uвклдинистора, динистор откроется, конденсатор С быстро (практически мгновенно) разрядится. Ток через динистор уменьшится до величины, меньшей тока удержания, динистор закроется, и процесс повторится снова. Если вместо постоянного резистораRвключить переменный, то можно будет изменять частоту ГПН.

15.2. Схема управления тиристором

Схема управления не запираемого тиристора представлена на рис. 15.3.

Рис. 15.3. Схема управления тиристором

Назначение элементов схемы. Импульсный трансформатор Т служит для гальванической развязки схемы, формирующей импульс управления, от силовой цепи, в которой установлен тиристор VS. ДиодVDпредназначен для защиты управляющего электрода тиристора от отрицательного выброса напряжения, который образуется на вторичной обмотке импульсного трансформатора Т по срезу импульса управления. РезисторRогр= 10…100 Ом применяется для выравнивания величины тока управления, так как входное сопротивление управляющего электрода тиристоров сильно различается даже в одной партии. Если этот резистор не установлен, то у тиристоров с низким входным сопротивлением может произойти перегрев и даже выгорание управляющего электрода. РезисторRшустанавливается для защиты от помех, наводимых на провода схемы управления, которые могут вызвать открывание тиристора без подачи управляющего импульса.

15.3. Применение тиристоров. Управляемый выпрямитель

Если в схеме выпрямителя заменить диоды на тиристоры, можно получить схему управляемого выпрямителя, выпрямленное напряжение на выходе которого можно регулировать, изменяя угол управления тиристором. В главе 3 рассмотрены схемы однофазных выпрямителей на диодах. Любую из этих схем можно превратить в управляемый выпрямитель. Чтобы выяснить, как влияет на характеристики выпрямителя применение тиристоров вместо диодов, рассмотрим однофазный однополупериодный выпрямитель на тиристоре (рис. 15.4). Схема управления тиристором СУ применена такая же, как на рис. 15.3. Для анализа физических процессов в регулируемом однофазном однополупериодном выпрямителе рассмотрим его временную диаграмму работы (рис. 15.5).

Рис. 15.4. Регулируемый однофазный однополупериодный выпрямитель

На втором графике временной диаграммы изображены импульсы управления тиристором с различным углом управления , который отсчитывается от момента перехода синусоиды напряженияU2через ось времени.

При = 0 тиристор открывается при минимальном напряжении на аноде (практически как диод), поэтому ток из трансформатора в нагрузку поступает в течение времени, равном длительности положительной полуволны синусоиды.

При = 450тиристор открывается с задержкой на ¼ длительности полуволны синусоиды, поэтому ток из трансформатора в нагрузку поступает в течение ¾ длительности полуволны синусоиды.

При = 900тиристор открывается с задержкой на ½ длительности полуволны синусоиды, и ток из трансформатора в нагрузку поступает также в течение ½ длительности полуволны синусоиды.

При = 1800тиристор закрыт всё время действия положительной полуволны синусоиды, и ток из трансформатора в нагрузку не поступает.

Следовательно, с увеличением действующее напряжение в нагрузке будет уменьшаться. Зависимость выходного напряжения выпрямителя от угла регулированияUd = f() называется регулировочной характеристикой. Она описывается выражением

, (15.1)

где Ud0( = 0)– напряжение холостого хода выпрямителя при= 0 (как если бы в схеме выпрямителя применялись диоды). В данной схемеUd0( = 0)= 0,45U2.

Рис. 15.5. Временная диаграмма управляемого однофазного однополупериодного выпрямителя

На пятом графике временной диаграммы изображено напряжение, действующее на тиристор. При = 0 к тиристору приложено только обратное напряжениеUb.max, которое достигает амплитудного значения напряжения вторичной обмотки и зависит от схемы выпрямителя (см. лекцию 3). Для рассматриваемого выпрямителя

. (15.2)

При 0 к тиристору, кроме обратного напряженияUb.max, прикладывается прямое напряжениеUa,, которое можно определить по формуле

. (15.3)

Максимальной амплитуды Ua.max=U2mпрямое напряжение достигает при= 900. Для нормальной работы схемы должно выполняться условиеUa.max<Uвкл, чтобы тиристор не смог самопроизвольно (без подачи импульса управления) открыться.

При поступлении на тиристор отрицательной полуволны синусоиды он автоматически закрывается, и остаётся закрытым до поступления очередного импульса управления.

Рассмотрим теперь энергетические характеристики управляемого выпрямителя. Расчетные мощности обмоток S1, S2 и типовую мощность трансформатора ST определяют при  = 0, исходя из параметров неуправляемого режима.

В связи с тем, что при изменении угла регулирования происходит сдвиг во времени первой гармоники потребляемого из сети токаi1(1)относительно питающего напряжения, управляемый выпрямитель потребляет из сети реактивную мощность даже при чисто активной нагрузке. Угол сдвига первой гармоники тока питающей сетиi1(1)относительно питающего напряжения

, (15.4)

где— амплитуда косинусной составляющей первой гармоники разложения в ряд Фурье токаi1;

— амплитуда синусной составляющей первой гармоники разложения в ряд Фурье токаi1.

Действующее значение первой гармоники тока в первичной обмотке трансформатора

. (15.5)

Коэффициент искажения формы тока

. (15.6)

Коэффициент мощности выпрямителя

, (15.7)

то есть с ростом угла регулирования коэффициент мощности снижается.

Управляемые выпрямители можно выполнить и по двухполупериодной, и по мостовой схемам. В этих схемах выходное напряжение в зависимости от также определяется выражением (15.1), толькоUd0( = 0)= 0,9U2.

Тиристорный регулятор напряжения своими руками: конструктивные особенности

Содержание статьи:

Из-за использования в повседневной жизни большого количества электрических приборов (микроволновок, электрочайников, компьютеров и т.д.) нередко возникает необходимость регулировки их мощностей. Для этого применяют регулятор напряжения на тиристоре. Оно имеет простую конструкцию, поэтому собрать его самостоятельно несложно.

Нюансы в конструкции

Регулятор напряжения на тиристоре

Тиристор – это управляемый полупроводник. При необходимости он может очень быстро провести ток в нужном направлении. От привычных диодов устройство отличается тем, что имеет возможность контролировать момент подачи напряжения.

Регулятор состоит из трех компонентов:

  • катод – проводник, подключаемый к отрицательному полюсу источника питания;
  • анод – элемент, присоединяемый к положительному полюсу;
  • управляемый электрод (модулятор), который полностью охватывает катод.

Регулятор функционирует при соблюдении нескольких условий:

  • тиристор должен попадать в схему под общее напряжение;
  • модулятор должен получать кратковременный импульс, позволяющий устройству контролировать мощность электроприбора. В отличие от транзистора регулятору не требуется удержание этого сигнала.

Тиристор не применяется в схемах с постоянным током, поскольку он закрывается, если нет напряжения в цепи. В то же время в приборах с переменным током регистр необходим. Это связано с тем, что в подобных схемах имеется возможность полностью закрыть полупроводниковый элемент. С этим справится любая полуволна, если возникнет такая потребность.


Тиристор обладает двумя устойчивыми положениями («открыто» или «закрыто»), которые переключаются при помощи напряжения. При появлении нагрузки он включается, при пропадании электрического тока выключается. Собирать подобные регуляторы учат начинающих радиолюбителей. Заводские паяльники, имеющие регулировку температуры жала, стоят дорого. Гораздо дешевле купить простой паяльник и самому собрать для него регистр напряжения.

Существует несколько схем монтажа устройства. Самый несложный – это навесной тип. При его сборке не используют печатную плату. Не потребуется также специальные навыки при монтаже. Сам процесс занимает мало времени. Поняв принцип работы регистра, будет просто разобраться в схемах и рассчитать оптимальную мощность для идеальной работы оборудования, где тиристор установлен.

Область применения и цели использования

Применение тиристорного регулятора мощности

Используют тиристор во многих электроинструментах: строительных, столярных бытовых и прочих. Он играет в схемах роль ключа при коммутации токов, при этом работая от малых импульсов. Выключается только при нулевом уровне напряжении в цепи. К примеру, тиристор контролирует скорость работы ножей в блендере, регулирует быстроту нагнетания воздуха в фене, координирует мощность нагревательных элементов в приборах, а также выполняет другие не менее важные функции.

В схемах с высокоиндуктивной нагрузкой, где ток отстает от напряжения, тиристоры могут не закрываться полностью, что приведет к поломке оборудования. В строительных приборах (дрелях, шлифовальных машинах, болгарках и т.д.) тиристор переключается при нажатии кнопки, которая находится в общем с ним блоке. При этом происходят изменения в работе двигателя.

Тиристорный регулятор отлично работает в коллекторном двигателе, где есть щёточный узел. В асинхронных движках устройство менять обороты не сможет.

Принцип действия

Специфика работы прибора заключается в том, что напряжение в нем регулируется мощностью, в также электроперебоями в сети. Регулятор тока на тиристоре при этом пропускает его только в одном конкретном направлении. Если устройство не отключить, оно так и будет продолжать работать, пока его не выключат после определенных действий.

Изготавливая тиристорный регулятор напряжения своими руками, в конструкции следует предусмотреть достаточно свободного места для установки управляющей кнопки или рычага. При сборке по классической схеме имеет смысл использовать в конструкции специальный выключатель, который при изменении уровня напряжения светит разными цветами. Это обезопасит человека от возникновения неприятных ситуаций, поражений током.

Способы закрывания тиристора

Выключение тиристора путем изменения полярности напряжения между катодом и анодом

Подача импульса на управляющий электрод неспособна прекратить его работу или закрыть. Модулятор только включает тиристор. Прекращение действия последнего происходит только после того, как на ступени катод-анод прерывается подача тока.

Регулятор напряжения на тиристоре ку202н закрывается следующими способами:

  • Отключить схему от блока питания (батарейки). Устройство при этом не заработает до тех пор, пока не будет нажата специальная кнопка.
  • Размокнуть соединение анод-катод с помощью проволоки или пинцета. Через эти элементы идет все напряжение, поступая в тиристор. Если перемычку разомкнуть, уровень тока окажется нулевым и устройство выключится.
  • Уменьшить напряжение до минимального.

Простой регулятор напряжения

Схема регулятора мощности для паяльника

Даже самая простая радиодеталь состоит из генератора, выпрямителя, аккумулятора, а также переключателя напряжения. Такие устройства обычно не содержат стабилизаторов. Сам же тиристорный регулятор тока состоит из таких элементов:

  • диод – 4 шт.;
  • транзистор – 1 шт;
  • конденсатор – 2 шт.;
  • резистор – 2 шт.

Чтобы избежать перегрева транзистора, к нему устанавливают систему охлаждения. Желательно, чтобы последняя имела большой запас мощности, которая позволит заряжать в дальнейшем аккумуляторы с невысокой емкостью.

Способы регулирования фазового напряжения в сети

Изменяют переменное электрическое напряжение при помощи таких электрических приборов, как: тиратрон, тиристор и прочие. При изменении угла этих структур на нагрузку подаются неполными полуволнами, а в результате регулируется действующее напряжение. Искажение вызывает возрастание тока и падение напряжения. Последнее меняет форму из синусоидальной в несинусоидальную.

Схемы на тиристорах

Система включится после того, как на конденсаторе соберется достаточно напряжения. При этом момент открытия контролируется при помощи резистора. На схеме он обозначен как R2. Чем медленнее заряжается конденсатор, тем больше сопротивления у этого элемента. Регулируется электроток через управляющий электрод.

Эта схема дает возможность контролировать полную мощность в устройстве, так как регулируются два полупериода. Это возможно благодаря установке в диодном мосте тиристора, который воздействует на одну из полуволн.

Регулятор напряжения, схема которого представлена выше, имеет упрощенную конструкцию. Контролируется здесь одна полуволна, в то время как другая без изменений проходит через VD1. Работает по аналогичному сценарию.

При работе с тиристором импульс на управляющий электрод следует подавать в определенный момент, чтобы срез фаз достиг требуемой величины. Нужно определять переход полуволны в нулевой уровень, иначе регулировка не будет эффективной.

Волков И.В. Высоковольтный генератор

Волков И.В. Высоковольтный генератор // Фiзiка: праблемы выкладання. – 2003. – № 4. – С. 21-22.

Принимая участие в проводившемся в АПО в конце декабря 2002 года семинаре «Использование нестандартного оборудования в демонстрационном и фронтальном эксперименте», я увидел оживление в аудитории, когда демонстрировал свой генератор. Поэтому хочу поделиться со всеми, кого он заинтересует. Не у каждого в кабинете есть прибор заводского изготовления «Разряд». Да и электрофорные машины — не у каждого. А вот изготовить самодельный прибор, оказывается, можно из подручных средств. Электрическую принципиальную схему и принцип действия привожу ниже.

Прибор работает следующим образом. Допустим, что в верхней по схеме части в данный момент положительный полупериод сетевого напряжения, а в нижней — соответственно отрицательный. Ток протекает по цепи: резистор R1, диод VD1, первичная обмотка Tp1, заряжая конденсатор С1.Тиристор VS1 при этом закрыт, и ток через его управляющий электрод не протекает, потому что падение напряжения на диоде VD2 в прямом включении мало по сравнению с тем, которое нужно для отпирания тиристора. При отрицательном полупериоде диоды VD1 и VD2 закрываются. На катоде тиристора образуется падение напряжения относительно управляющего электрода (УЭ) в цепи управляющего электрода появляется прямой ток, и тиристор открывается. В этот момент конденсатор С1 разряжается через первичную обмотку трансформатора. Во вторичной обмотке появляется импульс высокого напряжения.

Что касается деталей, то их легко приобрести на рынке.

VS1 — тиристор, подойдут КУ202Н или с буквами К, Л, М; КУ201К, Л.

VD1 и VD2 — любые на прямой ток Iпр ≥ 300 мА, обратное напряжение Uо6р ≥ 400 В, подойдут КБ226В, Г; КD243Г; KD247Г, KD105Б, B.

R1 — резистор 1 кОм, мощность рассеивания не ниже 6 Вт, или три резистора по 2 Вт сопротивлением по 3 кОм.

R2 — резистор 20 кОм, 2Вт.

С1 — конденсатор емкостью 1 мкФ и рабочее напряжение Up≥ 400 В.

Tp1 — катушка зажигания от автомобиля или мотоцикла типа, например, Б-115.

Надеюсь, этот прибор найдет применение во многих кабинетах физики.

симисторный и тиристорный, системы индикации и схемы

Принцип действия регулятораПрактически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Регулятор мощности на симисторе

Симистор, по большому счету, — это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков — это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

Схема регулятора мощности на симисторе

  • Пр. 1 — предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 — токоограничительный резистор — служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 — потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 — основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 — динистор, открытие которого управляет симистором.
  • VD4 — симистор — главный элемент, производящий коммутацию и, соответственно, регулировку.

Как работает регуляторОсновная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Как регулируется выходная мощность в регуляторах

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор — 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор — только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно.

Схемное обозначение тиристора, симистора и динистора

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья — с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже.

Простейшая схема регулятора мощности на тиристоре

Единственное её отличие от схемы на симисторе — это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Как регулируется выходная мощность в регуляторах

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Регулятор мощности на тиристоре с мягкой регулировкой

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Осциллограмма при наличии выпрямительного моста

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных — положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

Регулятор мощности с генератором на КТ117

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 — диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 — лампа накаливания — представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 — предохранитель, в этом случае стоит на 10 А.
  • R3, R4 — токоограничительные резисторы — нужны, чтобы не сжечь схему управления.
  • VD5, VD6 — стабилитроны — выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 — транзистор КТ117 — установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 — подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 — тиристор — элемент, обеспечивающий коммутацию.
  • С2 — времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *