Site Loader

RC-Test. Тестер ИК пультов дистанционного управления

Современная бытовая техника уже как-то не представляется без опции дистанционного управления и, конечно, невозможно отыскать в продаже телевизоры и музыкальные центры не укомплектованные пультами, управляющие нашей (или чьей-то еще) техникой в диапазоне инфракрасного излучения (попросту — ИК ПДУ). Как известно, все то, что интенсивно эксплуатируется, довольно быстро изнашивается (раньше или позднее, — в зависимости от добротности изделия).
ИК ПДУ, судя по спросу на новые пульты и по частоте обращения в ремонтные мастерские, не являются исключением.

А коль так, то вопрос о ремонте ИК ПДУ и их диагностике (как в предпродажной стадии, так и в пред-/пост-ремонтной) — весьма актуален.
Мне довелось столкнуться с ремонтом различных ИК-пультов и, честно, без диагностического тестера даже при не большом объеме ремонтируемых ИК ПДУ, мне было как-то не комфортно.
Меж тем, хозяин расположенного по соседству магазина, частенько сталкивался с возвратом пультов только потому, что предпродажная проверка ПДУ не производилась.

Содержание / Contents

Когда уже начал набрасывать схемку тестера для проверки пультов, мне сочувственно кое-кто из коллег говорил, мол, зачем это нужно, если свечение ИК-светодиода пульта можно разглядеть через объектив фотокамеры мобильного телефона. Наверное, некоторые из вас так же подумали, прочитав первые строки этого текста. Может быть кого-то устроит и такая процедура проверки.
Но есть несколько «НО», которые для меня являются определяющими:

1. Зачастую пульты испачканы до отвращения, как снаружи, так и внутри. К своим вещам я стараюсь относиться бережно и ни за что не стану прикасаться к своему телефону, работая с таким пультом.

2. Свечение светодиода пульта действительно можно разглядеть на дисплее мобильного телефона, но судить об интенсивности свечения по увиденному невозможно, равно как невозможно и увидеть дискретность импульсов в таком свечении.

3. Как следствие предыдущего пункта: невозможно определить радиус действия пульта (что — немаловажно).

4. Как известно, светочувствительные матрицы цифровых фотокамер достаточно эффективно поражаются направленными световыми излучениями. Чем чувствительнее матрица, тем вероятнее степень ее поражения направленным источником света. Это еще одна причина, по которой фотокамеры не стоит использовать в качестве тестера для проверки ПДУ.

5. Оперативность. Сколько движений нужно проделать для подготовки камеры мобильника к проверке пульта?

В общем, эффективность проверки ИК ПДУ с помощью фотокамеры низка!

Поиск схем тестеров ПДУ в интернете особых результатов не дал. Лишь одна схема удостоилась сборки на макетной плате. Если кому-то интересно, может найти эту схему в каталоге «Мастеркита». Схема работает неплохо, но заточена под использование фотодиода и содержит довольно большое количество деталей.
Я решил создать свою схемку, содержащую минимум деталей, простую, мечтая о небольшой потребляемой мощности, компактности и автономности питания.
Пока экспериментировал на макете с различными вариантами схемы, пришел к общей концепции такого тестера.
Первые три схемы были выполнены на триггере Шмидта на базе стандартного фотоприемника, используемого в различных модификация практически во всех, управляемых ИК-импульсами, аппаратах.
Сам фотоприемник компактен, содержит выводы питания и выхода с исходной логической единицей.

Есть 3-х и 5-тивольтовые варианты фотоприемников (в данном случае используются 5-тивольтовые фотоприемники).
Корпус HEF4093, состоящий из 4-х триггеров Шмидта с логикой 2И-НЕ максимально использован лишь в первой из этих схем, которая была сделана с реализацией автовыключения и потому может показаться неоправданно усложненной. Но функция автовыключения была заказана магазином.
Параметры тестера, представленного на схеме 1.

  • Потребляемый ток в режиме ожидания — 5мА и определяется только потреблением самого фотоприемника и светодиода;
  • Потребляемый ток в режиме ожидания при инверсном включении светодиода (свечение при тестировании ПДУ)- 1мА;
  • Потребляемый ток в режиме тестирования ПДУ — 3-4мА;
  • Время работы тестера в режиме ожидания — 25-30с;
  • Время работы при тестировании — до окончания тестирования — 15-20с.

Как уже было сказано выше, при включении тестера на выходе фотоприемника А1 будет установлена логическая единица. Инвертор на элементе DD1/1, подключенный к выходу А1 будет содержать на своем выходе логический ноль, запрещающий работу звукового генератора на элементе DD1/2 и определяющий режим работы светодиода VD1.

Показанное на схеме 1 включение светодиода предполагает его зажигание при включении тестера и мигание в процессе тестирования.
Для улучшения энерго-экономических показателей тестера, цепь R6-VD1 можно включить иначе (резистор R6 к выходу DD1/1, VD1 катодом к общему проводу). В этом случае при включении тестера светодиод будет погашен и при тестировании ПДУ будет мигать с частотой прохождения импульсов. В режиме тестирования каждый световой импульс приходящий на фотоприемник от тестируемого ПДУ, будет опрокидывать выход А1 в состояние низкого уровня с частотой следования импульсов. На выходе DD1/1 будут появляться импульсы противоположной полярности, разрешая работу звукового генератора на DD1/2.

DD1/3 использован для организации «мостового» включения пьезоизлучателя для повышения громкости звучания. Было замечено, что фотоприемники, имеющие 5-тивольтовое питание, плохо работают при напряжении питания ниже 4,5В и выше 5,5В. Резистор R1, стоящий в цепи плюсового вывода А1, снижает напряжение питания до приемлемого значения, т.к. напряжение питания тестера составляет 6В. Мне удобно было использовать две 3-хвольтовых дисковых батарейки.

Конденсатор С1 применен из эстетических соображений. Несколько расширяя импульсы на выходе А1, делает внятным звучание генератора и мигание светодиода VD1, если тот работает в двойном качестве (индикация питания и импульсов). Дело в том, что практически любой ПДУ «выдает» пакеты импульсов, частота последовательности которых расположена в звуковом диапазоне. Поэтому звуковой генератор, имеющийся в схеме, лишь украшает звучание, модулируя частоту импульсов тестируемого ПДУ своим тоном. Емкость конденсатора С1 — 10-33nF — экспериментируйте.

Схема включения/автовыключения тестера работает следующим образом.
Кнопка S1 подает открывающее напряжение на затвор полевого транзистора VT2, заряжая его затворную емкость и емкости времязадающего конденсатора С5. VT2 открываясь при достижении порогового напряжения на затворе величины 2-4В (для указанного на схеме типа транзисторов), открывает и транзистор VT1, который коммутирует напряжение батареи в схему тестера, запитывая микросхему DD1 и фотоприемник.

При отпускании кнопки начинается разряд С5 через резистор R5, плавно уменьшая напряжение на затворе VT2 и уменьшая ток базы VT2. Плавность в данном случае является эффектом отрицательным, т.к. плавное (не мгновенное) уменьшение напряжения способно привести к нежелательным переходным процессам в схеме тестера, не фатальным, но неприятным на слух. Поэтому, чтобы выключение тестера было таким же четким, как и включение, четвертый элемент микросхемы использован для создания эффекта лавинообразного запирания VT2. Происходит это следующим образом. Пока тестер включен, DD1/4, получая через резистор информацию о низком логическом уровне на стоке VT2, удерживает на своем выходе высокий логический уровень. При повышении напряжения на стоке VT1 в процессе разряда С5 до 1/3 от уровня логической единицы, выход DD1/4 переключается в низкоуровневое состояние, через цепочку R10-VD3 резко разряжая С5 и запирая, таким образом, VT2, который, в свою очередь, так же резко прерывает ток базы VT1. VD3, кстати, устраняет влияние выхода DD1/4 на затвор VT2 в процессе работы тестера до известного момента.
Цепь R9-VD2 подзаряжает С5 положительными импульсами в процессе тестирования и, напротив, не мешает разряжаться ему при отсутствии импульсов.

Схема 2
отличается от предыдущей лишь отсутствием узла автовыключения и, соответственно, меньшим количеством деталей.

Схема 3
уже не содержит звукового генератора, и так хорошо! smile

Схема 4
на паре транзисторов порадует минималистов.


Обращу лишь внимание на использование динамической головки. В данном случае использован спикер от материнской платы компьютера, но возможно применение и других миниатюрных электромагнитных капсюлей. Чем выше сопротивление катушки динамика, тем меньше потребляемый тестером ток. В нашем случае, ток потребления в режиме ожидания составляет 1,1мА, в режиме тестирования — до 16мА. С мелким 8-омным динамиком ток потребления будет около 50мА.Оно собрано в корпусе от импульсного зарядного устройства.
smile
smile

Надеюсь, что эти схемы кому-то пригодятся.


*RC-Test = Remote Control Test, Испытатель ДУ

Камрад, смотри полезняхи!

smile

Константин (riswel)

Россия, г. Калининград

C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

 

ПРИБОР ДЛЯ ПРОВЕРКИ ПУЛЬТОВ ДУ

Кому из нас хоть иногда не требовалось протестировать пульт телевизора или DVD?
Ведь часто именно нерабочий пульт является причиной того, что не включается прибор. А мы сразу лезем разбирать телевизор или музыкальный центр, вместо того, чтоб начать с проверки ПДУ. Есть технология, которая заключается в том, что надо взять мобильный телефон и, направив его фотообъектив в сторону инфракрасного излучателя смотреть мигает ли маленький фиолетовый свет. Такой метод представляет собой самый  простой способ для тестирования пульта, но все же не на 100% достоверный, поэтому решил сделать небольшую схему для проверки пультов.

Прибор для проверки ПДУ — схема принципиальная

Прибор для проверки ПДУ - схема принципиальная

Схема не требует много деталей — микроконтроллер 12F683, ИК-приемник V34836 и несколько светодиодов для индикации уровня данных, полученных с помощью пульта. Он работает с любым пультом ИК. Микроконтроллер использован в корпусе SOIC формата.

ПРИБОР ДЛЯ ПРОВЕРКИ ПУЛЬТОВ

Для питания нужны 2 батарейки ААА, потребление тока составляет всего 0,8 мА в режиме ожидания и 1.2 мА при обнаружении инфракрасного сигнала. Это конечно если светодиоды импортные сверхяркие, на отечественных АЛ ток будет на порядок выше.

ПРИБОР ДЛЯ ПРОВЕРКИ ПУЛЬТОВ ДУ своими руками

Когда схема включается, загорается красный светодиод. Это означает, что тестер включен, но не получает инфракрасный сигнал. В зависимости от полученного потока данных, он зажигает желтый и / или зеленый светодиоды. Если поток данных непрерывный — все три светодиода загораются. Если поток данных поступает, но не постоянно — только желтый светодиод будет светиться.

ПРИБОР ДЛЯ ПРОВЕРКИ ПУЛЬТОВ ИК

Всё это дело оформляется в любой удобный корпус с батареечным отсеком под 2 элемента питания. Можно кнопку ON-OFF не ставить, а просто вставлять батарейки, когда возникла необходимость проверить, и, при необходимости, починить пульт.

Прибор для проверки пультов.

Всем привет. В эти летние деньки работать совсем не охота, да и на ремонт технику почти не несут, так что материала для статей почти нет.

Дабы блог не пустовал вообще, решил выложить Вам схему тестера для пультов, которой пользуюсь я. Она состоит всего из 4 деталей:

— Сопротивление 1 килоом;

— Фотоприемник (подойдет с любой донорской платы) ;

— Светодиод  любого цвета, на Ваше усмотрение;

— Пищалка, можно с любой материнской платы компьютера, или же можно вообще обойтись и без него.

Питается эта схема всего от 5 вольт, так что если использовать его от источников питания с большим напряжением необходимо в схему добавить кренку на 5 вольт, типа 78L05.

Вот сама схема:

Схема тестера пультов

Схема тестера пультов

Схема подключения кренки:

Распиновка 78L05

Распиновка 78L05

Тестер я вмонтировал в свой лабораторный блок питания.

Красным кружком обведен светодиод и фотоприемник тестера для пультов

Красным кружком обведен светодиод и фотоприемник тестера для пультов

Выход 19 в напрямую с блока питания подключил в ножам  IN и земли кренки 78L05, OUT  5 в. вывел на схемку для проверки пульта. Фото показывать не буду, так как делал все навесным монтажом, и после проверки залил все это дело термо клеем.

Очень удобно ремонтировать пульты таким образом. На блоке питания выставляем 3 вольта, крокодилы подключаем в + и – пульта, и ищем неисправность, при чем сразу проверяем работу пульта наводя его на блок питания. В работе светодиод моргает, и издаются щелчки.

Схема очень проста, но работает безотказно.

Всем спасибо за просмотр.



Красным кружком обведен светодиод и фотоприемник тестера для пультовВесь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме .

Красным кружком обведен светодиод и фотоприемник тестера для пультов Загрузка…

Как проверить пульт дистанционного управления?

Проверка пульта ДУ

Инфракрасные пульты дистанционного управления прочно заняли место в бытовой электронике. Какую только аппаратуру не комплектуют этим весьма удобным устройством, это и телевизоры, музыкальные центры, микроволновые печи, автомобильные CD/MP-проигрыватели, люстры и много много других привычных нам вещей.

Столь широкое распространение пультов дистанционного управления не могло не сказаться на их частых поломках. Поскольку новый, необходимый для конкретного прибора пульт иногда трудно приобрести, то их сдают в ремонт.

Как быстро проверить пульт дистанционного управления?

Самым простым и действенным методом можно считать проверку пультов (ПДУ) с помощью цифровых камер. Сейчас практически в каждом сотовом телефоне есть цифровая камера.

Во многих ноутбуках есть встроенная web-камера. Для нетбуков цифровая web-камера вообще обязательный атрибут. Также для проверки пультов ДУ подходят цифровые фото и видеокамеры. В общем, любое устройство в котором есть пусть самая простая цифровая камера сгодятся для проверки пульта.

Для проверки ПДУ необходимо лишь направить излучающий инфракрасный светодиод в объектив камеры. На цифровом дисплее при нажатии кнопок на пульте будут видны периодические вспышки фиолетового цвета свечения. Это свидетельствует об исправности пульта дистанционного управления.

На фото показаны вспышки инфракрасного светодиода, заснятые камерой мобильного телефона Sony Ericsson K810i.

Если же под рукой нет устройств с цифровой камерой, то можно воспользоваться следующим способом.

Необходимо вместо инфракрасного светодиода временно впаять обычный светоизлучающий диод. Светодиод может быть любого цвета свечения: красный, зелёный, жёлтый, белый, в общем, не важно, главное чтобы светодиод был на 3 вольта.

При нажатии на кнопки пульта временно впаянный обычный светодиод будет излучать вспышки света. Следует отметить, что яркость излучения будет небольшой.

На фото – обычный белый светодиод, впаянный вместо инфракрасного.

Пульт ДУ можно проверить с помощью инфракрасного фотодиода и осциллографа.

В данном случае инфракрасный фотодиод подключают ко входу осциллографа. При работе пульта на экране осциллографа будут видны импульсы коротких посылок. Важно, чтобы фотодиод был подключен к открытому входу осциллографа.

Вот так просто и легко можно проверить работоспособность любого инфракрасного пульта дистанционного управления. Для этого совсем не обязательно собирать какие-либо схемы пробников и захламлять итого перегруженную мастерскую, ведь все необходимые инструменты уже есть под рукой, уж мобильник то с камерой точно

 

 

 

 

 

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

Замена ИК диода в пульте увеличивает дальность управления

Порой, чтобы сделать какие-то переключения пультом, необходимо вставать и почти вплотную подходить к управляемому устройству. А иногда, приходится вращать пульт и судорожно, нажимая кнопки, пытаться, как стрелок попасть в приемник инфракрасного излучения прибора.
В таких случаях хочется запустить пульт куда подальше, и вручную переключить нужный режим.

Почему так происходит?


Дело в том, что раньше в бытовой технике применяли более качественные электронные компоненты. Сейчас же пытаются на всём сэкономить, применяя детали, по более низкой цене. Именно применение дешёвого инфракрасного светодиода с малой мощностью излучения и некачественной линзой, приводят к вышесказанным проблемам.
Что можно предпринять в случаях, когда пульт совсем не функционирует или работает с близкого расстояния?
Ниже в статье, будет описан способ ремонта и увеличения дальности действия пульта дистанционного управления. Он не займет много времени, и тем более денежных средств.

Диагностика пульта ДУ


Проверить, работает пульт или нет, можно простым способом.
Для этого, во-первых, необходимо вставить в него новые батарейки. Во-вторых, включить камеру телефона и направив на нее пульт, нажать кнопку «ВКЛ». На экране телефона должно быть видно, как засветиться инфракрасный диод.
Замена ИК диода в пульте увеличивает дальность управления
Человеческий глаз не видит этого спектра излучения, а камера телефона фиксирует его, и на дисплее это свечение похоже на индикацию обычного светодиода.
Если этого не произошло, значит пульт неисправен.
В таких случаях может помочь замена инфракрасного диода.
Метод ремонта и модернизации пульта – аналогичны, поэтому ниже будет описана именно модернизация.
Замена ИК диода в пульте увеличивает дальность управления
Для примера взята приставка цифрового телевидения Т2, управляемая пультом дистанционного управления.
Сама приставка по своей работе не имеет никаких нареканий, но вот пульт управления, оставляет желать лучшего. Даже при новых батарейках питания, человеку, желающему сделать какие-то переключения, необходимо подходить к устройству, на расстояние меньше двух метров, что не совсем удобно. Если находиться дальше этого расстояния, то пульт становится просто невидимым, и управлять им невозможно.
Замена ИК диода в пульте увеличивает дальность управления

Модернизация — ремонт


Сама модернизация заключается в том, чтобы заменить инфракрасный светодиод на другой, более мощный.
Взять такой светодиод можно из пульта дистанционного управления от старого видеомагнитофона, неисправного DVD-плеера, кондиционера или музыкального центра.
Замена ИК диода в пульте увеличивает дальность управления
Если такового нет дома, то аналогичный пульт можно приобрести на блошиных рынках за копейки. Главное, чтобы он был рабочий и питался от двух батареек с общим напряжением три вольта.
Идя на рынок, нужно взять две пальчиковые батарейки, для проверки пульта, и мобильный телефон, который в принципе и так должен быть всегда рядом.
Найдя подходящий пульт, вставляем в него батарейки, и включаем камеру телефона. Направляем на неё светодиод пульта, и нажимаем на любую кнопку. Исправный пульт должен излучать инфракрасный свет, который будет виден на экране телефона, в виде пачки импульсов.
Замена ИК диода в пульте увеличивает дальность управления
Если такового не будет видно, значит пульт, скорее всего неисправный, и покупать такой нет смысла.
На фото пульт, то ли от кондиционера, то ли от калорифера – неизвестно, но он точно рабочий, и с мощным инфракрасным диодом. Самого кондиционера уже давным-давно нет, он сломался и ремонту не подлежал. Он и будет донором.
Замена ИК диода в пульте увеличивает дальность управления
Замена ИК диода в пульте увеличивает дальность управления
Обычно две половины корпуса пульта скрепляются на защелке, но бывают случаи, когда ещё есть крепежный винт, который находится под батарейками, в отсеке для элементов питания. Если такой имеется, то откручиваем его, а после, подковырнув ножом место соединения двух частей – разделяем их.
Замена ИК диода в пульте увеличивает дальность управления
Замена ИК диода в пульте увеличивает дальность управления
Когда корпус будет разобран, внутри его обнаруживаем плату управления, на которой находятся электронные компоненты, площадка кнопок и сам инфракрасный светодиод.
Замена ИК диода в пульте увеличивает дальность управления
Замена ИК диода в пульте увеличивает дальность управления
Далее, отставляем старый пульт в сторону и разбираем тот, который хотим модернизировать. В нашем случае, это пульт от приставки Т2.
Принцип разборки такой же, как и в первом случае. Выкручиваем винт крепления – если он есть, и ножом или отверткой, разделяем половинки корпуса.
Замена ИК диода в пульте увеличивает дальность управления
Замена ИК диода в пульте увеличивает дальность управления
На фото, плата с инфракрасным диодом.
Замена ИК диода в пульте увеличивает дальность управления
Замена ИК диода в пульте увеличивает дальность управления
Далее, берем паяльник на 25 или 40 Вт, и выпаиваем диод с платы донора.
Очень важно не перегреть прибор паяльником, потому, что полупроводниковые приборы нужно паять не более двух секунд, иначе они могут разрушиться. Так же, нужно быть осторожным с ножками диода, чтобы лишний раз не изгибать, и не сломать их.
Замена ИК диода в пульте увеличивает дальность управления
Перед тем, как впаивать диод, нужно определить полярность – где анод, а где катод, или плюсовой и минусовой выводы.
Замена ИК диода в пульте увеличивает дальность управления
Бывает, что на плате указана полярность, но чаще всего маркировка отсутствует, поэтому сразу следует определить, где положительный вывод и пометить его на плате.
Замена ИК диода в пульте увеличивает дальность управления
Определить вывод можно простым способом. Нужно внимательно посмотреть на диод с помощью лупы, и тот вывод в корпусе, который короче – анод (плюс), а тот, который больше и шире – катод или минус.
Замена ИК диода в пульте увеличивает дальность управления
Определив на плате пульта Т2, где плюсовой вывод – делаем пометку, нацарапав её чем-нибудь острым, например шилом.
Теперь можно выпаивать диод из платы.
Замена ИК диода в пульте увеличивает дальность управления
Так, как у выпаянного донорского диода ножки короче, чем у того, который следует заменить, то выпаивать диод с платы Т2 не нужно. Его необходимо откусить кусачками, оставив небольшие выводы. К ним и подпаяем диод-донор. Таким образом, длины должно быть достаточно, чтобы линза диода выходила за закрытый корпус.
Залуживаем выводы на диоде, и концы на плате, и аккуратно – соблюдая полярность – припаиваем их друг к другу.
Замена ИК диода в пульте увеличивает дальность управления
Проверяем прочность пайки, подергиванием за диод.
Замена ИК диода в пульте увеличивает дальность управления
Вставляем плату в нижнюю часть корпуса и защелкиваем верхней.
Замена ИК диода в пульте увеличивает дальность управления
Устанавливаем батарейки и проверяем работу пульта, направив его на камеру мобильного телефона. Как уже упоминалось ранее, при нажатии на кнопки должно появиться свечение.
Замена ИК диода в пульте увеличивает дальность управления

Итог проведенной работы


Замена ИК диода в пульте увеличивает дальность управления
Такая замена инфракрасного диода дала очень хороший результат. Пульт стал уверенно управлять приставкой на расстоянии более четырех метров.
Замена ИК диода в пульте увеличивает дальность управления
При этом потребляемый ток от батареек не изменился.

Схема прибора для проверки пультов ДУ

   Это устройство предназначено для проверки работоспособности пультов дистанционного управления, работающих на ИК – лучах. Кроме того, оно позволяет с достаточной точностью измерять мощность световых импульсов инфракрасного светодиода.
   Прибор построен по схеме линейного трёхкаскадного усилителя ( Рис.1 ). В качестве датчика наличия импульсного ИК – излучения применён фотодиод с крупной линзой ( VD1 ). Сигналы, которые излучает светодиод пульта ДУ представляют собой пачки импульсов с частотой следования несколько герц и заполнением, в зависимости от модели, несколько десятков – сотен кГц. Первый каскад усиления сделан на полевом транзисторе VT1. Ёмкость разделительных конденсаторов С2, С3 и С6, С7 относительно мала, что делает это прибор малочувствительным к мерцанию осветительных ламп.       Принятый фотодатчиком и усиленный VT1 сигнал поступает для последующей обработки на ОУ DA1.1. Оба операционных усилителя включены как неинвентирующие усилители. Коэффициент усиления DA1.1 определяется отношением сопротивлений резисторов R7, R8, но на тех частотах, на которых предстоит работать этому устройству, из-за спада АЧХ, он всё же будет значительно меньше 100.
   Усиленный сигнал переменного напряжения с выхода DA1 поступает на детектор, выполненный на диодах VD2, VD3. Импульсы выпрямленного напряжения фильтруются оксидным конденсатором С8 и через подстроечный резистор R13 поступает на стрелочный микроамперметр РА1. По величине отклонения стрелки микроамперметра можно будет судить о мощности ИК – излучения.      Чувствительность индикатора регулируется подстроечным резистором R13.

Наличие ИК излучения можно контролировать не только по показаниям микроамперметра, но и по вспышкам контрольного светодиода HL1. Для этого на DA1.2 собран ещё один каскад, коэффициент усиления которого зависит от соотношения сопротивлений R15 и R14. Постоянное напряжение, необходимое для работы светодиода, преобразуется из переменного с помощью мостового выпрямителя на маломощных кремниевых диодах VD4…VD7. Конденсатор С12 – разделительный, что обеспечивает погасание HL1 при отсутствии импульсного ЖК – излучения.
   Напряжение на выходах обоих усилителей DA1 должно быть около половины напряжения источника питания. Оно задаётся резисторами R5, R6 и R11, R12. Конденсаторы С5, С10 корректируют АЧХ микросхемы. Конденсаторы С1, С11 – фильтр питания. Ток потребления устройства не более 7 mA при напряжении питания 9V.
   В устройстве можно использовать любые доступные типы малогабаритных резисторов. Неполярные конденсаторы – любые керамические. Выпрямительные диоды можно применить любые из серий КД102, КД103, КД510, КД521, Д223, 1N4148. Фотодиод для этой конструкции желательно использовать именно ФД320 с тёмно-красной линзой, но подойдут и другие, например КДФ115А, КДФ115А1, КДФ115А3, КДФ115А5,ФД263, ФД265. Светодиод желательно иметь с повышенной светоотдачей, красного цвета, например L1503SRC/F, L1513SRC/E, 3001USOC, HPWA-MN00, HLMPED31QT000, КИПД24Л, КИПД66Т. Если вместо этого светодиода взять светодиод со встречно-параллельным включением двух излучающих кристаллов, например, из серий КИПД23, L57, L937, то выпрямительный мост можно исключить. Полевой транзистор следует взять с набольшим начальным током стока. Наиболее подходящими будут транзисторы типа 2П303А, 2П303Б, КП303А, КП303Б, КП303Ж, КП329А, КП329Б. Так как параметры полевых транзисторов могут иметь большой разброс, может потребоваться подбор резистора R3 так, чтобы на стоке VT1 напряжение было 3…5 V. Микросхему можно заменить на К157УД3, К157УД2-4 ( бескорпусная ) или любым другим сдвоенным операционным усилителем с внешней коррекцией и частотой единичного усиления не менее 1 МГц, скоростью нарастания выходного напряжения более 0,5V/мкS.Ёмкость корректирующих конденсаторов С5, С10 должна быть наименьшей ( от 1,8 pF ), но при которой применённый экземпляр микросхемы DA1 ещё продолжает устойчиво работать ( нет самовозбуждения ).

В качестве стрелочного индикатора использовался индикатор М68501 с сопротивлением рамки 535 Ом от индикатора уровня записи/ воспроизведения старого катушечного магнитофона.
   Устройство может быть собрано на печатной плате Рис.2. При питании от сетевого источника обязательна экранировка этой конструкции. В качестве источника питания можно также использовать 9-вольтовую батарею типа “Крона”, “Коррунд”, аккумуляторы “Ника”, 7Д-0,125, или понижающий сетевой блок питания со стабилизированным выходным напряжением постоянного тока 9 – 12 V.
   Для проверки работоспособности пульта ДУ его располагают на расстоянии 0,5 …1 м от линзы фотодиода. Освещение в помещении не должно быть излишне ярким, так как узел фотодатчика построен по простейшей схеме и не содержит цепей стабилизации напряжения на фотодиоде.    Чувствительность этого прибора достаточно, чтобы фиксировать ИК-излучение с расстояния 2…3 метра.

источник: ” РАДИОКОНСТРУКТОР “, 02 – 2004, стр. 28-29

Похожее

Как проверить ИК-приёмник?

Проверка приёмника инфракрасного сигнала

Как известно, ИК-приёмник представляет собой специализированную микросхему. Это осложняет его проверку. Но, несмотря на это проверить ИК-приёмник можно. Для этого понадобятся кое-какие приспособления. А именно:

  • Блок питания. Желательно, чтобы блок питания был стабилизированный с выходным напряжением 5 вольт. Можно с успехом использовать самодельный блок питания с регулируемым выходным напряжением.

  • Цифровой мультиметр. Подойдёт любой цифровой мультиметр с возможностью измерения постоянного напряжения.

  • Любой исправный пульт дистанционного управления (ДУ).

Перед тем как начать проверку ИК-модуля необходимо определить цоколёвку его выводов. Если этого не сделать, то можно «спалить» ИК-модуль. Если к вам в руки попал неизвестный ИК-приёмник, то не стоит торопиться с его подключением. Для начала нужно внимательно осмотреть его со всех сторон и найти его маркировку. Далее по маркировке находим даташит на данную модель ИК-приёмника на сайте alldatasheet.com или через поиск Гугла. О том, как это сделать читайте здесь. Как правило, в даташите есть рисунок с указанием цоколёвки. Разобраться по нему легко.

Для модели приёмника TSOP31236, на котором и будут проводиться испытания, цоколёвка имеет следующий вид.

Цоколёвка ИК-приёмника

Вывод под номером 1 — это вывод общего провода (GND). К этому выводу подключается минусовой провод блока питания. Вывод под номером 2 — это плюсовой вывод (Vs). К нему подключается плюсовой провод блока питания. Вывод под номером 3 — это выход сигнала приёмника (OUT).

Если необходимое оборудование подготовлено, а цоколёвка выводов ИК-приёмника определена, то собираем проверочную схему. Собирать проверочную схему лучше на беспаечной макетной плате. Это займёт пару минут. Если беспаечной макетной платы нет, то придётся спаять проверочную схему навесным монтажом.

Итак, собираем или паяем проверочную схему. Плюсовой вывод от блока питания (+5 V) подключаем к плюсовому выводу ИК-модуля (Vs), минус – к минусовому выводу ИК-приёмника (GND). А третий вывод ИК-приёмника (OUT) подключаем к плюсовому (красному) щупу мультиметра. Минусовой (чёрный) щуп мультиметра подключаем к общему проводу (GND) проверочной схемы. Мультиметр переключаем в режим измерения постоянного напряжения (DC) на предел 20 V.

Методика проверки.

Тем, кто уже узнал, что такое ИК-приёмник известно, что пока на ИК-приёмник не попадает излучение от пульта ДУ, на его выходе присутствует напряжение практически равное напряжению его питания. То есть 5 вольт. Оно не измениться до тех пор, пока на чувствительный фотодиод приёмника не начнут попадать «пачки» инфракрасных импульсов от пульта ДУ. На фото видно, что на выходе (OUT) ИК-приёмника 5,03 вольт.

Схема проверки

Суть проверки заключается в том, чтобы проверить изменение напряжения на выходе ИК-модуля при попадании на него инфракрасного излучения от любого пульта ДУ.

Как только на фотодиод ИК-приёмника начнут падать пачки инфракрасных импульсов от пульта ДУ, то напряжение на его выходе будет падать. В теории оно должно падать практически до нуля, но поскольку мультиметр не успевает среагировать на изменение напряжения, то он будет показывать падение напряжения на несколько сотен милливольт. Напомним, что сигнал пульта ДУ имеет форму пачек импульсов. Именно поэтому рядовой мультиметр и не успевает отразить на дисплее столь быстрые изменения напряжения на выходе модуля.

Жмём на любую кнопку пульта ДУ и не отпускаем. При этом будет видно, как на дисплее мультиметра значение напряжения упадёт с 5,03 вольт до 4,57. Напряжение на выходе уменьшилось на 460 милливольт (mV).

Реакция ИК-приёмника на инфракрасный сигнал

Если отпустить кнопку пульта ДУ, то на дисплее значение напряжения вновь восстановиться до 5 вольт.

Как видим, приёмник инфракрасного сигнала исправно реагирует на сигнал с пульта ДУ. Значит ИК-модуль исправен. Аналогичным образом можно проверить и другие приёмники инфракрасного сигнала в модульном исполнении.

Думаю, понятно, что если ИК-приёмник не реагирует на сигналы с пульта ДУ и на его выходе напряжение не меняется ни на милливольт, то с большой степенью вероятности можно утверждать о том, что ИК-приёмник неисправен. На практике проводилась проверка ИК-приёмника HS0038 взятого из цветного телевизора, который сгорел во время грозы. Так вот, при проверке ИК-приёмника оказалось, что на его выходе отсутствует напряжение даже в «ждущем» режиме, а ток потребления равен 0. ИК-модуль оказался сгоревшим (скорее всего из-за превышения напряжения питания более 6 вольт).

Среди инфракрасных приёмников серии TSOP и аналогичных есть так называемые низковольтные экземпляры. В своей маркировке они имеют цифру 3. Представителем такого низковольтного ИК-модуля является TSOP 31236. Данный ИК-приёмник работает уже при напряжении питания 3 вольта.

Если проверяется низковольтный экземпляр ИК-приёмника (например, такой как TSOP31236), то на ИК-модуль можно подать напряжение питания как в 3 вольта, так и в 5 вольт. Методика проверки такого ИК-приёмника аналогична описанной.

При проверке приёмников инфракрасного сигнала стоит помнить, что любой из них имеет в своём составе фильтр. Фильтр этот настроен на определённую частоту, обычно лежащую в диапазоне 30-40 килогерц. Но на практике в руки может попасть и ИК-модуль с частотой настройки фильтра и 56, и 455 килогерц (мало ли Реакция ИК-приёмника на инфракрасный сигнал). Так вот, инфракрасный сигнал от рядового пульта такой приёмник может быть и будет принимать, но на выходе сигнала не будет. Почему? Потому что пульт ДУ будет излучать сигнал промодулированный частотой, например, 36 килогерц, а приёмник настроен на приём сигнала, промодулированный частотой в 455 килогерц. Понятно, что в таком случае сигнал просто не пройдёт через фильтр.

Для широко распространённых ИК-приёмников серии TSOP и аналогов частота настройки фильтра обычно составляет 36; 36,7 и 38 килогерц. Они хорошо принимают сигнал практически от любого пульта ДУ, взятого от бытовой электроники. И даже если частота фильтра не совсем совпадает с частотой модуляции сигнала от пульта ДУ, сигнал будет приниматься. Иногда для этого требуется всего лишь ближе поднести пульт к ИК-приёмнику.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *