Site Loader

Ремонт БП FSP Epsilon 1010, принцип работы APFC / Habr

Идея написать родилась после очередной непредвиденной поломки блока питания, чтобы поделиться опытом да и самому было где почитать в следующий раз, если попадётся на ремонт подобный блок питания (далее — БП) или понадобится вспомнить схему.

Сразу скажу, статья рассчитана на простого пользователя ПК, хотя можно было и углубиться в академические подробности.
Несмотря на то, что схемы не мои, я даю описание исключительно «от себя», которое не претендует не единственно правильное, а имеет целью объяснить «на пальцах» работу столь необходимого устройства, как БП компьютера.

Необходимость вникнуть в работу APFC у меня появилась в 2005 году, когда я имел проблему с произвольной перезагрузкой компьютера. Комп я купил на «мыльной» фирмочке не вникая особо в тонкости. В сервисе не помогли: на фирме работает, а у меня перезагружается. Я понял, что пришла очередь напрячься самому… Оказалось проблема в домашней сети, которая вечером просаживалась скачками до 160В! Начал искать схему, увеличивать ёмкость входных конденсаторов, слегка попустило, но проблему не решило. В процессе поиска информации увидел в прайсах непонятные буквы APFC и PPFC в названиях блоков. Позже выяснил, что у меня оказался PPFC и я решил купить себе блок с APFC, потом взял ещё и бесперебойник. Начались другие проблемы — выбивает бесперебойник при включении системника и пропадании сети, в сервисе разводят руками. Сдал его обратно, купил в 3 раза мощнее, работает по сей день без проблем.

Поделюсь с вами своим опытом и надеюсь, вам будет интересно узнать немного больше про компонент системника — БП, которому несправедливо отводят чуть ли не последнюю роль в работе компьютера.

Блоки питания FSP Epsilon 1010 представляют собой качественные и надёжные устройства, но учитывая проблемы наших сетей и другие случайности, они иногда тоже выходят из строя. Выкидывать такой блок жалко, а ремонт может приблизиться к стоимости нового. Но бывают и мелочи, устранив которые, можно вернуть его к жизни.

Как выглядит FSP Epsilon 1010:

Самое главное — понять принцип работы и разложить блок по косточкам.

Приведу пример фрагментов схем типового блока FSP Epsilon, которые мной нарыты в нете. Схемы составлены вручную очень усидчивым и грамотным человеком, который любезно вложил их для общего доступа:

1. Основная схема:
Рисунок 1:
Ссылка на полный размер: s54.radikal.ru/i144/1208/d8/cbca90320cd9.gif

2. Схема контроллера APFC:
Рисунок 2:
Ссылка на полный размер: i082.radikal.ru/1208/88/0f01a4c58bfc.gif

Модификации блоков питания данной серии отличаются количеством элементов (впаиваются дополнительно в ту же плату), но принцип работы одинаков.

APFC

Итак, что же такое APFC?

PFC — это коррекция коэффициента мощности (англ. power factor correction) PFC) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам. Если показать это на трёх пальцах, то это выглядит так:

— запустили блок питания, конденсаторы начали заряжаться — пошёл пик потребления тока совпадающий с пиком синусоиды переменного тока 220В 50Гц (лень рисовать). Почему совпадающий? А как они будут заряжаться при «0» вольт ближе к оси времени? Никак! Пики будут в каждой полуволне синусоиды, так как перед конденсатором стоит диодный мост.
— нагрузка блока потянула ток и разрядила конденсаторы;
— конденсаторы начали заряжаться и опять появились пики потребления тока на пиках синусоиды.

И того, мы видим «ёжика», которым обросла синусоида, и который вместо постоянного потребления «дёргает» ток короткими скачками в узкие моменты времени. А чего тут страшного, нехай себе дергает, скажете вы. А вот тут и порылась собака Баскервилей: эти пики перегружают электрическую проводку и даже могут привести к пожару при номинально рассчитанном сечении проводов. А если учитывать, что блок в сети не один? Да и работающим в одной сети электронным устройствам вряд ли понравится подобная «попиленная» сеть с помехами. Мало того, при заявленной паспортной мощности БП, вы будете платить за свет больше, так как нагрузкой уже выступают ваши сетевые провода в квартире (офисе). Возникает задача сбить пики потребления тока по времени в строну провалов синусоиды, тоесть приблизиться к подобию линейности и разгрузить проводку.

PPFC — пассивная коррекция коэффициента мощности. Это значит, что перед одним сетевым проводом БП стоит массивный дроссель, задача которого сбить по времени пики потребления тока во время заряда конденсаторов, учитывая нелинейные свойства дросселя (тоесть то, что ток через него отстаёт от приложенного к нему напряжения — вспоминайте школу). Выглядит это так: на максимуме синусоиды должен заряжаться конденсатор и он этого ждёт, но вот незадача — перед ним поставили дроссель. А вот дроссель не совсем обеспокоен тем, что нужно конденсатору — к нему приложили напряжение и возникает ток самоиндукции, который направлен в обратную сторону. Таким образом дроссель препятствует заряду конденсатора на пике входной синусоиды — в сети пик, а конденсатор разряжен. Странно, правда? А не этого ли мы хотели? Теперь синусоида спадает, но дроссель и тут ведёт себя как и большинство людей: (имеем — не ценим, теряем — жалеем) опять возникает ток самоиндукции только уже совпадающий с убывающим током, что и заряжает конденсатор. Что мы имеем: на пике — ничего, на провалах — заряд! Задача выполнена!

Именно так и работает схема PPFC за счет затягивания пиков потребления тока на провалы синусоиды (восходящий и нисходящий участки) с помощью всего лишь одного дросселя. Коэффициент мощности близок к 0,6. Неплохо, но не идеально.

APFC — активная коррекция коэффициента мощности. Это значит с использованием электронных компонентов, для которых требуется питание. В этом блоке питания фактически два блока питания: первый — стабилизатор 410В, второй — обычный классический импульсный блок питания. Это мы рассмотрим ниже.

APFC и принцип работы.

Рисунок 3:

Мы только подошли к принципу работы активной коррекции коэффициента мощности, поэтому определим некоторые моменты для себя сразу. Помимо основного назначения (приближение к линейности потребления тока по времени), APFC решает триединую задачу и имеет особенности:

— блок питания с APFC состоит из двух блоков: первый — стабилизатор 410В (собственно APFC), второй — обычный классический импульсный блок питания.
— схема APFC обеспечивает коэффициент мощности около 0,9. Это то, к чему мы стремимся — к «1».

— схема APFC работает на частоте около 200KHz. Согласитесь, дёрнуть ток 200000 раз в секунду по отношению к 50 Гц — это практически в каждый момент времени, тоесть линейно.
— схема APFC обеспечивает стабильное постоянное напряжение на выходе около 410B и работает от 110 до 250В (на практике от 40В). Это значит, что промышленная сеть практически не влияет на работу внутренних стабилизаторов.

Работа схемы:

Принцип работы APFC основан на накоплении энергии в дросселе и последующей отдаче её в нагрузку.
При подаче питания через дроссель, его ток отстаёт от напряжения. При снятии напряжения возникает явление самоиндукции. Вот его и кушает блок питания, а так как напряжение самоиндукции может приближаться у двойному приложенному — вот вам и работа от 110В! Задача схемы APFC — с заданной точностью дозировать ток через дроссель, чтобы на выходе всегда было напряжение 410В независимо от нагрузки и входного напряжения.

На рисунке 3 мы видим DC — источник постоянного напряжения после моста (не стабилизированный), накопительный дроссель L1, транзисторный ключ SW1, которым управляет компаратор и ШИМ. Схема сделана довольно смело на первый взгляд, так как ключ фактически делает короткое замыкание в розетке в момент открытия, но мы его простим, учитывая что замыкание происходит на микросекунды с частотой 200000 раз в секунду. А вот при неисправностях схемы управления ключом вы обязательно услышите и даже понюхаете, а может и увидите как сгорят силовые ключи в подобной схеме.

1. Транзистор SW1 открыт, ток в нагрузку течёт как и раньше через дроссель от «+ DC» — «L1» — «SW2» — «RL» к «-DC». Но дроссель сопротивляется движению тока (самоиндукция начало), при этом идёт накопление энергии в дросселе L1 — на нём растёт напряжение практически до напряжения DC, так как это короткое замыкание (правда на долю времени (пока всё исправно). Диод SW2 предотвращает разряд конденсатора C1 в момент открытия транзистора.

2. Транзистор SW1 закрылся… напряжение на нагрузке будет равно сумме напряжений источника DC1 и дросселя L1, который только что некисло приложился к источнику и выбросил ток самоиндукции с обратной полярностью. Магнитное поле дросселя пропадая пересечёт его, индуцируя на нём ЭДС самоиндукции противоположной полярности. Теперь ток самоиндукции имеет одно направление с пропадающим током источника (самоиндукция конец). Самоиндукция — явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.
Так вот, в момент самоиндукции после закрытия транзистора и получается наша добавочка до 410В из-за добавления энергии от дросселя. Почему добавочка? Вспоминайте школу, сколько будет на выходе моста с конденсатором, если на входе 220в? Правильно, 220В умножить на корень из двух (1,41421356) = 311В. Вот это было бы без работы схемы APFC. Оно так и есть в точке, где мы ждём 410В, пока работает только дежурка +5В и не запущен сам блок. Сейчас нет смысла гонять APFC, дежурке и так хватит её 2 Ампера.
Всё это строго контролируется схемой управления с помощью обратной связи от точки 410В. Регулируется уровень самоиндукции временем открытия транзисторов, тоесть временем накопления энергии L1 — это широтно-импульсная стабилизация. Задача APFC — стабильно держать 410В на выходе при изменении внешних факторов сети и нагрузки.

Вот и получается, что в блоке питания с APFC — два блока питания: стабилизатор 410В и сам классический блок питания.

Сбивание зависимости пиков потребления тока от пиков синусоиды обеспечивается перенесением этих пиков на частоту работы схемы APFC — 200000 раз в секунду, что приближается к линейному потреблению тока в каждый момент времени синусоиды 50Гц 220В. Что и требовалось доказать.

Достоинства APFC:
— коэффициент мощности около 0,9;
— работа от любой капризной сети 110 — 250В, в том числе нестабильной сельской;
— помехоустойчивость:
— высокий коэффициент стабилизации выходных напряжений за счёт стабильного входного 410В;
— низкий коэффициент пульсаций выходных напряжений;
— малые размеры фильтров, так как частота около 200КГц.
— высокий общий КПД блока.
— малые помехи отдаваемые в промышленную сеть;
— высокий экономический эффект в оплате за свет;
— разгружается электрическая проводка;
— на предприятиях и в организациях телекоммуникаций, имеющих станционные батареи 60В, для питания критических серверов можно обойтись вообще без UPS — просто включите блок в цепь гарантированного питания 60В ничего не меняя и не соблюдая полярность (которой нет).

Это позволит уйти от тех несчастных 15 минут работы от UPS до 10 часов от станционных батарей, чтобы не легла вся система управления в случае незапуска дизеля. А на это многие не обращают внимание или об этом не думали, пока дизель не обидится как-нибудь разок… Всё оборудование будет продолжать работать, а управлять будет нечем, так как компы поотрубаются через 15 минут. Изготовителем представлен диапазон работы 90 — 265В по причине отсутствия такого стандарта питания как переменные 60В, но практический предел работы был получен на величине 40В, ниже проверять небыло смысла.
Перечитайте пункт внимательно ещё раз и оцените возможности своих бесперебойников для критических серверов!

Недостатки APFC:
— цена;

— сложность в диагностике и ремонте;
— дорогие детали (транзисторы — около 5$ за шт., а их там до 5шт. иногда), зачастую стоимость ремонта себя не оправдывает;
— проблемы совместной работы с бесперебойниками (UPS) за счёт большого пускового тока. Выбирать UPS нужно с двукратным запасом мощности.

А теперь рассмотрим схему блока питания FSP Epsilon 1010 на рис. 1, 2.

У FSP Epsilon 1010 силовая часть APFC представлена тремя транзисторами HGTG20N60C3 с током 45А и напряжением 600В, стоящими в параллель: www.fairchildsemi.com/ds/HG/HGT1S20N60C3S.pdf
На нашей типовой схеме их 2 Q10, Q11, но это не меняет сути. Наш блок просто мощнее. Сигнал FPC OUT выходит с 12 ноги микросхемы CM6800G на 12 контакт модуля управления на рис №2. Далее через резистор R8 за затворы ключей. Так происходит управление APFC. Схема управления APFC питается от +15В дежурки через оптопару M5, резистор R82 — 8pin CB (A). Но запускается она только после запуска блока на нагрузку по сигналу PW-ON (зелёный провод 24 контактного разъёма на землю).

Типовые неисправности:

Симптомы:
— перегорает предохранитель с хлопком;
— блок «не дышит» вообще даже после замены предохранителя, что ещё хуже. Значит повреждения грозят обернуться более дорогим ремонтом.

Диагноз: отказ схемы APFC.

Лечение:
В диагностике отказа схемы APFC ошибиться сложно.
Принято считать, что блок с APFC можно запустить и без APFC, если он вышел из строя. И мы так посчитаем, и даже проверим это, особенно когда речь идёт об опасных экспериментах с дорогими транзисторами HGT1S20N60C3S. Выпаиваем транзисторы.
Блок удачно работает, если проблема была только в схеме APFC, но нужно понимать, что блок питания потеряет мощность до 30% и в эксплуатацию его пускать нельзя — только проверка. Ну а далее уже меняем транзисторы на новые, но включаем блок последовательно через лампу накала 220В 100Вт. Блок нагружаем например на старый HDD. Если лампа горит в пол накала и HDD запустился (трогаем пальцами), на блоке крутится вентилятор — есть вероятность, что на этом ремонт закончен. Запускаем без лампы с уменьшенной в 3 раза величиной предохранителя. И сейчас не сгорел? Ну тогда впаиваем родной F1 и вперёд на часовой тест под эквивалентом нагрузки ватт на 300-500! Горящая полным накалом лампа вам говорит об полном открытии ключевых транзисторов или их заупокойном состоянии, ищем проблему перед ними.
Если на каком-то этапе не повезло, возвращаемся к новой покупке транзисторов, не забыв при этом купить и контроллер CM6800G. Меняем детали, повторяем всё заново. Не забываем визуально осмотреть всю плату!

Симптомы:
— блок запускается через раз или когда постоит 5 минут включенным в сеть;
— у вас ниоткуда появился неисправный HDD;
— вентиляторы крутятся, но система не загружается, BIOS не пикает при запуске;
— вздулись конденсоры на материнской плате, видеокарте;
— система произвольно перезагружается, зависает.

Диагноз: высохли электролитические конденсаторы.

Лечение:
— разобрать блок и визуально найти вздутые конденсаторы;
— лучшее решение поменять все на новые, а не только вздутые;

Незапуск происходит из за высохших конденсаторов дежурки C43, C44, C45, C49;
Отказы компонентов происходят из-за повышения пульсаций в цепи +5В, +12В вследствие высыхания конденсатов фильтров.

Симптомы:
— блок свистит или пищит;
— тон свиста меняется под нагрузкой;
— блок свистит только пока холодный или пока горячий.

Диагноз: Трещины печатной платы или непропай элементов.

Лечение:
— разбираем блок;
— визуально осматриваем печатную плату в местах пайки ключевых транзисторов и дросселей фильтров на предмет овальных трещин на месте пайки;
— если ничего не нашли, то всё равно пропаиваем ножки силовых элементов.
— проверяем и наслаждаемся тишиной.

Остальных неисправностей великое множество, вплоть до внутренних обрывов или межвитковых пробоев, трещин в плате и деталях, и прочее. Особенно досаждают температурные неисправности, когда работает пока не нагреется или не остынет.
Блоки питания других производителей имеют похожий принцип работы, который позволит найти и устранить неисправность.

В конце пара советов по БП:
1. Никогда не выключайте из розетки работающий блок питания с APFC! Сначала припаркуйте систему, а потом вынимайте из розетки или выключайте не удлинителе — иначе доиграетесь…
При пропадании напряжения в момент работы блока тянется дуга и происходит искрение, что приводит к куче гармоник отличных от 50Гц — это раз, напряжение убывает и ключи APFC пытаются удержать стабильное напряжение на выходе, открываясь при этом полностью и на большее время, вызывая ещё больший ток и дугу — это два. Это приводит к пробою открытых транзисторов огромными токами и неконтролируемыми напряжениями гармоник — это три. Это легко проверить, если есть желание. Лично я уже проверил… теперь написал эту статью и потратил 25$ на ремонт. Вы можете тоже написать свою. Кстати у FSP Epsilon 1010 кнопка на корпусе отключает не провод питания, а систему управления, при этом все силовые элементы остаются под напряжением — будьте осторожны! Поэтому, если уж нужно срочно выключить комп, то делайте это кнопкой питания на блоке — тут всё продумано.

2. Если вы заранее знаете, что будете работать с бесперебойником, то покупайте блок питания с PPFC. Это избавит вас от ненужных проблем.

В рассказе я старался не приводить лишних графиков, схем, формул и технических терминов, чтобы на пятой строке не отпугнуть рядового мучителя своего ПК, более глубокое понимание основ питания которого, продлит ему время безотказной работы.

Сейчас самое время разобрать системник и определить модель вашего блока питания, заодно и пыль с него вытряхнуть. Одну неисправность вы уже предотвратили. Чистым он с благодарностью будет служить дольше. Смажьте вентилятор, это тоже приветствуется.

Кто дочитал статью до конца — всем спасибо!
Теперь ваш БП в безопасности.

Схемы компьютерных блоков питания ATX, AT и ноутбуков

Схемы компьютерных блоков питания ATX, AT и ноутбуков
  • Список рубрик
  • Теги этой статьи
  • Самые популярные статьи
  • Новые статьи на сайте
  1. Домой
  2. Статьи
  3. Компьютерное железо
  4. Схемы компьютерных блоков питания ATX, AT и ноутбуков
    Сборник схем № 1
  • Power Master 250W модель LP-8 ver 2.03 230W (AP-5-E v1.1) схема
  • Power Master 250W модель FA-5-2 ver 3.2 схема
  • Maxpower PX-300W на микросхеме SG6105D схема
  • PowerLink (Linkworld) 300W LPJ2-18 на микросхеме LPG-899 схема
  • JNC 250W модель lc-b250atx на микросхеме 2003 схема
  • PowerMan IP-P550DJ2-0 на микросхеме W7510 схема
  • LWT 2005 на микросхеме LM339N и KA7500B схема
  • Power Master 250W модель AP-3-1 на микросхеме TL494 схема
  • ATX-310T модель ATX-300P4-PFC на микросхеме TL494 и LM339 схема
  • PowerMan 350W модель IP-P350AJ на микросхеме W7510 схема
    Сборник схем № 2
  • ATX-P6 схема
  • PowerMan 450W модель IP-S450T7-0 схема
  • ComStars 400W модель KT-400EX-12A1 на микросхеме UC3543A схема
  • Green Tech 300W модель MAV-300W-P4 на микросхеме TL494CN и WT7510 схема
  • Dell 280W PS-5281-5DF-LF модель L280P-01 на TNY278, UC3843BN и PS222 схема
  • Krauler ATX-450 450W на TL3845, LD7660, WT7510 схема
  • SevenTeam ST-200HRK на LM339, ШИМ UTC51494, UC3843AN схема
  • Enermax 200W на ШИМ TL494 схема
  • Dell 350W PS-6351-1DFS модель L350P-00 на TNY267P, UC3843BN, PS224 схема
  • Dell 305W PS-6311-2DF2-LF модель L305-00 на TNY267P, UC3843BN, PS224 и 11N90С схема
  • Dell 250W PS-5251-2DFS на TNY267P, UC3845BN, TSM111CN и полевикe 2SK2611 схема
  • Dell 230W PS-5231-2DS-LF на TNY266P, UC3843BN, PS222S и полевиках FQA9N90C схема
  • Dell 160W PS-5161-7DS на ШИМ контроллере UC3845GN и полевике 2SK2654 схема
  • Dell 160W PS-5161-1D1S на TNY267P, UC3843BN, TSM111CN и полевике 2SK2654 схема
  • Dell 145W SA145-3436 на ШИМ UC3842, LM358N и полевике IFRBC30 схема
  • SevenTeam ST-230WHF на LM339, ШИМ TL494 схема
    Сборник схем № 3
  • Power Mini P4, Model PM-300W. Основной ШИМ SG6105 схема
  • SPS-1804-2(M1) и SPS-1804E(1) на микросхеме TL494CN схема
  • ShenShon 400W модель SZ-400L и 450W модель SZ450L, дежурка на C3150, ШИМ AT2005 схема
  • из iMAC G5 A1058, APFC на 4863G, дежурка на TOP245YN, основной БП на 3845B схема
  • PowerMan 350W модель IP-P350AJ2-0 ver.2.2 на GM3843, W7510 и ICE2A0565Z схема
  • PowerMan 450W модель IP-S450T7-0 rev:1.3 на 3845, WT7510 и A6259H схема
  • AUVA VIP P200B 200W на TL494 схема
  • CWT CWT-235ATX 235W MAX на UTC34063, KA7500B и LM393 схема
  • PM30006-02 ATX 300W 230V 80PLUS на микросхемах SG6931, SG6516, SG6858 схема
  • TND359-D 255W ATX 80 PLUS-certified, на микросхемах NCP4302, NCP1396A, NCP1654, NCP4302, PS223, NCP1587, NCP1027, LM393 схема
  • Часть схемы БП CoolerMaster 460W RS-460-PCAP-A3 на WT7527, UC3843, TNY277NP схема
  • Shido LP-6100 ATX-250W на TL494 и LM339 схема
  • Corsair 1200W AX1200i часть схемы на 3843B и ICE3BS03LJG схема
    Сборник схем № 4 — БП «Chieftec»
  • Chieftec CFT-500A-12S, CFT-560A-12S, CFT-620A-12S на CM6800G, PS222S, SG6858 или SG6848 схема
  • Chieftec APS-1000C, cхемы дежурки и модуля ШИМ на TNY278PN, CM6800TX схема
  • Chieftec 850W CFT-850G-DF схема
  • Chieftec 350W GPS-350EB-101A схема
  • Chieftec 350W GPS-350FB-101A схема
  • Chieftec 500W GPS-500AB-A схема
  • Chieftec 550W GPS-550AB-A схема
  • Chieftec 650W GPS-650AB-A и Chieftec 650W CFT-650A-12B схема
  • Chieftec 1000W CFT-1000G-DF и Chieftec 1200W CFT-1200G-DF схема
  • Chieftec CFT-600-14CS, CFT-650-14CS, CFT-700-14CS, CFT-750-14CS на LD7550B схема
  • Chieftec 750W CTG-750C на CM6805A, R7731A, CM03 и HY510N схема
  • Chieftec 550W APS-550S на FAN4800, PS224 и TNY278 схема
  • Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P на CM6805A, HY510N и R7731A схема
  • Chieftec iArena GPA-400S8 на CM6805BSX, TNY176PN и ST9S313-DAG схема
  • Chieftec CFT-370-P12S, CFT-430-P12S, CFT-460-P12S на SG6105D схема
  • Chieftec 750W APS-750C схема
  • Схема основной платы Chieftec 750W BPS-750C на SG6848T и PS229 схема
  • Схема платы управления и кулера Chieftec 750W BPS-750C схема
  • Chieftec iArena GPA-500S на CM6805BSX, TNY176PN и ST9S313-DAG схема
  • Chieftec 650W CTB-650S (NO-720A REV-A1) на TNY278PN, FAN4800, PS223 схема
  • Chieftec 460W ENH-0746GB (часть схемы) на TDA16888 схема
  • Chieftec 650W APS-650C (часть схемы) APFC и силовая часть на FAN4800IN, 24N60C, 20N60C3 схема
    Сборник схем блоков питания № 5 — БП для ноутбуков
  • Универсальный БП 70W для ноутбуков 12-24V, модель SCAC2004, плата EWAD70W на чипе LD7552 схема
  • БП 60W 19V 3.42A для ноутбуков, плата KM60-8M на микросхеме UC3843 схема
  • Delta ADP-36EH для ноутбуков 12V 3A, на микросхеме DAP6A и DAS001 схема
  • Li Shin LSE0202A2090 90W для ноутбуков 20V 4.5A, на чипах NCP1203 и TSM101, АККМ на L6561 схема
  • Delta ADP-30JH 30W для ноутбуков 19V 1.58A, на микросхеме DAP018B и TL431 схема
  • Delta ADP-40PH ABW схема
  • HP Compaq CM-0K065B13-LF 65W для ноутбуков 18.5V 3.5A, модель PPP009H-DC359A, на микросхемах UC3842 и LM358 схема
  • NB-90B19-AAA 90W для ноутбуков 19V 4.74A, на TEA1750 схема
  • Lite-On PA-1121-04CP на LTA702 схема
  • Delta ADP-40MH BDA (Part No:S93-0408120-D04) на DAS01A, DAP008ADR2G схема
  • 19V 4.74A на LTA301P, 103AI, PFC собрана на TDA4863G/FAN7530/L6561D/L6562D схема
  • Delta ADP-90SB BB AC:110-240v DC:19V 4.7A на DAP6A, DSA001 или TSM103A схема
  • Delta ADP-90FB AC:100-240v DC:19V 4.74A на L6561D013TR, DAP002TR и DAS01A схема
  • Lite-On PA-1211-1 AC:100-240v DC:12.2V 17.25A на LM339N, L6561, UC3845BN, LM358N схема
  • Li Shin LSE0202A2090 AC:100-240v DC:20V 4.5A 90W на L6561, NCP1203-60 и TSM101 схема
  • Универсальный БП Gembird NPA-AC1 15V/16V/18V/19V/19.5V/20V 4.5A 90W на LD7575 схема
  • Delta ADP-60DP AC:100-240v DC:19V 3.16A на TSM103W (M103A) и I6561D схема
  • Delta ADP-40PH BB для ноутбуков 19V 2.1A на микросхеме DAP018ADR2G и полевике STP6NK60ZFP схема
  • Asus SADP-65KB B AC:100-240v DC:19V 3.42A на DAP006 (DAP6A) и DAS001 (TSM103AI) схема
  • Asus PA-1900-36 AC:100-240v DC:19V 4.74A на LTA804N и LTA806N схема
  • Asus ADP-90CD DB AC:100-240v DC:19V 4.74A на DAP013D и полевике 11N65C3 схема
  • Asus ADP-90SB BB AC:100-240v DC:19V 4.74A на DAP006 (DAP6A) и DAS001 (TSM103AI) схема
  • LiteOn PA-1900/05 AC:100-240v DC:19V 4.74A на LTA301P и 103AI, PFC 2SK3561, 2SK3569 схема
  • LiteOn PA-1121-04 AC:100-240v DC:19V 6.3A на LTA702, 2SK3934, SPA11N65C3 схема
    Сборник схем № 6
  • БП на FAN4800A (заменима на ML4800, FAN4800, CM6800 или CM6800A), FSBH0370 и SG6520 схема
  • Microlab 420W, на WT7510, ШИМ TL3842 и дежурка на 5H0165R схема
  • Chip Goal 250W CCG8010DX, на микросхеме CG8010DX (он же WT7520) схема
  • BESTEC ATX-300-12ES на микросхемах UC3842, 3510 и A6351 схема
  • BESTEC ATX-400W(PFC) на микросхемах ICE1PCS01, UC3842, 6848, 3510, LM358 схема
  • Microlab M-ATX-420W на базе UC3842, супервизор 3510 и LM393 схема
  • Sparkman SM-400W на KA3842A, WT7510 схема
  • Hiper HPU-4S425-PU 425W APFC на микросхемах CM6805, VIPer22A, LM393, PS229 схема
  • FSP Epsilon 600W FX600-GLN (схема дежурки), собрана на FSDM0265R схема
  • CWT PUh500W ATX собран на 3845B, VIPer22A, LM393, PS113 схема
  • Microlab ATX-5400X 400W на KA7500B и LM339 схема
  • AOpen 400W AO400-12ALN и AO400-APNB на KA1H0165R, L4981AD, KA3511 и LM358N схема
    Сборник схем № 7
  • Дежурка KME 230W модель PX-230W, KME-08-3A1 схема
  • Дежурка ESPADA KPY-350ATX схема
  • Часть схемы LEC 971 ATX 250W на KA7500B схема
  • ATX Octek X25D AP-3-1 250W на микросхеме TL494 схема
  • ATX Sunny ATX-230 230W на UC3843 и TPS5510P схема
  • DELUX ATX-350W P4 на AZ7500BP и LP7510 схема
  • Codegen QORI 200xa на 350W на микросхеме SG6105 схема
  • Deer DR-240 240W v2.02 на микросхемах TL494 и LM339 схема
  • M-Tech 450W KOB-AP4450XA на микросхеме SG6105Z схема
  • Shenzhon 350w на AT2005, он же WT7520, он же LPG899 схема
  • Sunny CWT9200C на KA7500, он же TL494 схема
  • Часть схемы High Power (Sirtec) HP-550-A12S на MC6800 (ML4800), SG6848, 2SK3504 схема
  • ISO-450PP 4S 450W на TL494L, TPS3510P, транзисторы D209L схема
  • Схема дежурки БП High Power (Sirtec) HPC-350-102, HP-400-A12S на FQP2N60 схема
  • Codegen CG33 350W на KA7500B, KIA393P и SH0165R схема
    Сборник схем № 8 — БП «COLORSit»
  • COLORSit 300W модель 300U-FNM на микросхеме sg6105 и sg6848 схема
  • COLORSit 330W модель 330U на ШИМ SG6105 и дежурка на TDA865 схема
  • COLORSit 330U модель IW-P300A2-0 R1.2 на микросхеме sg6105 схема
  • COLORSit 330W модель 330U на ШИМ SG6105 и дежурка на M605 схема
  • COLORSit 340W модель 340U на ШИМ SG6105 схема
  • COLORSit 350W модель 350U-SCE на микросхеме KA339, M605, 3842 схема
  • COLORSit 350W модель 350-FCH на ШИМ 3842, LM339 и M605 схема
  • COLORSit 350W модель 340U на ШИМ SG6105 и 5H0165R схема
  • COLORSit 400W модель 400U на ШИМ SG6105 и 5H0165R схема
  • COLORSit 400W модель 400PT, 400U SCH на ШИМ 3842, LM339 и M605 схема
  • COLORSit 500W модель 500T на ШИМ SG6105 и 5H0165R схема
  • COLORSit 600W модель 600PT (ATX12V-13) на ШИМ 3843, WT7525, 3B0365 схема
    Сборник схем № 9 — БП «FSP»
  • FSP145-60SP на ШИМ КА3511, дежурка на КА1Н0165R схема
  • FSP250-50PLA, APFC на CM6800, полевиках STP12NM50, дежурка на TOP243Y, контроль на PS223 схема
  • FSP ATX-350PNR дежурка на DM311 и основной ШИМ FSP3528 схема
  • Схема вторичных цепей блока питания FSP ATX-300PAF на FSP3528 схема
  • Схема дежурного напряжения блока питания FSP ATX-350 на DA311 схема
  • Часть схемы FPS 350W FSP350-60THA-P и 460W FX500-A на ШИМ FSP3529Z (аналог SG6105) схема
  • Часть схемы FPS ATX-400 400W, дежурка на DM311 схема
  • Часть схемы FPS ATX-400PNF, на ШИМ 3528 схема
  • Часть схемы FSP OPS550-80GLN, APFC на полевиках 20N60C3, дежурка на DM311 схема
  • Часть схемы FSP OPS550-80GLN, модуль управления APFC+PWM на CM6800G схема
  • Часть схемы FSP Epsilon 600W FX600-GLN (схема дежурки), собрана на FSDM0265R схема
  • Дежурка FSP ATX-300GTF на полевике 02N60 схема
  • Часть схемы FSP ATX-300PNF на FSP3528 схема
  • Часть схемы FSP ATX-500PNR на TNY277PN схема
  • Схема БП FSP350-60APN на CM6800TX, TNY277PN и WT7527 схема
  • Часть схемы AmacroX (FSP) AX500-60GLN на CM6800G, PS223 и FSDM0265RNB схема
    Сборник схем № 10
  • EuroCase LC-B350ATX на микросхеме 2003 (BAY62520342E) схема
  • Часть схемы БП Thermaltake Toughpower 650W на PS229 схема
  • Gembird 450W на микросхемах AZ7500BP и LP7510 схема
  • Enermax 500W ENP500AGT на CM6805BSX, TNY176PN и ST9S313-DAG схема
  • Patriot 400W A400-K на SG6105 схема
  • Megabajt 350W MGB-350S ATX на TL494CN и WT7510 схема
  • Maxpower 230W PX-230W на SG6105D схема
  • Linkworld 350W LC-A350ATX-P4 на чипе 2003 схема
  • JNC 400W KY-2128 rev.1.1 на AMC110B, AP3843B и полевиках IFRPC50 схема
  • JNC 200W ATX v.2.02 на TL494, LM339 и транзисторах 13007 схема
  • HP Compaq HSTNS-PL11 (PS-2122-1C) схема
  • HP Compaq PS-5111-6C на UC3845B схема
  • Feel LC-B300ATX на чипе 2003 схема
  • Схема дежурки Enlight 150W SFX-2015 EN-8156901 на BUF640 схема
  • JNC 250W LC-250ATX ver.2.02B на TL494, LM339N и транзисторах 2SC5763 схема
  • JNC 250W LC-B250ATX ver.2.9 на ШИМ 2003 и транзисторах 2SC5763 схема
  • JNC 300W SY-300ATX на ШИМ AT2005 и транзисторах 2146 схема
  • Часть схемы БП Enlight (HighPower/Sirtec) HPC-250-102, HPC-350-102 на L494CN, LM339N, 1N4001 схема
    Сборник схем № 11 — БП «LiteOn»
  • LiteOn PS-5281-7VW на UC3843, FQA9N90C, TNY277PN и PS224 схема
  • LiteOn PS-5281-7VR1 на UC3843BN, TK07H90A, TNY277PN, PS224U схема
  • LiteOn PS-5281-7VR на UC3843BN, FQA9N90C, TNY277P, PS224U схема
  • LiteOn PE-5161-1 на MB3759 (она же TL494) и LM393 схема
  • LiteOn PA-1201-1 на L6561, UC3845BN, LM393 схема
  • LiteOn PA-1061-0 12V 5A на LTA809FA (SG6741), TSM103WAID схема
    Сборник схем № 12 — БП «Delta Electronics Inc.»
  • Delta DPS-260-2A 260W на NE556, PQ05RF11, ML4824-1, LM358, LM339D, PQ30R21 схема
  • Delta DPS-470 AB A 500W, APFC и дежурка на ШИМ DNA1005A или DNA1005 схема
  • Delta DPS-210EP из LCD телика ViewSonic N3000W, на базе UCC28051D, DAS01, E-DLA001DTR, ICE3B0565 и NCP1575DR2 схема
  • Delta GPS-450AA-101A 450W схема
  • Delta DPS-200PP-74A на DNA1001D схема
  • Delta 410W DPS-410DB A, часть схемы на DNA1002 схема
  • Delta DPS-200PB-59 на LM339D, TL494 и транзисторах 2SC3306 схема
    Сборник схем № 13 — БП для ноутбуков «Dell»
  • Dell PA-12 модель HA65NS1-00 AC:100-240v DC:19.5V 3.34A 65W на TSM103AI и 1D07012 схема
  • Dell PA-3E модель PA-1900-28D LA90PE1-01 AC:100-240v DC:19.5V 4.62A 90W на LTA804N (TEA1751LT) и LTA806N (TEA1791T) схема
  • Dell PA-10 модель PA-1900-02D AC:100-240v DC:19.5V 4.62A 90W на L6561D, LTA201P, TSM103AID схема
    Сборник схем № 14 — БП «DTK»
  • DTK PTP-2038 200W на TL494 и LM393 схема
  • DTK PTP-3518 200W на TL494 и LM393 схема
  • DTK PTP-3018 230W на TL494 и LM393 схема
  • DTK PTP-2538 250W на TL494 и LM393 схема
  • DTK PTP-2518 250W на TL494 и LM393 схема
  • DTK PTP-2508 на TL494 и LM393 схема
  • DTK PTP-2505 250W на TL494 и LM393 схема
  • DTK PTP-2068 200W на UC3843 и LM393 схема
  • DTK PTP-2028 230W на TL494 и LM393 схема
  • DTK PTP-2008 200W на TL494 и LM393 схема
  • DTK PTP-2007 200W на TL494CN и LM393N схема
  • DTK PTP-2005 200W на TL494 и LM393 схема
  • DTK PTP-2001 200W на TL494 и LM393 схема
  • DTK PTP-1568 на UC3843 и LM393 схема
  • DTK PTP-1508 150W на KA3843 и LM393N схема
  • DTK PTP-1503 150W на KA3843 и LM393N схема
  • DTK PTP-1358 на KA3843 и LM393N схема
    Сборник схем № 15
  • Часть схемы БП AcBel API2PC25 для Fujitsu-Siemens Scenic С600 схема
  • Часть схемы БП AcBel 180W API4PC47 для Apple iMac G5 схема
  • Codegen ATX 300W модель 300X v2.03 на KA7500B и 5H0165R схема
  • Codegen ATX 250W модели 200XA1, 250XA1 (CG-07A, CG-11) на KA7500B и A6393D, KIA393P схема
  • Krauler PSU-360 ATX 360W на KB7500B и LM339 схема
  • HP Compaq d530 SSF PDP124P на TOP244P, UC3845, SCY99112P схема
  • Jou Jye JJ-300PPGA 300W на SG6105 схема
  • Jou Jye JJ-250PP 250W на DBL494 схема
  • Схемa БП ACBel API4PC01-000 схема
  • Схемa БП AcBel API3PCD2-Y01 схема
  • Linkworld LPK2-30 (LPQ2) на SG6105D схема
  • Часть схемы БП High Power CHP-400A 400W на ML4800 (MC6800) схема
  • HighPower HPC-420-302 420W на SG6105, LM339, UC3818 схема
К списку схем К списку схем К списку схем К списку схем К списку схем К списку схем К списку схем
  • Схема блока питания Power Master 250W модель AP-3-1
    на микр

Ремонт блока питания Chieftec APS-600C 600W

Несложный ремонт блока питания Chieftec APS-600C 600W

Фото внутренностей (уже успел выпаять электролит 390uF*400v):

Из того что сразу бросается в глаза:
взорваная дежурка — TNY278PN
вздутый конденсатор — 390uF*400v

Открутить от радиатора полупроводники можно, как обычно, только выпаяв всё целиком:
Отметил пробитые детали корректора мощности (APFC):
— один MOSFET 20N60C3
— высокоскоростной диод BYC10-600

Заменил детальки:
Конденсатор будет 330uF*400V, полевики FQPF20N60C, диод HFA15TB60, ШИМ дежурки TNY278PN

Проверяем остальные элементы, в первую очередь полупроводники (методом выпаивания и прозвонки).
Оптопары, что удивительно, все целые:

Диоды D103, D104 исправны.

Все диоды и транзистор исправны (D702, D101, Q703, D703),
заменил только конденсатор питания (47uF*50V) основного ШИМ контроллера — FAN4800IN, в профилактических целях.

Диоды на истоке дежурки ZD501, D501 исправны.
Замена конденсатора 10uF*50V для профилактики (хотя ёмкость и ESR у него в пределах нормы).
Ну и замена самой дежурки.

Основное проверили.
Дальше проверяем всякую мелочёвку, силовые полевики, выпрямительные диоды во вторичке.

Итого заменено:
дежурка — TNY278PN
конденсатор — 390uF*400V
два полевика — 20N60C3 (менял парой, хотя по факту пробит только один),
диод APFC — BYC10-600
конденсатор дежурки 10uF*50v
конденсатор PFC/PWM контроллера 47uF*50v

Тестовый запуск, через прожектор в 500W, прошёл успешно, все напряжения присутствуют и находятся в пределах нормы.

Upd.
Полевики FQPF20N60C — какая-то Китайская подделка, Rds больше чем в 3 раза завышено, по сравнению с оригиналом:

Совсем не держат нагрузку, греются как паровоз.
Заменил на FCP22N60N от Fairchild.

Upd.2
Собрал блок, включаю, не работает и пахнет каким-то палевом 🙂
Разобрал, проверил, вроде всё нормально.
Оказалось, подгорела кнопка включения.
Поставил нечто, под маркой KCD2, производства Jinghan.

Upd.3
Вернули блок. Говорят, включили, трах-бабах, и всё снова сломалось.
Открываю, один полевик в APFC снова пробит. Остальное вроде как целое, ну или почти целое.
Диодик ER506 (D101), который стоит перед дросселем PFC имеет какую-то «раковинку» на корпусе, хотя звонится как исправный:

Такого у меня нет, поставил что было: быстродействующий 15ETH06 в ТО-220 корпусе.

Для профилактики решил поменять ШИМ. Родной стоял FAN4800IN, на замену воткнул ML4800CP и тут началось…
Включаю, а PFC задирает напряжение на конденсаторе до 410В и отключается. Напряжение падает, PFC включается и снова поднимает его до 410В.
И так раз в 0.5 секунды. В общем, PFC работает в режиме «старт-стоп». При этом слышно посчёлкивание/треск из дросселя PFC в такт этим перезапускам.
Крутиль, вертель, датаЩит читаль, ничего непоняль. Не нашёл я каких-то радикальных отличий в обвязке, по сравнию с FAN4800, что могло бы привести к такому эффекту.

Цепь токовых датчиков смотрел, контроль напряжения на выходе PFC смотрел. Ничего подозрительного.
Обратил внимание, что если менять значение конденсатора С203 (у меня он был равен 10nF), то меняется частота «старт-стоп» режима.
Поставил 330pF (как в мануале на ML4800), и дроссель PFC стал трещать как пулемёт. Потом поставил 1nF, стал трещать с заметно меньшей частотой.
Почему есть эта зависимость от конденсатора, в цепи обратной связи по напряжению, непонятно.
Вот этот конденсатор:

Наткнулся на парочку тем по этому поводу тут и ещё вот тут.
Оказывается, лучшие умы «рунета», уже бились над этой проблемой, и ни к чему не пришли.

Пришлось сдаться и запаять CM6800G 🙂
Блок заработал как часики. Никаких тресков, на выходе всё ровненько, без пульсаций.
(думаю, ШИМ можно было не менять, скорее всего родной FAN4800 был рабочим)

Получается, что FAN4800 можно заменить на CM6800 (думаю и в обратную сторону тоже), а вот ML4800 можно воткнуть не везде.
Может повезёт, а может и нет, в зависимости от схемы блока.

W5500. IP для маленьких вещей / Habr

Похоже, что Etherent и TCP/IP — все ещё самый распространенных способ связи самых разных устройств. Хотя WiFi в последнее время потихоньку вытесняет проводной «медный» Etherent, тем не менее, найти порт и «воткнуться в локалку» — до сих пор самый простой способ подключения. Такая доступность Ethernet не обошла стороной и самые маленькие железки: контроллеры, датчики, счетчики потребления и т.д. которые нынче называются модным маркетинговым словом «Интернет вещей*» (Internet Of Things, IoT).

И тут нам могут здорово помочь корейские микросхемки от WIZnet. Компания WIZnet — это довольно активный производитель чипов класса IOcP (Internet Offload co-Processor). Что это? Говоря человеческим языком — это такой чип, который: с одной стороны имеет Etherent, внутри содержит собственный крошечный процессор для обработки TCP/IP, а с другой стороны — простой интерфейс для связи с нашей маленькой железкой.

В первой части будет небольшой теоретический обзор подключения «маленьких железок» и куча ссылок на разные чипы.

Но сразу возникает вопрос: ЗАЧЕМ вводить в систему еще один процессор, если всё можно обработать на основном? Давайте попробуем ответить.


Давайте попробуем уйти «вниз» по шкале стоимости (до единиц долларов и даже ниже) и рассмотрим различные способы включения «мелочи» в сеть.

Самый-самый простой способ «выхода в сеть» для микроконтроллеров — это разного рода преобразователи COMпорт-в-Telnet, Serial2Ethernet иногда называемые еще Реверсивный Telnet. В этом случае преобразователь «ловит» telnet сессию и «загоняет» ее в обычный COM-порт микроконтроллера. Далее оператор попадает в обычный диалог, только по сети. Ну что тут сказать? Во первых, там тоже стоит отдельный микроконтроллер и устройства получаются совсем не дешевые (Статьи про самодельный модуль и про модуль Tibbo). Для простенькой задачи «поменять/прочитать один параметр» этого может и вполне хватит. Минусов тоже много — единственная сессия, фиксированный протокол — трудно, например, прикрутить SSL если его нет, сложности конфигурирования самого преобразователя, например сменить ему IP адрес или порт и т.д.

Другой вариант — это микроконтроллеры с настоящим Etherent на борту, но они как правило, имеют только MAC уровень и требуют внешнего чипа PHY (KS8721BL, DM9161A, RTL8201). Соединение с таким чипом, MII или RMII как минимум требует внешних пинов. Для соединения PHY с LAN требуется еще впаять трансформатор или MagJack. Таким образом, по «числу компонентов» выигрыша тут не получается. Удивительно, но внешние Etherent PHY — довольно дорогие чипы, несколько долларов за корпус. Но примерно столько же стоит весь чип от WIZnet целиком, кремний-то в массовом производстве стоит копейки. Да, трансформатор для WIZnet тоже потребуется, но значительного выигрыша от встроенного MAC-контроллера по цене не получится. Второе: программная поддержка MAC/PHY довольно сложна и объёмна. Например, для STM32Fxx7 исходные коды Ethernet драйвера занимают примерно 100К текста на C. (статья про PIC-и с Ether). Кроме драйвера Etherent нужен еще сам стек TCP/IP (LwIP или uIP). Кроме размера не стоит забывать и о скорости исполнения (хотя… STM32 уже по скорости превышает первый Pentium и про ограничение производительности можно забыть).

Но если ли преимущества «полного» программного IP-стека на микроконтроллере? Конечно есть. Рассмотрим их потом, а пока продолжим.

Третий вариант — это глубоко любимый «эмбеддерщиками» чип SPI Ethernet контроллера Microchip ENC28J60 (и чуть менее известный Silabs CP2200). Обратите внимание, это именно настоящие контроллеры Ethernet, а не TCP/IP сопроцессоры. Все что умеет чип — принимать и получать Etherent фреймы. То есть, стек TCP/IP все равно придется делать самим. Да, стеков есть несколько готовых, от замечательных небольших до классических LwIP и uIP.

Но все же, такое решение скорее напрямую конкурирует со встроенным MAC контроллером, да и цена на чип — те же несколько долларов и около 5..7$ за готовый модуль (плата с чипом, трансформатором и гнездом RJ45) на ebay/aliexpress. Так что вернемся к продуктам фирмы WIZnet.


Первое устройство W3100 было выпущено довольно давно, в 2001 году. Это был полноценный TCP/IP IOcP (сопроцессор), который предлагал некий средний путь между COM-портом и MAC-контроллером, реализуя идею TCP/UDP «сокетов» внутри чипа. Физически же W3100 был не очень удобный двухчиповый набор MAС/PHY и настоящая популярность в среде «ардуинщиков» (AVR) и «пиководов» пришла к устройству W5100. Достаточно сказать, что «официальный» Arduino Ethernet Shield собран именно на W5100.

С тех пор прошло немало времени и стали заметны недостатки W5100: чип довольно сильно греется, скорость сети всего 10Mbit/s, чип имеет несколько (документированных в Errata) глюков, корпус довольно большой из за наличия параллельной шины, несколько нетривиальная реализация SPI. Неудивительно, что вскоре WIZnet представила следующую модель: W5200. Этот чип научился работать на 100Mbit, засыпать и экономить электричество, лишился параллельного подключения, в нем остался чисто SPI, что резко уменьшило число ног. (Для поддержки параллельной шины у него есть «братик» W5300).

Внедрение и освоение W5200 пошло на ура! и продолжается до сих пор, выпускаются модули (начиная от «родного» WizNET WIZ820io) и кончая различными ардуиновскими шилдами, желающие могут легко их найти. Например, чуть менее «официальный» Ethernet Shield V2.0 из проекта Seeeduino или Ethernet Shield for Arduino от Dfrobot. А тут большой список других модулей (список реально большой, мотаем вниз).

И вот наконец, в октябре 2013 WIZnet анонсировала новый W5500 о котором собственно и планировалось рассказать в этой статье (извините за такое затянувшееся предисловие). Чип получил чуть более удобный
для ЛУТ-самодельщиков корпус 48LQFN, быстрый «пакетный» SPI и Cortex M0 внутри, что позволило уменьшить техпроцесс и потребляемую мощность. В целом же чип выглядит как «W5200 на стероидах». Сравнение W5200 и W5500.

Следом WizNET выпустила модуль WIZ550io (там же есть и схема), а чтобы не остаться в стороне от «ардуиномании» вскоре сама же WIZnet выпустила еще и Arduino Shield (это просто пассивный переходник с Arduino на WIZ550io).

Но давайте не будем рассматривать Arduino, это сделают и без нас (например прямо тут, на Хабре: Ethernet термометр на основе Arduino и т.д.) а попробуем прикрутить W5500 к какому-нибудь популярному микроконтроллеру, например к тому же STM32. Даже сама компания WizNET в курсе этого замечательного семейства и выпускала модуль W5200E01-M3 на предыдущем W5200 ( STM32F103C8 и FT232RQ для USB2Serial). Вскоре вышел и модуль на STM32 + W5500: WIZ550web.

Кстати, в марте 2014 на Circuitcellar был объявлен конкурс Connect The Magic (до августа 2014) на разработку с использованием W5500, а WIZnet скинула цены на чипы и модули (купить). В конкурсе можно было выиграть до 15.000$. Подробности на сайте, там же есть отличная статья.

Во второй части (если я её допишу…) мы попробуем прикрутить W5500 (а точнее WIZ550io) к маленькой отладочной плате от компании Shenzhen LC Technology Co.,Ltd. и выиграть 15.000$. Платки продаются на Aliexpress по 7.99$ и даже упоминались несколько раз на Хабре.

P.S. Автор не имеет никакого отношения к уважаемой фирме WIZnet, но постепенно список ссылок по W5500 разросся и превратился в такой вот хабрапост.

Chieftec tps-550s ремонт блока питания. Решено. Есть схема.

Попался в руки  (был куплен за $3,5) вот такой (убитый) блок питания. Вылетел предохранитель, мост. Мост заменил на аналогичный. После чего появилось напряжение на конденсаторах выпрямителя. Дежурного напряжения +5 нету, схема выполнена на TYN177PN. Пока заказал данные микросхемы в Китае.

Еще надо надо

  • Заказать предохранители 10А.
  • проверить — транзисторы инвертора
  • проверить транзистор цепи компенсации APFS (я верно написал эту аббревиатуру!)
  • Почистить вентилятор
  • Напомнить себе что включать такое надо не через 40Вт лампочку, а через 500 Вт лампочку, или фен, так как напряжение на выпрямителе просажено. Купить много патронов, много лампочек и сделать этот «стенд».
  • найти какие-то схемы

UPD 25-02-2016. Приехали предохранители и  имс дежурки TNY177PN. Микросхему заменил, и сразу появилась дежурка 5,3-5,5 вольт. Что немного много но уже хорошо, что есть.

Начал проверять мосфеты, так как лампочка при запуске — совсем не гасла. В основной цепи (там еще и коррекция сделана) явно сгорел один из пары мосфетов SVN20N50F. А второй немного отличался по сопротивлению сток-исток, хоть и отпирался. Заказал аналог Fairchild SDP20N50F с аналогичными параметрами.

UPD 26-02-2016 Припаял мосфет на 10А/500В, на место погоревшего, запустил, поставил предохранитель вместо лампочки — опять сгорел мост и тот же мосфет. Перепаял мост и мосфет. Запуска нет, лампочка мигает.

Ок, далее проверю по методике в ссылке 2 еть ли напряжение питания на 6800 (шим контроллере). Если есть буду его менять. Если нет буду искать почему нет.

UPD 27.02.2016

Проверил питание на 13 ножке CM6800X. 7 вольт. При 10-18в по даташиту. Ниже приведена схема включения от другого блока с dip16 версией CM6800. Вероятно в этом блоке нечто похожее.

UPD. Нашел схему этого блока питания. Теперь можно понять по крайней мере что и где. Лично у меня теперь никакого вопроса даже не возникнет какой торговой марки покупать блок питания в будущем. Отличный сервис. Да цены дорогие, но и комплектующие дорогие — тут прямая взаимосвязь.

UPD 21 марта 2016. Перепаял CM03x — не помогло, проверил напряжения, которые с нее идут на шим-контроллер они не подаются, так как AFPS я отключил. Тут возникает вопрос, будет ли контроллер работать без наличия сигналов про наличие входных напряжений. В любом случае сначала попробую поменять шим-контроллер, а потом уже искать дальше по-схеме.

UPD. 23-03-2016 Нашел два убитых транзистора (в корпусе sot-21) в цепи APFS — Q8/Q9. Диоды рядом живые. На ШИМ 13-ножке (VCC) 1,2 вольта, что совершенно занижено.

UPD 09-05-2016 Поменял убитые транзисторы Q8/Q9 (SS9015/9014 — до 45в 0,2А, комплиментарная пара). На VСС — 15-ть вольт, после замены ШИМ,  Замена ШИМ на FAN4800 — ничего не дала, блок не работает. Заменил также все транзисторы APFC+Силовые. Один силовой был прибитый. Проверил все диодное вообще в первичке. Заменил на всякий два оптрона, дежурного режима оптрон — в норме, не менял.

Касание щупом базы управляющих АПФС приводит к цветомузыке запускающей лампы (400вт 220в). То есть оконечный каскад АПФС работает. Инвертор самого блока пока мертвый.

Следующие планы —

  • проверить что на ZD2 и соответственно 3-м выводе cm03x (замеряно — 15.55в)
  • проверить резисторы и вообще обратную связь APFC (до Isense ШИМа) — проверено, сопротивление R18=47ом в норме. На 3-м выводе ШИМ Isense — 0 D
  • ШИМ 4800 — не выдает опорного напряжения 7,5 вольт на 14-й ножке. Есть подозрение на подделанную ИМС.

 

Поменял на оригинальную. 7,5 вольт было на месте. Поменял еще раз на другую FAN4800. Блок запустился. ШИМ был паленный. Второй ШИМ — был бракованный.

Следующая проблема — нет PowerGood, при наименьшей нагрузке выдается 0В.  Без нагрузки выдается через 250 мс. Надо разбираться или менять ИМС повернгуда Citronix st95313 — очень похоже на то, что она «козлит». Но замены ей найти сложновато.

Ссылки

  • (3) Найдена схема блока питания Chieftec TPS-550s 
  • (1) Тема по ремонту похожего, по неполадкам, шифтека — ром.бу. Пишут что джентельменский набор включает в себя также оптопару обратной связи в цепи дежурки, один 20N60C3 из цепи коррекции мощности (мощный полевой транзистор с малым временем заряда затвора )
  • (2) Описание ремонта схемы APFC на 6800 — здесь 

 

UPD. Починил. ШИМ фейковые ставил. Дошло не сразу.

Ремонт ATX блока питания AeroCool VP-450

Небольшая заметка про ремонт блока питания AeroCool VP-450.

Блок питания почти классический. Кому интересно обзор можно почитать тут: http://www.3dnews.ru/927229/

Первое, что сразу бросается в глаза — взорванная дежурка.

Выпаиваем.

Опознать затруднительно. Маркировки, как видно не осталось 🙁 Сам блок плохо гуглится, вернее гуглится, но без маркировки дежурки.

Пытаюсь отрисовать по схеме:

На сайте http://remont-aud.net/ic_power/ нашёл, что под нужную распиновку неплохо подходит STR-A6059 или STR-A6069.

В итоге, нагуглил очень похожий блок питания, какой-то Xigmatek (судя по картинкам, один в один с моим AeroCool).
И там была вот такая картинка:

Из чего стало понятно, что дежурка всё таки STR-A6069

На всякий случай, ещё разок сверил то, что я зарисовал, с мануалом на STR-A6069.

Поменял микросхему. Начал прозванивать обвязку вокруг. Пока искал, заодно нашёл потёкший конденсатор выпрямителя.

Заменил его сразу.

Обвязка на удивление оказалась целой, только поменял оптопару, на всякий случай.
Заодно проверил резистор R9, в цепи контроля 380В PFC (идёт с 8 ноги ШИМ-а cm6805bg), говорят иногда его «обрывает», из-за чего следом выходит из строя электролит.

Резистор оказался целый.

Сделал пробный запуск блока. Дежурка появилась, всё завелось.

Кратенько по блоку:
[Spoiler (click to open)]

Плата:

Дежурка STR-A6069H

Супервайзер sitronix ST9S313A

ШИМ cm6805bg
Полевики hfp840

Переделка компьютерного блока питания FSP ATX-500PNR 500W в зарядное устройство

Не всегда для переделки в зарядное устройство используются старые, никому не нужные блоки питания компьютера. Сегодня у нас переделка компьютерного блока питания FSP-500PNR в зарядное устройство. Фотоматериалы нам предоставил Александр Прошкин, которому в процессе мы давали подсказки и подробные инструкции.

Переделка компьютерного блока питания FSP ATX-500PNR 500W в зарядное устройство

Главная цель – поднять выходное напряжение блока питания по шине +12 В до 14-14,5В. В таком случае АКБ будет заряжаться постоянным напряжением, меняться будет лишь сила тока. При начальном этапе сила тока заряда будет составлять порядка 8-10 А, по мере зарядки ток будет падать. При токе 0,5 А АКБ будет уже полностью заряжен.

Переделка компьютерного блока питания FSP ATX-500PNR 500W будет производиться в два этапа:

  1. Отключение супервизора WT7527 и организация автоматического старта БП.
  2. Корректировка выходного напряжения.

Отключения супервизора WT7527 и организация автоматического старта БП

Полной схемы FSP ATX-500PNR 500W в сети найти не удалось. Попадаются лишь фрагменты дежурки блока и др. Перед началом корректировки напряжения необходимо отключить защиту, которая построена на супервизоре WT7527.

Мы будем работать с доработанной схемой типового включения WT7527, которую можно найти в технической документации представленной производителем.

И так, для отключения супервизора необходимо установить перемычку (отмечена красным) на выход оптопары, которая подключена через резистор к 3-й ножке WT7527.






Установив в необходимом месте перемычку, WT7527 уже никак не будет влиять на работу блока. С учетом того, что ранее именно WT7527 отвечала за старт блока и мониторинг выходных напряжений, после установки перемычки блок будет включаться сразу же при включении в сеть.

Корректировка выходного напряжения в блоке питания

Перед началом корректировки желательно ознакомиться с максимально приближенной схемой этого БП. Это будет схема от блока FSP250-50PLA. Отличие от FSP500PNR  – дежурка и супервизор другие, но ШИМ CM6800 и силовая часть ну очень похожи.

Нам необходим лишь небольшой участок схемы.

Важно внимательно рассмотреть трассировку дорожек и не ошибиться с поиском резистора, который отмечен красной рамкой.

Выпаиваем CMD резистор и измеряем его сопротивление (4,6кОм). Устанавливаем на его место подстроечный резистор на 33кОм, предварительно настроенный также на 4,6кОм. Регулируя подстроечный резистор, мы сможем корректировать выходное напряжение и выставить необходимые 14-14,5В.

Останется лишь измерить текущее сопротивление подстроечного резистора после корректировки и заменить его постоянным.

Далее желательно подключить вольтапмерметр. Также необходимо учесть, что такое зарядное устройство из блока питания компьютера боится переполюсовки, для защиты на выходе можно использовать схему защиты от переполюсовки и короткого замыкания.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *