Site Loader

СХЕМА ЛОГИЧЕСКОГО ПРОБНИКА

   Всем привет. Сегодня хочу представить вам логический пробник, которым пользуюсь уже пару лет. Не всегда радиолюбитель может позволить приобрести себе необходимые приборы, предназначенные для диагностики и настройки радиоэлектронных устройств. Вот и приходится придумывать разнообразные приставки к уже имеющимся в домашней радиолаборатории измерительным приборам, или паять собственные приборы, позволяющие проводить измерения или только регистрацию уровней необходимой величины.

Принципиальная схема логического пробника

Принципиальная схема логического пробника

Печатная плата логического пробника

Печатная плата логического пробника

   Часто использование пробников даже более оправдано, чем измерительных приборов, поскольку бывает достаточно проконтролировать лишь наличие сигнала, а его точное значение и параметры необязательно. Получается, что в подобных ситуациях точная измерительная техника только зря отнимает внимание и время.

СХЕМА собранного самодельного ЛОГИЧЕСКОГО ПРОБНИКА

   Пробник может использоваться для настройки или наладки цифровых радиоэлектронных устройств, и проверки, есть ли сигнал на входе и выходе того или иного прибора (например для различных мигалок, мультивибраторов, сирен). Он имеет небольшие габариты, у меня тестер поместился в коробочке из-под тик-так.

 ЛОГИЧЕСКИЙ ПРОБНИК

   Логический пробник позволяет отображать состояние логического нуля и логической единицы, наличие импульса и превышение допустимого уровня логического сигнала. Информация выдается на 2 светодиода зеленого ( 1 ) и красного ( 0 ) цвета. Пробник может требовать небольших настроек резистором R5. Я использовал микросхему К561ЛА7, у кого таких нет, то рядом со схемой написаны аналоги микросхем, которые можно использовать. Но именно ЛА7, по моему мнению, лучше всего использовать. Пробник работает от 3 до 15 вольт.

Щуп для ЛОГИЧЕСКОГО ПРОБНИКА

   Пользоваться им довольно легко. Нужно подключиться крокодильчиками к плюсу и минусу платы, которую нам нужно диагностировать. Затем щупом касаться до контрольных точек и смотреть, есть ли сигнал на выходе микросхем. Светодиоды на пробнике должны переключаться между собой с той частотой, которую выдает генератор импульсов.

Как своими руками спаять ЛОГИЧЕСКИЙ ПРОБНИК

   Если импульсов нет, то на вход микросхемы не подается сигнал или микросхема вышла из строя. Если кто не знает что такое контрольные точки — это те точки, из которых выходит сигнал из микросхемы, они обозначаются кружочком.

Пример схемы испытываемого устройства

Пример измерения логического пробника

   Вот на примере рассмотрим схему: точки обведены красным цветом — это выход сигнала с генератора. К ним нужно подключаться щупом, и тогда светодиоды на пробнике будут переключаться — значит генератор импульсов работает. И микросхема в этом случае так же работает. Спасибо за внимание, автор материала Игорь М.

   Форум по микросхемам

   Обсудить статью СХЕМА ЛОГИЧЕСКОГО ПРОБНИКА


Простые логические пробники | Кое-что из радиотехники

   Для проверки схем, в которых используются цифровые интегральные микросхемы, необходимы устройства, определяющие напряжения высокого и низкого уровней ( соответственно логические 1 или 0 ). Для их индикации используют разнообразные

логические пробники, т. е. пробники, реагирующие лишь на уровни напряжений логических сигналов.


   На Рис.1 изображена схема самого простого логического пробника. В нём всего лишь один транзистор и светодиод, включённый в коллекторную цепь транзистора.
   Если на щупы ХР2 и ХР3 подано напряжение питание, но щуп ХР1 никуда не подключен, светодиод горит “вполнакала”. Такой режим обеспечивается подбором резистора R2, задающим напряжение смещения на базе транзистора. Когда же щуп ХР1 будет касаться вывода микросхемы, на которой логический 0, транзистор закроется и светодиод погаснет. И, наоборот, при подключении этого щупа к цепи с логической 1 транзистор откроется настолько, что светодиод вспыхнет ярким светом.


   Данные режимы справедливы, если прибор питается от измеряемой схемы. Если пробник имеет автономное питание, например батарея 3336, щуп ХР3 дополнительно соединяют с общим проводом конструкции.
   Пробник можно использовать и для “прозвонки” монтажа; тогда его питают от батареи, а щупом ХР1 и проводником, соединяющим с щупом ХР3, касаются нужных участков проверяемых цепей. Если между ними есть соединение, светодиод гаснет.
   В пробнике можно использовать любой маломощный кремниевый транзистор со статическим коэффициентом передачи тока не менее 100. Вместо АЛ102Б подойдёт любой светодиод серий АЛ102, АЛ307. Резистор R2 подбирают таким сопротивлением, чтобы светодиод горел “вполнакала”.


   Другая конструкция простого пробника (

Рис.2 ) содержит два светодиода. Пробник позволяет не только контролировать логические уровни в разных цепях устройства, но и проверять наличие импульсов, а также приблизительно оценивать их скваженность ( отношение периода следования импульсов к их длительности ). Кроме того, он позволяет фиксировать и “третье состояние”, когда логический сигнал находится между 0 и 1. В этих целях в пробнике в пробнике установлены диоды разного свечения: зелёного (HL1) и красного (HL2).
   На транзисторе VT1 выполнен усилитель, повышающий входное сопротивление пробника. Далее следуют электронные ключи на транзисторах VT2 и VT3, управляющие диодами соответствующим свечением..
   Если напряжение на щупе ХР1 относительно общего провода ( минус источника питания ) более 0,4 В, но менее 2,4 В (“третье состояние”), транзистор VT2 открыт, светодиод HL1 не горит. В то же время транзистор VT3 закрыт, поскольку падение напряжения на резисторе R3 недостаточно для полного открывания диода VD1 и создания нужного смещения на базе транзистора. Поэтому светодиод HL2 также не светится.

   Как только напряжение на входном щупе пробника станет менее 0,4 В транзистор VT2 закроется и загорится светодиод HL1, индицируя логический 0. При напряжении на щупе ХР1 более 2,4 В открывается транзистор VT2, загорается светодиод HL2 – он индицирует логическую 1.
   В случае поступления на вход пробника импульсного напряжения скваженность импульсов приблизительно оценивают по яркости свечения того или другого светодиода.
   Кроме указанных на схеме транзисторов можно применить транзисторы серий КТ312, КТ201 (VT1, VT3), КТ203 (VT2), любой кремниевый диод (VD1), светодиоды серий АЛ102, АД307, АЛ314 соответственного свечения.
   Налаживая пробник
, подбором резистора R1 добиваются отсутствия свечения светодиодов в исходном состоянии – при отключённом щупе ХР1. Подав же на этот щуп напряжение 2,4 В ( относительно щупа ХР3 ), подбором резистора R6 добиваются зажигания свечения светодиода HL2. Яркость свечения, а значит предельно допустимый ток через светодиод, ограничивают резисторами R4 и R7.

ИСТОЧНИК: Б. С. Иванов “В ПОМОЩЬ РАДИОКРУЖКУ”, Москва, “Радио и связь”, 1990г, стр.13 – 14.

Похожее

Простой логический пробник | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. Для наладки тактового генератора появилась необходимость в логическом пробнике. На просторах интернета ничего толкового не нашел, так как схемы, которые я брал с сайтов, не работали, а если и работали, то не так как это было необходимо. Поэтому было решено разработать свою схему логического пробника, внешний вид которого Вы видите на фото ниже.

Внешний вид логического пробника

Щуп логического пробника

Индикация логического пробника

Схема пробника реализована на Советских микросхемах К176ИЕ8 (СD4017) и К155ЛА3 (SN7400), которые у меня оказались в наличии.

Микросхемы К155ЛА3 и К176ИЕ8

Микросхема К155ЛА3 состоит из четырех элементов 2И-НЕ, питающихся от общего источника постоянного тока, при этом каждый из элементов работает как самостоятельная микросхема. Все четыре элемента имеют по три вывода, где каждый элемент определяется по номерам выводов. Так, например, входные выводы 1, 2 и выходной вывод 3 относятся к первому элементу, а входные выводы 4, 5 и выходной 6 – ко второму элементу и т.д.

Выводы 7 и 14 микросхемы, служащие для подачи питания, на схемах не обозначают, так как ее элементы могут находиться в разных участках схемы устройства. На принципиальных схемах каждый элемент обозначают буквенно-цифровым индексом: DD1, DD2, DD3, DD4.

Цоколевка выводов микросхемы К155ЛА3

Микросхема

К176ИЕ8 представляет собой десятичный счетчик с дешифратором и имеет три входа R, CN, СР и девять выходов Q0…Q9.

Вход R (вывод 15) служит для установки счетчика в исходное состояние;
На вход CN (вывод 14) подают счетные импульсы отрицательной полярности;
На вход СР (вывод 13) подают счетные импульсы положительной полярности;
Выхода Q0…Q9 (выводы 1 – 7 и 9 — 11) являются выходами счетчика. В исходном состоянии на выходах Q1…Q9 находится лог. 0, а на Q0 лог. 1;
Плюс питания подается на вывод 16, а минус – на вывод 8.

Цоколевка выводов микросхемы К176ИЕ8

Установка счетчика микросхемы в 0 происходит при подаче на вход R логической единицы (лог.1), при этом на выходе Q0 появляется лог.1, а на выходах

Q1 — Q9 – логический 0 (лог.0). Например. Требуется, чтобы счетчик считал только до третьего разряда Q2 (вывод 4). Для этого соединяем вывод 4 с выводом 15. При достижении счета до третьего разряда счетчик автоматически перейдет на отсчет с начала.

Переключение состояний (выходов) счетчика происходит по спадам импульсов отрицательной полярности, подаваемых на вход CN. При этом на входе СР должен быть логический 0. Можно также подавать импульсы положительной полярности на вход СР, тогда переключение будет происходить по их спадам. При этом на входе CN должна быть логическая единица.

Принципиальна схема логического пробника приведена на рисунке ниже.

Принципиальная схема логического пробника

Работа схемы очень простая.
При поступлении положительных импульсов на вход СР микросхемы DD2 происходит переключение выходов счетчика, индицируемое светодиодами. По миганию светодиодов наблюдают процесс работы проверяемого генератора или любого другого цифрового устройства.

Если на вход приходит напряжение меньше 2/3 напряжения питания, или его вообще нет, счетчик работает нестабильно. При этом переключение светодиодов происходит хаотично и такое состояние можно считать логическим 0. При подаче на вход логической 1 происходит четкое переключение счетчика, и пробник подает звуковой сигнал. Звуковой генератор собран на элементах DD1.1 и DD1.2 микросхемы К155ЛА3 и транзисторе VT1 КТ361Б.

В пробнике я применил четыре светодиода и считаю, что этого вполне достаточно для визуализации процесса. При этом даже имеется некоторое удобство при измерении, которое дает небольшую паузу при переключении счетчика в начальное состояние. Если кто захочет использовать большее количество светодиодов, то вывод 15 микросхемы DD2 подключают к следующему по порядку выходу. В моем варианте вывод 15 соединен с выводом 1 счетчика.

Пробник можно использовать и без звуковой сигнализации. Для этого из схемы исключаем звуковой генератор, собранный на элементах DD1, VT1 КТ361Б, R1, R2, C1, звуковой сигнализатор ЗП-22. В этом случае измеряемый уровень сигнала подается только на вход СР счетчика.

Пробник питается от проверяемого устройства, что очень удобно.

Схема собрана на односторонней плате и имеет небольшие размеры, что позволяет сделать прибор компактным. Светодиоды можно использовать любые низковольтные. Корпус пробника выполнен от футляра для очков.

Плата логического пробника со стороны деталей

Вид платы пробника со стороны деталей

Вид платы пробника со стороны дорожек

Щупом послужил кусочек медного провода сечение 3мм и длиной 5см. В рабочем варианте пробника входная часть выполнена без диода и транзистора, которые по этой причине не показаны на принципиальной схеме. Как показала практика, такое изменение существенно увеличило чувствительность логического пробника.

Также посмотрите видеоролик, в котором показывается работа пробника.

Плату в формате lay можно скачать по этой ссылке.

До встречи на страницах сайта!
Анатолий Тихомиров (picdiod), г. Рига
Удачи!

Литература:

С.А Бирюков «Цифровые устройства на МОП-интегральных микросхемах».

Логический пробник для наладки и ремонта ZX-Spectrum

10 / 14 840

Версия для печати

Для наладки и ремонта ZX-Spectrum совместимых компьютеров полезным приспособлением является логический пробник. По сути это прибор, отображающий логический уровень сигнала на входе (лог.0 или лог.1). Так как в зависимости от типа используемых микросхем (ТТЛ, КМОП) логические уровни могут быть разными, пробник в идеале должен быть настраиваемым для использования совместно с разными типами сигналов.

В ZX-Spectrum’ах почти всегда используются микросхемы с ТТЛ входами/выходами, поэтому будет уместно рассмотреть схему логического пробника с учётом уровней сигнала ТТЛ.

Тут я немного повторю прописные истины, которые и без того известны всем заинтересованным… Величины напряжений лог.1 и лог.0 для ТТЛ видны из следующего схематичного рисунка:

Как видно крайние уровни лог.0 и лог.1 для входов и выходов несколько отличаются друг от друга. Для входа лог.0 будет при напряжении от 0,8В и менее. А выходной уровень лог.0 — это 0,4В и менее. Для лог.1 это будет 2,0В и 2,4В соотвественно.

Это сделано для того, чтобы крайние уровни лог.0 и лог.1 для выходов гарантированно попадали в диапазон напряжений для входов. Поэтому и сделана такая небольгшая «разбежка» в уровнях входов и выходов.

Всё, что попадает в диапазон напряжений между лог.0 и лог.1 (от 0,8В до 2,0В) логическим элементом не распознаётся как один из логических уровней. Если бы не было такой разбежки в уровнях (2-0,8=1,2В) любая помеха расценивалась бы как смена уровня сигнала. А так логический элемент устойчив к действиям помех с амплитудой до 1,2В, что согласитесь, очень неплохо.

У ТТЛ-входов есть интересная особенность: если вход никуда не подключен, то микросхема «считает», что на него подана лог.1. Конечно же такое «неподключение» — это очень нехорошо, хотя бы потому, что при этом висящий «в воздухе» вход микросхемы «ловит» все помехи, в результате чего возможны ложные срабатывания. Однако нас интересует другое — на «висящем в воздухе» входе всегда присутствует некоторое напряжение, величина которого попадает в неопределённый промежуток между логическими уровнями:

Определение величины напряжения на неподключенных входах микросхемы

Такой уровень называют «висящая единица», т.е. как бы единица есть (расценивается микросхемой как лог.1), но на самом деле её нет :)

Применительно к процессу ремонта и наладки компьютеров понятие «висящей единицы» полезно тем, что в случае обрыва проводника на плате или отгорания выхода какой-либо микросхемы на входы связаных с ними микросхем не подаётся сигнал, а следовательно, там будет «висящая единица», и этот момент можно зафиксировать, т.к. примерные уровни напряжения в таком состоянии микросхемы нам уже известны (порядка от 0,9В и вплоть до 2,4В).

То есть если, допустим, по схеме вход микросхемы куда-то должен быть подключен, а на нём в реальности не 0 и не 1, а «висящая единица», то что-то тут не так. В плане процесса ремонта это очень полезно!

Исходя из всего вышесказанного можно сформулировать техническое задание на создание логического пробника:
— Напряжение от 0 до 0,8В включительно считаются как лог.0;
— Напряжение от 2,0В до 5,0В считаем как лог.1;
— Напряжения от 0,9В до 2,4В считаем как «висящую единицу».

Различные конструкции логических пробников

Схем логических пробников очень много. Достаточно поискать в любом поисковике забить фразу «логический пробник». Однако по разным критериям данные схемы мне не подходят:
— Вывод ведётся на семисегментный индикатор, яркость которого никак не позволяет определить примерную скважность импульсов;
— Нет определения «висящей единицы»;
— Другие критерии типа «просто не понравилась схема» 🙂

Схема самого простого пробника был опубликована в журнале «Радиолюбитель» №9 за 1995 год:

Немного более «продвинутый» вариант этой схемы:

Таким пробником я пользовался около 18 лет. Несмотря на простоту этот пробник показывает всё: лог.0, лог.1. Даже «висящую единицу» показывает — при этом светодиод (лог.1) еле светится. Можно определять скважность импульсов по яркости свечения светодиодов. Этот пробник даже не выгорает при подаче на его входы напряжений -5В, +12В и даже выше! При подаче на пробник -5В светодиод (лог.0) горит с очень большой яркостью. При +12В на входе горит с большой яркостью светодиод (лог.1). Короче, неубиваемая схема :)

Для регистрации коротких импульсов, которые не видны глазом (например, импульс выбора порта) я приделал к пробнику «защёлку» на половинке триггера ТМ2:

Внешний вид пробника:

Логический пробник

Логический пробник

Свой вариант логического пробника

Мной предпринимались попытки сделать логический пробник с индикацией «висящей единицы» на компараторах. В статике всё работало и определялось, но в динамике пробник оказался неработоспособен. Проблема кроется в быстродействии компараторов. Доступные мне компараторы (LM339, К1401СА1, КР554СА3 и т.п.) довольно «тормозные» и не позволяют работать на частоте выше 1,5-2МГц. Для работы со схемой ZX-Spectrum это совершенно не годится. Какой толк от пробника, если он не может даже показать тактовую частоту процессора?

Но совсем недавно на Youtube на глаза попалась видео-лекция по работе логического пробника:

Лекция по принципам работы логического пробника

Лекция очень интересная и познавательная. Посмотрите её полностью!

Данная конструкция пробника меня очень заинтересовала, и я решил её повторить и проверить. По схеме из лекции всё заработало за исключением каскада для определения уровня «висящей» единицы. Однако это не является проблемой, и я сделал каскад на компараторе. Вопрос быстродействия тут не стоит, т.к. термин «висящая единица» применим к статическому состоянию микросхемы.

В итоге получился пробник со следующей схемой:

Схема логического пробника (увеличивается по клику мышкой)

Схема логического пробника (увеличивается по клику мышкой)

P.S. Схема пробника не самая идеальная, и при желании наверняка можно сделать проще и лучше.

Описание схемы и процесс наладки логического пробника

Входные каскады пробника выполнены на эмиттерных повторителях на транзисторах VT1 и VT2. В исходном состоянии (когда на вход пробника ничего не подано) транзисторы закрыты, поэтому на входы DD1.1 подан лог.0 через резистор R4, светодиод VD1 не горит. Точно так же закрыт транзистор VT2, и через резистор R5 на входы DD1.2 подаётся лог.1, светодиод VD3 не горит.

При подаче сигнала с уровнем лог.0 (0…0,8В) открывается транзистор VT2, на входы DD1.2 подаётся лог.0, светодиод VD3 загорается.

При подаче сигнала с уровнем лог.1 (2…5В) открывается транзистор VT1, на входы DD1.1 подаётся лог.1, светодиод VD1 загорается.

Резисторами R2-R3 на входе пробника устанавливается напряжение порядка 0,87-0,9В. Т.е. необходимо, чтобы это напряжение было в промежутке 0,8..0,9В, чтобы при никуда не подключенном входе пробника не горел светодиод VD3.

На компараторе DA3 сделана схема определения «висящей единицы». Резисторами R6-R7 устанавливается напряжение порядка 0,92..0,95В, при котором компаратор определит, что на входе находится уровень «висящей единицы», и загорится светодиод VD2. Напряжение на входе 2DA2 подбирается такой величины, чтобы при никуда не подключенном входе пробника не горел светодиод VD2.

Цвет свечения светодиодов можно выбрать таким, чтобы лог.0 показывался зелёным светом, лог.1 — красным, «висящая единица» — желтым. Не знаю как вам, а мне так удобнее. Светодиоды VD1 и VD3 лучше всего брать прозрачные (не матовые), чтобы хорошо был виден кристалл, и по возможности яркие, чтобы легче было заменить, если светодиод хоть чуть-чуть светится.

На микросхеме DD3 выполнен счётчик импульсов, поступающих на вход пробника. При коротких имульсах, не видных глазу, светодиоды VD4-VD7 будут исправно показывать количество импульсов в двоичной форме 🙂 Кнопкой SB1 счётчик сбрасывается с погасанием всех светодиодов.

Инверторы микросхемы DD2 используются для того, чтобы активным уровнем (когда зажигается светодиод) был лог.0, т.к. ТТЛ-выход при лог.0 способен отдать в нагрузку ток до 16 мА. При выходной лог.1 выход способен отдать ток 1 мА, и если мы к нему подключим светодиод (чтобы он зажигался при лог.1 на выходе) мы перегрузим выход. Токоограничивающие резисторы подобраны так, чтобы максимальный ток, протекающий через светодиоды, не превышал 15 мА.

Пробник питается от отдельного блока питания (я использовал источник питания от магнитофона «Беларусь»). На плате пробника расположен стабилизатор напряжения DA2. Учивая не слишком большой ток потребления пробника микросхема стабилизатора используется без дополнительного теплоотвода, и при этом не перегревается.

Входные цепи пробника VT1, VT2, DA3 питаются от отдельного источника опорного напряжения DA1. Сделано это потому, что при изменении тока потребления пробника (например, когда горит большинство светодиодов) выходное напряжение стабилизатора DA2 несколько меняется, при этом соответственно будут меняться все опорные напряжения, что недопустимо.

К проверяемой конструкции от пробника отдельно подключается «общий» провод (GND).

Быстродействия микросхем пробника хватает для индикации импульсов вплоть до частоты 10 МГц. При частоте 12МГц уже пропадает индикация лог.0, но лог.1 показывается. По этой же причине вход счётчика подключен именно к DD1.1 — при проверке частоты выше 10 МГц счётчик будет считать импульсы с индикацией на светодиодах VD4..VD7.

Пробник собран на макетной плате:

Плата логического пробника

Плата логического пробника

Плата подобрана по размеру, чтобы поместиться в корпус от пришеднего в негодность маркера:

Плата логического пробника в корпусе от маркера

Плата логического пробника в корпусе от маркера

Плата логического пробника в корпусе от маркера

Логический пробник с источником питания

Логический пробник с источником питания

Процесс работы с пробником на плате компьютера «Байт» можно посмотреть на видео:

Работа с логическим пробником


РадиоКот :: Универсальный логический пробник

РадиоКот >Схемы >Аналоговые схемы >Измерения >

Универсальный логический пробник

Однажды пытаясь отладить конструкцию на логических МС встал вопрос о том, что же таки происходит на лапах, простите, выводах этих самых микросхем. Под рукой, как всегда, оказался мультиметр, но удобство работы с ним оказалось весьма сомнительным. Тут, естественно, пришла мысль о логическом пробнике. Основные требования, которые выдвигались к этому устройству, были следующие:

— возможность работы с логическими уровнями ТТЛ и КМОП;

— простота схемы;

— доступность элементной базы;

— отсутствие МК;

— миниатюрность.

При раскопках Интернета была найдено несколько схем, но по результатам отбора прошла только приведенная ниже.

Питание пробника осуществляется от того же источника, что и проверяемое устройство, т. е. от 5-и вольт для микросхем серии 155, 555; 9-и вольт для микросхем К176 и Uпит. для микросхем К561, К564.

Светодиоды включены встречно-параллельно. При подаче на вход Х1 пробника уровня логического нуля, транзистор VT1 закрыт, а транзистор VT2 открыт за счет тока, протекающего в базовой цепи через резисторы R2, R3. Транзистор VT2 открывается, вызывая свечение зеленого светодиода HL2. При подаче на вход пробника Х1 логической единицы, открывается транзистор VT1, а транзистор VT2 закрывается, т. к. прекращается его базовый ток. Открывание транзистора VT1 вызывает свечение красного светодиода HL1, а зеленый светодиод HL2 соответственно тухнет. Если на входе логического пробника будет присутствовать смена логических уровней с довольно высокой частотой, то будут светиться оба светодиода.

В качестве корпуса был выбран старый маркер. Монтаж схемы был выполнен «в воздухе». SMD cветодиоды для наиболее удобного размещения в корпусе маркера были напяны на кусочек текстолита и присоединены к схеме отдельными проводами МГТФ. В корпусе маркера, напротив светодиодного модуля было проделано отверстие и вставлена заглушка из оргстекла. Свечение светодиодов отчетливо видно даже при ярком свете. Щуп изготовлен из контакта разъема ШР. Фотографии схемы, деталей и готового устройства представлены ниже. 



Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Пробники логических уровней | Техника и Программы

 

, или, как их еще называют, логические пробники, удобны для исследования устройств с ИМС и дают достаточное представление о работе проверяемой аппаратуры. Такой пробник легко и быстро собрать, он не требует настройки, компактен (малый объем), экономичен (малая потребляемая мощность), питается от одного источника с проверяемым устройством. Показания пробника наглядны, точны и надежны. Применение логических пробников особенно целесообразно в любительских конструкциях, когда при наладке логической схемы или поиске неисправности требуются не столько

Точные данные о длительности сигналов, сколько уверенность в правильности действия этих сигналов, о чем судят по чередованию высокого и низкого уровня в определенных точках. А с некоторыми видами логических пробников легче обнаружить единичные импульсы (паразитные сигналы — «иглы»}, чем с осциллографом.

Принцип действия всех логических пробников основан на различии напряжения высокого и низкого уровня. Напомним, что для семейства ИМС ТТЛ 2,4 В < U < 5,0 В — высокий уровень, 0 < U <; <С 0,4 В — низкий уровень.

Возможно особое состояние микросхемы, которое в дальнейшем будем называть промежуточным, когда выходное напряжение оказывается вне границ низкого и высокого уровня, а именно 0,4 В <С U <С 2,4 В. Довольно часто подобное случается, когда интегральная микросхема повреждена или между ее выводами существуют недопустимые связи.

Чаще всего в логических пробниках применяется световая индикация. При этом следует, с одной стороны, иметь в виду, что некоторые источники света, например лампа накаливания, обладают инерционностью, а с другой — учитывать инерционность человеческого глаза при восприятии светового сигнала (вспышки короче 50 … 100 мс не воспринимаются).

Реже используется звуковая индикация. Хорошим решением является выбор двух различных частот соответственно на два логических уровня.

Печатную плату логического пробника лучше делать длинной и узкой, чтобы поместить в пустой корпус, например от фломастера. Такой пробник будет иметь вид авторучки с острым металлическим щупом на конце—входом пробника.

Ниже приведено описание некоторых схем пробников различной степени сложности. Во всех случаях уделено внимание обеспечению высокого входного сопротивления. В некоторых пробниках продолжительность индикации низкого и высокого уровня не зависит от длительности импульса, что является преимуществом.

В пробнике, схема которого показана на рис. 7.13, транзистор VT работает в ключевом режиме. Если на входе напряжение высокого уровня, транзистор насыщен и лампа HL светится. Когда на входе на-:

Рис. 7.13. Простой логический пробник

пряжение низкого уровня, транзистор заперт и лампа не горит [5]. Достоинство — чрезвычайная простота’. Недостатки: продолжительность свечения зависит от продолжительности логического состояния, нет индикации промежуточного логического состояния, сравнительно низкое входное сопротивление.

У пробника на рис. 7.14 резисторы R2, R3, R7, R8 образуют мост, в диагональ которого АВ включены транзисторы VT1, VT2 и VT3. Если входной сигнал высокого уровня, VT1 открыт, a VT2 закрыт, свето- диод HL2 светится, a HL1 — нет. При низком уровне входного сигнала транзисторы VT2 и VT3 открыты, VT1 закрыт, светодиод HL1 светится, a HL2—нет. При 0,4 В < Ubx < 2,4 В все три транзистора заперты, вследствие чего оба светодиода остаются темными [7]. Достоинство: индикация как высокого, так

Рис. 7.14. Логический пробник с независимой индикацией высокого и низкого уровня входного напряжения

и низкого уровня, а также промежуточного состояния. Недостаток: продолжительность свечения определяется длительностью входного импульса.

Пробник на рис. 7.15 содержит управляемый генератор импульсов, выполненный на операционном усилителе DA1 (тип 140УД1А, старое обозначение — 1УТ401А. — Пер.). Когда на входе напряжение низкого уровня, генератор бездействует, а на выходе операционного усилителя (точка М) высокое напряжение высокого уровня им ~ Uв; транзистор VT1 заперт, лампа HL1 не горит. При входном напряжении высокого уровня генерация также отсутствует. Выходное напряжение операционного усилителя в этом случае UM » 0. Транзистор V77 открыт, лампа HL1 горит. Когда 0,4 В < UBX < 2,4 В, генератор работает, выдавая импульсы с частотой 2—3 Гц. Лампа HL1 мерцает с этой частотой. Если входные сигналы представляют собой последовательность импульсов с частотой / >> 20 Гц, мерцание лампы HL1 не различается человеческим глазом и свет ее кажется непрерывным, но яркость зависит от частоты [12].

Особенности схемы: посредством резистора R3 регулируется пороговое напряжение низкого уровня, резистора R8 — высокого. Диод VD2 предохраняет операционный усилитель DA1 в случае неверного включения питающего напряжения. Достоинство: сравнительная простота. Недостаток’ пробник не реагирует на кратковременные импульсы — по индикатору трудно отличить постоянное входное напряжение высокого уровня от импульсной последовательности высокой частоты

В пробнике с цифровым индикатором (рис. 7.16, а) транзисторы VT1 … VT5 управляют сегментами (полосками) а f семисегментного индикатора HG1. Транзистор VT4 работает в ключевом режиме, управляя поступлением напряжения питания Un на общий анод А индикатора. Транзистор VT5 также действует в ключевом режиме, и в зависимости от его состояния сегменты — катоды a, f, е и d соединены общей шиной или нет. Сегменты — катоды b и с — постоянно подключены к общей шине через резистор R5. Напряжение в точке М за счет делителя R2, R3 равно 1,8 В. Поэтому, когда на входе напряжение высокого уровня, транзистор VT3 открыт и своим коллекторным током открывает транзистор VT4. На анод А индикатора HG1 поступает напряжение Un, вызывающее свечение сегментов b и с, т. е. индицируется цифра 1. Если входное напряжение низкого уровня, то транзисторы VT1 и VT2 открываются и их коллекторные токи отпирают VT4 и VT5. Анод А индикатора при этом подключается к шине Un, а сегменты а, f, е и d—к общей шине. Светятся все сегменты, кроме g, и индицируется цифра 0. При 0,4 В < UBX < 2,4 В транзистор VT4 остается запертым, а значит, все сегменты — темными [9].

Особенности схемы: транзисторы VT1 и VT2 подбираются с одинаковым коэффициентом передачи тока h21Э, VT4 и VT5—с возможно большим значением этого коэффициента, и тогда порог свечения •фиксируется более четко. Подбором сопротивлений R4 и R5 регулируется яркость свечения. Достоинства: наглядность индикации, отдельная индикация для низкого и высокого уровня, а также для промежуточного состояния. Недостаток: нечувствительность к кратко*, временным импульсам.

Рис. 7.16. Логические пробники с цифровой индикацией

Логический, пробник с цифровой индикацией, схема которого дана на рис. 7.16,6, обладает большими возможностями. При входном напряжении высокого уровня транзистор VT1 отперт, a VT2 заперт, на выходах элементов DD1.1, DD1.3 и DDI.4 будет напряжение низкого, а на выходе DDI.2 — высокого уровня. При этом светятся сегменты b и с индикатора HG1, образуя цифру 1. Когда на входе пробника напряжение низкого уровня, на выходах элементов DDI.2, DD1.3 и DD1.4 появится напряжение высокого уровня, обеспечивающее свечение сегментов a, b, с,

Й, е, f, т. е. индицируется цифра 0. При 0,4 В << <. О< 2,4 В транзисторы VT1 и V12 заперты, на выходах DD1.2, DD1.3 и DD1.4 напряжение низкого уровня и все сегменты индикатора HG1 темны. При поступлении на вход пробника’ импульсов с частотой f < 20 Гц чередование цифр 0 и 1 различимо глазом. На более высоких частотах начинает сказываться влияние конденсатора С1. В итоге яркость свечения сегмента d резко уменьшается и индицируется буква П (последовательность импульсов). Свечение сегмента h (точки) служит индикатором напряжения питания J-|-5 В [10]. Диоды VD1 и VD2 — любые универсальные кремниевые диоды. Они повышают четкость срабатывания. Преимущество указанного пробника по сравнению с предыдущим — возможность индикации импульсной последовательности. Недостатки — те же самые.

В пробнике на рис. 7.17 при низком уровне входного сигнала транзистор VT1 открыт и насыщен, на выходе DD1.1 напряжение высокого уровня. Свето- диод HL1 светится, HL2—нет. Когда на входе напряжение высокого уровня, то VT2 открыт и насыщен, на выходе DD1.4 также высокий уровень. Светодиод HL2 светится, ПИ — нет. Если 0,4 В < UBX <. 2,4 В, транзисторы VT1 и VT2 заперты, на выходах DD1.1 и DD1.4 будет напряжение низкого уровня, HL1 и HL2 остаются темными. При появлении на входе короткого импульса низкого уровня ждущий мультивибратор, образованный элементами DD1.1 и DDI.2, генерирует импульс длительностью около 100 мс и на это время вспыхивает HL1, а диод HL2 при этом светится непрерывно. При подаче коротких импульсов высокого уровня действует другой мультивибратор (DD1.3 и DDI.4). Светодиод HL2 вспыхивает примерно на 100 мс, a HL1 светит непрерывно. Если входные сигналы представляют собой последовательность импульсов с частотой f >> 10 Гц, светодиоды HL1 и HL2 горят постоянно, а если / < 10 Гц, то HL1 и HL2 поочередно вспыхивают и гаснут с этой же частотой.

Особенности схемы: подбором сопротивлений R2 и R3 устанавливается порог срабатывания пробника; диод VD3 не допускает глубокого насыщения транзистора VT2, благодаря чему быстродействие пробника це уменьшается. Достоинство: при сравнительно

Рис. 7.17. Логический пробник с двумя светодиодами для индикации кратковременных импульсов

простой схеме пробник позволяет регистрировать кратковременные пики напряжения — «иглы». (Недостатки схемы авторами не отмечены. — Пер.).

В схеме на рис. 7.18 транзисторы VT2 и VT3 включены как эмиттерные повторители и служат для разделения сигналов высокого и низкого уровня. Если на входе напряжение высокого уровня, на выходах DD1.1 и DD2.2— низкого и сегмент d индикатора HG1 светится, индицируя цифру 1 (индикатор повернут на 90° по отношению к обычному положению

Рис. 7 18. Логический пробник с индикацией последовательности

импульсов

При входном напряжении низкого уровня на выходе DD2.1 также напряжение низкого уровня, в этом случае светится сегмент f, а также сегменты a, b и g (ток протекает через диод VD3 и резистор R11)— индикатор фиксирует цифру 0. Если 0,4 В < UBX <С < 2,4 В, на выходах DD2.1 и DD2.2 действует напряжение высокого уровня, а на выходе DD2.3 — низкого. Светятся сегменты a, b, g, образуя букву П.

При смене уровня на входе (фронт или срез импульса), в момент переключения элементов DD2.1 и DD2.2, на выходе DD2.3 возникает короткий импульс низкого уровня, который запускает ждущий мультивибратор (элементы DD1.4, DD2.4, С5 и R13). Мультивибратор генерирует импульс, вызывающий короткое свечение точки h. Мерцания точки h видны, если на вход подается последовательность сигналов с коэффициентом заполнения 1 у ^ 0,5, а смена уровней происходит с частотой f < 20 Гд. При этом различимо чередование цифр 0 и 1. Если у « 1 или у « 0, то соответственно индицируется только 1 или только 0, а точка h мерцает с частотой 2f. Когда f > 20 Гц, точка h светится непрерывно, цифры 0 и .1 индицируются одновременно и, если у « 0,5, яркость цифр одинакова; при у « 1 или у « 0 индици-

Рис. 7.19. Логический пробник со звуковой и световой индикацией

руется только 1 или только 0, а точка Н светится непрерывно [11],

Особенности схемы: диоды VDJ и VD2 предохраняют транзистор VT1 от больших входных напряжений, a VD4 защищает интегральные схемы в случае подачи обратного питающего напряжения; конденсаторы С2 и СЗ предохраняют ЛЭ от самовозбуждения. Достоинства: отчетливая индикация разных входных сигналов. Недостаток: сложность схемы.

На рис. 7.19 представлена схема пробника, где дублируется звуковая и световая сигнализация. Имеются отдельные каналы для двух логических уровней.

Оконечной ступенью каналов звуковой сигнализации служит смесительно-усилительный каскад — транзистор VT7 с миниатюрным капсюлем НА1 (ДЭМИЦ в качестве нагрузки. При входном напряжении низкого уровня диод VD4, а также транзистор VT6 открываются. Загорается светодиод HL2 и раздается звук (частотой 600 Гц) за счет возбуждения транзистора VT7 работающим мультивибратором (DD1.1, DDI.2, R16, R18 и С4). (Мультивибратор запускается напряжением высокого уровня на входе 1 логического элемента DD1.1, снимаемым в данном случае с эмиттерной нагрузки транзистора VT6.)

Когда на входе пробника действует сигнал высокого уровня, работает второй канал, подобный рассмотренному. В этом случае светится диод HL1 и слышится звук частотой 3 кГц. При 0,4 В < UBX <. С 2,4 В оба канала бездействуют: светодиоды остаются темными, звуковые генераторы не функционируют. Если входной сигнал представляет собой последовательность импульсов, интегрирующие конденсаторы С1 и С2 «запоминают» высокий логический уровень, в результате чего оба звуковых генератора работают одновременно и звук принимает характерную окраску. Светодиоды HL1 и HL2 светятся [6].

Особенности схемы: диоды VD1, VD2 и транзистор VT8 играют соответственно роли диодов VD1, VD2 и VD4 в схеме на рис. 7.18. Достоинство: двойная сигнализация. Недостаток: нечувствительность к кратковременным импульсам.

Источник: Димитрова М. И., Пунджев В. П. 33 схемы с логическими элементами И — НЕ: Пер. с болг. — JL: Энергоатомиздат. Ленингр. отд-ние, 1988. 112 е.: ил.

Универсальный логический пробник — Меандр — занимательная электроника

Проверка работы цифровых устройств и систем управления с помощью логического пробника в большинстве случаев значительно удобнее и проще, чем с использованием осциллографа или мультиметра. Проверка осциллографом или мультиметром может привести к неверному определению неисправности или даже к появлению дополнительных отказов.

Новые отказы могут возникать по причине того, что ремонтнику необходимо переводить взгляд с проверяемой платы на экран осциллографа или дисплей мультиметра, а щуп при этом может замкнуть рядом расположенные выводы миниатюрных современных элементов. Трудно увидеть обрыв проводника на входе интегральных цифровых микросхем – это будет индицироваться как лог. «0». На самом деле обрыв по входу воспринимается микросхемой как лог. «1» или, что еще хуже, как некоторое промежуточное состояние. При этом микросхема будет находится в активном режиме с максимальным потреблением тока из-за возникновения сквозного тока, что может привести к самовозбуждению или даже отказу ИМС. На мультиметре нельзя увидеть наличие потока импульсов – они будут интегрироваться, и на мультиметре указываться промежуточное состояние между лог. «0» и лог. «1», которого на самом деле нет.

Требования к логическому пробнику

Схемы логических пробников неоднократно появлялись в различных печатных изданиях, но часто их авторы поверхностно подходили к их разработке, устанавливая только лишь некоторые условные пороги индикации состояния. Действительно, логический пробник должен определять логические уровни, но должен определять их корректно, т.е. указывать именно заданные пороги для потенциалов лог. «0» и лог. «1», а не что-то усредненное. Главное, логический пробник должен автоматически устанавливать уровни индикации лог. «0» и лог. «1» в зависимости от напряжения питания проверяемого узла. А такая зависимость весьма существенная.

Чтобы в этом убедиться, достаточно проанализировать спецификации на распространенные интегральные микросхемы семейств 74HCxxи 4000 [3,4]. Разница в пороговых значениях для ИМС серии 74HCxx в пределах допустимых значений напряжения питания (от 4,5 В до 6,0 В) отличается более чем на 30%. А что говорить о семействе ИМС 4000, где диапазон допустимых значений питающегося напряжения составляет от 5 В до 15 В. Это и является камнем преткновения, так как многие разработчики, задавая уровни пороговых напряжений, начисто забывают об этом факте. Как пример неправильного подхода к проектированию можно проанализировать схему в [1].

Какие еще моменты необходимо учитывать. Пробник должен иметь защиту по входу от превышения входным напряжением его напряжения питания защиту от напряжения отрицательной полярности, а также иметь защиту от переполюсовки при подключении питания и защиту от статического электричества. Пробник должен иметь малую собственную входную емкость, чтобы в момент подключения не вносить заметные искажения в контролируемые цепи из-за заряда собственной входной емкости.

Еще один фактор – это минимализация входного тока пробника. Посмотрим это на примере. Если говорить о наиболее распространенных сейчас ИМС, например о семействе HCMOS 74HC/HCT/HCUили о семействе LOCMOSHE4000, то входной ток ИМС семейства 74HC/HCT/HCU не превышает ±1 мкА, а входной ток ИМС семейства HE4000 находится в диапазоне от ±0,1 мкА до ±0,3 мкА. Следовательно, подключение логического пробника с большим собственным входным током к входным цепям CMOSИМС может существенно исказить «картину» анализа.

Работа устройства

Схема универсального логического пробника, свободная от приведенных выше недостатков, показана на рис.1. Ее прототип успешно использовался автором много лет и был предназначен для работы с ИМС серий 176, 561 и 564. Современный вариант схемы, разработанный автором, был впервые опубликован в [5].Пробник выполнен на двух компараторах ИМС DA1. Правильный выбор ИМС для реализации такой схемы крайне важен. Не все микросхемы будут работать должным образом в подобных устройствах. Микросхема должна обеспечивать работоспособность при минимально необходимом однополярном напряжении питания и обладать низкими входными токами. В прототипе использовался сдвоенный операционный усилитель К157УД2. В современной модели пробника предлагается использовать ИМС AD823AR(Z) [2]. Это операционный усилитель допускает однополярное питающее напряжение и полный размах выходного напряжение. Естественно, можно использовать и иные операционные усилители, отвечающие изложенным требованиям.

Верхний по схеме компаратор контролирует высокий логический уровень («HI»), а нижний – низкий логический уровень («LO»). Пороги срабатывания задаются резистивным делителем R4R5R6, а не опорным источником напряжения. Таким образом, обеспечивается зависимость порогов срабатывания компараторов от напряжения питания пробника. Для того чтобы автоматически установить пороги определения логических уровней в зависимости от напряжения питания контролируемого цифрового узла, устройство подключается к проверяемой плате в точки с напряжением питания проверяемых цифровых ИМС. Высокий логический уровень индицируется светодиодом HL1 (зеленый), низкий логический уровень – светодиодом HL2 (красный). Светодиоды не будут светится, если входное напряжение логического пробника (то есть напряжение в точке анализа) будет между минимальным порогом определения высокого логического уровня и максимальным порогом определения низкого логического уровня. Это устройство (если используется ИМС типа AD823AR) может показывать наличие переменных сигналов (синусоидальные, треугольные или прямоугольные с небольшой скважностью) с частотой до 1 МГц. В этом случае глаз будет воспринимать это как свечение обоих индикаторов HL1 и HL2. Поэтому используются именно раздельные индикаторы нуля и единицы, а не один двухцветный светодиод.

Входной ток устройства зависит от выбора типа компаратора, и в случае AD823AR не будет превышать:

  • ±3,0 мкА при напряжении питания 5 В;
  • ±6,0 мкА при напряжении питания 10 В;
  • ±9,0 мкА при напряжении питания 15 В;

Этот ток может быть снижен увеличением номиналов резисторов R2, R3.

Цепь из резистора R1 и диода VD1 защищает устройство от напряжений, превышающих напряжение, к которому подключен пробник, повреждений по входу, вызванных воздействием статического электричества, и от воздействия напряжения отрицательной полярности. Светодиод HL3 (желтый) показывает, что устройство подключено к питающему напряжению. Это очень полезно, особенно если для подключения пробника используется не всегда надежные зажимные контакты. Благодаря этой возможности вы будете всегда уверенны, что и пробник, и проверяемый узел подключены к цепям питания с наличием питающего напряжения. Защита от неправильного подключения обеспечивается диодом VD2 и самовостановляющимся предохранителем FU1 (ток удержания 0,1 А, ток срабатывания 0,2 А). Конденсатор С1 – танталовый, С2 – керамический. Они предотвращают влияние пробника на проверяемое устройство по цепям питания. Ток потребления пробником не превышает 10 мА. Яркость свечения индикаторов может быть установлена изменением номиналов резисторов R7, R8, R9. Резистор R1 минимизирует входную емкость пробника. Пороги срабатывания пробника для ИМС 74HCxx, показанного на рис.1, приведены в таблице. Пороги срабатывания установлены с некоторым запасом по типовым значениям логический уровней, необходимым для устранения крайних, предельных состояний.

Пробник может использоваться и с ИМС других семейств, например 74HCU, 74HCT, или 4000.

Работа с ИМС других серий

Элементы резистивного делителя в этом случае могут быть рассчитаны по формулам:

R6 – свободный выбор номинального значения,

R5 = VH/(VL/R6)-R6,

R4 = Vdd//(VL/R6)-R6-R5,

где:

Vdd – напряжение питания;

VH– типовое пороговое значение для проверки высокого логического уровня для выбранного напряжения питания;

VL – типовое пороговое значение для проверки низкого логического уровня для выбранного напряжения питания.

Для ИМС серии 4000 рекомендованные значения номиналов делителя будут равны:

R6=8,25 кОм;

R5=30 кОм;

R4=6,2 кОм;

При этом порог обнаружения лог. «1» при напряжении питания 15 В будет на уровне 12,5 В, что несколько превышает установленный для ИМС этой серии допустимый входной лог. «1» при этом напряжении (11 В). Остальные пороги обнаружения логических уровней будут соответствовать спецификации [4] с допустимым запасом.

Все элементы пробника, кроме резистора R1 (этот резистор желательно использовать выводного типа, разместив его не на плате, а установив навесным монтажом непосредственно между щупом и платой пробника), желательно использовать для технологии монтажа на поверхность. Конструкция для пробника может быть взята из статьи [1].

Источник: Радиоаматор №6, 2014
Автор: Владимир Рентюк, г. Запорожье

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *