Site Loader

Содержание

Лекция 12. Передача информации в линии связи

  1. Общая схема передачи информации в линиии связи

  2. Характеристики канала связи

  3. Влияние шумов на пропускную способность канала

1. Общая схема передачи информации в линии связи

Использование информации для решения каких-либо задач, безусловно, сопряжено с необходимостью ее распространения, то есть с необходимостью осуществления процессов передачи и приема информации. При этом приходится решать проблему согласования метода кодирования с характеристиками канала связи, а также обеспечивать защиту передаваемой информации от возможных искажений.

Источник информации определен как объект или субъект, порождающий информацию и имеющий возможность представить ее в виде сообщения, то есть последовательности сигналов в материальном носителе. Другими словами, источник информации связывает информацию с ее материальным носителем. Передача сообщения от источника к приемнику всегда связана с некоторым нестационарным процессом, происходящим

в материальной среде– это условие является обязательным, поскольку сама информация материальным объектом не является.

Способов передачи информации существует множество: почта, телефон, радио, телевидение, компьютерные сети и пр. Однако при всем разноообразии конкретной реализации способов связи в них можно выделить общие элементы: источник и получатель информации, кодирующее и декодирующее устройства, преобразователь кодов в сигналы и преобразователь сигналов в коды, канал связи, а также источники шумов (помех) и факторы, обеспечивающие защиту от шумов (см. схему на рис. 4).

Понимать схему нужно следующим образом. Источник, порождающий информацию, для передачи должен представить ее виде сообщения, то есть последовательности сигналов. При этом для представления информации он дожен использовать некоторую систему кодирования.Устройство, выполняющее операцию кодированияинформации, может являться подсистемой источника информации. Например, наш мозг порождает информацию и он же кодирует эту информацию с помощью языка (например, русского), а затем представляет информацию в виде речевого сообщения посредством органов речи. Компьютер обрабатывает и хранит информацию в двоичном представлении, но при выводе ее на экран монитора он же – компьютер – производит ее перекодировку пользователю виду.

Возможна ситуация, когда кодирующее устройство оказывается внешним по отношению к источнику информации, например, телеграфный аппарат или компьютер по отношению к человеку – работающему на нем оператору. Далее коды должны быть переведены в последовательность материальных сигналов, то есть помещены на материальный носитель – эту операцию выполняет преобразователь. Преобразователь может бытьсовмещен с кодирующим устройством(например, телеграфный аппарат), но может быть исамостоятельным элементомлиниии связи (например, модем, преобразующий электрические дискретные сигналы с частотой компьютера в аналоговые сигналы с частотой, на которой их затухание в телефонных линиях будет наименьшим).

К преобразователям относят также устройства, которые переводят сообщение с одного носителя на другой. Например:

  • телефонный аппарат, преобразующий звуковые сигналы в электрические;

  • радипередатчик, преобразующий звуковые сигналы в радиоволны;

  • телекамера, преобразующая изображение в последовательность электрических импульсов.

Рис. 4. Общая схема передачи информации

В общем случае при преобразовании выходные сигналы воспроизводят не полностью все особенности входного сообщения, а лишь его наиболее существенные стороны, то есть при преобразовании часть информации теряется. Например, полоса пропускания частот при телефонной связи находится в промежутке от 300 до 3400 Гц, в то время как частоты, воспринимаемые человеческим ухом, лежат в интервале от 16 до 20000 Гц.

Таким образом, телефонные линиии «обрезают» высокие частоты, что приводитк искажениям звука; в черно-белом телевидении при преобразовании сообщения в сигналы теряется цвет изображения. Именно в связи с этими проблемами возникает задача выработки такого способа кодирования сообщения, который обеспечивал бы возможно более полное представление исходной информации при преобразовании, и, в то же время, этот способ был бы согласован со скоростью передачи информации по данной линии связи.

После преобразователя сигналы поступают в канал связии распространяются в нем.Понятие канала связи включает в себя материальную среду, а также физический или иной процесс, посредством которого осуществляется передача сообщения, то есть распространение сигналов в пространстве с течением времени.

В табл. 20приведены примеры некоторых каналов связи.

Табл. 20. Примеры каналов связи

Канал связи

Среда

Носитель сообщения

Процесс, используемый для передачи сообщения

Почта

Среда обитания человека

Бумага

Механическое перемещение носителя

Телефон, компьютерные сети

Проводник

Электрические заряды

Перемещение зарядов (ток)

Радио, телевидение

Электромагнитное

поле

Электромагнитные

волны

Распространение электромагнитных волн

Зрение

Слух

Воздух

Звуковые волны

Распространение звуковых волн

Обоняние, вкус

Воздух, пища

Химические вещества

Химические реакции

Осязание

Поверхность кожи

Ввоздействующий на кожу объект

Теплопередача, давление

Любой реальныйканал связи подвержен внешним воздействиям, а также в нем могут происходить внутренние процессы, в результате которых искажаются передаваемые сигналы, и, следовательно, связанные с этими сигналами сообщения. Такие воздействия называютсяшумами(помехами). Источники помех могут бытьвнешнимиивнутренними

. Квнешнимпомехам относятся, например, так называемые «наводки» от мощных потребителей электричества или атмосферных явлений; одновременное действие нескольких близкорасположенных однотипых источников сообщений (одновременный разговор нескольких человек). К помехам могут привоить ивнутренниеособенности данного канала связи, например, физические неоднородности носителя; процессы затухания сигнала в линии связи, существенные при большой удаленности приемника от источника.

Если уровень помех оказывается соизмеримым с мощностью несущего информацию сигнала, то передача информации по данному каналу оказывается невозможной. Даже шумы относительно низких уровней могут вызвать существенные искажения передаваемого сигнала.

Существуют и применяются различные методы защиты от помех. Например, используется экранирование элетрических линий связи; улучшение избирательности примного устройства и так далее Другим способом защиты от помех является использование специальных методов кодирования информации.

После прохождения сообщения по каналу связи сигналы с помощью приемного преобразователяпереводятся в последовательность кодов, которыедекодирующим устройствомпредставляются в форме, необходимой для примника информации (в воспринимаемой приемником форме). На этапе приема, как и при передаче, преобразователь может быть совмещенным с декодирующим устройством (например, радиоприемник или телевизор) или существовать отдельно от декодирующего устройства (преобразователь модем может существует отдельно от компьютера).

Понятие «линия связи»объединяет элементы представленной на рис. 1 схемы между источником и приемником информации.Характеристиками любой линиисвязи являютсяскорость, с которой возможна передача сообщения в ней, а такжестепень искажениясообщения в процессе передачи.

Далее рассмотрим те параметры линии связи, которые относятся непосредственно к каналу связи, то есть характеризуют среду и процесс передачи.

4.3. Процесс передачи информации

Схематично процесс передачи информации показан на рисунке. При этом предполагается, что имеется источник и получатель информации. Сообщение от источника к получателю передается посредством канала связи (информационного канала).

Рис. 3. – Процесс передачи информации

В таком процессе информация представляется и передается в форме некоторой последовательности сигналов, символов, знаков. Например, при непосредственном разговоре между людьми происходит передача звуковых сигналов — речи, при чтении текста человек воспринимает буквы – графические символы. Передаваемая последовательность называется сообщением. От источника к приемнику сообщение передается через некоторую материальную среду (звук — акустические волны в атмосфере, изображение – световые электромагнитные волны). Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации(информационными каналами). К ним относятся телефон, радио, телевидение.

Можно говорить о том, что органы чувств человека выполняют роль биологических информационных каналов. С их помощью информационное воздействие на человека доносится до памяти.

Клодом Шенноном, была предложена схема процесса передачи информации по техническим каналам связи, представленная на рисунке.

Рис. 4. – Процесс передачи информации по Шеннону

Работу такой схемы можно пояснить на процессе разговора по телефону. Источником информации является говорящий человек. Кодирующим устройством – микрофон телефонной трубки, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Каналом связи является телефонная сеть (провода, коммутаторы телефонных узлов через которые проходит сигнал)). Декодирующим устройством является телефонная трубка (наушник) слушающего человека – приемник информации. Здесь пришедший электрический сигнал превращается в звук. 

Связь, при которой передача производится в форме непрерывного электрического сигнала, называется аналоговой связью.

Под кодированием понимается любое преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи. 

В настоящее время широко используется цифровая связь, когда передаваемая информация кодируется в двоичную форму (0 и 1 — двоичные цифры), а затем декодируется в текст, изображение, звук. Цифровая связь является дискретной.

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи , прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. В таких случаях необходима защита от шума.

В первую очередь применяются технические способы защиты каналов связи от воздействия шумов. Например, использование экранного кабеля вместо «голого» провода; применение разного рода фильтров, отделяющих полезный сигнал от шума и пр.

Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важным идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована.

Однако, нельзя делать избыточность слишком большой. Это приведет к задержкам и подорожанию связи. Теория кодирования К. Шеннона как раз и позволяет получить такой код, который будет оптимальным. При этом избыточность передаваемой информации будет минимально-возможной, а достоверность принятой информации — максимальной.

В современных системах цифровой связи часто применяется следующий прием борьбы с потерей информации при передаче. Все сообщение разбивается на порции — блоки. Для каждого блока вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным блоком. В месте приема заново вычисляется контрольная сумма принятого блока, и если она не совпадает с первоначальной, то передача данного блока повторяется. Так будет происходить до тех пор, пока исходная и конечная контрольные суммы не совпадут.

Скорость передачи информации – это информационный объем сообщения, передаваемого в единицу времени. Единицы измерения скорости информационного потока: бит/с, байт/с и др.

Технические линии информационной связи (телефонные линии, радиосвязь, оптико-волоконный кабель) имеют предел скорости передачи данных, называемый пропускной способностью информационного канала. Ограничения на скорость передачи носят физический характер.

Схема передачи информации по различным техническим каналам

На сегодняшний день информация так быстро распространяется, что не всегда хватает времени ее осмыслить. Большинство людей редко задумываются о том, как и с помощью каких средств она передается, а уж тем более не представляют себе схему передачи информации.

Основные понятия

Передачей информации принято считать физический процесс перемещения данных (знаков и символов) в пространстве. С точки зрения информационных технологий процесс передачи данных – это спланированное заранее, технически оснащенное мероприятие по перемещению информационных единиц за установленное время от так называемого источника к приемнику посредством информационного канала, или канала передачи данных.

Канал передачи данных – совокупность средств или среда распространения данных. Другими словами, это та часть схемы передачи информации, которая обеспечивает движение информации от источника к получателю, а при определенных условиях и обратно.

Классификаций каналов передачи данных много. Если выделить основные из них, то можно перечислить следующие: радиоканалы, оптические, акустические или беспроводные, проводные.

Технические каналы передачи информации

Непосредственно к техническим каналам передачи данных относятся радиоканалы, оптоволоконные каналы и кабельные. Кабель может быть коаксиальный или на основе витых пар. Первые представляют собой электрический кабель с медным проводом внутри, а вторые – витые пары медных проводов, изолированные попарно, находящиеся в диэлектрической оболочке. Эти кабели довольно гибкие и удобные в использовании. Оптоволокно состоит из оптоволоконных нитей, передающих световые сигналы посредством отражения.

схема передачи информацииОсновными характеристиками каналов связи являются пропускная способность и помехоустойчивость. Под пропускной способностью принято понимать тот объем информации, который можно передать по каналу за определенное время. А помехоустойчивостью называют параметр устойчивости канала к воздействию внешних помех (шумов).

Общее представление о передаче данных

Если не конкретизировать область применения, общая схема передачи информации выглядит несложно, включает в себя три компонента: «источник», «приемник» и «канал передачи».

общая схема передачи информации

Схема Шеннона

Клод Шеннон, американский математик и инженер, стоял у истоков теории информации. Им была предложена схема передачи информации по техническим каналам связи.

схема передачи информации по техническим каналамПонять эту схему несложно. Особенно если представить её элементы в виде знакомых предметов и явлений. Например, источник информации – человек, говорящий по телефону. Телефонная трубка будет являться кодирующим устройством, которое преобразует речь или звуковые волны в электрические сигналы. Каналом передачи данных в этом случае является телефонные провода, узлы связи, в общем, вся телефонная сеть, ведущая от одного телефонного аппарата к другому. Декодирующим устройством выступает трубка абонента. Она преобразует электрический сигнал обратно в звук, то есть в речь.

В этой схеме процесса передачи информации данные представлены в виде непрерывного электрического сигнала. Такая связь называется аналоговой.

Понятие кодирования

Кодированием принято считать преобразование информации, посылаемой источником, в форму, пригодную для передачи по используемому каналу связи. Самый понятный пример кодирования — это азбука Морзе. В ней информация преобразуется в последовательность точек и тире, то есть коротких и длинных сигналов. Принимающая сторона должна декодировать эту последовательность.

В современных технологиях используется цифровая связь. В ней информация преобразуются (кодируется) в двоичные данные, то есть 0 и 1. Существует даже бинарный алфавит. Такая связь называется дискретной.

схема процесса передачи информации

Помехи в информационных каналах

В схеме передачи данных также присутствует шум. Понятие «шум» в данном случае означает помехи, из-за которых происходит искажение сигнала и, как следствие, его потеря. Причины помех могут быть различные. Например, информационные каналы могут быть плохо защищены друг от друга. Для предотвращения помех применяют различные технические способы защиты, фильтры, экранирование и т. д.

К. Шенноном была разработана и предложена к использованию теория кодирование для борьбы с шумом. Идея заключается в том, что раз под воздействием шума происходит потеря информации, значит, передаваемые данные должны быть избыточны, но в то же время не настолько, чтобы снизить скорость передачи.

В цифровых каналах связи информация делится на части – пакеты, для каждого из которых вычисляется контрольная сумма. Эта сумма передается вместе с каждым пакетом. Приемник информации заново вычисляет эту сумму и принимает пакет, только если она совпадает с первоначальной. В противном случае пакет отправляется снова. И так до тех пор, пока отправленная и полученная контрольные суммы не совпадут.

Хранение и передача информации (§§ 7, 8)

Главная | Информатика и информационно-коммуникационные технологии | Планирование уроков и материалы к урокам | 10 классы | Планирование уроков на учебный год | Хранение и передача информации (§§ 7, 8)





Содержание урока

Хранение информации

Передача информации


Передача информации

imageИз курса основной школы вам известно:

• Распространение информации происходит в процессе ее передачи.

• Процесс передачи информации протекает от источника к приемнику по информационным каналам связи.

В этом параграфе более подробно будут рассмотрены технические системы передачи информации.

Ранее уже говорилось о том, что первой в истории технической системой передачи информации стал телеграф. В 1876 году американец Александр Белл изобрел телефон. На основании открытия немецким физиком Генрихом Герцем электромагнитных волн (1886 год), А. С. Попов в России в 1895 году и почти одновременно с ним в 1896 году Г. Маркони в Италии изобрели радио. Телевидение и Интернет появились в XX веке.

Модель передачи информации К. Шеннона

Все перечисленные способы информационной связи основаны на передаче на расстояние физического (электрического или электромагнитного) сигнала и подчиняются некоторым общим законам. Исследованием этих законов занимается теория связи, возникшая в 1920-х годах. Математический аппарат теории связи — математическую теорию связи разработал американский ученый Клод Шеннон. Клодом Шенноном была предложена модель процесса передачи информации по техническим каналам связи, представленная схемой на рис. 2.1.


Работу такой схемы можно пояснить на знакомом всем процессе разговора по телефону. Источником информации является говорящий человек. Кодирующим устройством — микрофон телефонной трубки, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Каналом связи служит телефонная сеть (провода, коммутаторы телефонных узлов, через которые проходит сигнал). Декодирующим устройством является телефонная трубка (наушник) слушающего человека — приемника информации. Здесь пришедший электрический сигнал превращается в звук.

В теме «Информация. Представление информации» уже говорилось о кодировании на примере передачи информации через письменный документ. Кодирование там было определено как процесс представления информации в виде, удобном для ее хранения и/или передачи.

imageПрименительно к процессу передачи информации по технической системе связи под кодированием понимается любое преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи.

Современные компьютерные системы передачи информации — компьютерные сети, работают по тому же принципу. Есть процесс кодирования, преобразующий двоичный компьютерный код в физический сигнал того типа, который передается по каналу связи. Декодирование заключается в обратном преобразовании передаваемого сигнала в компьютерный код. Например, при использовании телефонных линий в компьютерных сетях функции кодирования/декодирования выполняет прибор, который называется модемом.

Пропускная способность канала и скорость передачи информации

Разработчикам технических систем передачи информации приходится решать две взаимосвязанные задачи: как обеспечить наибольшую скорость передачи информации и как уменьшить потери информации при передаче. К. Шеннон был первым ученым, взявшимся за решение этих задач и создавшим новую для того времени науку — теорию информации.

Шеннон определил способ измерения количества информации, передаваемой по каналам связи. Им было введено понятие пропускной способности канала как максимально возможной скорости передачи информации. Эта скорость измеряется в битах в секунду (а также килобитах в секунду, мегабитах в секунду).

imageПропускная способность канала связи зависит от его технической реализации. Например, в компьютерных сетях используются следующие средства связи:

телефонные линии;

электрическая кабельная связь;

оптоволоконная кабельная связь;

радиосвязь.

Пропускная способность телефонных линий — десятки и сотни Кбит/с; пропускная способность оптоволоконных линий и линий радиосвязи измеряется десятками и сотнями Мбит/с.

Скорость передачи информации связана не только с пропускной способностью канала связи. Представьте себе, что текст на русском языке, содержащий 1000 знаков, передается с использованием двоичного кодирования. В первом случае используется телеграфная 5-разрядная кодировка. Во втором случае — компьютерная 8-разрядная кодировка. Тогда длина кода сообщения в первом случае составит 5000 битов, во втором случае — 8000 битов. При передаче по одному и тому же каналу второе сообщение будет передаваться дольше в 1,6 раза (8000/5000). Отсюда, казалось бы, следует вывод: длину кода сообщения нужно делать минимально возможной.

imageОднако существует другая проблема, которая на рис. 2.1 отмечена словом «шум».

Шум, защита от шума

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам, таким как плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемых по одним и тем же каналам. Существуют и другие источники помех, имеющие физическое происхождение.

Иногда, например, беседуя по телефону, мы слышим шум, треск, мешающие понять собеседника, или на наш разговор накладывается разговор других людей.

Наличие шума приводит к потере передаваемой информации. В таких случаях необходима защита от шума. Для этого в первую очередь применяются технические способы защиты каналов связи от воздействия шумов. Такие способы бывают самыми разными, иногда простыми, иногда очень сложными. Например: использование экранированного кабеля вместо «голого» провода; применение разного рода фильтров, отделяющих полезный сигнал от шума и пр.

Шеннон разработал специальную теорию кодирования, дающую методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Например, если при разговоре по телефону вас плохо слышно, то, повторяя каждое слово дважды, вы имеете больше шансов на то, что собеседник поймет вас правильно.

В системах передачи информации используется так называемое помехоустойчивое кодирование, вносящее определенную избыточность.

Однако нельзя делать избыточность слишком большой. Это приведет к задержкам и удорожанию связи. Теория кодирования как раз и позволяет получить такой код, который будет оптимальным: избыточность передаваемой информации будет минимально возможной, а достоверность принятой информации — максимальной.

Большой вклад в научную теорию связи внес известный советский ученый Владимир Александрович Котельников. В 1940-1950-х годах им получены фундаментальные научные результаты по проблеме помехоустойчивости систем передачи информации.

В современных системах цифровой связи для борьбы с потерей информации при передаче часто применяется следующий прием.

Все сообщение разбивается на порции — блоки. Для каждого блока вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным блоком.

В месте приема заново вычисляется контрольная сумма принятого блока и, если она не совпадает с первоначальной суммой, передача данного блока повторяется. Так происходит до тех пор, пока исходная и конечная контрольные суммы не совпадут.


Вопросы и задания

1. Для чего нужна процедура кодирования передаваемой информации?

2. Что такое декодирование? Каким должен быть его результат?

3. Каким техническим средством связи вы чаще всего пользуетесь? Замечали ли вы при этом факты потери информации?

4. Назовите устройства кодирования и декодирования при использовании радиосвязи.

5. Что такое шум по отношению к системам передачи данных?

6. Какие существуют способы борьбы с шумом?

7. Пропускная способность канала связи 100 Мбит/с. Уровень шума пренебрежимо мал (например, оптоволоконная линия). Определите, за какое время по каналу будет передан текст, информационный объем которого составляет 100 Кб.

8. Пропускная способность канала связи 10 Мбит/с. Канал подвержен воздействию шума, поэтому избыточность кода передачи составляет 20%. Определите, за сколько времени по каналу будет передан текст, информационный объем которого составляет 100 Кб.

Следующая страница imageХранение и передача информации (§§ 7, 8)

image

Системы передачи информации: кодирование, декодирование, модуляция, схемы

Модель системы передачи информации

Рассмотрим структурную схему простейшей одноканальной системы передачи информации. Введем понятие канала связи.

Под «каналом связи» (communication link) в теории и технике электрической связи принято понимать совокупность различных средств, включая физическую среду, которая обеспечивает передачу сигналов от источника к получателю сообщений. Причем физической средой для передачи сигналов может быть кабель в проводной связи, атмосфера в наземной радиосвязи и т.д.

В самом общем виде структурная схема системы передачи информации показана на рис. 1.2.

На передающей стороне преобразование сообщения в сигнал осуществляется с помощью преобразователя. В телефонии для этой цели служит микрофон, который превращает акустические колебания в пропорционально изменяющееся электрическое напряжение. В телеграфии с помощью телеграфного аппарата (телетайпа) оператор заменяет последовательность знаков сообщения (букв, цифр) последовательностью двоичных кодовых символов (0 и 1). В телетайпе они преобразуются в электрические посылки постоянного тока. В телевидении при передаче изображения преобразователем является передающая телевизионная трубка.

Далее следует операция кодирования (coding), под которой понимают преобразование дискретного сообщения в последовательность кодовых символов, осуществляемое по определенному правилу.

При этом каждому элементу сообщения присваивается определенная совокупность кодовых символов, называемая «кодовой комбинацией» («кодовым словом»), а совокупность всех кодовых комбинаций называется «кодом». Правило кодирования принято задавать кодовой таблицей, в которой каждому сообщению соответствует определенная кодовая комбинация. Понятие кодирования применимо только к дискретным сообщениям, поэтому чтобы закодировать речевое сообщение, являющееся аналоговым, его необходимо сначала представить в дискретной форме.

Системы передачи информации: кодирование, декодирование, модуляция, схемы

Рис. 1.2. Структурная схема системы передачи информации

В телеграфии первичное кодирование осуществляется с помощью телетайпа, в котором каждая буква, каждая цифра и каждый служебный знак (точка, запятая, знак сложения и т.д.) кодируются первичным кодом. Например, это может быть международный телеграфный код № 2 (МТК-2), каждая комбинация которого содержит по пять двоичных символов. Число возможных комбинаций в этом коде составляет (Формула). Этого вполне достаточно для кодирования всех букв русского алфавита, а для кодирования остальных знаков следует использовать регистровый принцип. В этом случае одна и та же комбинация применяется три раза: в русском, латинском и цифровом регистрах. Общее число разных знаков (букв, цифр и др.), применяемых в коде МТК-2, равно 84.

В 1963 г. появился код ASCII (American Standard Code for Information Interchange) — стандартный американский код для обмена информацией, разработанный для использования в телеграфной связи.

При создании первых персональных ЭВМ фирма IBM приняла его в качестве стандарта для кодирования информации. Каждая комбинация данного кода, состоящая из семи двоичных символов, позволяла использовать 128 кодовых комбинаций. Несколько позже этот код был расширен и дополнен: его комбинации стали содержать по восемь двоичных разрядов, и число этих комбинаций возросло до 256. Благодаря этому его стали применять для кодирования информации не только на английском языке, но и на многих других языках мира. В настоящее время все текстовые сообщения, передаваемые в сети Интернет, кодируются с использованием только этого кода.

Коды МТК-2 и ASCII относятся к так называемым равномерным кодам, поскольку каждая комбинация в них содержит одно и то же число двоичных символов. Также существуют неравномерные коды, комбинации в которых имеют разную длину.

Типичным представителем неравномерных кодов является код Морзе, созданный в 1838 г. американским изобретателем и художником Самюэлем Морзе. В этом коде символ «1», соответствующий токовой посылке, называется точкой, а три единицы — тире. Символ «0» используется как разделительный знак внутри кодовой комбинации, а совокупность из трех нулей разделяет между собой кодовые комбинации. Данный код до сих пор применяется в системах слуховой телеграфной радиосвязи. В 2004 г. в коде Морзе появился символ @ и соответствующая ему кодовая комбинация, введенная Международным союзом электросвязи для удобства передачи адресов электронной почты.

К неравномерным относятся и широко известные коды Хаффмана и Шеннона—Фано. В них, как и в коде Морзе, сообщения, встречающиеся чаще (с большей вероятностью), кодируются короткими кодовыми комбинациями, а сообщения, появляющиеся реже (с меньшей вероятностью), — более длинными кодовыми комбинациями.

Это свойство позволяет устранять избыточность в источниках сообщений (т. е. производить «сжатие» информации). Такие коды называются «префиксными», поскольку в своем составе они не имеют кодовых комбинаций, которые являются началом (префиксом) любых других. Данное свойство позволяет легко распознавать принимаемые сообщения. Код Шеннона—Фано более простой в построении, однако код Хаффмана несколько удобнее в практической реализации. Код Хаффмана используется в технике факсимильной связи и в компьютерных технологиях при создании файлов видеоизображений в формате JPEG, а также для сжатия видеосигналов в телевизионной цифровой технике на основе стандарта MPEG.

Код Хаффмана, предложенный в 1952 г., можно построить следующим образом. Сначала все сообщения располагаются в порядке убывания вероятностей их появления. Затем сообщения с наименьшими вероятностями, стоящие внизу, объединяются в одно промежуточное (вспомогательное) сообщение, которому приписывается значение, равное сумме вероятностей сообщений, из которых оно составлено. Полученную таким образом точку называют узлом, а пути, ведущие в нее, обозначают кодовыми символами: 1 (верхний) и 0 (нижний). Затем из оставшихся сообщений с учетом промежуточного сообщения вновь находят пару с наименьшими вероятностями, которая аналогично объединяется в очередное промежуточное сообщение с значением вероятности, равным сумме вероятностей, входящих в эту пару сообщений. Во второй полученный узел также ведут два пути: единичный и нулевой. Далее процесс объединения продолжается рекурсивно до получения завершающего вспомогательного сообщения с суммарной вероятностью, равной единице. Эту последнюю полученную точку называют корнем кодового дерева, ветвями которого являются пути, приводящие в соответствующие узлы. Считывание кодовых символов производится в обратном направлении: от корня дерева к исходным сообщениям. В качестве кодовых комбинаций сообщений записываются последовательности двоичных символов, встречающиеся на каждом пути, соединяющем соседние узлы дерева.

Пример построения кодового дерева и полученные при этом комбинации для источника сообщений, создающего символы a, b, с, d, e, f, вероятности (Формула) которых равны соответственно 0,33, 0,22, 0,13, 0,12, 0,11, 0,09, представлены на рис. 1.3, а. На рис. 1.3, б приведена таблица, поясняющая процесс объединения сообщений в промежуточные узлы.

Пример построения кодового дерева

Системы передачи информации: кодирование, декодирование, модуляция, схемы

Рис. 1.3. Пример построения кодового дерева (а) и таблица шагов (б) при построении кода Хаффмана

Среднюю длину комбинации кода Хаффмана можно найти с помощью соотношения

Системы передачи информации: кодирование, декодирование, модуляция, схемы
где Рk — вероятность появления k-го сообщения, содержащего nk двоичных символов.

Для рассмотренного примера (Формула). Если эти сообщения кодировать равномерным простым кодом, то каждая комбинация должна содержать по три двоичных символа, т.е. n = 3. Следовательно, выигрыш в длине кодовой комбинации в среднем составляет примерно 22%.

Рассмотренные коды относятся к так называемым «первичным» кодам. Равномерные телеграфные коды, представленные ранее, называются также «простыми» («примитивными»), или «кодами без избыточности». Это связано с тем, что искажение любого из символов комбинации приводит к образованию новой разрешенной комбинации, т. е. к ошибке, что выражается в регистрации буквы или цифры, отличающейся от переданного знака.

Существуют также коды, «корректирующие ошибки» (error correction), или «помехоустойчивые», которые строятся таким образом, чтобы для передачи сообщений применялись не все возможные комбинации, а только часть из них, называемые «разрешенными». Это позволяет обнаруживать и исправлять ошибки при искажениях некоторых символов. Корректирующие свойства таких кодов обеспечиваются целенаправленным введением в комбинации примитивных кодов дополнительных (избыточных) символов. Эта операция выполняется в кодирующем устройстве — «кодере».

Примером одного из простейших равномерных корректирующих кодов является код с постоянным весом, т. е. с одинаковым числом единиц в любой из разрешенных кодовых комбинаций, общее число которых определяется соотношением

Системы передачи информации: кодирование, декодирование, модуляция, схемы

Наиболее известен код, в котором имеется (Формула) разрешенных 7-элементных комбинаций, содержащих по три токовых и четыре бестоковых посылки. Изменение данного соотношения при передаче сообщений свидетельствует о появлении искажений. С помощью такого кода обнаруживаются одиночные и другие нечетные ошибки. При этом необнаруженными остаются искажения, называемые трансформацией, т. е. искажения, при которых единицы преобразуются в нулевые символы и одновременно нули преобразуются в единицы, но при этом сохраняется соотношение три единицы и четыре нуля.

В общем случае построение корректирующего кода, способного не только обнаруживать, но и исправлять возникающие ошибки, достаточно сложная задача, которая решается с использованием ряда разделов высшей алгебры.

Далее закодированный сигнал поступает в модулятор.

«Модуляцией» (modulation) называется преобразование исходного сигнала посредством изменения параметров сигнала-переносчика в соответствии с преобразуемым (модулируемым) сигналом. В качестве сигнала-переносчика информации применяется гармоническое высокочастотное колебание, импульсная последовательность или шумовой процесс.

При использовании в качестве сигнала-переносчика гармонического колебания S(t) = U cos(ωt + φ) возможна реализация трех видов модуляции: амплитудной (AM), частотной (ЧМ) и фазовой (ФМ). При использовании в качестве управляющего колебания закодированной последовательности двоичных кодовых символов получим дискретную (цифровую) модуляцию, которую принято называть «манипуляцией».

Поясним сказанное с помощью рис. 1.4. При AM символу «1» соответствует передача колебания на несущей частоте в течение времени Τ (длительность посылки), а символу «0» — отсутствие колебания (пауза). При ЧМ осуществляется поочередная передача колебаний с частотой f1, что соответствует передаче символа «1», и колебаний с частотой f0, что соответствует передаче символа «0». При двоичной ФМ происходит изменение фазы несущего колебания на 180° при каждой смене полярности в управляющей последовательности прямоугольных посылок.

Виды дискретной модуляции сигналов

Системы передачи информации: кодирование, декодирование, модуляция, схемы

Рис. 1.4. Виды дискретной модуляции сигналов:
а — модулирующий сигнал; б — амплитудная модуляция; в — частотная модуляция; г — фазовая модуляция

Длительность Τ посылки управляющего сигнала позволяет определить техническую скорость передачи (скорость манипуляции), которую принято выражать числом посылок, передаваемых в секунду. Данная единица измерения скорости получила наименование бод (по имени французского изобретателя телеграфного аппарата и кода Ж.-М.Э. Бодо). Один бод соответствует передаче одной электрической посылки в течение одной секунды. Если длительность посылки задается в секундах, то скорость передачи v=1/Τ, Бод.

Усиление модулированных сигналов по мощности и вывод их в линию реализует передатчик {transmitter). В каналах радиосвязи на выходе передатчика включается антенна, которая осуществляет преобразование электрических сигналов в электромагнитные колебания и излучает их в окружающее пространство. Основными характеристиками современного передатчика являются диапазон применяемых частот, мощность и коэффициент полезного действия (КПД). В зависимости от свойств канала связи и предназначения передатчика его мощность может колебаться от долей до нескольких тысяч ватт. Для сравнения можно сказать о передатчиках сотовых телефонов и широковещательных станций, ведущих радиотрансляцию на сотни и тысячи километров. Диапазоны частот, применяемые в настоящее время, имеют также весьма широкие границы: от сотен килогерц до тысяч мегагерц.

Поскольку отправитель и получатель сообщений в системе передачи информации находятся в различных точках пространства, то между передатчиком и приемником создается некоторая физическая среда. В системах проводной связи — это электрический или оптический кабель, а в системах радиосвязи — область естественного пространства, по которому распространяются электромагнитные волны (радиоволны). В процессе передачи сигнал ослабляется и может искажаться вследствие воздействия всевозможных помех.

Антенна приемника улавливает лишь незначительную долю энергии, которая излучается передающей антенной. Далее происходит усиление принятого колебания и выделение сигнала, несущего информацию, предназначенную конкретному получателю. Эти операции осуществляются в приемнике (receiver). Основными характеристиками приемника являются диапазон применяемых частот, чувствительность — способность принимать весьма слабые сигналы на фоне помех, а также избирательность, под которой понимают способность выделять полезные сигналы из совокупности передаваемых колебаний и посторонних мешающих воздействий, отличающихся от принимаемого сигнала частотой.

Принятый сигнал поступает в демодулятор.

«Демодуляция» (demodulation) — это преобразование модулированного сигнала, искаженного помехами, в модулирующий сигнал. Иными словами, посредством демодуляции восстанавливается первичный сигнал, отображающий переданное сообщение. Далее этот сигнал поступает в «устройство преобразования сигнала в сообщение».

В телефонной связи, радиовещании или при звуковом вещании таким устройством является громкоговоритель, в факсимильной связи — приемный факсимильный аппарат, а в телевидении приемная телевизионная трубка.

В системах передачи дискретных сообщений в процессе демодуляции элементы сигнала преобразуются в последовательность кодовых символов, которая поступает в декодер.

«Декодирование» (decoding) — это восстановление дискретного сообщения по выходному сигналу демодулятора, осуществляемое с учетом правила кодирования. Если на передаче был применен помехоустойчивый или корректирующий код, то на выходе декодера образуются кодовые комбинации первичного (простого) кода.

Например, при передаче текстовых сообщений роль преобразователя сигнала в сообщение выполняет приемный буквопечатающий телеграфный аппарат (телетайп), с помощью которого и будет отпечатан текст телеграммы. В системах слуховой телеграфной радиосвязи в качестве преобразователя выступает человек, т.е. оператор, на слух определяющий, какой из сигналов кода Морзе («точка» или «тире») был передан. Оператор также выполняет операцию декодирования, записывая на бумаге текст переданного сообщения.

В системах буквопечатающей телеграфной связи определение сигнала выполняется автоматически с помощью специального устройства, в котором задается некоторое значение порога. Если принятый сигнал превысил пороговое значение, то выдается символ кода, например «1», а если не превысил, — выдается символ «0». В отдельных случаях могут применяться два пороговых значения: положительное и отрицательное. Тогда, если сигнал принимается с искажениями и его уровень оказывается в промежутке между этими порогами, никакого решения не выносится. Вместо сомнительной посылки сигнала вырабатывается особый символ, называемый «стиранием». Введение такого третьего решения повышает вероятность правильного декодирования принятой кодовой комбинации за счет ее повторной передачи по запросу с приемной стороны.

Таким образом, в системах передачи дискретных сообщений решение о передаваемом сообщении принимается в два этапа. Первой решающей схемой в этом случае является демодулятор, а второй — декодер.

В системах передачи аналоговых сообщений решение выносится сразу в демодуляторе. Иногда при передаче дискретных сообщений применяется процедура приема сообщений в целом. В этом случае одним устройством выполняется совместная операция демодуляции-декодирования, в результате чего приходящий ряд сигналов сразу преобразуется в последовательность знаков (букв) сообщения.

Существует ошибочное мнение, что демодуляция и декодирование — это операции, обратные модуляции и кодированию, выполняемые с принятым сигналом. На самом деле в результате различных искажений и воздействия помех принятое колебание может существенно отличаться от переданного сигнала. Поэтому данные операции являются наиболее сложными в системе передачи информации. Для принятия решения о переданном сообщении необходимо детально проанализировать принятый сигнал, для чего его подвергают различным преобразованиям, которые называются обработкой сигнала. Следовательно, одной из задач теории электрической связи является отыскание правил (процедур) оптимальной обработки сигнала, при которых решение о переданном сообщении является наиболее достоверным.

Завершая рассмотрение системы передачи информации, отметим, что качество обработки сигналов существенным образом зависит от точности синхронизации переданных и принятых сигналов. При этом различают следующие виды синхронизации: «тактовую» — установление границ посылок сигналов, «цикловую», при которой следует различать границы кодовых комбинаций, синхронизацию несущих частот и др. Неточности синхронизации приводят к снижению достоверности приема информации. Сбой в работе системы синхронизации делает вообще невозможным правильный прием переданных сообщений. Подробно системы синхронизации рассматриваются в специальных курсах.

Проанализированная система передачи информации является одноканальной, т.е. она обеспечивает передачу информации от одного источника к одному получателю.

Существуют также многоканальные системы. Упрощенная схема одной из таких систем показана на рис. 1.5, в которой по одной общей линии связи обеспечивается обмен информацией между несколькими абонентами. В такой системе первичные сигналы, подлежащие передаче, преобразуются посредством модуляторов M1, M2, …, Мn в электрические сигналы U1(t), U2(t), …, Un(t), a затем объединяются в аппаратуре уплотнения. Полученный таким образом групповой (суммарный) сигнал UΣ(t) передается по линии связи. На приемной стороне колебание Z(t) = UΣ(t) + n(t), искаженное помехами, с помощью устройства разделения, основу которого составляют индивидуальные фильтры Ф1, Φ2, …, Фn, разделяется на сигналы (Формула), которые с помощью демодуляторов D1, D2, …, Dn преобразуются в первичные сигналы (Формула). Для разделения сигналов обычно используется их различие по частоте, времени или форме.

Многоканальная система передачи информации

Системы передачи информации: кодирование, декодирование, модуляция, схемы

Рис. 1.5. Структурная схема многоканальной системы передачи информации

В заключение отметим, что в современных системах передачи дискретных сообщений принято различать две группы относительно самостоятельных устройств: кодеки и модемы.

«Кодек» (сокращение словосочетания кодер-декодер) — устройство, в котором сообщение в процессе передачи преобразуется в код (кодер), а код в процессе приема преобразуется в сообщение (декодер). «Модем» (сокращение словосочетания модулятор-демодулятор) — устройство, преобразующее при передаче код в сигнал (модулятор), а при приеме сигнал в код (демодулятор). Обычно эти устройства выполняются в виде целостных узлов, через которые проходят цепи на передачу и на прием точно так же, как в телефонных аппаратах.

1.1.5 Обобщенная схема системы передачи информации

Каналом передачи информации является совокупность средств, используемых для этой цели.

Радиотехническим каналом связи называется канал передачи информации с помощью электромагнитных колебаний.

Устройство, преобразующее информацию в электромагнитное высокочастотное колебание (радиосигнал), называется радиопередатчиком, а устройство, преобразующее принятый радиосигнал в информацию – радиоприемником. При прохождении радиосигнала от передатчика к приемнику по среде распространения (провод, волновод, свободное пространство) его параметры могут изменяться, в том числе и под влиянием различного рода помех. На рис.1 показана обобщенная блок-схема система передачи информации, из которой видно, что помехи могут оказывать влияние не только на сигнал, сформированный передатчиком, но и на сигнал, обрабатываемый приемником.

Рис. 1

В радиотехнической системе сигналы подвергаются различным преобразованиям. Некоторые из них являются обязательными для всех систем, независимо от назначения и характера передаваемой информации.

Передаваемый по каналу связи сигнал подвергается воздействию помех. Источниками внешних помех являются атмосферные явления, шумы космического пространства, индустриальные помехи, помехи других каналов связи и пр.

Внутренние помехи возникают вследствие дискретной природы заряженных частиц, а также из-за несовершенства аппаратуры.

Под действием помех сигнал, проходя через канал связи, искажается. Поэтому одной из задач при организации канала связи является повышение помехоустойчивости канала.

Для увеличения потока информации, передаваемого одним каналом связи, применяют частотное или временнОе разделение каналов в одной линии связи. При частотном разделении каналов одно несущее колебание используется для передачи нескольких заранее промодулированных разными частотами сообщений. Эти частоты называются поднесущими. В приемнике радиосигнал детектируется, разделяется фильтрами, и каждый канал затем еще раз детектируется, выделяя свое низкочастотное сообщение.

При временном разделении каналов сообщения поочередно модулируют несущее колебание независимо от назначения и характера передаваемой информации.

Струтурная схема передающей части канала связи представлена на рис.2

Рис.2

Датчик преобразовывает передаваемую информацию в электрический сигнал-сообщение. Кодирующее устройство выполняет функцию преобразования сообщения в сигнал другой формы, более пригодной для передачи. Этот сигнал часто называют управляющим. В цифровых системах это устройство преобразует непрерывный сигнал в цифровой код. Запоминающее устройство хранит сигнал до момента его передачи. Модулятор осуществляет изменение (модуляцию) одного или нескольких параметров высокочастотного несущего колебания по закону управляющего сигнала.

Радиприемное устройство (рис.3) состоит из избирательного усилителя, детектора, декодирующего устройства и устройства обработки принятого сигнала (оконечное устройство).

Рис.3

Избирательный усилитель выделяет и усиливает из множества сигналов, принимаемых антенной, требуемое высокочастотное модулированное колебание. Детектор выделяет сигнал, пропорциональный закону модуляции. Оконечное усройство преобразует полученный электрический сигнал в информацию той или иной формы.

Кроме указанных выше преобразований сигналов, в радиотехнических устройствах используют различного рода усилительные устройства (усилители низкой частоты на входе передатчика и выходе приемника, усилители коротких импульсов в импульсных и цифровых системах, высокочастотные усилители малой и большой мощности), умножение и деление частоты и др.

Виды и способы передачи информации. Способы и средства передачи информации :: SYL.ru

Каждый человек постоянно сталкивается с информацией, притом так часто, что смысл самого понятия объяснить может не каждый. Информация – это сведения, которые передаются от одного лица другому при помощи различных средств связи.

Существуют различные способы передачи данных, о которых речь пойдет далее.

Каким образом передается информация

способы передачи информацииВ процессе развития человечества происходит постоянное совершенствование механизмов, при помощи которых передаются сведения. Способы хранения и передачи информации довольно разнообразны, поскольку существует несколько систем, в которых происходит обмен данных.

В системе передачи данных различают 3 направления: это передача от человека к человеку, от человека к компьютеру и от компьютера к компьютеру.

  • Первоначально сведения получают при помощи органов чувств – зрения, слуха, обоняния, вкуса и осязания. Для передачи информации на ближнем расстоянии существует язык, который позволяет сообщить полученные сведения другому человеку. Кроме того, передать что-либо другому человеку можно, написав письмо либо в процессе спектакля, а также при разговоре по телефону. Несмотря на то, что в последнем примере используется средство связи, то есть промежуточное устройство, оно позволяет передать сведения в непосредственном контакте.
  • Для передачи данных от человека к компьютеру необходимо введение ее в память устройства. Информация может иметь разный вид, о чем будет идти разговор далее.
  • Передача от компьютера к компьютеру происходит посредством промежуточных устройств (флеш-карты, интернета, диска и т. д.).

 способы хранения и передачи информации

Обработка информации

После получения необходимых сведений возникает необходимость их хранения и передачи. Способы передачи и обработки информации наглядно представляют этапы развития человечества.

  • В начале своего развития обработка данных представляла собой перенесение их на бумагу при помощи чернил, пера, ручки т. д. Однако недостаток такого способа обработки заключался в ненадежности хранения. Если упоминать способы хранения и передачи информации, хранение на бумаге имеет определенный срок, который определяется сроком службы бумаги, а также условиями ее эксплуатации.
  • Следующим этапом является механическая информационная технология, при которой используется печатная машинка, телефон, диктофон.
  • Далее на смену механической системе обработки сведений пришла электрическая, ведь способы передачи информации постоянно совершенствуются. К таким средствам относят электрические пишущие машинки, портативные диктофоны, копировальные машинки.

способы представления и передачи информации

Виды информации

Виды и способы передачи информации отличаются в зависимости от ее содержания. Это могут быть текстовые сведения, представляемые в устной и письменной форме, а также символьные, музыкальные и графические. К современным видам данных относят также видеоинформацию.

С каждой из этих форм хранения информации человек имеет дело каждый день.

Средства передачи информации

способы и средства передачи информации

Средства передачи информации могут быть устными и письменными.

  • К устным средствам относят выступления, собрания, презентации, доклады. При использовании этого метода можно рассчитывать на быструю реакцию оппонента. Использование дополнительных невербальных средств в процессе разговора способно усилить эффект от речи. К таким средствам относят мимику, жесты. Однако в то же время информация, получаемая в устном виде, не имеет долгосрочного действия.
  • Письменные средства информации – это статьи, отчеты, письма, записки, распечатки и т. д. При этом не приходится рассчитывать на быструю реакцию публики. Однако преимуществом является то, что полученную информацию можно перечитать, усвоив тем самым информацию.

Способы представления информации

Как известно, информация может быть представлена в нескольких формах, что, однако, не меняет ее содержания. Например, дом можно представить как слово или графическое отображение.

Способы представления и передачи информации можно изобразить в виде следующего списка:

  • Текстовая информация. Позволяет наиболее полно предоставить информацию, однако может содержать большой объем данных, что способствует плохому ее усвоению.
  • Графическое изображение – это график, схема, диаграмма, гистограмма, кластер и т. д. Они позволяют кратко представить информацию, установить логические связи, причинно-следственные отношения. Кроме того, информация в графическом виде позволяет найти решения различных вопросов.
  • Презентация является красочным наглядным примером способа представления информации. В ней могут сочетаться как текстовые данные, так и графическое их отображение, то есть различные виды представления информации.

Понятие о коммуникации

способы передачи и обработки информации

Коммуникацией называют систему взаимодействия между несколькими объектами. В обобщенном смысле это и есть передача информации от одного объекта другому. Коммуникации являются залогом успешной деятельности организации.

Способы передачи информации (коммуникации) выполняют следующие функции: организационную, интерактивную, экспрессивную, побудительную, перцептивную.

Организационная функция обеспечивает между сотрудниками систему отношений; интерактивная позволяет формировать настроение окружающих; экспрессивная окрашивает настроение окружающих; побудительная призывает к действию; перцептивная позволяет различным собеседникам понимать друг друга.

Современные способы передачи информации

виды и способы передачи информации

К наиболее современным способам передачи информации относят следующие.

В интернете содержится огромное количество информации. Это позволяет черпать для себя массу знаний, не утруждаясь изучением книг и других бумажных источников. Однако, помимо этого, он содержит способы и средства передачи информации, аналогичные исторически более давним моделям. Это аналог традиционной почты — электронная почта, или e-mail. Удобство использования этого вида почты заключается в скорости передачи письма, исключении этапности доставки. На сегодняшний день практически каждый имеет электронный адрес, и связь со многими организациями поддерживается именно посредством этого способа передачи информации.

GSM-стандарт цифровой сотовой связи, который широко применяется повсеместно. При этом происходит кодирование устной речи и передача ее через преобразователь другому абоненту. Вся необходимая информация размещается в sim-карте, которая вставляется в мобильное устройство. На сегодняшний день наличие данного средства связи является необходимостью в качестве средства коммуникации.

WAP позволяет просматривать на экране мобильного телефона web-страницы с информацией в любом ее виде: текстовом, числовом, символьном, графическом. Изображение на экране может быть адаптировано под экран мобильного телефона либо иметь вид, аналогичный компьютерному изображению.

Способы передачи информации современного типа включают также GPRS, который позволяет осуществлять пакетную передачу данных на мобильное устройство. Благодаря этому средству связи возможно беспрерывное использование пакетными данными одновременно большим количеством человек одновременно. Среди свойств GPRS можно назвать высокую скорость передачи данных, оплату только за переданную информацию, большие возможности использования, параметры совместимости с другими сетями.

Интернет посредством использования модема позволяет получить высокую скорость передачи информации при низкой стоимости такого доступа. Большое количество интернет-провайдеров создает высокий уровень конкуренции между ними.

Спутниковая связь позволяет получить доступ в интернет посредством спутника. Преимуществом такого способа является низкая стоимость, высокая скорость передачи данных, однако среди недостатков есть ощутимый – это зависимость сигнала от погодных условий.

способы передачи информации коммуникации

Возможности использования средств передачи информации

По мере появления новых средств передачи информации возникают возможности нетрадиционного использования различных устройств. Например, возможность видеоконференции и видеозвонка вызвала идею использовать оптические устройства в медицине. Таким образом происходит получение информации о патологическом органе при непосредственном наблюдении во время операции. При использовании такого способа получения информации нет необходимости делать большой разрез, проведение операции возможно при минимальном повреждении кожи.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *