Site Loader

Операционный усилитель 741 — Википедия

Операционный усилитель 741 в корпусе TO-5

Операционный усилитель 741 (другие обозначения: uA741, μA741) — универсальный интегральный операционный усилитель второго поколения на биполярных транзисторах. Оригинальный μA741 был разработан в 1968 году Дэвидом Фуллагаром из Fairchild Semiconductor на основе разработанного Бобом Видларом LM101. В отличие от LM101, использовавшего внешний конденсатор частотной коррекции, в μA741 этот конденсатор был выполнен непосредственно на кристалле ИС. Простота применения μA741 и совершенные для своего времени характеристики способствовали широкому применению новой схемы и сделали её «типовым» универсальным ОУ. Несмотря на появление значительно лучших по характеристикам аналогичных микросхем ОУ 741 и его клоны по состоянию на 2015 год все ещё выпускаются множеством производителей (например LM741, AD741, К140УД7).

Несмотря на то, что проще и полезнее рассматривать операционный усилитель как чёрный ящик с характеристиками идеального ОУ, важно также иметь представление о внутренней структуре ОУ и принципах его работы, так как при разработке с использованием ОУ могут возникнуть проблемы, обусловленные ограничениями его схемотехники.

Структура ОУ различных марок отличается, но в основе лежит один и тот же принцип. ОУ второго и последующих поколений состоят из следующих функциональных блоков:

Внутренняя схема операционного усилителя 741
  1. Дифференциальный усилитель
    • Входной каскад — обеспечивает усиление при малом уровне шума, высокое входное сопротивление. Обычно имеет дифференциальный выход.
  2. Усилитель напряжения
    • Имеет высокий коэффициент усиления по напряжению, спад Амплитудно-частотной характеристики как у однополюсного фильтра низких частот, обычно единственный (то есть не дифференциальный) выход.
  3. Выходной усилитель

Части схемы, обведённые красной линией являются токовыми зеркалами. Первичный ток, который задаёт все остальные токи, определяется напряжением питания ОУ и резистором 39 kΩ (плюс два падения напряжения на диодном переходе). Первичный ток составляет примерно

Iref=VS+−VS−−2Vbe39kΩ{\displaystyle I_{\text{ref}}={\frac {V_{{\text{S}}+}-V_{{\text{S}}-}-2V_{\text{be}}}{39\,{\text{k}}\Omega }}}(1)

Режим входного каскада по постоянному току задаётся двумя токовыми зеркалами слева. Токовое зеркало, образованное транзисторами Q8/Q9 позволяет работать с большими синфазными напряжениями на входе, не выходя при этом из активного режима работы транзисторов. Токовое зеркало Q10/Q11 косвенно используется для установки тока покоя входного каскада. Этот ток устанавливается резистором 5 kΩ. Цепь задания тока смещения работает следующим образом. Если ток входного каскада начинает отличаться (отличие обнаруживает транзистор Q8) от значения, заданного транзистором Q10, это отражается в токе Q9, что приводит к изменению напряжения в точке соединения коллекторов Q9 и Q10. Это напряжение, поступая на базы Q3 и Q4, уменьшает отклонение тока входного каскада от номинального. Таким образом, постоянная составляющая тока входного каскада стабилизирована глубокой отрицательной обратной связью.

Токовое зеркало Q12/Q13 обеспечивает для усилителя класса А постоянный ток нагрузки, этот ток практически не зависит от выходного напряжения ОУ.

Часть схемы, обведённая синей линией, является дифференциальным усилителем. Транзисторы Q1 и Q2 работают как эмиттерные повторители, они нагружены на пару транзисторов Q3 и Q4, включённых как усилители с общей базой. Помимо этого Q3 и Q4 согласуют уровень напряжения и обеспечивают предварительное усиление сигнала перед подачей его на усилитель класса А.

Дифференциальный усилитель из транзисторов Q1 — Q4 имеет активную нагрузку — токовое зеркало, состоящее из транзисторов Q5 — Q7. Транзистор Q7 увеличивает точность (равенство токов в ветвях) токового зеркала путём уменьшения тока сигнала, отбираемого с коллектора Q3 для управления базами транзисторов Q5 и Q6. Это токовое зеркало обеспечивает преобразование дифференциального сигнала в недифференциальный следующим образом:

  • Ток сигнала через коллектор Q3 поступает на вход токового зеркала, при этом выход зеркала (коллектор Q6) соединён с коллектором Q4.
  • Здесь токи коллекторов Q3 и Q4 суммируются, поскольку для дифференциальных входных сигналов сигнальные токи через транзисторы Q3 и Q4 равны по абсолютному значению и противоположны по направлению.

Таким образом, сумма вдвое превышает токи, текущие через транзисторы Q3 и Q4. Напряжение сигнала на коллекторе Q4 в режиме холостого хода равно произведению суммы сигнальных токов и сопротивлений коллекторов Q4 и Q6, включённых параллельно. Это произведение относительно велико, поскольку сопротивления коллекторов для токов сигнала большие[1].

Следует отметить, что ток базы входных транзисторов ненулевой и дифференциальное сопротивление входа ОУ 741 составляет примерно 2 MΩ.

ОУ имеет два вывода балансировки (на рисунке обозначены Offset), которые обеспечивают возможность подстройки напряжения смещения входа ОУ до нулевого значения. Для подстройки нужно подключить к выводам потенциометр.

Часть схемы, обведённая пурпурной линией, является усилительным каскадом класса А. Он состоит из двух n-p-n транзисторов, включённых как пара Дарлингтона. Коллекторной нагрузкой является выходная часть токового зеркала Q12/Q13, благодаря чему достигается высокое усиление этого каскада. Конденсатор ёмкостью 30 пФ обеспечивает частотно-зависимую отрицательную обратную связь, которая повышает устойчивость ОУ при работе с внешней обратной связью. Такая техника называется

компенсация Миллера, она функционирует практически так же, как и интегратор, построенный на ОУ. Полюс может находиться на достаточно низкой частоте, например 10 Гц для ОУ 741. Соответственно, на этой частоте происходит спад −3 дБ амплитудно-частотной характеристики ОУ при разомкнутой петле внешней обратной связи. Частотная компенсация обеспечивает безусловную стабильность ОУ в широком диапазоне условий и тем самым упрощает его применение.

Часть схемы, обведённая зелёной линией, предназначена для правильного смещения транзисторов выходного каскада. Эта часть схемы представляет собой умножитель напряжения база-эмиттер — двухполюсник, поддерживающий на своих выводах постоянную разность потенциалов вне зависимости от протекающего тока. Фактически, это аналог стабилитрона, выполненный на транзисторе Q16. Если считать ток базы транзистора Q16 равным нулю, а напряжение база-эмиттер равным 0.625 В (типичное напряжение база-эмиттер для кремниевых биполярных транзисторов), то ток, текущий через резисторы 4.5 kΩ и 7.5 kΩ будут одинаковы, а напряжение на резисторе 4.5 kΩ составит 0.375 В. Таким образом, напряжение на всем двухполюснике будет равно 0.625 + 0.375 = 1 В. Это напряжение поддерживает выходные транзисторы в чуть открытом состоянии, что уменьшает искажения типа «ступенька».

Поддержание напряжения смещения путём умножения напряжения база-эмиттер примечательно тем, что при изменениях температуры напряжения база-эмиттер меняются

одновременно и у смещаемого каскада, и у цепи смещения, то есть температурно-зависимые эффекты взаимно вычитаются. Это обстоятельство значительно улучшает термостабильность режима смещаемых транзисторов, особенно в интегральных схемах, где все транзисторы имеют одинаковую температуру (поскольку находятся на одном кристалле).

В некоторых усилителях, выполненных на дискретных компонентах, функцию смещения выходных транзисторов выполняют последовательно включённые полупроводниковые диоды (обычно два диода).

Выходной каскад (обведён голубой линией) класса AB — двухтактный эмиттерный повторитель (Q14, Q20), смещение которого устанавливается

умножителем напряжения Vbe (Q16 и резисторы, соединённые с его базой). На выходной каскад подаётся сигнал с коллекторов транзисторов Q13 и Q19. Диапазон выходных напряжений ОУ примерно на 1 В меньше, чем напряжение питания; это обусловлено падением напряжения на полностью открытых транзисторах выходного каскада.

Резистор сопротивлением 25 Ω в выходном каскаде служит датчиком тока. Этот резистор совместно с транзистором Q17 ограничивает ток эмиттерного повторителя Q14 на уровне примерно 25 мА. Ограничение тока в нижнем плече (транзистор Q20) двухтактного выходного каскада осуществляется путём измерения тока через эмиттер транзистора Q19 и последующего ограничения тока, текущего в базу Q15. В более новых вариантах схемотехники ОУ 741 могут использоваться несколько иные методы ограничения выходного тока.

Операционный усилитель | Описание и принцип работы.

Что такое операционный усилитель

Операционный усилитель (ОУ) англ. Operational Amplifier (OpAmp), в народе – операционник, является усилителем постоянного тока (УПТ) с очень большим коэффициентом усиления. Словосочетание «усилитель постоянного тока» не означает, что операционный усилитель может усиливать только постоянный ток. Имеется ввиду, начиная с частоты в ноль Герц, а это и есть постоянный ток.

Термин «операционный» укрепился давно, так как первые образцы ОУ использовались для различных математических операций типа интегрирования, дифференцирования, суммирования и тд. Коэффициент усиления ОУ зависит от его типа, назначения, структуры и может превышать 1 млн!

Схема операционного усилителя

На схемах операционный усилитель обозначается вот так:

операционный усилитель обозначение на схеме

или так

операционный усилитель обозначение на старых схемах

Чаще всего ОУ на схемах обозначаются без выводов питания

операционный усилитель обозначение на схеме

Итак, далее по классике, слева два входа, а справа – выход.

ОУ

Вход со знаком «плюс» называют НЕинвертирующий, а вход со знаком «минус» инвертирующий. Не путайте эти два знака с полярностью питания! Они НЕ говорят о том, что надо  в обязательном порядке подавать на инвертирующий вход сигнал с отрицательной полярностью, а на НЕинвертирующий сигнал с положительной полярностью, и далее вы поймете почему.

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как  +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять – двухполярное питание?

Давайте представим себе батарейку

Операционный усилитель

Думаю, все вы в курсе, что у батарейки есть “плюс” и есть “минус”.  В этом случае “минус” батарейки принимают за ноль,  и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

операционный усилитель двухполярное питание

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

операционный усилитель питание

Вот здесь мы как раз и получили двухполярное питание.

Идеальная и реальная модель операционного усилителя

Для того, чтобы понять суть работы ОУ, рассмотрим его идеальную и реальную модели.

1) Входное сопротивление идеального ОУ бесконечно большое.

входное сопротивление операционный усилитель

В реальных ОУ значение входного сопротивления зависит от назначения ОУ (универсальный, видео, прецизионный и т.п.) типа используемых транзисторов и схемотехники входного каскада и может составлять от сотен Ом и до десятков МОм. Типовое значение для ОУ общего применения – несколько МОм.

2) Второе правило вытекает из первого правила. Так как входное сопротивление идеального ОУ бесконечно большое, то  входной ток будет равняться нулю.

Операционный усилитель

На самом же деле это допущение вполне справедливо для ОУ с полевыми транзисторами на входе, у которых входные токи могут быть меньше пикоампер. Но есть также ОУ с биполярными транзисторами на входе. Здесь уже входной ток может быть десятки микроампер.

3) Выходное сопротивление идеального ОУ равняется нулю.

Операционный усилитель

Это значит, что напряжение на выходе ОУ не будет изменяться при изменении тока нагрузки. В реальных ОУ общего применения выходное сопротивление составляет десятки Ом (обычно 50 Ом).
Кроме того, выходное сопротивление зависит от частоты сигнала.

4) Коэффициент усиления в идеальном ОУ бесконечно большой. В реальности он ограничен внутренней схемотехникой ОУ, а выходное напряжение ограничено напряжением питания.

5) Так как коэффициент усиления  бесконечно большой, следовательно,  разность напряжений между входами идеального ОУ равняется нулю. Иначе если даже потенциал одного входа будет больше или меньше хотя бы на заряд одного электрона, то на выходе будет бесконечно большой потенциал.

6) Коэффициент усиления в идеальном ОУ не зависит от частоты сигнала и постоянен на всех частотах. В реальных ОУ это условие выполняется только для низких частот до какой-либо частоты среза, которая у каждого ОУ индивидуальна. Обычно за частоту среза принимают падение усиления на 3 дБ или до уровня 0,7 от усиления на нулевой частоте (постоянный ток).

Схема простейшего ОУ на транзисторах выглядит примерно вот так:

операционный усилитель внутреннее строение

Принцип работы операционного усилителя

Давайте рассмотрим, как работает ОУ

Операционный усилитель

Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).

Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы

Операционный усилитель

Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению

Операционный усилитель

Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.

Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в  нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. “от рельса до рельса”, а на языке электроники “от одной шины питания и до другой”.

Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:

операционный усилитель работа

Как вы видите, в данный момент выход “лег” на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.

Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:

Операционный усилитель

На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.

Операционный усилитель

Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.

операционный усилитель принцип работы

А что покажет Falstad? Ноль Вольт.

Операционный усилитель

Кому верить? Никому! В реале, такое сделать невозможно, чтобы на два входа загнать абсолютно равные напряжения. Поэтому такое состояние ОУ будет неустойчивым и значения на выходе могут принимать  значения или -E Вольт, или +E Вольт.

Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.

операционный усилитель схема Proteus

Смотрим, что имеем на виртуальном осциллографе:

Операционный усилитель

Что можно сказать в этом случае? Когда синусоидальный сигнал находится в отрицательной области, на выходе ОУ у нас -Uпит, а когда синусоидальный сигнал находится в положительной области, то и на выходе имеем +Uпит. Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых.

Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.

При участии Jeer

Операционные усилители и их аналоги

Тип микросхемы и фирма изготовитель Аналог Функциональное
назначение
Fairchild Motorola National Texas ins.
mA709CH MC1709G LM 1709L SN72710L К153УД1А/Б ОУ
mA101H MLM101G LM101H SN52101L К153УД2 ОУ
mA709H MC1709G SN72709L К153УД3 ОУ
LM735 К153УД4 микромощный ОУ
mA725C
mA725H
К153УД5А/Б
К153УД501
прецизионный ОУ
LM301A
LM201Ah
К153УД6
К153УЛ601
ОУ
mA702
mA702C
К140УД1А/Б
КР140УД1А/В
ОУ
MC1456C
MC1456G
SN72770 К140УД6
КР140УД608
ОУ
ОУ
mA741H MC1741G LM741H SN72741L К140УД7 ОУ
mA740H MC1556G К140УД8 ОУ с полевым входом
mA709 КР140УД9 ОУ
LM118 SN52118 К140УД10 высокоточный ОУ
LM318 К140УД11 быстродействующий ОУ
mA776C MC1776G К140УД12 микромощный ОУ
mA108H LM108H SN52108 К140УД14 прецизионный ОУ
LM308 К140УД1408 прецизионный ОУ
LM741CH К140УД16 прецизионный ОУ
mA747CN
mA747C
К140УД20
КР140УД20
два ОУ
LM301 К157УД2 два ОУ
MC75110 SN75110N К170АП1 два передатчика в линию
MC75107 SN75107N К170УП1 два приемника с линии
mA726 К516УП1 дифференциальная пара
с температурной компенсацией
LM318 SN72318 К538УН1 малошумящий УНЧ
mA740 MC1740P LM740 SN72740N К544УД1 ОУ с полевым входом
LM381 К548УН1 два малошумящих предусилителя
mA725B КР551УД1А/Б ОУ
mA739C КМ551УД2А/Е малошумящий ОУ
mA709 MC1709P LM709 SN72709N К553УД1 ОУ
M101A1V К553УД1А высокоэкономичный ОУ
LM301AP К553УД2 высокоэкономичный ОУ
mA709 К533УД3 ОУ
LM2900 К1401УД1 четыре ОУ
LM324 К1401УД2 четыре ОУ
mA747C LM4250 К1407УД2 программируемый малошумящий ОУ
LM343 К1408УД1 высоковольтный ОУ
Тип микросхемы и фирма производитель Аналог Функциональное назначение
Разных фирм RCA Analog Devices Hitachi
SFC2741 КФ140УД7 ОУ
ОР07Е К140УД17А/Б прецизионный ОУ
LF355 К140УД18 широкополосный ОУ
LF356H К140УД22 широкополосный ОУ
LF157 К140УД23 быстродействующий ОУ
ICL7650 К140УД24 прецизионный ОУ
СА3140 К1409УД1 прецизионный ОУ
НА2700 К154УД1А/Б быстродействующий ОУ
НА2530 К154УД2 быстродействующий ОУ
AD509 К154УД3А/Б быстродействующий ОУ
НА2520 К154УД4 быстродействующий ОУ
ТВА931 КР551УД2А/Б ОУ
СА3130Е К544УД2А/Б ОУ с полевым входом
LF357 КР544УД2А/Б ОУ с полевым входом
AD513 К574УД1А—В ОУ с полевым входом
TL083 К574УД2А—В двухканальный быстродействующий ОУ

6.10. Операционные усилители и интегральные микросхемы

Операционным усилителем (ОУ) обычно называют усилитель постоянного тока, имеющий коэффициент усиления по напряжению выше 1000. Достаточно подробные сведения по схемотехнике интегральных операционных усилителей можно найти в специальной литературе.

Для определения основных параметров операционных усилителей в области низких частот будем использовать эквивалентную схему, изображенную на рис.6.64. На этой схеме кружками изображены идеальные суммирующие узлы, (их выходное напряжение равно сумме входных напряжений со знаками), а треугольниками – идеальные масштабирующие звенья. Входные и выходные сопротивления идеальных звеньев и сумматоров предполагаются равными бесконечности и нулю соответственно. Все напряжения в схеме отсчитываются относительно общего провода – земли.

Один из входов усилителей называют инвертирующим (кружок на схеме), второй – неинвертирующим. При работе ОУ в линейном режиме напряжение на его выходе возрастает с уменьшением напряжения на инвертирующем входе (e) и с увеличением напряжения на неинвертирующем входе (e+). Разность напряжений на входах ОУ (e+-e) называют дифференциальным (разностным) входным сигналом. Соответственно ОУ с двумя задействованными входами (обычно инвертирующим и неинвертирующим) называют дифференциальным ОУ. Они предназначаются для усиления разности двух входных напряжений. Полусумма напряжений (e++e)/2 называется синфазным входным сигналом.

Большинство серийных ОУ выпускаются как дифференциальные. При необходимости они легко превращаются в другие типы ОУ путем использования внешних элементов с соответствующими схемами соединений. Известны также и одновходовые ОУ.

Основными параметрами ОУ являются следующие.

  1. Коэффициент усиления (Ку) – отношение изменения выходного напряжения к вызвавшему его изменению дифференциального входного напряжения при работе усилителя на линейном участке характеристики: Ку=ΔUвых /ΔUвх , где Uвх = (е+) – (е).

Рис.6.64. Эквивалентная схема операционного усилителя

Рис.6.65. Амплитудная характеристика ОУ

Для одновходовых усилителей за Uвх принимается соответствующее изменение напряжения на его входе. Большинство интегральных ОУ имеют значения Ку в пределах 103-106.

2. Напряжение смещения (eсм) – дифференциальное входное напряжение (e+-e) (для одновходовых ОУ – входное напряжение), при котором выходное напряжение ОУ Uвых равно нулю.

Обычно для ОУ, входные каскады, которых выполнены на биполярных транзисторах eсм=3…10мВ, на полевых транзисторах eсм=30…100мВ. Типовая зависимость выходного напряжения от входного для ОУ показана на рис.6.65.

На эквивалентной схеме Ку отражает коэффициент передачи безинерционного звена, на вход которого подается разность входных сигналов (e+-e), а напряжение смещения показано в виде дополнительного источника сигнала, суммируемого с е (поскольку eсм может иметь любой знак практически безразлично к e или к e+ подключен эквивалент формирования есм).

3. Средний входной ток (Iвх) – среднеарифметическое значение токов инвертирующего и неинвертирующего входов, измеренное при таком входном напряжении Uвх, при котором Uвых=0. На эквивалентной схеме эти токи обозначены как I+ и I. Уменьшение этих токов достигается использованием ОУ с полевыми транзисторами на входе.

4. Разность входных токов (Iвх) – абсолютное значение разности токов двух входов усилителя |(I+)-(I)|. Обычно Iвх=2050% Iвх.

5. Входное сопротивление (rвх) – сопротивление со стороны одного из входов ОУ, в то время как другой заземлен. Иногда это сопротивление называют входным сопротивлением для дифференциального сигнала для того, чтобы отличить его от входного сопротивления для синфазного сигнала.

6. Входное сопротивление для синфазного сигнала (rсф) – отношение приращения синфазного напряжения к приращения среднего тока усилителя. На эквивалентной схеме rвх показано как сопротивление, включенное между входами усилителя, а сопротивление rсф – в виде двух сопротивлений, включенных параллельно источникам токов I+, I.

7. Коэффициент ослабления синфазного сигнала (Мсф) – отношение коэффициента Ку к коэффициенту передачи синфазного сигнала Ксф, который определяется как отношение изменения выходного сигнала Uвых к вызвавшему его изменению синфазного входного напряжения (Мcф=Uвых/Uвх, сф).

Тракт передачи синфазного сигнала на эквивалентной схеме показан в виде сумматора входных сигналов e+ и e и безинерционного звена с коэффициентом передачи 0,5/Мсф, напряжение с выхода которого, равное обусловленному синфазным сигналом изменению напряжения смещения, подается через другой сумматор на вход основного усилительного звена.

8. Коэффициент влияния нестабильности источника питания (Kп) – отношение изменения напряжения смещения к вызывавшему его изменению одного из питающих напряжений Uп . Иногда влияние нестабильности источников положительного и отрицательного питающих напряжений характеризуют раздельным коэффициентом влияния. Этот коэффициент чаще всего равен 2·10-5…210-4 , что соответствует 20…200 мкВ/В;

9. Выходное сопротивление ОУ (rвых) – определяется точно также как и для любого другого усилителя.

10. В качестве динамических характеристик ОУ используют следующие:

— частотная полоса ОУ определяется, как правило, частотой единичного усиления f1, т.е. частотой на которой коэффициент усиления ОУ уменьшается до единицы;

— максимальная скорость нарастания выходного напряжения ОУ  — определяется при подаче на его вход импульса напряжения прямоугольной формы. Для интегральных ОУ  лежит в диапазоне 0.3…50В/мкс. Так как наибольшая скорость изменения синусоидального сигнала пропорциональна амплитуде и частоте этого сигнала, то ограничение скорости изменения выходного сигнала ОУ приводит к ограничению амплитуды выходного неискажённого гармонического сигнала на высоких частотах.

11. Температурные погрешности усилителя определяются температурным дрейфом напряжения смещения TKeсм.

При использовании ОУ в одном из основных своих назначений усиление входных сигналов для реализации заданного коэффициента усиления используют внешние обратные связи (передачу части выходного сигнала на вход).

Для обозначения операционных усилителей в структурных , функциональных и принципиальных схемах используют несколько вариантов изображений в виде треугольника (рис.6.66а), в виде прямоугольника с треугольником в верхней части поля усилителя (рис.6.66 б) , в виде прямоугольника с буквой А в поле усилителя (рис.6.66 в). Иногда изображения ОУ используют дополнительные поля для обозначения входных и выходных цепей усилителя (рис.6.66 г), например, цепей питания (U1,U2) , цепей коррекции (FC) и т.д.

Рис.6.66.Условные графические изображения ОУ

Для обеспечения нормальной работы ОУ к нему предъявляется ряд требований:

— для снижения общей погрешности схемы он должен иметь большой коэффициент усиления КУ ;

— для осуществления отрицательной обратной связи ОУ обеспечивает инверсию входного напряжения;

— входные токи усилителя стремятся свести к минимуму;

— при нулевом входном напряжении выходное напряжение должно стремиться к нулю, при этом входное сопротивление ОУ стремятся сделать как можно большим.

Представим схему одновходового усилителя для низких частот с коэффициентом усиления без обратной связи – Кy, так, как это показано на рис.6.67. Будем считать , что его входное сопротивление бесконечно велико , а выходное близко к нулю. При бесконечно большом входном сопротивлении справедливо выражение:

I1=I2,

где I1=(U1-)/Z1 , I2=(-U2)/Z0; Z1 – внешнее входное комплексное сопротивление; Zо – комплексное сопротивление внешней обратной связи.

Выходное напряжение определяется выражением:

U2=-Ky.

Рис.6.67.Схема одновходового ОУ для низких частот

Совместное решение этих выражений позволяет получить:

(U1+U2/Ky)/Z1=(-U2/Ky-U2)/Z0.

откуда

U2=(-Z0/Z1)∙U1/(1+(1/Ky)∙(1+Z0/Z1)) (6.10)

Если Ky ∞, то выражение (1/Ky)∙(1+Z0/Z1)0, откуда

U2-U1(Z0/Z1)-U1K (6.11)

где K= Z0/Z1— коэффициент усиления усилителя охваченного отрицательной обратной связью через сопротивление Z0.

При расчёте погрешностей одновходового ОУ, охваченного отрицательной обратной связью, учитывают, что они складываются из погрешностей за счёт: конечности коэффициента усиления ОУ без обратной связи; конечности входного сопротивления; неравенства нулю входного сопротивления; дрейфа нуля; напряжения смещения и входных токов усилителя; погрешностей внешних сопротивлений (входного и обратной связи).

Из уравнения (6.10) следует, что чем выше Ky, тем точнее работает ОУ при реализации своей основной функции в соответствии с уравнением (6.11). Отсюда абсолютная погрешность может быть определена как разность неточного (выражение 6.11) и точного (выражение 6.10) значений выходных напряжений .То есть

Uk=-U1+U1=U1

Относительная погрешность определяется выражением :

Uk=Uk/U2п где U2п – приближенное значение выходного напряжения в соответствии с формулой (6.11).

Операционные усилители являются типичными представителями микроэлектронных изделий, называемых интегральными микросхемами (интегральными схемами).

По определению интегральная схема (ИС) – микроэлектронное изделие, выполняющее определенную функцию преобразования и обработки сигналов и имеющее высокую плотность упаковки электрически соединенных элементов (или элементов и компонентов) и (или) кристаллов, которые с точки зрения требований к испытаниям, приёмке, поставке и эксплуатации рассматриваются как единое целое.

Часть ИС, реализующая функцию какого-либо электрорадио элемента (резистора, диода, транзистора) называется элементом интегральной микросхемы, причем эта часть выполнена неразделимо от других частей и не может быть выделена как самостоятельное изделие. Часть ИС которая может быть выделена в самостоятельное изделие называется компонентой интегральной схемы.

По конструктивно-технологическим признакам интегральные схемы обычно разделяют на:

— полупроводниковые;

— гибридные;

— пленочные.

В полупроводниковой схеме все элементы и межэлементные соединения выполнены в объёме или на поверхности полупроводника. В таких схемах нет компонентов.

В гибридной микросхеме имеются электронные компоненты и (или) отдельные кристаллы полупроводников.

В пленочных интегральных микросхемах элементы и межэлементные соединения выполняются на поверхности диэлектрика.

По функциональным признакам интегральные микросхемы подразделяются на аналоговые и цифровые ИС.

В ближайшее время ожидается появление сверхбольших интегральных схем (СБИС) содержащих до 100 млн. МОП транзисторов в одном кристалле. По скорости переключения современные ИС на биполярных транзисторах работают со скоростью 15 ГГц.

В системе условных обозначений ИС используются буквенно-цифровой код, состоящий из четырех элементов (рис.6.68).

Первый элемент – цифра определяет конструкторско-техническую группу. Второй элемент (две или три цифры) – порядковый номер разработки серии. Третий элемент (две буквы) – подгруппа и вид микросхемы. Четвертый элемент (одна или несколько цифр)– порядковый номер разработки микросхемы данной серии.

Пример:

Рис.6.68. Четырёх элементное обозначение ИС

К основным элементам обозначения микросхем могут добавляться до двух букв вначале. Через дефис после обозначения указывается цифра, определяющая модификацию конструктивного исполнения (рис.6.69).

Пример:

Рис.6.69. Шестиэлементное обозначение ИС

Апгрейд ОУ в ЗК: зачем и на что?

Этот материал написан посетителем сайта, и за него начислено вознаграждение. Качество воспроизведения звука… сколько копий уже сломано, и сколько ещё сломят — страшно представить. Благодаря повсеместному использованию персональных компьютеров качественный звук стал значительно доступнее, чем, скажем, лет 10 назад. А прогресс мультимедийной акустики можно наблюдать невооруженным ухом, звуковые карты семимильными шагами догнали недорогую бытовую технику. Причем по заявленным характеристикам (используемым цифроаналоговым преобразователям, далее — ЦАП) более-менее дорогие звуковые карты даже превосходят многие проигрыватели компакт-дисков, только вот на поверку это превосходство зачастую не подтверждается. В чем причина?

Существует распространённое заблуждение, что в компьютере очень неблагоприятный электрический фон, который и не позволяет ему хорошо звучать. Измерения профессиональных карт это опровергают — при наличии качественного блока питания и нормальной материнской платы спектры сигналов идеально чистые.

Гораздо более грамотным объяснением является используемая элементная база. Компьютерные инженеры слабо подкованы в аудиотехнике, поэтому зачастую используют типовые схемы включения и самые доступные компоненты. Тогда как адепты от электроники щепетильно высчитывают режимы работы каждого каскада и их согласованность между собой, используя ровно такое количество и качество компонентов, которое не повредит общим характеристикам изделия.

Значит ли это, что звуковую карту нельзя улучшить без полной переделки? Отнюдь! Получить ощутимое улучшение качества можно и с минимальными затратами. В этой статье я хочу конгламерировать опыт множества людей, подкрепив его теоретическими изысканиями.

Тракт воспроизведения в современных звуковых картах построен следующим образом: PCM-кодированный звуковой поток (например с Audio CD) поступает на ЦАП, где преобразовывается цифровым фильтром в меньшую разрядность, но значительно большую частоту (до 33 МГц), затем фильтруется цифровыми алгоритмами для отсечения составляющих выше половины частоты дискретизации исходных данных (как того требует теорема Котельникова), после чего преобразовывается в аналоговый сигнал дельта-сигма конвертерами. Для чего все эти сложности — тема отдельная, однако на выходе ЦАП мы получаем некий аналоговый сигнал со спектром, на порядки шире звукового диапазона. Ультразвуковые составляющие затем отфильтровываются аналоговым усилителем на операционных усилителях, которые не должны ухудшать паспортные характеристики ЦАП. А вот тут-то есть загвоздки. Операционные усилители в массовых звуковых картах не удовлетворяют даже элементарным требованиям в данной области применения!

Простейший пример: для полноценной работы фильтра низких частот после ЦАП, полоса усиления ОУ должна превышать частоту среза хотя бы в 100 раз. Аналоговый фильтр, чтобы не вносить дополнительных искажений АЧХ и ФЧХ в звуковой диапазон, обычно ограничивается вторым порядком и настраивается на частоту не менее 50 кГц. Если же он, по совместительству, является и усилителем напряжения до стандартной в аудиотехнике величины 2 В, то требования к полосе усиления необходимо увеличить ещё минимум в два раза. Итого получаем цифру 10 Мгц как минимально-допустимую. Тогда как у большинства из встречающихся на звуковых платах ОУ полоса усиления даже в идеальных условиях меньше.

Исключением здесь выглядит NJM4580, который используется на таких известных звуковых картах, как Terrateс Aureon Sky/Space, Audiotrak Prodigy 7.1, M-Audio Revolution 5.1, ESI Juli@ и Maya 44. Только вот у этого операционного усилителя далеко не идеальные характеристики по искажениям…

Как я уже упоминал, искажения ОУ при заданном коэффициенте усиления (обычно 1 или 2), должны быть ниже, чем искажения ЦАП. Причём заметно ниже в звуковом диапазоне, и очень желательно, не принципиально выше в сверхзвуковом, в связи со спецификой дельта-сигма преобразователей. Наведённый ими ультразвуковой шум, умноженный и обогащенный искажениями усилителя, обязательно увеличит интермодуляционные искажения в звуковой области. Кроме того, специфика музыкального сигнала требует, чтобы уровень искажений мало зависел от амплитуды сигнала, а возможность подключения наушников непосредственно к звуковой карте требует ещё и слабой зависимости искажений от сопротивления нагрузки. Тут ещё следует делать поправку на максимальное усиление ОУ: чем оно выше, тем глубже получается обратная связь и тем меньше уровень искажений в стационарных условиях, в которых обычно проводятся измерения. Однако лучше будет звучать тот усилитель, который обеспечивает заданный уровень искажений при меньшей глубине обратной связи, т.е. имеющий меньший коэффициенте усиления.

Удовлетворить всем этим требования способен редкий ОУ. Давайте рассмотрим кандидатов, проходящих по первому критерию — полосе усиления. Первым по алфавиту идёт Analog Devices. Воспользуемся очень удобным параметрическим поиском по следующим параметрам:
Vcc-Vee 24 Вольта. В звуковых картах ОУ чаще всего питаются прямиком от блока питания.
Amplifiers Per Package 2. Нам нужно заменить штатные без переделки платы.
V or I Feedback Voltage, по той же причине.
Отсортируем список по Small Signal Bandwidth. Этот параметр не всегда равен частоте единичного усиления, но за неимением в поиске другого…

Парад открывает малоизвестный в аудиофильских кругах AD8019.
До 92 дБ и 80 МГц усиления.
Уровень гармоник ниже -85 дБ даже при нагрузке 10 Ом и коэффициенте усиления 10, причем очень слабо зависят от амплитуды напряжения и тока, а также частоты.
Очень ровная фаза в широком диапазоне частот.
Учитывая его малошумность, выглядит очень заманчивым вариантом, с двумя оговорками: очень слабое подавления пульсаций питания и только SOIC исполнение.

Вторым по списку следует как раз хорошо известный и получающий самые лестные отзывы AD8066.
До 114 дБ и до 65 МГц усиления.
Очень удобно, что искажения приведены и для двукратного усиления: уровень гармоник значительно ниже -95 дБ при нагрузке более 150 Ом.
Амплитуда тока на выходе до 30 мА, что может быть не достаточно для части низкоомных наушников. Хорошее подавление пульсаций.
Универсальный и очень качественный по звуку операционный усилитель. Для звуковых карт это один из главных кандидатов в любом включении.
Доступен как в SOIC, так и в MSOP корпусе.

AD8022
Усиление до 72 дБ и до 100 МГц!
При КУ=1 на нагрузке 500 Ом уровень гармоник не превышает -110 дБ!
Сверхмалошумящий, плюс имеет вдвое большую нагрузочную способность, чем AD8066 и по всем признакам, должен звучать как минимум не хуже его. Единственное «но» — посредственное подавление пульсаций напряжения.
Доступен как в SOIC, так и в MSOP корпусе.

AD828
Компенсирован для КУ=2 (-1) и более!
Усиление до 80 дБ и до 100 МГц!
Способен обеспечить 2 В амплитуды даже на нагрузке 10 Ом! Без искажений выдаёт в нагрузку до 50 мА тока.
Уровень гармоник при КУ=2 плавно стремится к -100 дБ, что также можно считать великолепным результатом.
Малошумен и обладает хорошим подавлением пульсаций.
Обилие восклицательных знаков должно к чему-то обязывать. И правда, по отзывам, ОУ звучит замечательно, но далеко не во всех схемах стабилен, поэтому может быть разумным не уповать на везение и присмотреться к другим ОУ.
Доступен в SOIC и DIP корпусах.

AD8034
Усиление до 96 дБ и до 40 МГц.
На нагрузке 1 кОм уровень гармоник находится ниже -100 дБ, однако уже на 500 Ом подскакивает до -85. Причем третья гармоника по уровне заметно больше второй, что не есть хорошо.
Остальные параметры весьма приличные, архитектурно чип является родственником AD8066 и, скорее всего, характер звука будет схожий.
Доступен в SOIC корпусе.

AD8397
Усиление до 96 дБ и до 35 МГц.
Уровень гармоник при КУ=2 и нагрузке 25 Ом ниже -100 дБ! Зависимость искажений от частоты и амплитуды сигнала очень слабая.
В придачу ко всему, усилитель сверхмалошумящий.
Но без ложки дёгтя, как всегда, не обошлось — подавление питания оставляет желать лучшего.
Доступен в SOIC корпусе с металлическим «брюшком» для улучшения теплоотвода.

AD826
Усиление до 77 дБ и до 50 МГц.
Фактически является скомпенсированным для единичного усиления AD828, со всеми его достоинствами, но значительно более стабильный! Небольшая потеря в уровне подавления пульсаций питания компенсируется способностью легко выносить ёмкостную нагрузку.
Доступен в DIP и SOIC исполнениях.

AD827 фактически является клоном предыдущего, с ослабленным выходным каскадом и в другом корпусе. При этом стоит в полтора раза больше 🙂

Широкоизвестный в узких кругах AD8620 на фоне уже рассмотренных моделей блещет не особо: огромный коэффициент усиления (более 105 дБ) при полосе до 25 МГц, искажения менее 0.001%, но резко растут с уменьшением сопротивления нагрузки. Его звучанием многие довольны, только вот для наушников обязательно будет нужен дополнительный усилитель тока (буфер).
Неприлично высокая цена объясняется его превосходными характеристиками по постоянному току (что для звука совершенно не актуально) и их температурным постоянством, а также потрясающе низкой чувствительностью к ёмкостной нагрузке, отличным подавлением пульсаций и непревзойдённой стабильностью в любых включениях.
Доступен только в SOIC корпусе.

Новинка! AD8599
Сверхмалошумящий с усилением до 10 МГц и 116 дБ. Искажения менее 0.0005% на нагрузке 2 кОм, но возрастают до 0.002% при 600 Ом. Зато очень либерально относится к ёмкостной нагрузке, имеет отличное подавление питания и выходной ток до 50 мА.
Доступен только в SOIC корпусе.

AD823
Усиление до 95 дБ и до 9 МГц.
Искажения ниже -100 дБ, но при выходных токах более 20 мА лавинообразно растут. Соответственно, на нагрузке 32 Ома отдаваемая без искажений мощность составит всего 6 мВт, что явно не достаточно для комфортного прослушивания.
По всем остальным параметрам, кроме подавления пульсаций питания, ОУ очень хорош, его звук хвалят за мягкость.
Доступен в DIP и SOIC исполнениях.

AD746
Компенсирован для КУ=2 (-1) и более!
Имеет большой коэффициент усиления (до 118 дБ), но полоса усиления лишь 10 Мгц, т.е. в наши требования он уже вписывается со скрипом.
Искажения в звуковом диапазоне не превышают -110 дБ, ОУ обладает неплохим подавлением пульсаций, работоспособен при низкоомной нагрузке (при токах менее 20 мА), однако сам производитель почему-то рекомендует его максимум для 14-битных ЦАПов. Скорее всего это относится к стадии I/U преобразования, которое в большинстве звуковых карт уже встроено в ЦАП, посему данный ОУ как минимум достоин рассмотрения.
Характер вносимых искажений близок к пресловутому звучанию Burr-Brown.
Доступен в DIP и SOIC исполнениях.

AD712
Компенсированная для единичного усиления версия предыдущего усилителя.

AD8676
Усиление до 72 дБ, полоса до 10 МГц.
Сверхмалошумящий, имеет отличное подавление пульсаций, но очень слабый выход (до +-20 мА тока). Данных об искажениях не приводится.
Доступен как в SOIC, так и в MSOP корпусе.

AD8672
Выглядит «ускоренной» версией предыдущего. Огромаднейший коэффициент усиления (135 дБ), полоса усиления до 10 МГц. Искажения крайне низки, но выходной каскад не справляется с большой амплитудой сигнала при низкоомной нагрузке.
Доступен как в SOIC, так и в MSOP корпусе.

OP275
Весьма популярный в аудиофильских кругах продукт. Усиление до 104 дБ, полоса до 9 МГц, хорошее подавление пульсаций, искажения ниже 0.001% в широком диапазоне выходных напряжений при сопротивлении нагрузки выше 100 Ом. Однако с ним есть сложность: при неинвертирующем включении необходимо подбирать сопротивление резисторов обратной связи пропорционально выходному сопротивлению предыдущего каскада (в нашем случае ЦАП, а для них выходное сопротивление не афишируется), чтобы избежать значительного роста искажений на частотах выше 1 кГц. Проблема неактуально, если ОУ применяется в инвертирующем включении или как дифференциальный сумматор.
Доступен в DIP и SOIC исполнениях.

OP285
Копия предыдущего, что-то вроде отборных зёрен (селекция по напряжению смещения), за счет чего и стОит гораздо дороже. Доступен только в SOIC корпусе.

AD8512
Усиление до 100 дБ, полоса до 8 МГц.
Хороший выходной ток (до 70 мА), отличное подавление пульсаций, малошумящий, искажения на высокоомной нагрузке ниже 0.0001%. Однако насколько они увеличатся при подключении наушников — не известно. По отзывам, звучит немного грубее AD823, с меньшей натуральностью высоких частот, но лучшей проработкой баса.
Доступен как в SOIC, так и в MSOP корпусе.

Необходимо заметить, что производитель предлагает всем желающим ознакомиться со своей продукцией бесплатно, осуществляя рассылку ограниченного количества (по две штуки не более трёх наименований) микросхем средствами TNT International. Доставка в Москву занимает около месяца.

Ещё один известнейший производитель продукции с музыкальным уклоном — National Semiconductor. Компания также предлагает бесплатные образцы продукции для ознакомления, но берёт деньги за доставку (около 20 долларов).

LM4562
Усиление до 140 дБ, полоса до 30 МГц.
Сверхмалошумящий, с невероятно низким заявленным уровнем искажений. Нагрузку в 600 Ом переносит без увеличения искажений, выходной ток до 20 мА, отличное подавление пульсаций. По отзывам, звучит фантастически, без малейших признаков окрашивания. Звук стерилен до такой степени, что некоторые предпочитают другие ОУ. Однако независимые тесты показали, что ему свойственна проблема, описанная выше для OP275. Впрочем, если ОУ используется в качестве сумматора после ЦАП с дифференциальными выходами, звучание получается ощутимо лучше, чем с OPA2132/4.
Доступен в DIP и SOIC исполнениях.

Практически идентичными параметрами обладают LME49720 и LME49860. Последний отличается способностью работать при напряжении питания 44 В, в отличие от 34 В у двух предыдущих.

LM6172

Усиление до 86 дБ, полоса до 100 МГц!
Малошумящий, искажения ниже -100 дБ на нагрузке 100 Ом, до 50 мА выходного тока. Мечта аудиофила, если бы не склонность к самовозбуждению — усилитель далеко не всегда стабилен. Однако когда разводка платы подходящая, его звуком довольны все.
Доступен в DIP и SOIC исполнениях.

LM6152

Ничем не примечательный ОУ, не обращайте внимания.

LM7372

Усиление до 85 дБ, полоса до 120 МГц!
Выходной ток до 150 мА, уровень гармоник в 100 дБ, вроде всем хорош… но при сопростивлении нагрузки ниже 150 Ом искажения начинают резко расти, преодолевая в итоге планку -80 дБ.
Компенсирован для КУ=2 (-1) и более!
Доступен в SOIC корпусе.

LM833

Усиление до 115 дБ и до 10 МГц.
Малошумящий, хорошее подавление пульсаций, но слабый выходной каскад. Искажения превышают 0.001% уже при нагрузке 1 кОм.
Очень старый ОУ. Отзывы о звучании противоречивы.

Linear Technology не столь известна, как Analog Devices или National Semiconductor, но выпускает продукцию не менее интересную с точки зрения звука и, что немаловажно, также предлагает бесплатные образцы продукции для ознакомления.

Воспользуемся параметрическим поиском по следующим критериям:
Channels = 2
GBW >= 10
Type != CFA
Vs Max > 12
Av Min Stable = 1

В получившемся списке оказались несколько позиций, несовместимых по цоколёвке или назначению, их я пропущу.

LT1208 DIP, SOIC

Усиление 77 дБ до 8 кГц, полоса 45 Мгц, нарастание до 400 В/мкс, хорошее подавление и выходной ток, стабилен с ёмкостной нагрузкой, но overshoot более 20%. Искажения менее -0.002% в звуковом диапазоне, далее резкий рост.

LT1211 SOIC

LT1213 SOIC

LT1215 SOIC

Семейство из трёх ОУ с низкими входными токами и разным быстродействием (от 14 МГц и 7 В/мкс до 23 МГц и 50 В/мкс).
Усиление до 130 дБ, отличное подавление, искажения 0,0007% до 4 кГц, далее рост как у LT1208.
Рекомендуются производителем для I/U. LT1213 отличается повышенным overshoot, а LT1215 повышенными смещениями.

LT1352 DIP, SOIC

Искажения больше 0.002%

LT1355 DIP, SOIC

LT1358 DIP, SOIC

LT1361 DIP, SOIC

LT1364 DIP, SOIC

Семейство из четырёх ОУ с малым (LT1355 и LT1358) и очень малым (LT1361 и LT1364) временем установки, различающихся быстродействием (от 12 МГц и 400 В/мкс до 70 МГц и 1000 В/мкс).
Неплохое подавление, повышенная стабильность при ёмкостной нагрузке, искажения в неинвертирущем включении порядка 0,0007% до 2 кГц.
Звучание LT1364 хвалят.

LT1469 DIP, SOIC

Экстремально низкий уровень искажений на высокоомной нагрузке и отличное подавление, усиление более 110 дБ, полоса до 45 МГц, нарастание до 22 В/мкс.
Малый выходной ток и небольшая индифферентность к ёмкостной нагрузке. Превосходный вариант для I/U.

LT1498 DIP, SOIC

LT1630 DIP, SOIC

LT1632 DIP, SOIC

LT1678 SOIC

Малошумящий, с огромным усилением, отличным подавлением, малым overshoot. Но искажения резко растут уже с 1 кГц.

Среди операционных усилителей с низкими входными токами обнаруживаются несколько потенциально интересных микросхемы.

LT1057 DIP, SOIC
SR=14 В/мкс, GBW=5 МГц, Av=110 дБ, нулевой overshoot, неплохое подавление

LT1457 DIP, SOIC
практически по всем параметрам повторяет предыдущий, но SR=4 и GBW=1.7

LT1169 DIP, SOIC
SR=4.2, GBW=5.3, Av=133, THD<0.0004% на частотах ниже 1 кГц и плавный рост. малошумящий, неплохое подавление, минимальный overshoot, растущий только при ёмкости нагрузки больше 100 пФ, входная ёмкость менее 2 пФ

LT1113 DIP, SOIC
практически по всем параметрам повторяет предыдущий, но SR=3.9, GBW=5.6 и Cin>14 пФ

В ассортименте Texas Instruments также очень много интересной продукции, они тоже рассылают бесплатные образцы, причем в количестве от 5 до 10 штук 8 разных позиций, а доставка через FedEx занимает менее недели. В пятницу заказал — в понедельник получил 🙂

THS4012 MSOP, SOIC

THS4032 MSOP, SOIC

THS4042 MSOP, SOIC

THS4052 MSOP, SOIC

THS4062 MSOP, SOIC

THS4082 MSOP, SOIC

THS6042 MSOP, SOIC

THS6062 MSOP, SOIC

THS6072 MSOP, SOIC

OPA2211 MSOP, SOIC

OPA2132 DIP, SOIC

OPA2134 DIP, SOIC

Будьте внимательны при выборе микросхемы, предварительно удостоверьтесь, какой тип корпуса подходит к вашей карте.
Операционные усилители от NJR, устанавливаемые на подавляющее большинство звуковых карт, встречаются в следующем исполнении:
SSOP8 длина корпуса 4.4 мм, ширина 3.5 мм, шаг выводов 0.65 мм, длина выводов 1 мм
DMP8 длина корпуса 5 мм, ширина 5 мм, шаг выводов 1.27 мм, длина выводов менее 1 мм
EMP8 длина корпуса 4 мм, ширина 5 мм, шаг выводов 1.27 мм, длина выводов 1 мм
DIP очень крупный корпус, выводы загнуты вниз (вставляется в «кроватку» или впаивается в отверстия на плате)
Операционные усилители от Analog Devices имеют следующие габариты корпуса:
SOIC_N (R8) длина корпуса 4 мм, ширина 5 мм, шаг выводов 1.27 мм, длина выводов более 1 мм
MSOP (RM8) длина корпуса 3 мм, ширина 3 мм, шаг выводов 0.65 мм, длина выводов менее 1 мм

Статья дорабатывается по мере возможности. Замечания/предложения приветствуются в ветках по доработке звуковых карт на форумах Overclockers и iXBT:
https://forums.overclockers.ru/viewtopic.php?t=126233&sid=e3d390de8f35f94aee743f57c8696953
http://forum.ixbt.com/topic.cgi?id=12:22570

Другие полезные материалы по теме:
http://www.sg-acoustics.ch/analogue_audio/ic_opamps/index.html
http://audioportal.su/forums/showthread.php?t=7276
http://musatoffcv.narod.ru/Docs/FiltersOpAmp.htm
http://musatoffcv.narod.ru/Docs/OA_For_WT192X.htm
http://musatoffcv.narod.ru/Docs/DescNoLinerOfOpAmp.htm

Схемы включения операционных усилителей | HomeElectronics

Прошлая статья открыла цикл статей про строительные кирпичики современной аналоговой электроники – операционные усилители. Было дано определение ОУ и некоторые параметры, также приведена классификация операционных усилителей. Данная статья раскроет такое понятие как идеальный операционный усилитель, и будут приведены основные схемы включения операционного усилителя.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Идеальный операционный усилитель и его свойства

Так как наш мир не является идеальным, так и идеальных операционных усилителей не существует. Однако параметры современных ОУ находятся на достаточно высоком уровне, поэтому анализ схем с идеальными ОУ даёт результаты, очень близкие к реальным усилителям.

Для понимания работы схем с операционными усилителями вводится ряд допущений, которые приводят реальные операционные усилители к идеальным усилителям. Таких допущений всего пять:

  1. Ток, протекающий через входы ОУ, принимается равным нулю.
  2. Коэффициент усиления ОУ принимается бесконечно большим, то есть выходное напряжение усилителя может достичь любых значений, однако в реальность ограничено напряжением питания.
  3. Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Отсюда также следует, что входное сопротивление идеального усилителя бесконечно.
  4. Выходное сопротивление идеального ОУ равно нулю.
  5. Амплитудно-частотная характеристика идеального ОУ является плоской, то есть коэффициент усиления не зависит от частоты входного сигнала.

Близость параметров реального операционного усилителя к идеальным определяет точность, с которой может работать данный ОУ, а также выяснить ценность конкретного операционного усилителя, быстро и правильно сделать выбор подходящего ОУ.

Исходя из вышеописанных допущений, появляется возможность проанализировать и вывести соотношения для основных схем включения операционного усилителя.

Основные схемы включения операционного усилителя

Как указывалось в предыдущей статье, операционные усилители работают только с обратными связями, от вида которой зависит, работает ли операционный усилитель в линейном режиме или в режиме насыщения. Обратная связь с выхода ОУ на его инвертирующий вход обычно приводит к работе ОУ в линейном режиме, а обратная связь с выхода ОУ на его неинвертирующий вход или работа без обратной связи приводит к насыщению усилителя.

Неинвертирующий усилитель

Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже


Схема включения неинвертирующего усилителя.Схема включения неинвертирующего усилителя.
Схема включения неинвертирующего усилителя.

Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.

Таким образом, основные параметры данной схемы описываются следующим соотношением


2016010120160101

Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя


2016010220160102

Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.

Необходимо отметить особый случай, когда сопротивление резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице. В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.

Инвертирующий усилитель

Инвертирующий усилитель характеризуется тем, что неинвертирующий вход операционного усилителя заземлён (то есть подключен к общему выводу питания). В идеальном ОУ разность напряжений между входами усилителя равна нулю. Поэтому цепь обратной связи должна обеспечивать напряжение на инвертирующем входе также равное нулю. Схема инвертирующего усилителя изображена ниже


Схема инвертирующего усилителяСхема инвертирующего усилителя
Схема инвертирующего усилителя.

Работа схемы объясняется следующим образом. Ток протекающий через инвертирующий вывод в идеальном ОУ равен нулю, поэтому токи протекающие через резисторы R1 и R2 равны между собой и противоположны по направлению, тогда основное соотношение будет иметь вид


2016020120160201


2016020220160202
2016020320160203


2016020420160204

Тогда коэффициент усиление данной схемы будет равен


2016020520160205

Знак минус в данной формуле указывает на то, что сигнал на выходе схемы инвертирован по отношению к входному сигналу.

Интегратор

Интегратор позволяет реализовать схему, в которой изменение выходного напряжения пропорционально входному сигналу. Схема простейшего интегратора на ОУ показана ниже


интеграторинтегратор
Интегратор на операционном усилителе.

Данная схема реализует операцию интегрирования над входным сигналом. Я уже рассматривал схемы интегрирования различных сигналов при помощи интегрирующих RC и RL цепочек. Интегратор реализует аналогичное изменение входного сигнала, однако он имеет ряд преимуществ по сравнению с интегрирующими цепочками. Во-первых, RC и RL цепочки значительно ослабляют входной сигнал, а во-вторых, имеют высокое выходное сопротивление.

Таким образом, основные расчётные соотношения интегратора аналогичны интегрирующим RC и RL цепочкам, а выходное напряжение составит


2016030120160301

Интеграторы нашли широкое применение во многих аналоговых устройствах, таких как активные фильтры и системы автоматического регулирования

Дифференциатор

Дифференциатор по своему действию противоположен работе интегратора, то есть выходной сигнал пропорционален скорости изменения входного сигнала. Схема простейшего дифференциатора показана ниже


Дифференциатор на операционном усилителеДифференциатор на операционном усилителе
Дифференциатор на операционном усилителе.

Дифференциатор реализует операцию дифференцирование над входным сигналом и аналогичен действию дифференцирующих RC и RL цепочек, кроме того имеет лучшие параметры по сравнению с RC и RL цепочками: практически не ослабляет входной сигнал и обладает значительно меньшим выходным сопротивлением. Основные расчётные соотношения и реакция на различные импульсы аналогична дифференцирующим цепочкам.

Выходное напряжение составит


2016030220160302

Логарифмирующий преобразователь

Одной из схем на операционном усилителе, которые нашли применение, является логарифмирующий преобразователь. В данном схеме используется свойство диода или биполярного транзистора. Схема простейшего логарифмического преобразователя представлена ниже


Логарифмирующий преобразовательЛогарифмирующий преобразователь
Логарифмирующий преобразователь.

Данная схема находит применение, прежде всего в качестве компрессора сигналов для увеличения динамического диапазона, а так же для выполнения математических функций.

Рассмотрим принцип работы логарифмического преобразователя. Как известно ток, протекающий через диод, описывается следующим выражением


2016040120160401

где IO – обратный ток диода,
е – число е, основание натурального логарифма, e ≈ 2,72,
q – заряд электрона,
U – напряжение на диоде,
k – постоянная Больцмана,
T – температура в градусах Кельвина.

При расчётах можно принимать IO ≈ 10-9 А, kT/q = 25 мВ. Таким образом, входной ток данной схемы составит


2016040220160402

тогда выходное напряжение


2016040320160403

Простейший логарифмический преобразователь практически не используется, так как имеет ряд серьёзных недостатков:

  1. Высокая чувствительность к температуре.
  2. Диод не обеспечивает достаточной точности преобразования, так как зависимость между падением напряжения и током диода не совсем логарифмическая.

Вследствие этого вместо диодов применяют транзисторы в диодном включении или с заземлённой базой.

Экспоненциальный преобразователь

Схема экспоненциального преобразователь получается из логарифмического преобразователя путём перемены места диода и резистора в схеме. А работа такой схемы так же как и логарифмического преобразователя основана на логарифмической зависимости между падение напряжения на диоде и током протекающим через диод. Схема экспоненциального преобразователя показана ниже


Экспоненциальный преобразовательЭкспоненциальный преобразователь
Экспоненциальный преобразователь.

Работа схемы описывается известными выражениями


2016040120160401


2016050120160501

Таким образом, выходное напряжение составит


2016050220160502

Также как и логарифмический преобразователь, простейший экспоненциальный преобразователь с диодом на входе применяют редко, вследствие вышеописанных причин, поэтому вместо диодов на входе используют биполярные транзисторы в диодном включении или с общей базой.

Схемы включения операционных усилителей, описанные выше, не являются исчерпывающими, а лишь только призваны дать основные понятия. Более подробно схемы включения операционных усилителей я рассмотрю в следующих статьях. Всем удачи.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

«Операционный» усилитель

Добавлено 18 ноября 2018 в 18:44

Сохранить или поделиться

Задолго для появления цифровых электронных технологий были созданы компьютеры с электронным выполнением вычислений, использующие напряжения и токи для представления числовых величин . Это было особенно полезно для моделирования физических процессов. Например, изменяющееся напряжение может представлять скорость или силу в физической системе. Благодаря использованию резистивных делителей напряжения и усилителей напряжения, математические операции деления и умножения на этих сигналах могут быть легко выполнены.

Реактивные свойства конденсаторов и катушек индуктивности хорошо подходят для моделирования переменных, связанных с функциями математического анализа. Помните, как ток через конденсатор был функцией скорости изменения напряжения, и как эта скорость изменения была обозначена в математическом анализе как производная? Ну, если напряжение на конденсаторе представляло скорость объекта, то ток через конденсатор представлял бы силу, необходимую для ускорения или замедления этого объекта, а емкость конденсатора представляла бы массу этого объекта:

\[i_C = C {dv \over dt}\]

где

  • iC – мгновенный ток через конденсатор;
  • C – емкость в фарадах;
  • dv/dt – скорость изменения напряжения во времени.

\[F = m {dv \over dt}\]

где

  • F – сила, прикладываемая к объекту;
  • m – масса объекта;
  • dv/dt – скорость изменения скорости во времени.

Это аналоговое электронное вычисление производной математического анализа известно как дифференцирование, и это естественная функция тока конденсатора по отношению к приложенному напряжению. Обратите внимание, что данная схема для выполнения этой относительно сложной математической функции не требует «программирования», как это делал бы цифровой компьютер.

Электронные схемы очень просты и недороги для создания по сравнению со сложными физическими системами, поэтому подобный аналоговый электронный симулятор широко использовался в исследованиях и разработках механических систем. Однако для реалистичного моделирования в этих ранних компьютерах были нужны схемы усилителей высокой точности и простой настройки.

В ходе аналогового компьютерного проектирования было обнаружено, что дифференциальные усилители с чрезвычайно высоким коэффициентом усиления по напряжению удовлетворяют этим требованиям к точности и настройки лучше, чем несимметричные усилители с заданными коэффициентами усиления. Используя простые компоненты, подключенные к входам и выходу дифференциального усилителя с высоким коэффициентом усиления, из общей схемы могут быть получены практически любой коэффициент усиления и любая функция без регулировки или изменения внутренней схемы самого усилителя. Эти дифференциальные усилители с высоким коэффициентом усиления стали известны как операционные усилители, или ОУ, из-за своего использования в математических операциях аналоговых компьютеров.

Современные операционные усилители, такие как популярная модель 741, представляют собой высокопроизводительные, недорогие интегральные микросхемы. Их входные импедансы довольно высоки, входы потребляют токи в диапазоне половины микроампера (максимум) для 741 и намного меньше для операционных усилителей, использующих на входе полевые транзисторы. Выходной импеданс обычно довольно низок, около 75 Ом для модели 741, и многие модели имеют встроенную защиту от короткого замыкания на выходе, что означает, что их выходы могут быть напрямую закорочены на землю без причинения вреда внутренней схеме. Из-за прямой связи между внутренними транзисторными каскадами операционные усилители могут усиливать сигналы постоянного напряжения так же хорошо, как и переменного (до определенных максимальных пределов времени нарастания напряжения). Если не требуется высокая мощность, создание сравнимой схемы на дискретных транзисторах будет стоить гораздо больше денег и времени, чтобы соответствовать такой же производительности. По этим причинам операционные усилители используются в большинстве приложений везде, кроме устаревших усилителей сигналов на дискретных транзисторах.

На следующем рисунке показана распиновка микросхем одиночных операционных усилителей (включая 741), когда они помещаются в 8-выводный DIP корпус.

Типовая 8-выводная DIP микросхема одиночного операционного усилителяТиповая 8-выводная DIP микросхема одиночного операционного усилителя

Некоторые модели операционных усилителей поставляются двумя в одном корпусе; например, популярные модели TL082 и 1458. Они называются «двойными» и обычно размещаются в 8-выводном DIP корпусе со следующей распиновкой:

8-выводная DIP микросхема двойного операционного усилителя8-выводная DIP микросхема двойного операционного усилителя

Операционные усилители также доступны в корпусах с четырьмя усилителями, как правило, это 14-выводные DIP корпуса. К сожалению, назначение выводов у этих «четверных» операционных усилителей не является стандартным, как у одиночных и «двойных». Поэтому подробности необходимо искать в технических описаниях от производителя.

Коэффициенты усиления по напряжению реальных операционных усилителей составляют 200000 или более, что делает их практически бесполезными в качестве самостоятельных дифференциальных усилителей. Для операционного усилителя с коэффициентом усиления по напряжения (AV) 200000 и максимальным колебанием выходного напряжения +15В/-15В всё, что требуется, чтобы довести его до насыщения или отсечки, – это дифференциальное напряжения 75 мкВ (микровольт)! Прежде чем мы рассмотрим, как используются внешние компоненты, чтобы снизить коэффициент усиления до приемлемого уровня, давайте рассмотрим применения «голого» операционного усилителя самого по себе.

Одно из приложений называется компаратором. Для всех практических приложений можно сказать, что выход операционного усилителя будет полностью насыщен положительно, если вход (+) более положителен, чем вход (-), и будет полностью насыщен отрицательно, если вход (+) менее положителен, чем вход (-). Другими словами, чрезвычайно высокий коэффициент усиления операционного усилителя делает его полезным как устройство для сравнения двух напряжений и изменения состояний выходного напряжения, когда один входной сигнал превышает другой входной сигнал по мгновенной амплитуде.

Схема компаратора на операционном усилителеСхема компаратора на операционном усилителе

В приведенной выше схеме у нас есть операционный усилитель, подключенный как компаратор, сравнивающий входное напряжение с опорным напряжением, установленным потенциометром (R1). Если Vвх падает ниже напряжения, установленного R1, выход операционного усилителя насыщается до +V, из-за чего загорается светодиод. В противном случае, если Vвх выше опорного напряжения, светодиод остается выключенным. Если Vвх – это напряжение сигнала, создаваемое измерительным прибором, данная схема компаратора может функционировать как «низкоуровневая» авария с точкой срабатывания, установленной R1. Вместо светодиода выходной сигнал операционного усилителя может приводить в действие реле, транзистор, SCR тиристор или любое другое устройство, способное переключать питание на нагрузку, например, соленоидный клапан для принятия мер в случае низкоуровневой аварии.

Еще одно приложение для показанной схемы компаратора представляет собой преобразователь прямоугольного сигнала. Предположим, что входное напряжение, подаваемое на инвертирующий (-) вход, представляет собой переменный синусоидальный сигнал, а не неизменное постоянное напряжение. В этом случае выходное напряжение будет переходить между противоположными состояниями насыщения, когда входное напряжение было равно опорному напряжению, выдаваемому потенциометром. Результатом будет прямоугольный сигнал:

Преобразователь синусоидального сигнала в прямоугольныйПреобразователь синусоидального сигнала в прямоугольный

Подстройка потенциометра приведет к изменению опорного напряжения, подаваемого на неинвертирующий (+) вход, что может изменить точку, в которой синусоида будет пересекать опорное напряжение, изменяя соотношение включен/выключен, или коэффициент заполнения, или скважность прямоугольного сигнала:

Изменение скважности выходного сигнала преобразователя синусоидального сигнала в прямоугольныйИзменение скважности выходного сигнала преобразователя синусоидального сигнала в прямоугольный

Должно быть, очевидно, что входное переменное напряжение не обязательно должно быть синусоидой, в частности, для этой схемы для выполнения той же функции. Входное напряжение может быть треугольной формы, пилообразной формы или любой другой формы, которая плавно переходит от положительной полярности к отрицательной и обратно к положительной. Такая схема компаратора очень полезна для создания прямоугольных сигналов для изменяющегося коэффициента заполнения. Этот метод иногда упоминается как широтно-импульсная модуляция, или ШИМ (RWM), (изменение или модулирование сигнала в соответствии с управляющим сигналом, в данном случае с сигналом, создаваемым потенциометром).

Другим применением компаратора является драйвер столбчатого (полоскового) индикатора. Если бы у нас было несколько операционных усилителей, подключенных в качестве компараторов, каждый со своим опорным напряжением, подключенным к инвертирующему входу, но каждый из этих компараторов контролировал бы один и тот же сигнал напряжения на своем неинвертирующем входе, мы могли бы построить индикатор в виде столбчатого индикатора (барграфа), который мы можем часто увидеть на лицевой панели радиоприемников и графических эквалайзеров. По мере увеличения напряжения сигнала (представляющего уровень радиосигнала или аудиосигнала) каждый компаратор будет «включаться» последовательно и подавать питание на соответствующий светодиод. При каждом переключении компаратора на «включен» на разных уровнях аудиосигнала, количество подсвеченных светодиодов будет указывать, насколько большим был уровень сигнала.

Драйвер столбчатого индикатора (барграфа) на базе операционных усилителейДрайвер столбчатого индикатора (барграфа) на базе операционных усилителей

В схеме, показанной выше, светодиод LED1 будет загораться первым, когда входное напряжение будет увеличиваться в положительном направлении. По мере того, как входное напряжение продолжает увеличиваться, другие светодиоды будут загораться последовательно, пока не зажгутся все.

Эта же технология используется в некоторых аналого-цифровых преобразователях, а именно в АЦП прямого преобразования, чтобы преобразовать уровень аналогового сигнала в последовательность напряжений «вкл/выкл», представляющую цифровое число.

Резюме

  • Фигура треугольника является обобщенным обозначением схемы усилителя, широкий конец обозначает входную сторону, а противоположная вершина обозначает выход.
  • Если не указано иное, все напряжения на схеме усилителя имеют общую точку земли, обычно подключенную к одному из выводов источника питания. Таким образом, мы можем говорить о том, что определенная величина напряжения подана на один провод, при этом понимая, что напряжение всегда измеряется между двумя точками.
  • Дифференциальный усилитель усиливает разность напряжений между двумя сигнальными входами. В такой схеме один вход склонен управлять выходным напряжением в той же полярности, что и входной сигнал, в то время как другой вход действует противоположным способом. Следовательно, первый вход называется неинвертирующим (+) входом, а второй – инвертирующим (-) входом.
  • Операционным усилителем (или ОУ) является дифференциальный усилитель с чрезвычайно высоким коэффициентом усиления (AV = 200000 и более). Его название происходит от первоначального использования в аналоговых компьютерных схемах (выполнение математических операций).
  • Операционные усилители обычно имеют высокие входные импедансы и довольно низкий выходной импеданс.
  • Иногда операционные усилители используются в качестве компараторов сигналов, работающих в режиме полных отсечки и насыщения, в зависимости от того, какой вход (инвертирующий или неинвертирующий) имеет наибольшее напряжение. Компараторы полезны для обнаружения условий сигналов «больше чем» (сигналы сравниваются друг с другом).
  • Одно из применений компараторов называется широтно-импульсным модулятором, который выполняет сравнение синусоидального сигнала переменного напряжения с опорным постоянным напряжением. Поскольку постоянное опорное напряжение подстраивается, выходной сигнал компаратора меняет свой коэффициент заполнения (или другой параметр, характеризующий время положительного напряжения относительно всей продолжительности периода – скважность). Таким образом, элементы управления опорного постоянного напряжения управляют или модулируют ширину импульса выходного напряжения.

Оригинал статьи:

Теги

ОУ (операционный усилитель)УчебникЭлектроника

Сохранить или поделиться

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *