Site Loader

Содержание

Микросхема 555: применение

Микросхема интегрального таймера NE555 — это настоящий прорыв в области электроники. Она была создана в 1972 году сотрудником компании Signetics Гансом Р. Камензиндом. Изобретение не утратило своей актуальности и по сегодняшний день. Позднее устройство стало основой таймеров с удвоенной (IN556N) и счетверенной конфигурацией (IN558N).

Без сомнения, детище электронщика позволило занять ему свою видную нишу в истории технических изобретений. По уровню продаж данное устройство с момента своего появления превзошло любое другое. На второй год существования микросхема 555 стала самой покупаемой деталью.

Микросхема 555

Лидерство сохранялось и во все последующие годы. Микросхема 555, применение которой возрастало с каждым годом, продавалась очень хорошо. К примеру, в 2003 году было реализовано более чем 1 миллиард экземпляров. Конфигурация самого агрегата за это время не изменилась. Она существует свыше 40 лет.

Появление устройства стало неожиданностью для самого создателя. Камензинд преследовал цель сделать гибкую в использовании ИС, но, что она окажется столь многофункциональной, он не ожидал. Изначально она употреблялась как таймер или же генератор импульсов. Микросхема 555, применение которой увеличивалось быстрыми темпами, сегодня используется от игрушек для детей до космических кораблей.

Микросхема 555 применение

Устройство отличает выносливость, поскольку оно построено на основе биполярной технологии, и для применения его в космосе специально предпринимать ничего не требуется. Только испытательные работы проводятся с особой строгостью. Так, при тесте схемы NE 555 для ряда приложений создаются индивидуальные пробные спецификации. При производстве схем не существует никаких различий, но подходы при выходном контроле заметно разнятся.

Появление схемы в отечественной электронике

Первое упоминание об инновации в советской литературе по радиотехнике появилось в 1975 году. Статью об изобретении опубликовали в журнале «Электроника». Микросхема 555, аналог которой был создан советскими электронщиками в конце 80-х годов прошлого столетия, в отечественной радиоэлектронике получила название КР1006ВИ1.

В производстве эту деталь употребляли при сборке видеомагнитофонов «Электроника ВМ12». Но это был не единственный аналог, так как многие производители во всем мире создавали подобное устройство. Все агрегаты имеют обячный корпус DIP8, а также корпус малых размеров SOIC8.

Технические характеристики схемы

Микросхема 555, графическое изображение которой представлено ниже, включает в себя 20 транзисторов. На блок-схеме устройства находятся 3 резистора с сопротивлением 5кОм. Отсюда и название прибора «555».

Основными техническими характеристиками изделия являются:

  • напряжение питания 4,5-18В;
  • максимальный показатель тока на выходе 200 мА;
  • потребляемая энергия составляет до 206 мА.

Если его рассмотреть на выход, то это цифровое устройство. Он может находиться в двух положениях — низком (0В) и высоком ( от 4,5 до 15 В). В зависимости от блока питания может показатель достигать и 18 В.

Для чего нужно устройство?

NE 555 микросхема — унифицированное устройство с широким спектром применения. Его часто используют при сборке различных схем, и это только придает изделию популярность. Соответственно, повышается уровень спроса потребителя. Такая известность вызвала падение цены на таймер, что радует многих мастеров.

NE 555 микросхема

Внутреннее строение таймера 555

Что же заставляет это устройство функционировать? Каждый из выводов агрегата подсоединен к цепи, содержащей 20 транзисторов, 2 диода и 15 резисторов.

Удвоенный формат модели

Следует отметить, что NE 555 (микросхема) выпускается в удвоенном формате под названием 556. Она содержит два свободных IC.

Таймер 555 оснащен 8 контактами, тогда как модель 556 содержит 14 контактов.

Режимы работы устройства

Микросхема 555 обладает тремя режимами работы:

  1. Моностабильный режим микросхемы 555. Он работает как одноразовый односторонний. Во время функционирования выбрасывается импульс заданной длины как ответ на вход триггера при нажимании кнопки. Выход пребывает в низком напряжении до включения триггера. Отсюда он и получил название ждущий (моностабильный). Такой принцип функционирования сохраняет устройство в бездействии до включения. Режим обеспечивает включение таймеров, переключателей, сенсорных переключателей, делителей частоты и др.
  2. Нестабильный режим является автономной функцией устройства. Он позволяет схеме пребывать в генераторном режиме. Напряжение в выходе изменчиво: то низкое, то высокое. Эта схема применима при надобности задавания устройству толчков прерывистого характера (при недолговременном включении и выключении агрегата). Режим используется при включении ламп на светодиодах, функционирует в логической схеме часов и др.
  3. Бистабильный режим, или же триггер Шмидта. Понятно, что он работает по системе триггера при отсутствии конденсатора и обладает двумя устойчивыми состояниями, высоким и низким. Низкий показатель триггера переходит в высокий. При сбрасывании низкого напряжения система устремляется к низкому состоянию. Эта схема применима в сфере железнодорожного строительства.

Выводы таймера 555

Генератор микросхема 555 включает восемь выводов:

Генератор микросхема 555
  1. Вывод 1 (земля). Он подсоединен к минусовой стороне питания (общий провод схемы).
  2. Вывод 2 (триггер). Он подает высокое напряжение на время (все зависит от мощности резистора и конденсатора). Эта конфигурация и является моностабильной. Вывод 2 контролирует вывод 6. Если напряжение в обоих низкое, то на выходе оно будет высоким. В противном случае, при высоком напряжении в выводе 6 и низком в выводе 2, выход на таймере будет низким.
  3. Вывод 3 (выход). Выходы 3 и 7 располагаются в фазе. Подавая высокое напряжение с показателем примерно 2 В и низкое с 0,5 В будет получаться до 200 мА.
  4. Вывод 4 (сброс). Подача напряжения на этот выход низка, несмотря на режим работы таймера 555. Во избежание случайных сбросов, следует производить подключение этого выхода к плюсовой стороне при использовании.
  5. Вывод 5 (контроль). Он открывает доступ к напряжению компаратора. Это вывод в российской электронике не применяется, но при его подключении можно достичь широких возможностей управления устройством 555.
  6. Вывод 6 (остановка). Входит в компаратор 1. Он противоположен выводу 2, применим для остановки устройства. При этом получается низкое напряжение. Это вывод может принимать синусоидальные и прямоугольные импульсы.
  7. Вывод 7 (разряд). Он подсоединяется к транзисторному коллектору Т6, а эмиттер последнего заземлен. При открытом транзисторе конденсатор разряжается до его закрытия.
  8. Вывод 8 (плюсовая сторона питания), которая составляет от 4,5 до 18 В.

Применение выхода Output

Выход 3 (Output) может пребывать в двух состояниях:

  1. Осуществляется подключение цифрового выхода прямо к входу другого драйвера на цифровой основе. Цифровой выход может осуществлять управление другими устройствами при посредстве нескольких дополнительных составляющих (напряжение источника питания равно 0 В).
  2. Показатель напряжения во втором состоянии высок (Vcc на источнике питания).

Возможности агрегата

  1. При понижении напряжения в Output ток направляется через устройство и осуществляет его подключение. Это и есть понижение, так как ток производится из Vcc и проходит сквозь агрегат до 0 В.
  2. При возрастании Output ток, проходя через прибор, обеспечивает его включение. Этот процесс можно назвать источником текущих. Электроэнергия в этом случае производится от таймера и идет через прибор до 0 В.

Возрастание и понижение могут функционировать вместе. Таким образом достигается поочередное включение и выключение прибора. Такой принцип применим при функционировании ламп на светодиодах, реле, двигателей, электромагнитов. К минусам такого свойства можно отнести то, что прибор надо подключать к Output разными способами, так как выход 3 может выступать как в роли потребителя, так и в роли источника тока до 200 мА. Используемый блок питания дожжен подать достаточный ток для обоих устройств и таймера 555.

Микросхема LM555

Микросхема 555 Даташит (LM555) обладает широкими функциональными возможностями.

Она используется от генераторов прямоугольных импульсов с изменяемым показателем скважности и реле и задержкой срабатывания до сложных конфигураций ШИМ генераторов. Микросхема 555 цоколевка и внутреннее строение отражены на рисунке.

Микросхема 555 цоколевка

Уровень точности приспособления равен 1% от расчетного показателя, что является оптимальным. На такой агрегат, как NE 555 микросхема даташит, не воздействуют температурные условия окружающей среды.

Аналоги микросхемы NE555

Микросхема 555, аналог которой в России был назван КР1006ВИ1, представляет интегральное устройство.

Микросхема 555 аналог

Среди рабочих блоков следует выделить RS-триггер (DD1), компараторы (DA1 и DA2), усилительный каскад на выходе, основанный на двухтактной системе и дополняющий транзистор VT3. Назначение последнего заключается в сбросе задающего время конденсатора при использовании агрегата в роли генератора. Сбрасывание триггера происходит при подаче логической единицы (Юпит/2…Юпит) на входы R.

В случае сброса триггера на выходе устройства (вывод 3) будет наблюдаться низкий показатель напряжения (транзистор VT2 открыт).

Уникальность схемы 555

При функциональной схеме устройства очень трудно понять, в чем же заключается ее необычность. Оригинальность устройства состоит в том, что оно обладает особым управлением триггера, а именно формирует управляющие сигналы. Их создание происходит на компараторах DA1 и DA2 (на один из входов, на который подано опорное напряжение). Для формирования управляющих сигналов на входах триггера (выходах компараторов) следует получить сигналы с высоким напряжением.

Как произвести запуск устройства?

Чтобы запустить таймер, на выход 2 надо подать напряжение с показателем от 0 до 1/3 Юпит. Этот сигнал способствует срабатыванию триггера, и при выходе создается сигнал с высоким напряжением. Сигнал выше предельного показателя не вызовет каких-либо изменений в схеме, так как опорное напряжение для компаратора равно DA2 и составляет 1/3 Юпит.

Остановить таймер можно при сбрасывании триггера. С этой целью напряжение на выходе 6 должно превышать показатель 2/3 Юпит (опорное напряжение для компаратора DA1 составляет 2/3 Юпит). При сбросе установится сигнал с низким напряжением и разряд конденсатора, задающего время.

Регулировать опорное напряжение можно посредством подключения дополнительного сопротивления или источника питания к выводу агрегата.

Подмотка спидометра на 555 микросхеме

В последнее время среди владельцев автомобилей стало модным сматывать на спидометре пройденный машиной километраж.

Многие интересуются, подмотка спидометра на 555 микросхеме выполнима ли самостоятельно?

Подмотка спидометра на 555 микросхеме

Эта процедура не представляет особой трудности. Для его изготовления используется микросхема 555, которая может функционировать в качестве счетчика импульсов. Отдельные составляющие схемы можно брать с показателями, отклоняющимися на 10-15 % от расчетных значений.

datasheet, устройства и применение роли генератора импульсов

Микросхема NE555 - зачем она нужна

Сразу стоит отметить при описании микросхемы NE 555, что она выпускается как в стандартной ТТЛ логике, так и КМОП, поэтому она может работать в широком диапазоне напряжений и использована во многих типах устройств в качестве генератора тактовых импульсов или универсального таймера. Микросхема может генерировать как одиночные, так повторяющиеся импульсы, что зависит от принципиальной схемы включения и выбора конкретного режима работы.

Разрабатывался первый вариант ИС еще в 1971 году знаменитой на то время компанией Signetics. По своим характеристикам и функциональным возможностям она является широко востребованной, свидетельством чего является ее активное применение в устройствах управления скоростью вращения двигателей и тиристорных регуляторах мощности.

Также, ее можно использовать для конструирования унифицированного генератора импульсов с регулируемой выходной частотой последовательностью импульсов. Для подробного описания характеристик микросхемы смотрите на ne 555 datasheet. В нем указаны не только основные характеристики, но также представлены диаграммы работы. А в этом описании ne 555 предоставим общую информацию, достаточную для разработки электронных устройств своими руками.

Предыстория создания ИС

В 70 гг. компания Signetics попала под влияние кризиса и вынуждена была сократить численность своего персонала как минимум на 50%, в число которых попал и разработчик представленной схемы. Поэтому она была создана буквально на коленках в гаражных условиях, а за основу была взята им же разработанная NE 566. Платформа будущей ИС уже состояла из основных, необходимых для работы функциональных блоков:

Существуют на ne 555 схемы включения разного типа для работы микросхемы достаточно было наличие внешней RC-цепи, которая являлась времязадающей. И внутренний делитель напряжения, пропорционально которому формировалась амплитуда выходного сигнала. После некоторого времени и внесения небольших доработок, в частности, замена встроенного генератора стабильного тока для зарядки внутреннего конденсатора на резистор, она поступила в серию.

Что касается структуры таймера, то в ней содержалось:

  • 23 транзистора;
  • 16 резисторов;
  • 2 диода.

Аналоги микросхемы

Универсальный таймер вскоре обзавелся функциональными аналогами, которыми стали советские микросхемы из серии КР:

  • 1006ВИ1;
  • 1008ВИ1;
  • 1087ВИ2;
  • 1087ВИ3.

Также, микросхема ne555 аналог имеет, например, КР10006ВИ1, то стоит учесть тот факт, что вход сброса R по отношению к установке имеет приоритет. Этот момент почему-то упущен в техническом описании МС, что является немаловажным фактом при построении электронных схем. В других микросхемах выводы имеют приоритет вплоть до наоборот S над R.

Все выше представленные аналоги таймеров построены на стандартной ТТЛ-логике. Если захотите спроектировать устройства на ne555 с более экономичными показателями, то лучше применить МС из серии КМОП. Таковыми являются устройства:

  • ICM 7555 IPA ;
  • GLC 555;
  • КР1441ВИ1.

Характеристики микросхемы

Функциональная схема представленной микросхемы достаточно проста и состоит из следующих блоков:

  • делителя напряжения, который сравнивает сигнал на входе с двумя опорными уровнями;
  • 2 высокоточных компараторов на высокий и на низкий уровень сигналов;
  • триггера со встроенными RS -входами и дополнительным сбросом, выходной транзистор средней мощности биполярный или полевой в зависимости от технологии.

Микросхема NE555P и другие аналогиТакже, аппаратно в конструкции микросхемы предусмотрен усилитель мощности, повышающий нагрузочную способность устройства и ее качество работы.

Микросхема является универсальной, как ни посмотри, со всех сторон. Например, базовая версия NE 555 рассчитана на напряжение питания в пределах от 4,5 до 16,5 В, что весьма упрощает процесс конструирования многих схем, так как отпадает необходимость придерживаться конкретной величины питания.

Но если необходимо запитать генератор импульсов от пониженного уровня порядка 2–3 В, то лучше использовать схемы на КМОП-логике. Они не только могут свободно функционировать на низком напряжении, но и обладают повышенными показателями устойчивости к помехам и нестабильности питания.

Также, выпускаются модификации устройств с повышенным порогом питающего напряжения, который может достигать 18 В. Эти МС могут применяться в импульсных устройствах и генераторах.

Согласно информации, которую предоставляет западный на ne555 datasheet потребляемый ток устройством зависит от величины входного импульса. Если она лежит на номинальном уровне порядка 5 В, то величина тока составляет не более 6 мА. Но если напряжение вырастет до 15В, то ток также растет до 15мА. Обычно устройства разрабатывают своими руками на средний показатель тока, который оставляет порядка 10 мА, что говорит о напряжении питания в пределах от 9 до 12 В. Но это характерно для ТТЛ-логики.

Микросхемы, сконструированные на основе КМОП-транзисторов, потребляют еще меньше – 100-200 мкА, что их делает еще более экономичными. Но максимальное значение потребляемого тока не превышает 100 мА. Если у вас она берет больше этого значения, это означает что устройство неисправно и требует замены.

Некоторые проблемы и особенности работы с микросхемой

8-пиновый корпус – идея хорошая, но из-за этого форм-фактора возникают некоторые трудности при работе с таймером. А именно, он лишен возможности независимого сравнения сигналов верхнего и нижнего порогов, что довольно часто требуется в устройствах преобразования, например, тех же АЦП. Чтобы реализовать такую возможность радиолюбители прибегают к использованию другой серии устройств, например, NE 521 или устанавливают на вход элементы 3И-НЕ, если это целесообразно.

В биполярных устройствах присутствует такой недостаток, как импульсный ток при включении и выключении, величина которого может достигать 400 мА, что может стать причиной пробоя выходного транзистора или других элементов схемы, в которую она была впаяна. Причиной такого явления является сквозной ток выходного каскада, возникающий из-за тех же высоких импульсов по питанию.

Чтобы устранить проблему, рекомендуется использовать специальный блокирующий конденсатор, подключаемый на входы 5 и общий (мину питания) емкостью порядка 0,01–0,1 мкФ. Благодаря заряду его обкладок внутренне напряжение в МС, поступающее на выходной каскад, сглаживается, что и исключает вероятность возникновения пробоя. Также он защитит внутренний делитель от помех извне, которые могут вызвать ложное срабатывание.

Также, как и в случае со многими другими микросхемами с ТТЛ-логикой, NE 555 рекомендуется шунтировать гасящим конденсатором с керамическим обкладками емкостью 1 мкФ.

Назначение и расположение выводов микросхемы

NE555 Footstool - что находится внутриNE 555 в базовом исполнении имеет 8-выводной корпус DIP, но также выпускаются иные модификации, являющиеся аналогами. Поэтому ориентировать исключительно этого описания при построении устройств своими руками на ее основе не стоит. К каждой микросхеме необходимо просматривать свой даташит.

Схемное обозначение устройства отображается в виде надписи «G 1/ GN». В зарубежных справочниках эту надпись можно расшифровать как генератор одиночных и серий импульсов. Что касается расположения выводов и их назначения, то все однотипные МС являются стандартизированными и могут быть взаимозаменяемы без внесения каких-либо доработок.

В таблице ниже представлено расположение выводов в стандартном корпусе МС:

Режимы работы и применение микросхемы

Самой простой схемной реализацией, применяемой в различный цифровых устройствах, является одновибратор. На примере этой схемы можно также увидеть типовое включение с использованием гасящего и шунтирующего конденсаторов. Именно в таком исполнении наиболее чаще применяется эта микросхема. А работает она следующим образом:

NE555 Footstool - микросхема и ее аналогиПо приходу сигнала с низким уровнем на вход МС под номером 2 начинает работать таймер в режиме счета времени. При этом на выходе устройства устанавливается высокий уровень на протяжении всей длительности временного промежутка. Это время можно устанавливать самостоятельно, подобрав необходимые внешние компоненты, которыми выступают резистор и конденсатор, подключаемые к плюсу питания и выводу под номером 6.

Определяется временная задержка по стандартной формуле с учетом корректирующей константы: t =1,1 RC. По окончании счета (разряда конденсатор) таймер возвращается в исходное состояние. А выходной сигнал изменяется на противоположный. Итак до следующего прихода входного импульса низкого уровня.

При этом, если на входе присутствует низкий уровень, то на выходе высокий. А при подаче импульса на вход сброса триггера таймер останавливает свой счет и уровень сигнала на выходе изменяется на противоположный.

Режим независимого генератора

Чтобы включить микросхему в режиме мультивибратора, имеется схема, показанная на рисунке ниже. Здесь так же все просто, как и в предыдущем варианте, но имеются некоторые особенности расчета элементом и характеристик последовательности выходного сигнала. Чтобы задать определенную частоту смены выходного сигнала и последующее переключение в противоположное устойчивое состояние, потребуется выводы 2 и 6 объединить и установить еще один резистор в делить, уменьшив ток заряда конденсатора, но при этом связав входной сигнал с входом установки триггера. А чтобы рассчитать параметры используемых элементом, необходимо будет воспользоваться следующими простыми формулами расчета:

  • Что может микросхема NE555 Footstool Временной промежуток в активном состоянии: t 1= ln 2(R 1+ R 2) C =0.693(R 1+ R 2) C.
  • Длительность удержания выходного сигнала низкого уровня: t 2=0.693 R 2 C.
  • Общее время или период следования череды импульсов: T =0.693(R 1+2 R 2) C.

Чтобы рассчитать генератор импульсов на микросхеме ne 555 частотой 3,4 Гц, потребуется использовать в схеме конденсатор с емкостью 47 мкФ, резистор R1=5 кОм, а сопротивление R2=2 кОм.

Изменение скважности выходного импульса

Нередко требуется применение микросхемы 555 с возможностью установки скважности выходного сигнала. Например, сделать ее больше 2, то для этого потребуется образовать дополнительную цепь между 7 и 6 выводами, подключив к ним диод. При этом анодный вывод контактирует с выводом 7 МС. Такое включение дополнительного компонента шунтирует резистор R 2, обеспечивая цепь заряда конденсатора через R 1. Тогда при расчете длительности высокого уровня сигнала на выходе будет происходить по формуле без учета R 2.

В обратном цикле разрядный ток будет протекать через R 2, а R 1 уже не участвует в процессе. И определяется по формуле, которая указывалась выше без изменений.

Микросхема 555. Практика / Habr

Всем привет. В прошлой статье я писал про микросхему 555, но в статье совсем не было практических примеров. Так вот, этот топик будет полностью посвящен практическому применению таймера 555. Диапазон применений микросхемы 555 не имеет границ. Всё ограничивается исключительно Вашей фантазией. Основные режимы микросхемы 555 и их модификации позволяют нам применять её во многих устройствах. На микросхеме 555 можно сделать такие устройства как таймер, точный генератор, триггер Шмитта. А так же генератор временной задержки, широтно-импульсный модулятор, детектор импульсов, делитель частоты. Но сегодня мне бы хотелось познакомить Вас с такими устройствами как сигнализатор темноты, метроном и противоугонное устройство.
Сигнализатор темноты

Перед Вами схема сигнализатора темноты. Данная схема будет издавать звуковой сигнал при наступлении темноты. Пока фоторезистор освещен, на выводе №4 установлен низкий уровень, а значит, таймер находится в режиме сброса. Если освещение отсутствует, сопротивление фоторезистора возрастает и на выводе №4 появляется высокий уровень и наш таймер запускается. При запуске таймер начнет издавать сигнал.

Метроном

Метроном — прибор, способный производить произвольное количество тактовых долей времени на слух. Чаще всего данное устройство используется музыкантами, но думаю многие помнят уроки физики, когда учитель включал это устройство. Метроном отсчитывает необходимый ритм, который может быть отрегулирован переменным резистором. Данная схема построена по схеме генератора прямоугольных импульсов. Частота нашего метронома определяется RC-цепочкой (R1, R2 и C1).

Противоугонное устройство

Это устройство представляет собой RS-триггер на основе интегрального таймера NE555 или просто 555. Для питания данного устройства нужно всего лишь 12 В, которые появляются при включении замка зажигания. Альтернативный способ питания это использование аккумулятора. Устройство можно подключить в любом месте, главное, чтобы было питание.
RS-триггер устанавливается в положение «включен» при первоначальном появлении низкого уровня на выводе 2 DA1 благодаря резистору R2 и конденсатору С2. Положительное напряжение на выходе 3 DA1 включает реле К1 в режим охраны и через резистор R1 начинает заряжать конденсатор С1. До тех пор, пока напряжение на конденсаторе С1 не поднялось до уровня открывания транзистора VT1, RS-триггер еще можно сбросить кнопкой управления SA1.
Но если VT1 открылся, то на входе 2 устанавливается низкий уровень, который запрещает сброс триггера. Напряжение на таймер подается через последовательный диод VD1. В качестве реле К1 можно применить реле с рабочим напряжением 9 В. Контакты К1.1 и К1.2 реле К1 можно включить на блокирование или разрыв любых цепей электропитания автомобиля. Снятие данного противоугонного устройства происходит путем прикладывания миниатюрного магнита к контакту SA1. Забыл сказать, что снятие можно произвести только в первое время (зависит от величин R1 и C1) после появления питания.

Конец

Не хочется Вас огорчать, но это конец данной статьи. В следующей статье я напишу про новые схемы, которые я сочту интересными. Пробуйте и у вас обязательно все получится. Спасибо за внимание.

Микросхема 555 практическое применение CAVR.ru

Рассказать в:
Рассмотрим примеры практического применения данной микросхемы Триггер Шмидта. Это очень простая, но эффективная схема. Схема позволяет, подавая на вход  аналоговый сигнал, получить чистый прямоугольный сигнал на выходе —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —    Простой таймер.   Практическое применение в статье  Простой таймер включения устройства в ~220V. —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — Схема для получения более точных интервалов. —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — Простой ШИМ Практическое применение в статье ШИМ для вентилятора —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — Сумеречный выключатель. Схема встроена в Дополнительный термостат к котлу —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — Управление устройством с помощью одной кнопки.   Вариант исполнения такой схемы находится в  этом блоге. Аналогичная схема управление одной кнопкой на микросхеме CD4013 (аналог   561TM2)   * Прилагается схема в Proteus 7.7 SP2             и                         печатная плата                             —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — Датчик влаги. —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — Контроль уровня воды.
Два датчика уровня жидкости могут служить для  контроля за количеством воды в баке . Один датчик сообщает о малом количестве воды в баке, а второй о том , что бак полный. При небольшой доработке схемы выходные сигналы схемы можно подключить к более серьёзным нагрузкам :). —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — ON/OFF сенсор.   Схема для включения светодиодной подсветки от автономного питания,  на 10- 30секунд. Один вариант из применения, встраивается во входную дверь в районе замочной скважины. —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — Подсветка включается посредством нажатия кнопки на дверной ручке – в результате не возникнет проблем с открытием замка при отсутствии естественного либо искусственного освещения. —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  Кодовый замок на таймере NE555. Подобной разработки кодового замка на таймере NE555, в интернете я пока не встречал, поэтому эта разработка посвящается всем любителям этой чудесной микросхемы.
Схему на микросхеме NE555 в виде кодового замка на дверь или сейф, нетрудно реализовать на этом таймере.
Еще я знаю, что 555 нормально работает при отрицательных температурах,(если предстоит эксплуатация на улице) и более широкий диапазон напряжения питания до 16V. Надежность микросхемы не подлежит сомнению.

И так привожу в пример схему, цифровой код в которой будет состоять из 4 цифр (технически схему можно реализовать и на одной кнопке, но это будет слишком банально, я думаю что 4 цифры для начала самый раз, наращивать количество цифр в коде этой схемы можно до бесконечности ,(одинаковыми частями по блочно, обвел на схеме U2).
В приведенной схеме все 4 таймера работают по одной схеме, имеются небольшие отличия в таймерах U1, U4. Схема U2 и U3 повторяются один в один.
Каждый таймер в этой схеме может быть настроен на своё рабочее время, на это задействована время задающая цепочка R1, R2, C1.
А также секретность кода можно увеличить подключив доп. коммутирующие диоды.( в качестве примера привел включение одного диода D1, большее не рисовал, так как думаю, что тогда схема будет восприниматься очень сложно).
Главное отличие этой схемы на таймерах 555, от подобных схем, наличие настройки рабочего времени каждого таймера, при простоте этой схемы, вероятность подбора кода посторонним лицом будет очень невелик.

Работа схемы; 
— Нажимаем кнопку ноль, запускается таймер U1, его рабочее время настроено на удержание логической единицы (вывод 3) в течении 30 сек, после этого можно нажать кнопку 1.
— Нажимаем кнопку 1 таймер U2, его рабочее время настроено на 2 сек., в течении этого времени надо нажать кнопку 2 (иначе U2 удержание логической единицы (вывод 3) сбрасывается и нажатие кн. 2 не будет иметь смысла)
— Нажимаем кнопку 2, таймер U3 настроен на удержание логической единицы (вывод 3) в течении 25 сек, после этого можно нажать кнопку 3, но ……….. смотрим на коммутирующий диод D1, из за него кнопку 3 нет смысла быстро нажимать, пока не закончится 30 секундное рабочее время таймера U1,
— После нажатия кнопки 3, таймер U4 выдает логическую единицу (U4 вывод 3)на исполнительное устройство.
Еще остается добавить что, в действующем устройстве цифровой код будет расположен не по порядку номеров, а хаотично,
и любое нажатие других кнопок будет сбрасывать таймеры в 0.
Ну в общем пока всё, все варианты использования тут не описать, вижу что не все, я здесь в описании затронул …… в общем если есть идея, ее техническая реализация всегда найдётся. 
Все настройки, рабочего времени микросхем U1…….U4 являются тестовыми, и описаны здесь для примера. 🙂 
(в охранных системах для непрошеных гостей самое трудное, это индивидуальные решения, доказано временем )
Прикладываю архив со схемой в протеус, в нем работу схемы можно оценить наглядно.

Скачать  архив схемы в протеусе.  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —    Назначение восьми ног микросхемы. 1. Земля.  Вывод, который подключается к минусу питания и к общему проводу схемы. 
2. Запуск. 
Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, ) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА. 
3. Выход. 
Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс. 
4. Сброс. 
При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и есть reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод рекомендуется подключить к плюсу питания, пока в нем нет необходимости. 
5. Контроль. 
Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей. 
6. Останов. 
Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние  низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные. 
7. Разряд. 
Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера. 8. Плюс питания.  Напряжение питания таймера может находиться в пределах 4,5-16 вольт.  Программа параметров и расчета  NE555.rar  1,3Mb.     Работа схемы таймера 555 в протеусе. Скачать архив проекта в протеус


Раздел: [Схемы]
Сохрани статью в:
Оставь свой комментарий или вопрос:

Микросхема 555 практическое применение — Конструкции простой сложности — Схемы для начинающих

Рассмотрим примеры практического применения данной микросхемы

Триггер Шмидта.

Это очень простая, но эффективная схема. Схема позволяет, подавая на вход  аналоговый сигнал, получить чистый прямоугольный сигнал на выходе

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —   

Простой таймер.

  Практическое применение в статье  Простой таймер включения устройства в ~220V.

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

Схема для получения более точных интервалов.

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

Простой ШИМ

Практическое применение в статье ШИМ для вентилятора

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

Сумеречный выключатель.

Схема встроена в Дополнительный термостат к котлу

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

Управление устройством с помощью одной кнопки.

  Вариант исполнения такой схемы находится в  этом блоге.

Аналогичная схема управление одной кнопкой на микросхеме CD4013 (аналог   561TM2)

 

*

Прилагается схема в Proteus 7.7 SP2             и                         печатная плата   

                         

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

Датчик влаги.

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

Контроль уровня воды.


Два датчика уровня жидкости могут служить для  контроля за количеством воды в баке . Один датчик сообщает о малом количестве воды в баке, а второй о том , что бак полный. При небольшой доработке схемы выходные сигналы схемы можно подключить к более серьёзным нагрузкам :).

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

ON/OFF сенсор.

 

Схема для включения светодиодной подсветки от автономного питания,  на 10- 30секунд.

Один вариант из применения, встраивается во входную дверь в районе замочной скважины.

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

Подсветка включается посредством нажатия кнопки на дверной ручке – в результате не возникнет проблем с открытием замка при отсутствии естественного либо искусственного освещения.

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — 

Кодовый замок на таймере NE555.

Подобной разработки кодового замка на таймере NE555, в интернете я пока не встречал, поэтому эта разработка посвящается всем любителям этой чудесной микросхемы.
Схему на микросхеме NE555 в виде кодового замка на дверь или сейф, нетрудно реализовать на этом таймере.
Еще я знаю, что 555 нормально работает при отрицательных температурах,(если предстоит эксплуатация на улице) и более широкий диапазон напряжения питания до 16V. Надежность микросхемы не подлежит сомнению.

И так привожу в пример схему, цифровой код в которой будет состоять из 4 цифр (технически схему можно реализовать и на одной кнопке, но это будет слишком банально, я думаю что 4 цифры для начала самый раз, наращивать количество цифр в коде этой схемы можно до бесконечности ,(одинаковыми частями по блочно, обвел на схеме U2).
В приведенной схеме все 4 таймера работают по одной схеме, имеются небольшие отличия в таймерах U1, U4. Схема U2 и U3 повторяются один в один.
Каждый таймер в этой схеме может быть настроен на своё рабочее время, на это задействована время задающая цепочка R1, R2, C1.
А также секретность кода можно увеличить подключив доп. коммутирующие диоды.( в качестве примера привел включение одного диода D1, большее не рисовал, так как думаю, что тогда схема будет восприниматься очень сложно).
Главное отличие этой схемы на таймерах 555, от подобных схем, наличие настройки рабочего времени каждого таймера, при простоте этой схемы, вероятность подбора кода посторонним лицом будет очень невелик.


Работа схемы; 
— Нажимаем кнопку ноль, запускается таймер U1, его рабочее время настроено на удержание логической единицы (вывод 3) в течении 30 сек, после этого можно нажать кнопку 1.
— Нажимаем кнопку 1 таймер U2, его рабочее время настроено на 2 сек., в течении этого времени надо нажать кнопку 2 (иначе U2 удержание логической единицы (вывод 3) сбрасывается и нажатие кн. 2 не будет иметь смысла)
— Нажимаем кнопку 2, таймер U3 настроен на удержание логической единицы (вывод 3) в течении 25 сек, после этого можно нажать кнопку 3, но ……….. смотрим на коммутирующий диод D1, из за него кнопку 3 нет смысла быстро нажимать, пока не закончится 30 секундное рабочее время таймера U1,
— После нажатия кнопки 3, таймер U4 выдает логическую единицу (U4 вывод 3)на исполнительное устройство.
Еще остается добавить что, в действующем устройстве цифровой код будет расположен не по порядку номеров, а хаотично,
и любое нажатие других кнопок будет сбрасывать таймеры в 0.
Ну в общем пока всё, все варианты использования тут не описать, вижу что не все, я здесь в описании затронул …… в общем если есть идея, ее техническая реализация всегда найдётся. 
Все настройки, рабочего времени микросхем U1…….U4 являются тестовыми, и описаны здесь для примера. 🙂 
(в охранных системах для непрошеных гостей самое трудное, это индивидуальные решения, доказано временем )
Прикладываю архив со схемой в протеус, в нем работу схемы можно оценить наглядно.

Скачать  архив схемы в протеусе. 

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — 

 

Назначение восьми ног микросхемы.

1. Земля. 

Вывод, который подключается к минусу питания и к общему проводу схемы. 
2. Запуск. 
Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, ) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА. 
3. Выход. 
Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс. 
4. Сброс. 
При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и есть reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод рекомендуется подключить к плюсу питания, пока в нем нет необходимости. 
5. Контроль. 
Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей. 
6. Останов. 
Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние  низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные. 
7. Разряд. 
Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

8. Плюс питания.

 Напряжение питания таймера может находиться в пределах 4,5-16 вольт. 

Программа параметров и расчета  NE555.rar  1,3Mb.

 

 

Работа схемы таймера 555 в протеусе.

Скачать архив проекта в протеус

Использование вывода 5 таймера NE555 — Меандр — занимательная электроника

Всем известен и широко применяет­ся в радиолюбительских конструк­циях таймер NE555 и его аналоги, на­пример, отечественный КР1006ВИ1. В подавляющем большинстве случаев вывод 5 таймера NE555 оставляют сво­бодным или соединяют с общим прово­дом через блокировочный конденсатор, что в условиях отсутствия помех по питанию не очень нужно. В зарубежных описаниях таймера этот вывод называ­ют по-разному — Cont. Control. Control Voltage, а в отечественных — «Контроль делителя», хотя уместнее было бы пере­вести слово control как «управление».

Внутри таймера NE555 вывод 5 соединен с точкой соединения «верхне­го» и «среднего» резисторов делителя напряжения питания, формирующего пороги срабатывания компараторов и задающего таким образом пределы из­менения напряжения на времязадающем конденсаторе Поэтому, когда вы­вод 5 оставлен свободным, напряжение на нем — 2/3 напряжения питания. Точка соединения «среднего» и «нижнего» резисторов, где напряжение равно 1/3 напряжения питания, внешнего вывода не имеет. Исходя именно из таких поро­гов, в справочниках приведены форму­лы расчёта длительности импульсов и частоты их следования на выходе гене­ратора, собранного на таймере. Однако длительностью и частотой можно управлять, не изменяя ёмкость и сопротивление времязадающих эле­ментов, а лишь подавая внешнее напря­жение на вывод 5 таймера, сдвигая тем самым пороги срабатывания компара­торов. О такой возможности написано в справочных данных таймера, но никаких зависимостей или рекомендаций на эту тому там не приведено. Чтобы воспол­нить этот пробел, были проведены экс­перименты, с результатами которых хочу ознакомить читателей.

На таймере NE555 был собран гене­ратор непрерывных колебаний по схеме, изображенной на рис. 1.

Рис. 1

Если вывод 5 таймера никуда не подключён, коэффи­циент заполнения генерируемых им­пульсов (отношение длительности им­пульсов Т+ к периоду их следования Т) равен 0.5, а частота их следования

При указанных на схеме номиналах элементов F0≈1 кГц.

Внешнее напряжение, поданное на вывод 5, влияет на оба порога Причём верхний порог становится равным это­му напряжению, а нижний — его поло­вине. Если подать на вывод 5 напряже­ние Uупр равное 8 В (2/3 от 12 В), часто­та и коэффициент заполнения останут­ся прежними. Но при других значениях Uупр они изменяются, как показано на рис. 2 (частота) и рис. 3 (коэффициент заполнения).

Рис. 2

Рис. 3

Причём частота, увеличи­ваясь в 3,7 раза при изменении Uупр от 11,5 до 1 В, с дальнейшим его уменьше­нием резко падает. Коэффициент заполнения растёт с 0,06 (Uупр = 1 В) до 0,77 (Uупр = 11,5 В) практически линей­но.

Рис. 4

Другой способ управления состоит в подключении к выводу 5 резистора второй вывод которого соединён с одним из других выводов таймера. Варианты его подключения показаны на рис. 4 а зависимости частоты и коэф­фициента заполнения от — соответ­ственно на рис. 5 и рис. 6. Буквы у кри­вых на этих рисунках совпадают с теми, которыми обозначены варианты под­ключения резистора на рис.4.

Рис. 5

Рис. 6

Как видим, при соединении резисто­ра Rупр с общим проводом и уменьше­нии его сопротивления от 100 кОм до 470 Ом частота растёт в 1,7 раза, а коэффициент заполнения падает в восемь раз. Если соединить резистор с плюсо­вой линией питания, при изменении его сопротивления в тех же пределах часто та уменьшается в 2,2 раза, а коэффици­ент заполнения растёт в 1,5 раза, Наи­большее изменение частоты — в четыре раза достигнуто при соединении рези­стора Rупр с выходом OUT (выводом 3) таймера, При этом коэффициент запол­нения импульсов практически не изме­няется, оставаясь приблизительно рав­ным 0,5. Если подключить резистор Rупр к выходу с открытым коллектором DISCH (выводу 7), кривые зависимос­тей изменения частоты и коэффициента заполнения от сопротивления резисто­ра занимают промежуточные положения между кривыми при его соедине­нии с плюсом питания и с выходом OUT.

Полученные результаты можно рас­пространить и на КМОП-версии тайме­ра — микросхемы LMC555, TS555, ICM7555, КР1441ВИ1. Но следует иметь в виду, что пороговые напряжения в них заданы с помощью делителей напряже­ния из резисторов сопротивлением 100 кОм, а не 5 кОм, как в таймерах NE555. Поэтому для них значения со­противления резистора указанные на рис. 5 и рис. 6, нужно увеличить в 20 раз.

Автор: А. ДОЛГИЙ, г. Москва
Источник: Радио №3/2017

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *