Site Loader

Преобразователь 3,7-5V для POWER BANK-a

Приветствую, Самоделкины!
Повышающие преобразователи напряжения с низковольтным питанием, очень часто внедряются в самые разные самоделки. Сейчас рынок предлагает нам весьма неплохие готовые решения, но взять и использовать готовую плату, это как-то неинтересно. Гораздо приятнее, когда вы это делаете своими руками.


Автором данной самоделки является AKA KASYAN (YouTube канал «AKA KASYAN»). Предлагаемый преобразователь может быть задействован в конструкциях самодельных powerbank’oв, преобразователей для мультиметра, питания линейки светодиодов или светодиодной ленты от низковольтного источника и так далее.
С микросхемой mc34063, пожалуй, знаком каждый радиолюбитель. Это специализированная микросхема, на базе которой можно построить довольно неплохие dc-dc преобразователи напряжения, повышающие, понижающие или инверсные.


Простая схема повышающего преобразователя на этой микросхеме будет выглядеть следующим образом:

Микросхема хороша тем, что внутри уже имеет силовой транзистор, благодаря чему выходной ток может выходить до 1,5А.


Но справедливости ради нужно заметить, что при токе в 1А микросхема уже начинает сильно нагреваться. Данная микросхема имеет внутренние компараторы и собственный источник опорного напряжения, что дает возможность организовать обратную связь по напряжению, или иначе говоря — стабилизировать выходное напряжение на нужном уровне.


Выходное напряжение будет зависеть от соотношения сопротивлений делителя напряжения.


Микросхема имеет множество плюшек, о которых мы поговорим в другой раз, ну а сегодня рассмотрим схему повышающего преобразователя.

Этот преобразователь довольно прост и позволит зарядить ваш смартфон от, например, литиевых аккумуляторов.

Но есть недостаток – КПД. Дело в том, что несмотря на работу в импульсном режиме, с таким соотношением входного и выходного напряжения, КПД преобразователя очень мал и составляет в лучшем случае 60-65%, и это не есть хорошо для портативного устройства.
Фишка данной схемы заключается в том, что выход микросхемы усилен дополнительным транзистором. В нашем случае — он биполярный.

Это позволит улучшить выходные характеристики преобразователя и разгрузить микросхему. Иными словами, схема позволит построить преобразователи на большую мощность. Микросхема mc34063 начинает работать при входном напряжении начиная от 3В, то есть приведенную схему можно использовать в качестве повышающего преобразователя в самодельном пауэрбанке. Поэтому на плате у автора установлен сдвоенный USB порт.

Теперь на счет печатной платы. Изначально плату автор разрабатывал под другую схему с полевым транзистором, но надежда не была оправдана. С биполярным транзисторам схема работает лучше. Плата вышла довольно неплохой, с заводским качеством конечно же не сравнится, но для домашней технологии совсем неплохо, а если хотите, чтобы ваши самоделки выглядели как заводской продукт, то вы можете заказать печатную плату.


Идем дальше. Сильно углубляться в процесс работы dc-dc конвертора не будем. Но данная микросхема легонько отличается от обычных шим-контроллеров. Микросхема вырабатывает последовательность прямоугольных импульсов, которые поступают на базу ключа, а тот срабатывает, замыкая источник питания на дроссель. Вследствие чего в последнем происходит накапливание энергии. Затем ключи закрывается, всплеск напряжения самоиндукции с дросселя выпрямляется диодом и накапливается в конденсаторе, а от конденсатора уже идет к потребителю.

Резистивный делитель формирует определенное напряжение, которое поступает на один из входов внутреннего компаратора микросхемы. Там это напряжение сравнивается с напряжением опорного источника. Исходя из разницы напряжений, микросхема увеличивает или уменьшает длительность импульсов и частоту, да и частоту тоже, так как микросхема одновременно осуществляет управление как в режиме ШИМ (широтно-импульсной модуляции), так и в режиме ЧИМ (частотно-импульсной модуляции).

Принцип хорошо виден на экране осциллографа:

Чем мощнее нагрузка, тем большая просадка выходного напряжения. На это реагирует система обратной связи, и микросхема увеличивает длительность импульсов и частоту переключений ключа.
Выходной выпрямительный диод. В принципе, подойдет любой диод Шоттки с током от 3-ех ампер. Автор решил взять сдвоенную диодную сборку от выходного выпрямителя компьютерного блока питания. Диоды стоят параллельно.

Накопительные конденсаторы на выходе берем с расчётным напряжением 10-16В. Очень желательно использовать конденсаторы с низким внутренним сопротивлением, их также можно найти в компьютерных блоках питания.


Дроссель намотан на колечки из порошкового железа, не феррит, а именно порошковое железо.


Ферритовое кольцо здесь не подойдет. Размер кольца сейчас перед вами:

Обмотка содержит всего 6 витков, намотана проводом 1,2мм, можно и миллиметровым.

Именно с таким дросселем максимальная ЭДС самоиндукции доходило до 20В. Так что благодаря подстроечному резистору, который, кстати, на плате предусмотрен, можно регулировать выходное напряжение в довольно широких пределах.

Транзистор автор поставил TIP41, как наиболее доступный вариант. Ток коллектора всего 6А, при возможности ставьте ключи с током коллектора 10 и более ампер. Но даже с таким не самым крутым транзистором удается получить на выходе преобразователя ток около 2А.

Естественно транзистор греется, поэтому и ключик, и диод установлены на общий радиатор. Не забываем также изолировать подложки указанных компонентов от радиатора теплопроводящими прокладками.

Токовый шунт может быть исключен из схемы, если защита не нужна.

Одно из достоинств приведенной схемы — это мизерный ток холостого хода (менее 10 ма). Указанные 2А выходного тока — не предел для такой схемы. Выкачивать можно и больше, но смысла в этом особого нет из-за малого КПД преобразования.

На этом все. Архив со схемой и печатной платой вы найдете в описании под оригинальным видеороликом автора (ссылка ИСТОЧНИК).
Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

мир электроники — Как получить нестандартное напряжение

Практическая электроника  

материалы в категории

В большинстве радиоэлектронных устройств все напряжения относительно стандартны: 3V, 5V, 9V, 12V и так далее.
Насчет выдаваемого напряжения стандартны обычно и электрохимические источники тока: батарейки (1,5V, 9V), аккумуляторы и так далее.
Но бывают случаи когда требуется получить и необычное напряжение: например 6V или 8V. Скажите такое случается крайне редко? Отнюдь…

Немного отвлекусь от темы и приведу реальный пример из реальной практики:
В некоторых моделях телевизоров Sharp питание видеопроцессора осуществлялось через трехногий стабилизатор AN7808 (то есть 8V). При меньшем напряжении- отключается яркость, при подаче 9V телевизор работает, но нет цветности и увеличен размер по кадрам. В старые добрые времена «родной» 8-ми Вольтовый стабилизатор найти было довольно проблематично и приходилось «выкручиваться» с родными советскими КРЕНками типа КР142ЕН на фиксированное напряжение 5 и 12 Вольт.

Для решения данной проблемы возможны два варианта:
1. Изготовить регулируемый источник питания.
2. Изменить напряжение стабилизации у микросхемы-стабилизатора.

Рассмотрим оба варианта:

регулируемый источник питания

Схем регулируемых источников питания в интернете много. Можно найти различные схемы как на транзисторах так и на микросхемах, с защитой и без, но мы рассмотрим самый простой вариант регулируемого источника питания- на микросхеме серии LM317. На ней можно изготовить простенький регулируемый источник питания

с выходным напряжением в пределах 1,5….30V и током до 1,5Ампер. Кстати, у неё есть и отечественный аналог имеется- называется он КР142ЕН12А. Схема включения у него такая:


Как видим ничего сложного и хитрого: самый обыкновенный диодный мост, пара конденсаторов на входе и выходе и цепь регулировки.

Вариант второй:

Как изменить напряжение стабилизации у КРЕНки

Здесь, в общем-то тоже нет ничего хитрого: достаточно просто средний (тот который «общий» вывод) у КРЕНки подключить через стабилитрон. См схему:


Выходное (причем стабилизированное!) напряжение при этом поднимется на значение напряжения стабилизации стабилитрона.
То есть если взять 5-ти вольтовую КРЕНку и поставить дополнительно стабилитрон, скажем, на 3,3V, то на выходе мы получим 5+3,3=8,3V.

А если вдруг необходимо поднять напряжение не на много, скажем всего на 0,5….1,5V? Тоже не сложно: таких стабилитронов не существует, но вместо стабилитрона можно использовать обыкновенный диод (только включается он не как стабилитрон а наоборот- катодом к «общему»). См рисунок:


Все дело в том что на p-n переходе диода создается падение напряжения:
для кремниевых диодов оно составляет порядка 0,6-0.7V, для германиевых 0.3-0.4V.
Именно это свойство можно и использовать: если установить, скажем, два последовательно включенных кремниевых диода то напряжение на выходе КРЕНки подымется приблизительно на 1,4V.

Небольшое дополнение: в «последних» отечественных телевизорах (которые еще выпускались в середине-конце 1990-х годов) можно было встретить источники питания где 12-ти Вольтовый стабилизатор был выполнен на микросхеме КР142ЕН8Г с включением среднего вывода через подстроечный резистор. Но диапазон регулировки у такой схемы был, прямо скажем, не очень…. Так что все что было написано выше более эффективно.

Ну и напоследок: основная часть материала и картинки позаимствованы с сайта Практическая электроника (с предварительного согласия!!)

почему кремниевые диоды в мосте сильно греются?

Потому что диоды у тебя медленные, а надо быстрые. Ставь или диоды Шоттки, или типа FR302. Такие стоят в компьютерных блоках питания.

возьми помощнее тогда по идее ток зарядки не должен быть уж таким громадным может быть немного добавить напряжения с блока питания? не 12 а 14 или 16 сколько до стабилизатора получается напряжение ?

расчитаем мощность нагрева. Падение напряжения примерно 1,5 в. Ток 3 а. Это 4,5 ватта. Делим пополам — будет более 2-х ватт. Если заряжать таким током, то нужен радиатор. Либо нужно уменьшать ток зарядки.

А предварительная схема какая? Высокочастотная? Если так, то нужно ставить соответствующие диоды.. . Если нет, то нужно диоды другие искать на 12 вольт которые…. Резистор нужно расположить после конденсатора, а не до нее…

да в нагрузке моста ты накосячил чего-то… отключи свою конструкцию, повесь после моста лампочку и проверь-будут греться диоды или нет.

Причин может быть несколько. Если греются без нагрузки (стабилизатор не нагружен) и греется резистор фильтра — вероятно, неисправен стабилизатор. Если верить фотографии — у Вас стоит трансформатрик с габаритной мощностью не более 20 Вт и раньше нагрелся бы он. Если не верить фото — к этому призывает надпись «Галогенка 12 В» — а они довольно много потребляют, Стабилизатор L7808 — ток нагрузки у него мизерный 150мА — тогда этот вопрос из разряда проверки на вшивость.

cxema.org — Преобразователь напряжения 3,7-5В

После моих статьей маломощных инверторов для зарядки мобильных устройств, на форуме поступили личные сообщения, с просьбой дать схему инвертора 3,7-5 Вольт. Недолго поискав в интернете понял, что нормальных схем нет, все, что имелось, было собрано на специализированных драйверах — многим пользователям (особенно новичкам) они недоступны. Поэтому решил создать, пожалуй самую простую схему инвертора, который способен заряжать все портативные электронные устройства со встроенным литий-ионным аккумулятором 3,7Вольт.

Преобразователь 3,7-5 Вольт схема

Универсальный номинал выходного напряжения — 5 Вольт дает возможность зарядить все известные мобильные телефоны, плееры и планшетные компьютеры, иными словами выходное напряжение было выбрано 5 Вольт.

Основные параметры таковы:

  • Входное напряжение 3.5-6 Вольт
  • Ток потребления при подключенном телефоне не более 500мА
  • Выходное напряжение 5 Вольт
  • Выходной ток не более 80 мА

Позже провёл некоторые эксперименты, в следствии удалось получить выходной ток до 120мА при потреблении 650 мА, хотя схема может отдавать гораздо больше, для этого нужно увеличить сечение проводов в обеих обмотках, но при этом потребление резко возрастает и КПД преобразователя падает.

Преобразователь 3,7-5 Вольт внешний видПреобразователь 3,7-5 Вольт внешний вид

Преобразователь 3,7-5 Вольт внешний вид
Затворный ограничитель советую именно на 100 Ом, при повышении и понижении (по сути, увеличение и уменьшение рабочей частоты инвертора) резко нарушается режим работы, что приводит к перегреву ключа и повышении потребления, К примеру, с резистором 1кОм ток потребления возрастал до 1500мА, а ток заряда всего 100мА.

При указанных номиналах теплоотвод для транзистора не нужен, но для страховки можно поставить маленький радиатор.

В качестве трансформатора был использован входной дроссель от компьютерного блока питания, он состоит из двух обмоток по 15 витков, провод порядка 0,6мм. Вторичная обмотка мотается тем же проводом и состоит из 10 Витков и мотается в том же направлении, что и первичная.

Преобразователь 3,7-5 Вольт трансформатор

Силовой ключ — любой полевой транзистор с током выше 10А с напряжением 20-60 Вольт. Желательно использовать полевые транзисторы с наименьшим сопротивлением открытого перехода, из доступных, наилучшим вариантом является полевик серии IRF3205 или IRL3705, можно также использовать ключи типа IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 и другие.

Преобразователь 3,7-5 Вольт стабилизаторПреобразователь 3,7-5 Вольт внешний вид

Преобразователь 3,7-5 Вольт внешний видПреобразователь 3,7-5 Вольт внешний вид

В качестве выпрямителя желательно использовать диод Шоттки или любые импульсные диоды с рабочим напряжением более 20 Вольт и током выше 500мА, из распространенных подходят FR107/207 и любые другие, с указанными параметрами.

Хоть и мощность такого инвертора не велика, но телефон заряжается довольно быстро, почти как от штатного зарядника. На выходе зарядного инвертора имеется также электролитический конденсатор для сглаживания помех после выпрямителя, после этого напряжение подается на линейный стабилизатор напряжения выполненный на микросхеме 7805, на выходе которого получаем стабильное напряжение 5 Вольт, перед микросхемой стабилитрон в данном случае не нужен, поскольку выходное напряжение после диода не превышает 15 Вольт.

Аккумулятор в моем случае использован от планшетного компьютера с емкостью 2000мА/ч, емкости хватает на 4-5 часов непрерывной работы инвертора. Потом решил дополнить зарядное устройство кремниевым фотоэлементом. Такой модуль отдает напряжение до 9 Вольт при максимальном токе 50мА, даже при пасмурной погоде напряжение на выходе модуля не менее 7 Вольт при токе 30-35мА. Модуль не самый мощный, но как вариант, для подзарядки аккумулятора вполне подходит.

Инвертор был разработан специально для начинающих радиолюбителей, у которых появился интерес к радиоаппаратуре совсем не давно, уверен, любой сможет собрать такую зарядку, простая, дешевая и полезная вещица, работает безотказно и не требует никакой наладки.

С уважением — АКА КАСЬЯН

1117 стабилизатор — регулируемый миниатюрный стабильник

Конструкция микросхем серий AMS 1117, IL 1117 A (аналог К 1254 ЕН) является стабилизаторами напряжения с полюсами положительного значения с малым напряжением насыщения, изготавливаются в корпусах. Выполняются на стандартные напряжения 1,2 — 5,0 В.

Ток выхода микросхем до 1 ампера, максимальная мощность рассеивания 0,8 ватта для микросхем, изготовленных в корпусе. В микросхемы вмонтирована система защиты по нагреву и мощности рассеивания. Встроенная защитная система от перегревания снижает напряжение выхода и ток, не давая повысится температуре микросхемы более 150 градусов. Система защиты от температуры не может заменить теплоотвод.

Вместо него можно применить медную полоску, маленькая медная пластинка из латуни, керамика, проводящая тепло. Микросхема фиксируется к теплоотводящему радиатору при помощи пайки теплопроводящего радиатора, либо приклеивается корпусом при помощи теплопроводящего клея. Использование микросхем таких марок дает возможность увеличить стабильность напряжения выхода, малые коэффициенты токовой нестабильности напряжению (меньше 10 милливольт), повышенный КПД, что дает возможность уменьшения напряжения входа питания прибора. Микросхемы марки 1117 работают в компьютерной технике: в комплекте схем, системных блоков, тюнерах, разных контроллерах.

На рисунке дается схема блока – стабилизирующего устройства «плюсовой» полярности на стандартное напряжение выхода 3,3 вольта. Входное значение напряжения стабилизатора определено в пределах до 12 вольт.

Это стабилизирующее устройство идеально сочетается с питанием разных мобильных гаджетов с отдельным питанием величиной в 3 вольта. На нем можно выполнить маленький блок питания, и применить его в качестве подключаемого устройства стабилизации к адаптерам — обычным трансформаторным и новым импульсным, используемым в качестве зарядных устройств смартфонов. Этот стабилизатор тоже возможно подключать к автомобилю + 12 вольт через фильтр помех прибора. Диод VD 2 служит для защиты стабилизатора от ошибочного подключения прибора. Дроссель L1 и емкости служат для подавления сильных помех в сети.

Если вам необходим стабилизатор, имеющий значительную величину мощности, то схему соединений надо слегка сделать сложнее, путем добавления в схему транзистора и сопротивления.

Транзистор марки КТ 818 в пластиковой оболочке имеет возможность рассеивать мощность 1 ватт, в корпусе из металла – мощность до 3 ватт. Если необходима большая мощность, значит, транзистор нужно подключить на теплоотводящий радиатор. Оптимальным решением будет установка микросхемы вместе с транзистором на общий теплоотводящий радиатор, максимально рядом один корпус с другим. Так как, при таком подключении защита микросхемы от чрезмерной нагрузки не будет действовать, чтобы слишком не делать сложной схему устройства, подключать стабилизатор лучше по самовосстанавливающемуся предохранителю.

Если применен транзистор в пластмассовой оболочке, например КТ 818А, то наибольший ток нагрузки допускается до 8 А, если корпус металлический, например, КТ 818 БМ, то допустимый ток до 12 ампер. Если необходимо построить свой вариант стабилизатора с помощью микросхемы 1117, то возможно использование данных из таблицы.

Маркировка микросхемы изображена на рисунке. Теплоотводящий фланец подключен к выходу микросхемы. Когда нужно увеличить напряжение на выходе стабилизирующего устройства на 0,6 вольта, в разъем цепи питания и главного вывода микросхемы устанавливают соответствующий слабый кремниевый диод, к примеру КД 521 А, анодом к микросхеме, подключенный с шунтом электролитическим конденсатором.

В этом случае нестабильность микросхемы сильно возрастет, но остается вполне допускаемой для множества применений.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *