Стабильный источник высокого напряжения для питания ФЭУ / Habr
Применение фотоэлектронного умножителя — это очень простой способ получить высочайшую чувствительность фотоприемника, вплоть до регистрации единичных фотонов при прекрасном быстродействии. А учитывая массу ФЭУ, выпущенных в СССР и до сих пор лежащих на складах, это еще и относительно недорого (современные «фирменные» ФЭУ все-таки неприлично дороги для любительского применения). Но для питания фотоэлектронного умножителя нужен источник напряжения в 1-3 киловольта, и притом очень стабильный.
Дело в том, что чувствительность ФЭУ зависит от анодного напряжения экспоненциально и очень резко: она увеличивается в 10 раз при увеличении напряжения на 80-300 В, в зависимости от типа ФЭУ. И если нужно обеспечить стабильность усиления на уровне процента, для некоторых ФЭУ необходимо, чтобы напряжение не менялось больше, чем на 0,1-0,3 В!
В данной статье я привожу схему источника высокого напряжения для ФЭУ, который хорошо зарекомендовал себя в лабораторных условиях. Он обеспечивает выходное напряжение от нескольких сотен до 1500 В при выходном токе до 1 мА и стабильности не хуже 0,2 В за час при неизменном потребляемом токе после прогрева. Несложная переделка увеличивает верхний предел напряжения до 3 кВ, правда, ценой меньшей стабильности.
Схема
Основой источника является двухтактный инвертор, работающий на трансформатор для CCFL-ламп. Инвертор выполнен на основе отечественной микросхемы для ЭПРА — КФ1211ЕУ1. Равных этой микросхеме мне в продаже найти не удалось: она может управлять затворами полевых транзисторов непосредственно и для работы ей нужно лишь два внешних элемента (времязадающие резистор и конденсатор), при этом она штатно работает от 5 В и стоит недорого. К сожалению, НПО «Дельта» давно не производит эту микросхему, но она до сих пор есть в продаже и добыть ее не составляет труда. Никаких средств регулирования коэффициента заполнения у этой микросхемы нет, но нам это не нужно — регулирование выходного напряжения осуществляется изменением напряжения питания выходного каскада инвертора. Ключевым элементом является сдвоенный n-МОП-транзистор VT1 типа IRF7341. Резисторы R2 и R3 ограничивают броски тока при перезарядке емкостей затворов.
Инвертор работает на частоте 40 кГц. Опытным путем установлено, что на этой частоте примененный трансформатор работает лучше всего и имеет наилучший КПД. Частота эта задается цепочкой R1C1.
Трансформатор я использовал из серии TMS91429CT, имеющий две одинаковые первичные и две одинаковые изолированные друг от друга вторичные обмотки. Это дает возможность исключить умножитель напряжения с большими потерями, заменив его двумя однотактными выпрямителями, выходные напряжения которых складываются, образуя не совсем обычный на вид, но по сути такой же двухтактный выпрямитель. Нарисованная на схеме конфигурация работает с данным трансформатором несколько лучше, чем классическая «с отводом от середины». Если нужны более высокие напряжения, в каждой из «половинок» можно собрать удвоитель.
Резистор R8 и конденсатор C9 образуют фильтр, уменьшающий пульсации высокого напряжения. Резистор R10 снижает опасность смертельного поражения электрическим током: несмотря на то, что сила постоянного тока, вырабатываемого данным источником, не представляет никакой серьезной опасности, энергия, запасаемая в конденсаторе C9 вполне достаточна для того, чтобы убить, и ограничение пикового тока его разряда до ~ 60 мА при максимальном напряжении эту возможность снижает (при кратковременном — сотые доли секунды — воздействии такой ток обычно не является смертельным). Вместе с тем, при токе 1 мА на этом резисторе падает 22 В, что, скорее всего, недопустимо. Поэтому если нужны токи больше сотни микроампер, его придется убрать, но в этом случае — помнить, что выходное напряжение источника — смертельно опасно. С резистором R10, впрочем, тоже, но опасность не столь высока.
Выходное напряжение, поделенное делителем R7R9 в 500 раз, подается на вход усилителя ошибки на ОУ DA1.2. На второй его вход подается опорное напряжение (через повторитель на DA1.1), которое задает выходное напряжение, которое в соответствии с коэффициентом деления делителя R7R9 будет в 500 раз больше (например, при опорном напряжении 3 В выходное составит 1,5 кВ). Коэффициент усиления усилителя ошибки подобран экспериментально. Его увеличение повышает точность стабилизации, но снижает устойчивость. Конденсатор C8 компенсирует задержку в петле обратной связи и обеспечивает устойчивость регулирования. Соотношение коэффициента усиления усилителя ошибки и постоянной времени цепи R6C8 — вопрос компромисса между точностью поддержания выходного напряжения и временем его установления.
Выходное напряжение усилителя ошибки подается на регулирующий элемент — p-МОП транзистор VT2. Транзистор полностью закрыт, когда напряжение на выходе DA1.2 близко к напряжению питания (то есть если высокое напряжение сильно превышает заданное), и полностью открывается при снижении его до нуля (при сильно заниженном высоком напряжении), что обеспечивает его поддержание на уровне несколько выше опорного напряжения, помноженного на коэффициент деления. Далеко не все МОП-транзисторы хорошо работают в линейном режиме, и указанный на схеме делает это вполне приемлемо. Резистор R4 предотвращает неустойчивость ОУ при работе на емкостную нагрузку, которой является затвор транзистора.
В качестве источника опорного напряжения может быть использован многооборотный потенциометр, питающийся от стабилизированного источника напряжения, но при повышенных требованиях к стабильности его может оказаться недостаточно, так как даже самые лучшие из таких переменных резисторов в той или иной степени «шумят», хаотически меняя сопротивление в небольших пределах, даже если ручку регулировки не трогают. Для ее повышения желательно ограничить диапазон плавной перестройки до 100-200 В и ввести переключатель для дискретной грубой установки напряжения. Другой вариант — сделать цифровой ИОН на основе какого-нибудь ЦАП.
Данная схема выдает высокое напряжение положительного знака. Для питания ФЭУ удобно использовать отрицательное напряжение питания с заземленным анодом. Для этого схему придется скорректировать — во-первых, изменив полярности диодов в высоковольтной части. Во-вторых, придется ввести в схему еще один операционный усилитель. Вместо делителя R9R7 у нас появляется инвертирующий усилитель с коэффициентом усиления минус 1/500 на ОУ DA2, и резисторы R9 и R7 оказываются в его цепи ООС.
Чтобы получить 3 киловольта, придется заменить выпрямители во вторичных цепях на удвоители напряжения и увеличить R9 до 100 МОм. Стабильность при этом ухудшится примерно в те же два раза.
Компоненты и монтаж
В низковольтных и слаботочных цепях можно использовать конденсаторы и резисторы типоразмера 0805 или даже 0603. Конденсатор C2 — танталовый. Конденсатор С4 — пленочный, так как через него протекает заметный импульсный ток и керамический SMD конденсатор здесь будет греться и быстро выйдет из строя.
Со стороны высокого напряжения необходимо монтировать все цепи переменного тока настолько короткими соединениями, насколько возможно, так как иначе они сильно излучают (однако, не забывая соблюдать изоляционные зазоры). Диоды набраны каждый из двух последовательно соединенных диодов на 1000 В. В связи с отсутствием в магазинах быстрых диодов на 1000 В в SMD-исполнении применены выводные диоды HER1008, установленные по два последовательно. Для уменьшения длины выводов они загнуты под корпус диода и обрезаны, и таким образом, диод переделан в SMD. При этом анод одного диода в паре спаивается с катодом второго непосредственно и максимально близко к выходу вывода из корпуса, а не через печатный проводник. Конденсаторы С6 и С7 также набраны из четырех конденсаторов 0,015 мкФ х 1000 В типоразмера 1812, соединенных последовательно-параллельно и спаянных «этажеркой» друг на друге. Конденсатор C9 произвольного типа — я использовал батарею из отечественных К15-4, для надежности залитую компаундом.
Резистор R8 — типоразмера 2512. R10 набран из десяти таких резисторов, соединенных последовательно на отдельной маленькой плате и залитых изоляционным компаундом. Аналогично можно поступить и с R9, либо применить резистор серии FHV-100. А совсем идеально поставить делитель фирмы Caddock серии THV10. От термостабильности данного резистора (а он нагревается проходящим через него током) зависит дрейф напряжения. Теплоизоляция его, увеличивая время установления стабильного напряжения, тем не менее, резко уменьшает его хаотичные колебания, поэтому
И о заменах. Трансформатор может быть заменен практически любым аналогичным трансформатором с такой же конфигурацией обмоток (то есть две одинаковые первичные обмотки и две раздельные высоковольтные) и такой же габаритной мощностью, при этом может потребоваться подбор частоты коммутации и емкости конденсатора C4. Транзисторную сборку VT1 можно заменить на аналогичные отдельные n-МОП транзисторы с напряжением исток-сток не менее 20 В и током стока не менее 3 А, способные работать с 5 В на затворе. VT2 заменять нежелательно.
Немного о безопасности
Как я уже говорил, данный прибор смертельно опасен для жизни. Несмотря на то, что ток в несколько миллиампер, обеспечиваемый данным устройством, не опасен даже при прохождении по пути «язык-рука», разряд емкости на выходе, пусть не гарантированно убьет, но вполне может это сделать, так как ток при этом достигает нескольких ампер (!), а энергия разряда при максимальном напряжении составляет около 0,1 Дж, чего вполне достаточно для вызывания фибрилляции желудочков в уязвимую фазу. Так что будьте осторожны — особенно в процессе наладки. На это время рекомендую заменить конденсатор С9 на менее емкий.
ИСТОЧНИК ВЫСОКОГО НАПРЯЖЕНИЯ
Прежде чем мы перейдём к описанию предлагаемого для сборки источника высокого напряжения, напомним о необходимости соблюдать общие меры безопасности при работе с высокими напряжениями. Хотя это устройство даёт выходной ток чрезвычайно малого уровня, оно может быть опасным и вызовет довольно неприятный и болезненный удар, если случайно каснуться в неположенном месте. С точки зрения безопасности, это один из самых безопасных высоковольтных источников, поскольку выходной ток сравним с током обычных электрошокеров. Высокое напряжение на выходных клеммах — постоянного тока около 10-20 киловольт, и если подключить разрядник, то можно получить дугу 15 мм.
Схема источника высокого напряжения
Напряжение может регулироваться изменением количества ступеней в умножителе, например, если вы хотите, чтобы оно зажгло неоновые лампы — можно использовать одну, если хотите, чтобы работали свечи зажигания — можно использовать две или три, и если нужно более высокое напряжение — можно использовать 4, 5 и более. Меньше каскадов означает меньшее напряжение, но больший ток, что может увеличить опасность этого устройства. Парадокс, но чем больше напряжение, тем менее сложным будет нанести ущерб из-за питания, поскольку ток падает до пренебрежительно малого уровня.
Как это работает
После нажатия кнопки, ИК-диод включается и луч света попадает на датчик оптрона, этот датчик имеет выходное сопротивление около 50 Ом, что достаточно для включения транзистора 2n2222. Этот транзистор подаёт энергию батареи для питания таймера 555. Частоту и скважность импульсов можно регулировать изменением номиналов компонентов обвязки. В данном случае частота может регулироваться с помощью потенциометра. Эти колебания, через транзистор BD679, усиливающий импульсы тока, поступают на первичную катушку. Со вторичной снимается переменное напряжение, увеличенное в 1000 раз, и выпрямляется ВВ умножителем.
Детали для сборки схемы
Микросхема — любой таймер серии КР1006ВИ1. Для катушки — трансформатор с отношением сопротивления обмоток 8 Ом :1 кОм. Первое, на что необходимо обратить внимание при выборе трансформатора — это размер, так как количество энергии, которое они могут обрабатывать, пропорционально их размерам. Например размером с большую монету даст нам больше энергии, чем небольшой трансформатор.
Первое, что необходимо сделать для его перемотки, это удалить ферритовый сердечник для доступа к самой катушке. В большинстве трансформаторов две части склеиваются клеем, просто держите трансформатор плоскогубцами над зажигалкой, только осторожно, чтоб не расплавить пластик. После минуты клей должен расплавиться и надо разломить его на две части сердечника.
Учитывайте, что феррит очень хрупкий и трескается довольно легко. Для намотки вторичной катушки использовался эмалированный медный провод 0,15 мм. Намотка почти до заполнения, чтоб потом хватило ещё на один слой более толстого провода 0,3 мм — это будет первичка. Она должна иметь несколько десятков витков, около 100.
Почему здесь установлен оптрон — он обеспечит полную гальваническую развязку от схемы, с ним не будет электрического контакта между кнопкой замыкания питания, микросхемой и высоковольтной частью. Если случайно пробьёт высокое напряжение по питанию, то вы будете в безопасности.
Сделать оптрон очень легко, любой ИК-светодиод и ИК-датчик вставьте в термоусадочную трубку, как показано на картинке. В крайнем случае, если не хочется усложнять дело, уберите все эти элементы и подавайте питание замкнув К-Э транзистора 2N2222.
Обратите внимание на два выключателя в схеме, так сделано потому, что каждая рука должна быть задействована чтобы активировать генератор — это будет безопасно, уменьшает риск случайного включения. Также при работе устройства вы не должны прикасаться к чему-либо еще, кроме кнопок.
При сборке умножителя напряжения не забудьте оставить достаточный зазор между элементами. Обрежьте все торчащие выводы, поскольку они могут привести к коронным разрядам, которые сильно снижают эффективность.
Рекомендуем изолировать все оголенные контакты умножителя с термоклеем или другим аналогичным изоляционным материалом и, после этого, обернуть в термоусадочную трубку или изоленту. Это не только уменьшит риск случайных ударов, но и повысит эффективность схемы путем уменьшения потерь через воздух. Также для страховки добавили кусок пенопласта между умножителем и генератором.
Потребляемый ток должен быть примерно 0,5-1 ампер. Если больше — значит схема плохо настроена.
Испытания генератора ВН
Было испытано два различных трансформатора — оба с отличными результатами. Первый имел меньший размер ферритового сердечника и, следовательно, меньше индуктивность, работал на частоте 2 кГц, а в другом около 1 кГц.
При первом запуске сначала проверьте генератор NE555, работает ли он. Подключите маленький динамик к ноге 3 — при изменении частоты вы должны услышать звук, исходящий из него. Если все сильно нагревается можно увеличить сопротивление первичной обмотки, намотав её проводом потоньше. И небольшой радиатор для транзистора рекомендуется. Да и правильная частота настройки является важной, чтобы избежать этой проблемы.
Схемы блоков питанияИсточник высокого напряжения своими руками
Для самостоятельного изготовления флокатора, пистолета порошковой покраски или электростатической коптильни требуется источник высокого напряжения. И если первые два устройства требуют 75-100 киловольт, то высоковольтный генератор для коптильни работает при 15-20.
В сети есть множество схем высоковольтных генераторов сделанных с использованием строчных трансформаторов от мониторов, телевизоров или автомобильных катушек зажигания. В большинстве своём их схемотехника удручает – как правило это простейшие обратноходовые преобразователи, а значит транзистор в них будет работать в роли кипятильника т.к. для новичка наверняка не имеющего осциллографа рассчитать снаббер практически не реально.
Схемы из прошлого века на тиристорах с питанием от сети 220 вольт опасны и в случае неосторожности могут привести к печальным последствиям. Мы же сделаем резонансный полумост на ТДКС.
Давайте посмотрим схему:
Схема высоковольтного генератора
Список компонентов:
- U1 – «IR2153»;
- C1 – электролит 470-1000uf 16v, желательно Low Esr;
- C2 – керамика 1n;
- C3, C4 – керамика 100n;
- C5, C6 – полипропилен 470nf 630v;
- R1 – многооборотный подстроечный резистор;
Остальные компоненты вопросов думаю не вызывают.
Файл печатной платы: ir2153.lay6[0,03MB]
В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.
Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.
Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.
Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.
Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.
Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.
Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.
Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор ~30kV 470pf – 2.2n и выходной токоограничительный резистор.
Please enable JavaScript to view the comments powered by Disqus.Импульсные источники питания, теория и простые схемы
Импульсный источник питания — это инверторная система, в которой входное переменное напряжение выпрямляется, а потом полученное постоянное напряжение преобразуется в импульсы высокой частоты и установленой скважности, которые как правило, подаются на импульсный трансформатор.
Импульсные трансформаторы изготавливаются по такому же принципу, как и низкочастотные трансформаторы, только в качестве сердечника используется не сталь (стальные пластины), а феромагнитные материалы — ферритовые сердечники.
Рис. Как работает импульсный источник питания.
Выходное напряжение импульсного источника питания стабилизировано, это осуществляется посредством отрицательной обратной связи, что позволяет удерживать выходное напряжение на одном уровне даже при изменении входного напряжения и нагрузочной мощности на выходе блока.
Обратная отрицательная связь может быть реализована при помощи одной из дополнительных обмоток в импульсном трансформаторе, или же при помощи оптрона, который подключается к выходным цепям источника питания. Использование оптрона или же одной из обмоток трансформатора позволяет реализовать гальваническую развязку от сети переменного напряжения.
Основные плюсы импульсных источников питания (ИИП):
- малый вес конструкции;
- небольшие размеры;
- большая мощность;
- высокий КПД;
- низкая себестоимость;
- высокая стабильность работы;
- широкий диапазон питающих напряжений;
- множество готовых компонентных решений.
К недостаткам ИИП можно отнести то что такие блоки питания являются источниками помех, это связано с принципом работы схемы преобразователя. Для частичного устранения этого недостатка используют экранировку схемы. Также из-за этого недостатка в некоторых устройствах применение данного типа источников питания является невозможным.
Импульсные источники питания стали фактически непременным атрибутом любой современной бытовой техники, потребляющей от сети мощность свыше 100 Вт. В эту категорию попадают компьютеры, телевизоры, мониторы.
Для создания импульсных источников питания, примеры конкретного воплощения которых будут приведены ниже, применяются специальные схемные решения.
Так, для исключения сквозных токов через выходные транзисторы некоторых импульсных источников питания используют специальную форму импульсов, а именно, биполярные импульсы прямоугольной формы, имеющие между собой промежуток во времени.
Продолжительность этого промежутка должна быть больше времени рассасывания неосновных носителей в базе выходных транзисторов, иначе эти транзисторы будут повреждены. Ширина управляющих импульсов с целью стабилизации выходного напряжения может изменяться с помощью обратной связи.
Обычно для обеспечения надежности в импульсных источниках питания используют вьюоковольтные транзисторы, которые в силу технологических особенностей не отличаются в лучшую сторону (имеют низкие частоты переключения, малые коэффициенты передачи по току, значительные токи утечки, большие падения напряжения на коллекторном переходе в открытом состоянии).
Особенно это касается устаревших ныне моделей отечественных транзисторов типа КТ809, КТ812, КТ826, КТ828 и многих других. Стоит сказать, что в последние годы появилась достойная замена биполярным транзисторам, традиционно используемых в выходных каскадах импульсных источников питания.
Это специальные высоковольтные полевые транзисторы отечественного, и, главным образом, зарубежного производства. Кроме того, существуют многочисленные микросхемы для импульсных источников питания.
Схема генератора импульсов регулируемой ширины
Биполярные симметричные импульсы регулируемой ширины позволяет получить генератор импульсов по схеме на рис.1. Устройство может быть использовано в схемах авторегулирования выходной мощности импульсных источников питания. На микросхеме DD1 (К561ЛЕ5/К561 ЛАТ) собран генератор прямоугольных импульсов со скважностью, равной 2.
Симметрии генерируемых импульсов добиваются регулировкой резистора R1. Рабочую частоту генератора (44 кГц) при необходимости можно изменить подбором емкости конденсатора С1.
Рис. 1. Схема формирователя биполярных симметричных импульсов регулируемой длительности.
На элементах DA1.1, DA1.3 (К561КТЗ) собраны компараторы напряжения; на DA1.2, DA1.4 — выходные ключи. На входы компараторов-ключей DA1.1, DA1.3 в противофазе через формирующие RC-диодные цепочки (R3, С2, VD2 и R6, СЗ, VD5) подаются прямоугольные импульсы.
Заряд конденсаторов С2, СЗ происходит по экспоненциальному закону через R3 и R5, соответственно; разряд — практически мгновенно через диоды VD2 и VD5. Когда напряжение на конденсаторе С2 или СЗ достигнет порога срабатывания компараторов-ключей DA1.1 или DA1.3, соответственно, происходит их включение, и резисторы R9 и R10, а также управляющие входы ключей DA1.2 и DA1.4 подключаются к положительному полюсу источника питания.
Поскольку включение ключей производится в противофазе, такое переключение происходит строго поочередно, с паузой между импульсами, что исключает возможность протекания сквозного тока через ключи DA1.2 и DA1.4 и управляемые ими транзисторы преобразователя, если генератор двухполярных импульсов используется в схеме импульсного источника питания.
Плавное регулирование ширины импульсов осуществляется одновременной подачей стартового (начального) напряжения на входы компараторов (конденсаторы С2, СЗ) с потенциометра R5 через диодно-ре-зистивные цепочки VD3, R7 и VD4, R8. Предельный уровень управляющего напряжения (максимальную ширину выходных импульсов) устанавливают подбором резистора R4.
Сопротивление нагрузки можно подключить по мостовой схеме — между точкой соединения элементов DA1.2, DA1.4 и конденсаторами Са, Сb. Импульсы с генератора можно подать и на транзисторный усилитель мощности.
При использовании генератора двухполярных импульсов в схеме импульсного источника питания в состав резистивного делителя R4, R5 следует включить регулирующий элемент — полевой транзистор, фотодиод оптрона и т.д., позволяющий при уменьшении/увеличении тока нагрузки автоматически регулировать ширину генерируемого импульса, управляя тем самым выходной мощностью преобразователя.
В качестве примера практической реализации импульсных источников питания приведем описания и схемы некоторых из них.
Схема испульсного источника питания
Импульсный источник питания (рис. 2) состоит из выпрямителей сетевого напряжения, задающего генератора, формирователя прямоугольных импульсов регулируемой длительности, двухкаскадного усилителя мощности, выходных выпрямителей и схемы стабилизации выходного напряжения.
Задающий генератор выполнен на микросхеме типа К555ЛАЗ (элементы DDI .1, DDI .2) и вырабатывает прямоугольные импульсы частотой 150 кГц. На элементах DD1.3, DD1.4 собран RS-триггер, на выходе которого частота вдвое меньше — 75 кГц. Узел управления длительностью коммутирующих импульсов реализован на микросхеме типа К555ЛИ1 (элементы DD2.1, DD2.2), а регулировка длительности осуществляется с помощью оптрона U1.
Выходной каскад формирователя коммутирующих импульсов собран на элементах DD2.3, DD2.4. Максимальная мощность на выходе формирователя импульсов достигает 40 мВт. Предварительный усилитель мощности выполнен на транзисторах VT1, VT2 типа КТ645А, а оконечный — на транзисторах VT3, VT4 типа КТ828 или более современных. Выходная мощность каскадов — 2 и 60…65 Вт, соответственно.
На транзисторах VT5, VT6 и оптроне U1 собрана схема стабилизации выходного напряжения. Если напряжение на выходе источника питания ниже нормы (12 В), стабилитроны VD19, VD20 {КС182+КС139) закрыты, транзистор VT5 закрыт, транзистор VT6 открыт, через светодиод (U1.2) оптрона протекает ток, ограниченный сопротивлением R14; сопротивление фотодиода (U1.1) оптрона минимально.
Сигнал, снимаемый с выхода элемента DD2.1 и поступающий на входы схемы совпадения DD2.2 напрямую и через регулируемый элемент задержки (R3 — R5, С4, VD2, U1.1), в силу его малой постоянной времени поступает практически одновременно на входы схемы совпадения (элемент DD2.2).
На выходе этого элемента формируются широкие управляющие импульсы. На первичной обмотке трансформатора Т1 (выходах элементов DD2.3, DD2.4) формируются двухполярные импульсы регулируемой длительности.
Рис. 2. Схема импульсного источника питания.
Если по какой-либо причине напряжение на выходе источника питания будет увеличиваться сверх нормы, через стабилитроны VD19, VD20 начнет протекать ток, транзистор VT5 приоткроется, VT6 — закроется, уменьшая ток через светодиод оптрона U1.2.
При этом возрастает сопротивление фотодиода оптрона U1.1. Длительность управляющих импульсов уменьшается, и происходит уменьшение выходного напряжения (мощности). При коротком замыкании нагрузки светодиод оптрона гаснет, сопротивление фотодиода оптрона максимально, а длительность управляющих импульсов — минимальна. Кнопка SB1 предназначена для запуска схемы.
При максимальной длительности положительные и отрицательные управляющие импульсы не перекрываются во времени, поскольку между ними существует временная просечка, обусловленная наличием резистора R3 в формирующей цепи.
Тем самым снижается вероятность протекания сквозных токов через выходные относительно низкочастотные транзисторы оконечного каскада усиления мощности, которые имеют большое время рассасывания избыточных носителей на базовом переходе. Выходные транзисторы установлены на ребристые теплоотводящие радиаторы с площадью не менее 200 см^2. В базовые цепи этих транзисторов желательно установить сопротивления величиной 10…51 Ом.
Каскады усиления мощности и схема формирования двухполярных импульсов получают питание от выпрямителей, выполненных на диодах VD5 — VD12 и элементах R9 — R11, С6 — С9, С12, VD3, VD4.
Трансформаторы Т1, Т2 выполнены на ферритовых кольцах К10x6x4,5 ЗОООНМ; ТЗ — К28х16х9 ЗОООНМ. Первичная обмотка трансформатора Т1 содержит 165 витков провода ПЭЛШО 0,12, вторичные — 2×65 витков ПЭЛ-2 0,45 (намотка в два провода).
Первичная обмотка трансформатора Т2 содержит 165 витков провода ПЭВ-2 0,15 мм, вторичные — 2×40 витков того же провода. Первичная обмотка трансформатора ТЗ содержит 31 виток провода МГШВ, продетого в кембрик и имеющего сечение 0,35 мм^2, вторичная обмотка имеет 3×6 витков провода ПЭВ-2 1,28 мм (параллельное включение). При подключении обмоток трансформаторов необходимо правильно их фазировать. Начала обмоток показаны на рисунке звездочками.
Источник питания работоспособен в диапазоне изменения сетевого напряжения 130…250 В. Максимальная выходная мощность при симметричной нагрузке достигает 60…65 Вт (стабилизированное напряжение положительной и отрицательной полярности 12 S и стабилизированное напряжение переменного тока частотой 75 кГц, снимаемые,со вторичной обмотки трансформатора Т3). Напряжение пульсаций на выходе источника питания не превышает 0,6 В.
При налаживании источника питания сетевое напряжение на него подают через разделительный трансформатор или фер-рорезонансный стабилизатор с изолированным от сети выходом. Все перепайки в источнике допустимо производить только при полном отключении устройства от сети.
Последовательно с выходным каскадом на время налаживания устройства рекомендуется включить лампу накаливания 60 Вт на 220 В. Эта лампа защитит выходные транзисторы в случае ошибок в монтаже. Оптрон U1 должен иметь напряжение пробоя изоляции не менее 400 В. Работа устройства без нагрузки не допускается.
Сетевой импульсный источник питания
Сетевой импульсный источник питания (рис. 3) разработан для телефонных аппаратов с автоматическим определителем номера или для других устройств с потребляемой мощностью 3…5Вт, питаемых напряжением 5…24В.
Источник питания защищен от короткого замыкания на выходе. Нестабильность выходного напряжения не превышает 5% при изменении напряжения питания от 150 до 240 В и тока нагрузки в пределах 20… 100% от номинального значения.
Управляемый генератор импульсов обеспечивает на базе транзистора VT3 сигнал частотой 25…30 кГц.
Дроссели L1, L2 и L3 намотаны на магнитопроводах типа К10x6x3 из пресспермаллоя МП140. Обмотки дросселя L1, L2 содержат по 20 витков провода ПЭТВ 0,35 мм и расположены каждая на своей половине кольца с зазором между обмотками не менее 1 мм.
Дроссель L3 наматывают проводом ПЭТВ 0,63 мм виток к витку в один слой по внутреннему периметру кольца. Трансформатор Т1 выполнен на магнитопроводе Б22 из феррита М2000НМ1.
Рис. 3. Схема сетевого импульсного источника питания.
Его обмотки наматывают на разборном каркасе виток к витку проводом ПЭТВ и пропитывают клеем. Первой наматывают в несколько слоев обмотку I, содержащую 260 витков провода 0,12 мм. Таким же проводом наматывают экранирующую обмотку с одним выводом (на рис. 3 показана пунктирной линией), затем наносят клей БФ-2 и обматывают одним слоем лакот-кани.
Обмотку III наматывают проводом 0,56 мм. Для выходного напряжения 5В она содержит 13 витков. Последней наматывают обмотку II. Она содержит 22 витка провода 0,15…0,18 мм. Между чашками обеспечивают немагнитный зазор.
Высоковольтный источник постоянного напряжения
Для создания высокого напряжения (30…35 кВ при токе нагрузки до 1 мА) для питания электроэффлювиальной люстры (люстры А. Л. Чижевского) предназначен источник питания постоянного тока на основе специализированной микросхемы типа К1182ГГЗ.
Источник питания состоит из выпрямителя сетевого напряжения на диодном мосте VD1, конденсатора фильтра С1 и высоковольтного полумостового автогенератора на микросхеме DA1 типа К1182ГГЗ. Микросхема DA1 совместно с трансформатором Т1 преобразует постоянное выпрямленное сетевое напряжение в высокочастотное (30…50 кГц) импульсное.
Выпрямленное сетевое напряжение поступает на микросхему DA1, а стартовая цепочка R2, С2 запускает автогенератор микросхемы. Цепочки R3, СЗ и R4, С4 задают частоту генератора. Резисторы R3 и R4 стабилизируют длительность полупериодов генерируемых импульсов. Выходное напряжение повышается обмоткой L4 трансформатора и подается на умножитель напряжения на диодах VD2 — VD7 и конденсаторах С7 — С12. Выпрямленное напряжение подается на нагрузку через ограничительный резистор R5.
Конденсатор сетевого фильтра С1 рассчитан на рабочее напряжение 450 В (К50-29), С2 — любого типа на напряжение 30 В. Конденсаторы С5, С6 выбирают в пределах 0,022…0,22 мкФ на напряжение не менее 250 В (К71-7, К73-17). Конденсаторы умножителя С7 — С12 типа КВИ-3 на напряжение 10 кВ. Возможна замена на конденсаторы типов К15-4, К73-4, ПОВ и другие на рабочее напряжение 10кB или выше.
Рис. 4. Схема высоковольтного источника питания постоянного тока.
Высоковольтные диоды VD2 — VD7 типа КЦ106Г (КЦ105Д). Ограничительный резистор R5 типа КЭВ-1. Его можно заменить тремя резисторами типа МЛТ-2 по 10 МОм.
В качестве трансформатора используется телевизионный строчный трансформатор, например, ТВС-110ЛА. ВЬюоковольтную обмотку оставляют, остальные удаляют и на их месте размещают новые обмотки. Обмотки L1, L3 содержат по 7 витков провода ПЭЛ 0,2 мм, а обмотка L2 — 90 витков такого же провода.
Цепочку резисторов R5, ограничивающих ток короткого замыкания, рекомендуется включить в «минусовой» провод, который подводится к люстре. Этот провод должен иметь вьюоко-вольтную изоляцию.
Корректор коэффициента мощности
Устройство, именуемое корректором коэффициента мощности (рис. 5), собрано на основе специализированной микросхемы TOP202YA3 (фирма Power Integration) и обеспечивает коэффициент мощности не менее 0,95 при мощности нагрузки 65 Вт. Корректор приближает форму тока, потребляемую нагрузкой, к синусоидальной.
Рис. 5. Схема корректора коэффициента мощности на микросхеме TOP202YA3.
Максимальное напряжение на входе — 265 В. Средняя частота преобразователя — 100 кГц. КПД корректора — 0,95.
Импульсный источник питания с микросхемой
Схема источника питания с микросхемой той же фирмы Power Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.
Преобразователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номиналах и элементах устройство позволяет подключать нагрузку, потребляющую 20 Вт при напряжении 24 В. КПД преобразователя приближается к 90%. Частота преобразования — 100 Гц. Устройство защищено от коротких замыканий в нагрузке.
Рис. 6. Схема импульсного источника питания 24В на микросхеме фирмы Power Integration.
Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в таблице 1.
Таблица 1. Характеристики микросхем серии TOP221Y — TOP227Y.
Тип микросхемы | Рmax, Вт | Ток срабатывания защиты, А | Сопротивление открытого транзистора, Ом |
TOP221Y | 7 | 0,25 | 31,2 |
T0P222Y | 15 | 0,5 | 15,6 |
T0P223Y | 30 | 1 | 7,8 |
T0P224Y | 45 | 1,5 | 5,2 |
T0P225Y | 60 | 2 | 3,9 |
T0P226Y | 75 | 2,5 | 3,1 |
T0P227Y | 90 | 3 | 2,6 |
Простой и высокоэффективный преобразователь напряжения
На основе одной из микросхем ТОР200/204/214 фирмы Power Integration может быть собран простой и высокоэффективный преобразователь напряжения (рис. 7) с выходной мощностью до 100 Вт.
Рис. 7. Схема импульсного Buck-Boost преобразователя на микросхеме ТОР200/204/214.
Преобразователь содержит сетевой фильтр (С1, L1, L2), мостовой выпрямитель (VD1 — VD4), собственно сам преобразователь U1, схему стабилизации выходного напряжения, выпрямители и выходной LC-фильтр.
Входной фильтр L1, L2 намотан в два провода на феррито-вом кольце М2000 (2×8 витков). Индуктивность полученной катушки — 18…40 мГн. Трансформатор Т1 выполнен на ферритовом сердечнике со стандартным каркасом ETD34 фирмы Siemens или Matsushita, хотя можно использовать и иные импортные сердечники типа ЕР, ЕС, EF или отечественные Ш-образные ферритовые сердечники М2000.
Обмотка I имеет 4×90 витков ПЭВ-2 0,15 мм; II — 3×6 того же провода; III — 2×21 витков ПЭВ-2 0,35 мм. Все обмотки наматывают виток к витку. Между слоями должна быть обеспечена надежная изоляция.
Источник: Шустов М.А. Практическая схемотехника. Преобразователи напряжения (2002).
Исправления: в схеме на рисунке 3 для катушки L2 изменена точка, указывающая начало намотки.
Высоковольтный блок питания из доступных компонентов
Источник такого рода может использоваться в качестве демонстрационного генератора для опытов с высоким напряжением. Высоковольтный блок питания был собран своими руками для преподавателя, а для чего он просил мне его собрать, сказать не могу, поскольку сам даже толком не понял.
Высоковольтный блок питания собран на мощных полевых ключах серии IRFZ44 (стандартный мультивибратор). Выходная мощность инвертора может доходить до 50 ватт, выходное напряжение не более 1200 Вольт. По сути, это универсальный генератор высокого напряжения, его можно использовать в качестве преобразователя для маломощных катушек Тесла, для ионизаторов воздуха и т.п. Высокая выходная мощность позволяет подключить к инвертору достаточно мощные газоразрядные лампы (неоновые трубки и т.п.).
Трансформатор — основная и самая важная часть в любом блоке питания. От качественной намотки импульсного трансформатора зависит вся дальнейшая работа устройства. В моем случае был использован трансформатор с Ш-образным сердечником от компьютерного БП с мощностью 200 Ватт. Трансформатор аккуратно нужно разобрать и снять все заводские обмотки, после чего нужно мотать новые.
Первичная обмотка мотается сдвоенным проводом 1 мм каждая жила, обмотка состоит из 7 витков.
К сожалению, процесс намотки трансформатора не удалось заснять, поскольку инвертор собирал в деревне, с одним только паяльником в руках.
После намотки первичной обмотки мотаем вторичную. Но прежде, обмотку нужно изолировать скотчем или же изоляционной лентой (личный опыт показывает, что скотч одно из лучших решений для этих целей). Укладываем 7-10 слоев изоляции (в случае скотча) и мотаем вторичную обмотку. Обмотка мотается проводом 0,1-0,15мм В ТОМ ЖЕ НАПРАВЛЕНИИ, что и первичная. Количество витков во вторичной обмотке — 600, через каждые 70-90 витков обмотку нужно изолировать, во избежание межвиточных пробоев.
После намотки трансформатора нужно сфазировать первичную обмотку. У нас имеется по 2 жилы первичной обмотки с каждой стороны трансформатора. Для начала снимаем лак с проводов, удобно использовать наждачную бумагу, бритву или монтажный нож. После этого, провода нужно залудить. Дальше мультиметром находим начало и конец каждой обмотки. В конце нам нужно начало одной обмотки подключить к концу второй или наоборот — конец одной к началу другой, разницы в принципе нет.
Дальше уже собираем схему. Ограничительные резисторы ключей не критичны, их номинал может отклоняться в широком пределе от 220 до 1000 Ом. Сами ключи необходимо установить на теплоотвод(ы), поскольку схема достаточно прожорливая и «кушает» немалый ток, вследствие чего, транзисторы перегреваются в ходе работы.
Высокое напряжение с трансформатора сначала выпрямляется диодным выпрямителем, затем напряжение подается на пленочный конденсатор. В моем случае был использован конденсатор отечественного типа 1000 Вольт 0,1мкФ, хотя номинал не критичен, главное, подобрать конденсаторы с допустимым напряжением 1000 Вольт и более, емкость на ваше усмотрение.
В качестве диодного выпрямителя я использовал диоды FR107, это импульсные диоды с обратным напряжением 1000 Вольт и с током до 1 Ампер. В общей сложности я использовал 3 таких диода, но желательно ставить высоковольтные диоды типа КЦ106 (с любой буквой) или, что еще лучше КЦ123Б. Такие диоды можно приобрести в магазине радиодеталей или же снять из старого телевизионного умножителя (отечественного).
Дроссель — значительным образом снижает тепловыделение на полевых ключах. Дроссель можно снять из нерабочего компьютерного блока питания или же мотать самому. Обмотка мотается проводом 0,8мм и состоит из 12-15 витков.
Из-за минимального количества используемых компонентов нет смысла травить печатную плату, поэтому в моем случае весь монтаж делался на макетной плате.
Диапазон питающих напряжений схемы от 3-х до 16 Вольт, оптимальный вариант 6-7,2 Вольт.
Самодельный лазер — Блок питания
Минздрав предупреждает:
Высокое напряжение опасно для Вашего здоровья !
Здесь приводятся схемы генераторов высоковольтного напряжения (выходное напряжение > 1 кВ), которые можно использовать для питания газоразрядных лазеров, а также для питания самодельной лампы-вспышки. Конечно, приведенные ниже схемы не исчерпывают все возможные варианты. Они были найдены в Интернете и подходят для самостоятельного повторения.
Генератор содержит гасящий конденсатор С1, диодный выпрямительный мост VD1 — VD4, тиристорный ключ VS1 и схему управления. При включении устройства заряжаются конденсаторы С2 и СЗ, тиристор VS1 пока закрыт и ток не проводит. Предельное напряжение на конденсаторе С2 ограничено стабилитроном VD5 величиной 9 В. В процессе зарядки конденсатора С2 через резистор R2 напряжение на потенциометре R3 и, соответственно, на управляющем переходе тиристора VS1 возрастает до определенного значения, после чего тиристор переключается в проводящее состояние, а конденсатор СЗ через тиристор VS1 разряжается через первичную (низковольтную) обмотку трансформатора Т1, генерируя высоковольтный импульс. После этого тиристор закрывается и процесс начинается заново. Потенциометр R3 устанавливает порог срабатывания тиристора VS1.
Частота повторения импульсов составляет 100 Гц. В качестве высоковольтного трансформатора Т1 может быть использована автомобильная катушка зажигания. В этом случае выходное напряжение устройства достигнет 30…35 кВ.
В описываемом ниже регулируемом высоковольтном преобразователе с выходным напряжением 8…16 кВ использован с небольшими переделками стандартный высоковольтный трансформатор, который применяется в блоке строчной развертки телевизоров.
Устройство состоит из задающего генератора с самовозбуждением, усилителя мощности и выпрямителя. Задающий генератор (транзистор V8) представляет собой блокинг-генератор (длительность импульса — около 200 мкс, частота повторения — 1 кГц). Генератор питается от параметрического стабилизатора R3, R4, V6. С выходной обмотки трансформатора Т2 сигнал поступает на усилитель мощности, собранный на транзисторе V1. В цепь коллектора транзистора включена обмотка II высоковольтного трансформатора Т1.
Высоковольтная обмотка I трансформатора питает выпрямитель — удвоитель напряжения. Резисторы R1 и R2 ограничивают импульс тока нагрузки при включении преобразователя, если она имеет емкостный характер. Выходное напряжение регулируют изменением напряжения питания. Трансформатор Т1 — TBC-110J1A. С него срезают (не разбирая магнитопровода) анодную обмотку, и на ее место наматывают новую, состоящую из 18 витков провода ПЭВ-2-0,44 с отводом от 14-го витка. Высоковольтную обмотку оставляют неизменной. Трансформатор Т2 намотан на кольце типоразмера К20х12х6 из феррита М2000НМ1. Коллекторную обмотку III и обмотку обратной связи II наматывают первыми. Они содержат по 25, а выходная обмотка 1—15 витков провода ПЭВ-2-0,44.
Применение в качестве V1 достаточно мощного транзистора дало возможность установить его непосредственно на плате без радиатора. Для устранения возможности появления коронирующих разрядов детали высоковольтного выпрямителя должны быть припаяны к плате очень аккуратно, без заусенцев и острых углов, и залиты с обеих сторон платы эпоксидной смолой или парафином слоем 2…3 мм. Резисторы R1 и R2 лучше всего использовать типа КЭВ. Если емкость нагрузки не превышает нескольких сотен пикофарад, эти резисторы могут быть исключены. Конденсатор С1 — ПОВ (или К15-4, КВИ). Зазор между платой и металлическими стенками футляра преобразователя должен быть не менее 20 мм. Налаживание преобразователя сводится к подбору резистора R6 в пределах 0…20 Ом по наилучшей устойчивости работы задающего генератора и подбору конденсатора С2 при максимальном напряжении на выходе устройства по минимуму тока.
В статье из журнала ,,РАДИО,, №7 1990 приводится схема импульсного блока питания самодельного компьютера, которую можно использовать как генератор высоковольтного напряжения, если в качестве выходного трансформатора использовать трансформатор от строчной развертки телевизора типа ТВС или же использовать самодельный трансформатор на П-образном ферритовом магнитопроводе. При подключении ко вторичной обмотке такого трансформатора высоковольтного умножителя типа УН-8,5/25 или же самодельного умножителя на выходе получим напряжение ~ 25 — 30 кВ.
Схема генератора приведена на рисунке ниже.
Первичная обмотка (I) выходного трансформатора Тр2 преобразователя включена в диагональ моста, образованного транзисторами VT1, VT2 и конденсаторами С9, С10. Базовые цепи этих транзисторов питаются от обмоток II и III трансформатора Т1, на первичную обмотку которого поступает ступенчатое напряжение с формирователя, собранного на микросхемах DD1, DD2.
Задающий генератор формирователя собран на инверторах DD1.1 и DD1.2 и вырабатывает колебания частотой, определяемой резистором R4 и конденсатором С6. Чем выше частота импульсов задающего генератора, тем выше мощность блока питания. Однако, следует помнить, что для выпрямления высокочастотных импульсов на вторичной обмотке выходного трансформатора потребуются быстродействующие диоды. Стандартные умножители напряжения типа УН — 9/27 рассчитаны на выпрямление импульсов с частотой ~ 15 кГц. Именно такой частоты выходных импульсов (можно чуть меньше) нужно добиваться, подбирая номиналы R4 и C6. Импульсы с выходов триггеров DD2.1 и DD2.2 поступают на входы элементов DD1.3 и DD1.4, в результате чего на их выходе формируются импульсные последовательности со скважностью 4. Их разность имеет вид импульсов чередующейся полярности с одинаковой длительностью и продолжительностью пауз между ними.
Через трансформатор Т1 это ступенчатое напряжение передается на базу транзисторов VT1,VT2 и поочередно открывает их. Наличие пауз между импульсами гарантирует полное закрывание каждого из них перед открыванием другого.
Микросхемы DD1,DD2 формирователя питаются напряжением 12 В от бестрансформаторного источника, состоящего из балластного конденсатора С3, выпрямительного моста VD2, стабилитрона VD3 и конденсаторов фильтра С7, С8. Выбор такого напряжения питания микросхем позволил использовать трансформатор Т1 с максимально возможным коэффициентом трансформации (10:1), что снизило токовую нагрузку на элементы DD1.3, DD1.4 и дало возможность обойтись без дополнительных транзисторных ключей в их выходной цепи.
Устройство собрано на печатной плате из двустороннего фольгированного стеклотекстолита толщиной 1,5 мм.
Транзисторы VT1, VT2 закреплены на пластине размерами 40х22 мм из двустороннего фольгированного стеклотекстолита толщиной 1,5 мм, припаянной перпендикулярно плате. Транзисторы КТ704А можно заменить на транзисторы КТ872А.
Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К10х6х5 из феррита 3000НМ. Его обмотка I содержит 180 витков провода ПЭЛШО 0,1, обмотки II и III- по 18 витков ПЭЛШО 0,27.
Магнитопровод трансформатора Т2 собран из двух ферритовых (М2000 НМ ) П-образных половинок. Конкретный размер П-образного магнитопровода для маломощного генератора высокого напряжения значения не имеет. Обмотка I состоит из 100 витков провода ПЭВ-2 0,27, обмотка II — из 1200 витков провода ПЭВ-2 диаметром 0,1 мм.
Обмотки I и II выходного трансформатора Т2 необходимо распределить по магнитопроводу как можно дальше друг от друга. Обычно их располагают так, как показано на рисунке ниже.
Если каркас обмотки I может быть выполнен из любого диэлектрика, то каркас высоковольтной обмотки II должен выдерживать высокое напряжение и не допускать пробоя между магнитопроводом и витками вторичной обмотки ( можно использовать обрезок сантехнической полипропиленовой трубки, внутренний диаметр которой равен диаметру магнитопровода). По торцам каркаса вторичной обмотки желательно сделать щитки из диэлектрической пластины, которые будут препятствовать высоковольтному пробою между витками вторичной обмотки и магнитопроводом.
Изложенный ниже высоковольтный блок питания мощностью 800 Вт может быть использован для питания газоразрядных лазеров с рабочим током разряда в пределах 10 – 100 мА.
От описанных ранее он отличается применением в преобразователе полевых транзисторов, что обеспечивает более высокий КПД и пониженный уровень высокочастотных помех.
Недостаток такого схемного решения — высокое напряжение на половинах первичной обмотки, что требует применения транзисторов с соответствующим допустимым напряжением. Правда, в отличие от мостового преобразователя, в данном случае достаточно двух транзисторов вместо четырех, что немного упрощает конструкцию и повышает КПД устройства. В предлагаемом ИБП применен двухтактный преобразователь с трансформатором, первичная обмотка которого имеет средний вывод. Он имеет высокий КПД, низкий уровень пульсации и слабо излучает помехи в окружающее пространство.
Входное напряжение ИБП — 180…240 В, выходное напряжение определяется числом витков во вторичной обмотке высоковольтного трансформатора, максимальная мощность нагрузки — 800 Вт, рабочая частота преобразователя — 90 кГц. Принципиальная схема ИБП изображена на рисунке ниже.
Как видно, это преобразователь с внешним возбуждением без стабилизации выходного напряжения. На входе устройства включен высокочастотный фильтр Cl, LI, С2, предотвращающий попадание помех в сеть. Пройдя его, сетевое напряжение выпрямляется диодным мостом VD1…VD4, пульсации сглаживаются конденсатором СЗ. Выпрямленное постоянное напряжение (около 310 В) используется для питания высокочастотного преобразователя.
Устройство управления преобразователем выполнено на микросхемах DD1…DD3. Питается оно от отдельного стабилизированного источника, состоящего из понижающего трансформатора Т1, выпрямителя VD5 и стабилизатора напряжения на транзисторах VT1, VT2 и стабилитроне VD6. На элементах DDl.l, DD1.2 собран задающий генератор, вырабатывающий импульсы с частотой следования около 360 кГц. Далее следует делитель частоты на 4, выполненный на триггерах микросхемы DD2. С помощью элементов DD3.1, DD3.2 создаются дополнительные паузы между импульсами. Паузой является не что иное, как уровень логического 0 на выходах этих элементов, появляющийся при наличии уровня логической 1 на выходах элемента DD1.2 и триггеров DD2.1 и DD2.2. Напряжение низкого уровня на выходе DD3.1 (DD3.2) блокирует DD1.3 (DD1.4) в «закрытом» состоянии (на выходе — уровень логической 1). Длительность паузы равна 1/3 от длительности импульса напряжений на выводах 1 DD3.1 и 13 DD3.2, чего вполне достаточно для закрывания ключевого транзистора. С выходов элементов DD1.3 и DD1.4 окончательно сформированные импульсы поступают на транзисторные ключи (VT5, VT6), которые через резисторы R10, R11 управляют затворами мощных полевых транзисторов VT9, VT10 .
Импульсы с прямого и инверсного выходов триггера DD2.2 поступают на входы устройства, выполненного на транзисторах VT3, VT4, VT7, VT8. Открываясь поочередно, VT3 и VT7, VT4 и VT8 создают условия для быстрой разрядки входных емкостей ключевых транзисторов VT9, VT10, т.е. их быстрого закрывания. В цепи затворов транзисторов VT9 и VT10 включены резисторы относительно большого сопротивления R10 и R11. Вместе с емкостью затворов они образуют фильтры нижних частот, уменьшающие уровень гармоник при открывании ключей.
С этой же целью введены элементы VD9…VD12, R16, R17, С12, С13. В стоковые цепи транзисторов VT9, VT10 включена первичная обмотка трансформатора Т2. Выпрямитель выходного высоковольтного напряжения выполнен на цепочке из высоковольтных диодов VD и конденсатора С, рабочее напряжение которого должно быть выше напряжения на вторичной обмотке высоковольтного трансформатора.
В устройстве применены конденсаторы К73-17 (С1, С2, С4), К50- 17 (СЗ), МБМ (С12, С13), К73-16 (С14…С21, С24, С25), К50-35 (С5…С7), КМ (остальные).
Вместо указанных на схеме допустимо применение микросхем серий К176, К564. Диоды Д246 (VD1…VD4) заменимы на любые другие, рассчитанные на прямой ток не менее 5 А и обратное напряжение не менее 350 В (КД202К, КД202М, КД202Р, КД206Б, Д247Б), или диодный выпрямительный мост с такими же параметрами, диоды КД2997А (VD13…VD20) — на КД2997Б, КД2999Б, стабилитрон Д810 (VD6) — на Д814В.
В качестве VT1 можно использовать любые транзисторы серий КТ817, КТ819, в качестве VT2…VT4 и VT5, VT6 — соответственно, любые из серий КТ315, КТ503, КТ3102 и КТ361, КТ502, КТ3107, на месте VT9, VT10 — КП707В1, КП707Е1. Транзисторы КТ3102Ж (VT7, VT8) заменять не рекомендуется.
Трансформатор Т1 — ТС-10-1 или любой другой с напряжением вторичной обмотки 11…13 В при токе нагрузки не менее 150 мА.
Катушку L1 сетевого фильтра наматывают на ферритовом (М2000НМ1) кольце типоразмера К31х18,5х7 проводом ПЭВ-1-1.0 (2×25 витков).
Трансформатор Т2 изготовлен из двух П-образных половинок феррита той же марки. Обмотка I содержит 2×42 витка провода ПЭВ-2-1,0 (наматывают в два провода), число витков вторичной обмотки определяется требуемым напряжением питания лазера и может изменяться в широких пределах. Толщина провода вторичной обмотки выбирается, исходя из рабочего тока лазера.
Транзисторы VT9, VT10 устанавливают на теплоотводах с вентиляторами, применяемых для охлаждения микропроцессоров Pentium (подойдут аналогичные узлы и от процессоров 486).
Конкретные параметры диодов VD высоковольтной выпрямительной цепочки зависят от рабочего напряжения и тока газоразрядной трубки лазера. Кроме того, следует помнить, что для выпрямления высокочастотного импульсного напряжения требуются быстродействующие диоды типа диоды Шоттки.
При монтаже ИБП следует стремиться к тому, чтобы все соединения были возможно короче, а в силовой части использовать провод возможно большего сечения. Поскольку ИБП не оснащен устройством защиты от короткого замыкания и перегрузки, в цепи питания необходимо включить предохранители на 10 А. В налаживании описанный ИБП практически не нуждается. Важно только правильно сфазировать половины первичной обмотки трансформатора Т2. При исправных деталях и отсутствии ошибок в монтаже блок начинает работать сразу после включения в сеть. Если необходимо, частоту преобразователя подстраивают подбором резистора R3.
Ниже приведена схема высоковольтного блока питания, в котором имеется возможность регулировки выходного напряжения. Задающий генератор импульсов собран на микросхеме IR 2153. Частота импульсов регулируется резистором R6.
Силовая часть выполнена на шести MOSFET-транзисторах типа IRF 840. Для маломощного блока питания вполне хватит и двух транзисторов IRF 840.
Выходное напряжение регулируется резистором R14, а пределы регулировки определяются резистором R16.
В качестве высоковольтного трансформатора используется стандартный трансформатор от телевизора типа ТВС-110 ЛА.
Ниже приведена схема компактного генератора высоковольтного напряжения на микросхеме IR 2153 и двух силовых MOSFET-транзисторах типа IRF 840. По этой схеме я собрал блок питания для своих самодельных лазеров на воздухе .
В качестве высоковольтного трансформатора можно использовать стандартный трансформатор от телевизора типа ТВС или же самодельный.
Частота импульсов задающего генератора микросхемы IR 2153 определяется номиналами деталей R3 и С5. Подбирая эти детали, следует добиться частоты импульсов на вторичной обмотке трансформатора Т1 в пределах 10 – 15 кГц. Не нужно увеличивать частоту импульсов, ибо на частотах > 18 кГц стандартные умножители напряжения типа УН – 9/27 перестают работать, и выходное напряжение повышаться не будет. В зависимости от числа витков во вторичной обмотке трансформатора Т1 выходное напряжение может достигать ~ 30 кВ.
Доработка высоковольтного источника питания — Меандр — занимательная электроника
В статье описывается усовершенствованный источник питания для «Люстры Чижевского».
Чижевский обнаружил биологическое действие дезионизированного и ионизированного воздуха на нормальное функционирование обменных процессов в биосистемах. Аэроионы отрицательной полярности — «витамины» вдыхаемого нами эликсира жизни. К сожалению, их содержание в окружающей нас атмосфере и дома, и на работе значительно ниже нормы. Пополнить количество аэроионов помогают, так называемые, «люстры Чижевского» — генераторы отрицательных ионов. Для работы «люстры Чижевского» необходим высоковольтный источник питания.
В основу источника питания положено устройство, описанное в [1]. Недостатком этого устройства является наличие двух мощных ограничительных резисторов, которые выделяют большое количество тепла, а также включение «лишнего» диода в цепи разряда последовательного колебательного контура, состоящего из конденсатора С1 и первичной обмотки трансформатора Т1, что приводит к ограничению тока разряда через первичную обмотку. Недостатком устройства [2] является наличие сквозного тока через тиристор и выпрямительный диод, поэтому и приходится ставить ограничительное сопротивление. Это происходит из-за плохой работы тиристора на реактивную нагрузку при отсутствии временного зазора между отрицательной и положительной полуволной сетевого напряжения.
Принципиальная схема источника питания для «Люстры Чижевского» показана на рис.1. Устройство работает следующим образом.
Рис. 1
Если действует положительная полуволна сетевого напряжения, то происходит заряд конденсатора С3, через диод VD5 и первичную обмотку трансформатора Т1, а также заряд конденсатора С2 через диод VD1 до напряжения, ограниченного стабилитроном VD2. Кроме того, через диод VD3 (падение напряжения 0,7 В) проходит ток, ограниченный резисторами R4, R5. При этом светодиод оптрона DA1 не светит. Транзистор оптрона закрыт, поэтому на выводах 2, 6 ИМС DA2 присутствует высокий уровень. Следовательно, на управляющем электроде тиристора VS1 будет низкий уровень. Тиристор VS1 закрыт.
Если действует отрицательная полуволна сетевого напряжения, то светит светодиод оптрона DA1 (падение напряжения на нем 1,6 В) и открыт транзистор оптрона, на выводах 2, 6 инвертирующего триггера DA2 присутствует низкий уровень. Поэтому на управляющем электроде тиристора VS1 будет высокий уровень. Тиристор VS1 открыт.
В итоге мы имеем временной зазор между напряжением +(0,7 В +6,2 В) положительной полуволны и напряжением -(1,6 В +6,2 В) отрицательной полуволны сетевого напряжения (6,2 В напряжение стабилизации стабилитрона VD4). Этого времени достаточно для устранения переходных процессов в схеме.
Использование интегрального таймера DA2 в качестве инвертирующего триггера Шмитта позволяет также улучшить работу устройства. Как видно из схемы, управляющий электрод тиристора подключен к выводу 7 DA2. Это позволяет подключать его напрямую к общему проводу при низком выходном сигнале (уровень 0), что улучшает помехоустойчивость устройства. Да и сам триггер DA2 имеет гистерезис входных напряжений в 1/3 и 2/3 напряжения питания.
Когда действует отрицательная полуволна сетевого напряжения, то стабилитрон VD2 открыт, и прямое падение напряжения на нем составляет 0,7 В. Диод VD1 препятствует при этом разряду конденсатора С2 через стабилитрон VD2. Открытие тиристора VS1 приводит к разряду конденсатора С3 через первичную обмотку трансформатора Т1.
Использование диода VD5 позволило создать колебательный режим разрядки конденсатора СЗ (при этом на вход высоковольтного выпрямителя поступает пачка импульсов). В результате этого стало возможным отказаться от ограничительного резистора и уменьшить величину емкости конденсатора С3. В этот момент на вторичной обмотке трансформатора возникают затухающие колебания напряжения, поступающие на умножитель напряжения, собранный на диодах VD7-VD12 и конденсаторах С4-С9.
Постоянное напряжение с выхода умножителя через токоограничивающие резисторы R9, R10 подают на «люстру». В качестве умножителя можно использовать доработанный серийный умножитель напряжения УН9/27-1,3.
В источнике питания применены: конденсаторы С1 типа К73-17, С3 типа К78-2. Конденсаторы С4-С9 типа К73-13 или КВИ-3. T1 — трансформатор строчной развертки от черно-белого телевизора типа TBC-110Л6. Хорошие результаты получаются при использовании строчного трансформатора ТВС-110ПЦ15 от цветного кинескопного телевизора.
При правильном монтаже источник питания наладки не требует. Изменять постоянное напряжение на его выходе можно подбором конденсатора С3. При налаживании и эксплуатации должны соблюдаться меры электробезопасности.
Литература
- Иванов Б. «Люстра Чижевского» — своими руками // Радио. — 1997. — №1. — С.36-37.
- Калашник В. Источник питания для «Люстры Чижевского» // Радиомир. — 2008. — №12. — С.7.
Автор: Вячеслав Калашник, г. Воронеж