ИНТЕГРАЛЬНАЯ СХЕМА • Большая российская энциклопедия
ИНТЕГРА́ЛЬНАЯ СХЕ́МА (ИС, интегральная микросхема, микросхема), функционально законченное микроэлектронное изделие, представляющее собой совокупность электрически связанных между собой элементов (транзисторов и др.), сформированных в полупроводниковой монокристаллич. пластине. ИС являются элементной базой всех совр. радиоэлектронных устройств, устройств вычислит. техники, информационных и телекоммуникационных систем.
Историческая справка
ИС изобретена в 1958 Дж. Килби (Нобелевская пр., 2000), который, не разделяя германиевую монокристаллич. пластину на отд. сформированные в ней транзисторы, соединил их между собой тончайшими проволоками, так что полученное устройство стало законченной радиоэлектронной схемой. Спустя полгода амер. физик Р. Нойс реализовал т. н. планарную кремниевую ИС, в которой при каждой области биполярных транзисторов (эмиттере, базе и коллекторе) на поверхности кремниевой пластины создавались металлизиров. участки (т. н. контактные площадки), а соединения между ними осуществлялись тонкоплёночными проводниками. В 1959 в США начался пром. выпуск кремниевых ИС; массовое произ-во ИС в СССР организовано в сер. 1960-х гг. в г. Зеленоград под рук. К. А. Валиева.
Технология ИС
Структура интегральной схемы: 1 – пассивирующий (защитный) слой; 2 – верхний слой проводника; 3 – слой диэлектрика; 4 – межуровневые соединения; 5 – контактная площадка; …
Структура полупроводниковой ИС показана на рисунке. Транзисторы и др. элементы формируются в очень тонком (до нескольких мкм) приповерхностном слое кремниевой пластины; сверху создаётся многоуровневая система межэлементных соединений. С увеличением числа элементов ИС количество уровней растёт и может достигать 10 и более. Межэлементные соединения должны обладать низким электрич. сопротивлением. Этому требованию удовлетворяет, напр., медь. Между слоями проводников размещаются изолирующие (диэлектрич.) слои ($\ce{SiO_2}$ и др.). На одной ПП пластине одновременно формируется до нескольких сотен ИС, после чего пластину разделяют на отд. кристаллы (чипы).
Технологич. цикл изготовления ИС включает неск. сотен операций, важнейшей из которых является фотолитография (ФЛ). Транзистор содержит десятки деталей, контуры которых формируются в результате ФЛ, определяющей также конфигурацию межсоединений в каждом слое и положение проводящих областей (контактов) между слоями. В технологич. цикле ФЛ повторяется неск. десятков раз. За каждой операцией ФЛ следуют операции изготовления деталей транзисторов, напр. осаждение диэлектрич., ПП и металлич. тонких плёнок, травление, легирование методом имплантации ионов в кремний и др. Фотолитография определяет минимальный размер (МР) отд. деталей. Гл. инструментом ФЛ являются оптич. проекционные степперы-сканеры, с помощью которых выполняется пошаговое (от чипа к чипу) экспонирование изображения (освещение чипа, на поверхность которого нанесён фоточувствит. слой – фоторезист, через маску, называемую фотошаблоном) с уменьшением (4:1) размеров изображения по отношению к размерам маски и со сканированием светового пятна в пределах одного чипа. МР прямо пропорционален длине волны источника излучения. Первоначально в установках ФЛ использовались $g$- и $i$-линии (436 и 365 нм соответственно) спектра излучения ртутной лампы. На смену ртутной лампе пришли эксимерные лазеры на молекулах $\ce{KrF}$ (248 нм) и $\ce{ArF}$ (193 нм). Совершенствование оптич. системы, применение фоторезистов с высокими контрастом и чувствительностью, а также спец. техники высокого разрешения при проектировании фотошаблонов и степперов-сканеров с источником света длиной волны 193 нм позволяют достичь МР, равных 30 нм и менее, на больших чипах (площадью 1–4 см
Направления развития
ИС разделяют на цифровые и аналоговые. Осн. долю цифровых (логических) микросхем составляют ИС процессоров и ИС памяти, которые могут объединяться на одном кристалле (чипе), образуя «систему-на-кристалле». Сложность ИС характеризуется степенью интеграции, определяемой числом транзисторов на чипе. До 1970 степень интеграции цифровых ИС увеличивалась вдвое каждые 12 мес. Эта закономерность (на неё впервые обратил внимание амер. учёный Г. Мур в 1965) получила название закона Мура. Позднее Мур уточнил свой закон: удвоение сложности схем памяти происходит через каждые 18 мес, а процессорных схем – через 24 мес. По мере увеличения степени интеграции ИС вводились новые термины: большая ИС (БИС, с числом транзисторов до 10 тыс.), сверхбольшая (СБИС – до 1 млн.), ультрабольшая ИС (УБИС – до 1 млрд.) и гигантская БИС (ГБИС – более 1 млрд.).
Различают цифровые ИС на биполярных (Би) и на МОП (металл – оксид – полупроводник) транзисторах, в т. ч. в конфигурации КМОП (комплементарные МОП, т. е. взаимодополняющие $p$-МОП и $n$-МОП транзисторы, включённые последовательно в цепи «источник питания – точка с нулевым потенциалом»), а также БиКМОП (на биполярных транзисторах и КМОП-транзисторах в одном чипе).
Увеличение степени интеграции достигается уменьшением размеров транзисторов и увеличением размеров чипа; при этом уменьшается время переключения логич. элемента. По мере уменьшения размеров уменьшались потребляемая мощность и энергия (произведение мощности на время переключения), затраченная на каждую операцию переключения. К 2005 быстродействие ИС улучшилось на 4 порядка и достигло долей наносекунды; число транзисторов на одном чипе составило до 100 млн. штук.
Осн. долю (до 90%) в мировом произ-ве с 1980 составляют цифровые КМОП ИС. Преимущество таких схем заключается в том, что в любом из двух статич. состояний («0» или «1») один из транзисторов закрыт и ток в цепи определяется током транзистора в выключенном состоянии $I_\text{выкл}$. Это означает, что, если $I_\text{выкл}$ пренебрежимо мал, ток от источника питания потребляется только в режиме переключения, а потребляемая мощность пропорциональна частоте переключения и может быть оценена соотношением $P_Σ≈C_Σ·N·f·U^2$, где $C_Σ$ – суммарная ёмкость нагрузки на выходе логич. элемента, $N$ – число логич. элементов на чипе, $f$ – частота переключения, $U$ – напряжение питания. Практически вся потребляемая мощность выделяется в виде джоулева тепла, которое должно быть отведено от кристалла. При этом к мощности, потребляемой в режиме переключения, добавляется мощность, потребляемая в статич. режиме (определяется токами $I_\text{выкл}$ и токами утечки). С уменьшением размеров транзисторов статич. мощность может стать сравнимой с динамической и достигать по порядку величины 1 кВт на 1 см
При длинах канала МОП-транзисторов порядка 10 нм на характеристики транзистора начинают влиять квантовые эффекты, такие как продольное квантование (электрон распространяется в канале как волна де Бройля) и поперечное квантование (в силу узости канала), прямое туннелирование электронов через канал. Последний эффект ограничивает возможности применения КМОП-элементов в ИС, т. к. вносит большой вклад в суммарный ток утечки. Это становится существенным при длине канала 5 нм. На смену КМОП ИС придут квантовые приборы, молекулярные электронные приборы и др.
Аналоговые ИС составляют широкий класс схем, выполняющих функции усилителей, генераторов, аттенюаторов, цифроаналоговых и аналого-цифровых преобразователей, компараторов, фазовращателей и т. д., в т. ч. низкочастотные (НЧ), высокочастотные (ВЧ) и сверхвысокочастотные (СВЧ) ИС. СВЧ ИС – схемы относительно небольшой степени интеграции, которые могут включать не только транзисторы, но и плёночные катушки индуктивности, конденсаторы, резисторы. Для создания СВЧ ИС используется не только ставшая традиционной кремниевая технология, но и технология гетеропереходных ИС на твёрдых растворах $\ce{Si – Ge}$, соединениях $\ce{A^{III}B^{V}}$ (напр., арсениде и нитриде галлия, фосфиде индия) и др. Это позволяет достичь рабочих частот 10–20 ГГц для $\ce{Si – Ge}$ и 10–50 ГГц и выше для СВЧ ИС на соединениях $\ce{A^{III}B^{V}}$. Аналоговые ИС часто используют вместе с сенсорными и микромеханическими устройствами, биочипами и др., которые обеспечивают взаимодействие микроэлектронных устройств с человеком и окружающей средой, и могут быть заключены с ними в один корпус. Такие конструкции называются многокристальными или «системами-в-корпусе».
В будущем развитие ИС приведёт к слиянию двух направлений и созданию микроэлектронных устройств большой сложности, содержащих мощные вычислит. устройства, системы контроля окружающей среды и средства общения с человеком.
Интегральная схема Википедия
Запрос «БИС» перенаправляется сюда; см. также другие значения.Интегра́льная (микро)схе́ма (ИС, ИМС, IC (англ.)), микросхе́ма, м/сх, чип (англ. chip «тонкая пластинка»: первоначально термин относился к пластинке кристалла микросхемы) — микроэлектронное устройство — электронная схема произвольной сложности (кристалл), изготовленная на полупроводниковой подложке (пластине или плёнке) и помещённая в неразборный корпус или без такового, в случае вхождения в состав микросборки[1].
Бо́льшая часть микросхем изготавливается в корпусах для поверхностного монтажа.
Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) — ИС, заключённую в корпус. В то же время выражение чип-компоненты означает «компоненты для поверхностного монтажа» (в отличие от компонентов для пайки в отверстия на плате).
Содержание
- 1 История
- 2 Уровни проектирования
- 3 Классификация
- 3.1 Степень интеграции
- 3.2 Технология изготовления
- 3.3 Вид обрабатываемого сигнала
- 4 Технологии изготовления
- 4.1 Типы логики
- 4.2 Технологический процесс
- 4.3 Контроль качества
- 5 Назначение
- 5.1 Аналоговые схемы
- 5.1.1 Производство
- 5.2 Цифровые схемы
- 5.3 Аналого-цифровые схемы
- 5.1 Аналоговые схемы
- 6 Серии микросхем
- 6.1 Корпуса
- 6.2 Специфические названия
- 7 Мировой рынок
- 8 Правовая защита
- 9 См. также
- 10 Примечания
- 11 Литература
История[ | ]
Подробнее по этой теме см. Изобретение интегральной схемы.7 мая 1952 года британский радиотехник Джеффри Даммер (англ. Geoffrey Dummer) впервые выдвинул идею объединения множества стандартных электронных компонентов в монолитном кристалле полупроводника. Осуществление этих предложений в те годы не могло состояться из-за недостаточного развития технологий.
В конце 1958 года и в первой половине 1959 года в полупроводников
Интегральная схема
- Дата
- Категория: it
Что такое интегральная схема?
В ранних электрических компьютерах компонентами схемы, выполнявшими операции, были вакуумные трубки. Эти трубки, напоминавшие электрические лампочки, потребляли много электроэнергии и вьщеляли много тепла. Все изменилось в 1947 году с изобретением транзистора. В этом маленьком устройстве использовался полупроводниковый материал, названный так за способность как проводить, так и задерживать электрический ток, в зависимости от того, есть ли электрический ток в самом полупроводнике. Эта новая технология позволила строить все виды электрических переключателей на кремниевых микросхемах. Схемы на транзисторах занимали меньше места и потребляли меньше энергии. Для более мощных компьютеров были созданы интегральные схемы, или ИС.
В наше время транзисторы стали микроскопически малы, и вся цепь ИС помещается на кусочке полупроводника площадью 1 дюйм квадратный. Маленькие блоки, рядами смонтированные на печатной плате компьютера, и есть интегральные схемы, заключенные в пластиковые корпуса. Каждая микросхема содержит набор простейших элементов схемы, или устройств. Большую их часть занимают транзисторы. ИС может также включать диоды, которые позволяют электрическому току идти только в одном направлении, и резисторы, которые блокируют ток.
Неподвижные части. Во внутренних отделах компьютера ряды интегральных схем в защитных корпусах, как показано внизу, смонтированы на печатной плате компьютера (зеленый цвет). Каждая бледно-зеленая линия обозначает дорожку, по которой идет электрический ток; все вместе они образуют «магистрали», по которым от схемы к схеме проводится электрический ток.
Крошечные связные. По краю микросхемы сильно намагниченные проводки, напоминающие человеческие волоски, посылают электрические сигналы от электрической цепи (им. сверху). Эти золотые или алюминиевые проводки практически не подвержены коррозии и хорошо проводят электричество.
Анатомия транзистора
Транзисторы — основные микроскопические элементы электронной схемы — это переключатели, которые включают и выключают электрический ток. Маленькие металлические дорожки (серый цвет) проводят ток (красный и зеленый цвета) из этих устройств. Организованные в комбинацию, называемую логическими «воротами» (логической схемой), транзисторы реагируют на электрические импульсы разнообразными предустановленными способами, позволяя компьютеру выполнять широкий спектр задач.
Логическая схема. В случае если поступающий электрический ток (красные стрелки) активизирует базу каждого транзистора, питающий ток (зеленые стрелки) устремится к проводку вывода.
Как устроены интегральные схемы
- Дата
- Категория: it
Компьютеры строятся на основе двух типов интегральных схем: логической и ЗУ (запоминающее устройство). Логические микросхемы используются в арифметическом логическом модуле (АЛМ), где производятся вычисления, в то время как кристаллы ЗУ хранят данные и программы. Существует множество разновидностей логических микросхем, простых и сложных; микропроцессорная схема (нижняя правая иллюстрация на стр. 23) выполняет роль центральной нервной системы ПК и является ярким примером сложной логической схемы. Иногда функции логических схем и ЗУ комбинируются в одной схеме.
Микропроцессор служит центральным процессорным устройством (ЦПУ) компьютера, включающим контроллер и оперативную логическую схему. Другие, примыкающие к процессору схемы включают: генератор синхроимпульсов, который производит сигналы, обеспечивающие пошаговую деятельность компьютера; контроллер ввода/вывода, который координирует ввод и вывод данных; различные сопроцессоры — процессоры, специализированные для одного вида задач и выполняющие их с огромной скоростью. Дополнительные контроллерные схемы оперируют со связующими схемами, магнитными дисками и графическими терминалами.
Кристаллы ЗУ подразделяются на постоянные и оперативные запоминающие устройства (ПЗУ и ОЗУ). Схемы ПЗУ сохраняют данные, даже если машина выключена, они используются для хранения завершенных программ, которые не нуждаются в изменениях. Большинство схем ОЗУ не являются постоянными, то есть их содержимое стирается, если компьютер выключен или произошел сбой в напряжении. Компьютер может считывать с них информацию и записывать ее — вносить в них новые данные.
Устройство интегральной схемы
величенная в 2500 раз структура МОП — металл-оксид-полупроводник для отрицательного канала -является распространенным типом ИС транзистора. Обычно этот переключатель закрыт; ток (голубая стрелка) не может пройти от источника к стоку. Но напряжение (красная стрелка), примыкающее к логической схеме, притягивает электроны (точечки), образуя канал, который пропускает электрический ток.
Схемы ИС в корпусах
Прежде чем ИС будет смонтирована на печатной плате, она должна быть заключена в защитный футляр, или корпус, и снабжена внешними связующими штырями, или выводами. На иллюстрации справа представлено несколько разновидностей корпусов, получивших свое название по форме и организации выводов корпуса. DIP — переключатель, или двухрядный корпус, имеет два ряда выводов. PLP — это уплощенный корпус, с выводами по двум сторонам. LCC — керамический кристаллодержатель без выводов. ZIP — плоский корпус со штырьковыми выводами, расположенными зигзагообразно. QFP — это плоский корпус с четырьмя рядами выводов по бокам. SIP — корпус с однорядным расположением выводов.
Монолитный микропроцессор
Схема на изображении внизу включает микропроцессор, а также схемы ПЗУ, ОЗУ и контроллеры (регуляторы ввода/вывода). Эти компьютерные схемы широко применяются для управления машинным оборудованием и многими бытовыми приборами.
Ряды схем. Печатная плата на илл. слева, объединительная плата ПК, содержит несколько видов ИС, включая микропроцессор, контроллерные схемы и ЗУ.
Как устроены интегральные схемы
- Дата
- Категория: it
Компьютеры строятся на основе двух типов интегральных схем: логической и ЗУ (запоминающее устройство). Логические микросхемы используются в арифметическом логическом модуле (АЛМ), где производятся вычисления, в то время как кристаллы ЗУ хранят данные и программы. Существует множество разновидностей логических микросхем, простых и сложных; микропроцессорная схема (нижняя правая иллюстрация на стр. 23) выполняет роль центральной нервной системы ПК и является ярким примером сложной логической схемы. Иногда функции логических схем и ЗУ комбинируются в одной схеме.
Микропроцессор служит центральным процессорным устройством (ЦПУ) компьютера, включающим контроллер и оперативную логическую схему. Другие, примыкающие к процессору схемы включают: генератор синхроимпульсов, который производит сигналы, обеспечивающие пошаговую деятельность компьютера; контроллер ввода/вывода, который координирует ввод и вывод данных; различные сопроцессоры — процессоры, специализированные для одного вида задач и выполняющие их с огромной скоростью. Дополнительные контроллерные схемы оперируют со связующими схемами, магнитными дисками и графическими терминалами.
Кристаллы ЗУ подразделяются на постоянные и оперативные запоминающие устройства (ПЗУ и ОЗУ). Схемы ПЗУ сохраняют данные, даже если машина выключена, они используются для хранения завершенных программ, которые не нуждаются в изменениях. Большинство схем ОЗУ не являются постоянными, то есть их содержимое стирается, если компьютер выключен или произошел сбой в напряжении. Компьютер может считывать с них информацию и записывать ее — вносить в них новые данные.
Устройство интегральной схемы
величенная в 2500 раз структура МОП — металл-оксид-полупроводник для отрицательного канала -является распространенным типом ИС транзистора. Обычно этот переключатель закрыт; ток (голубая стрелка) не может пройти от источника к стоку. Но напряжение (красная стрелка), примыкающее к логической схеме, притягивает электроны (точечки), образуя канал, который пропускает электрический ток.
Схемы ИС в корпусах
Прежде чем ИС будет смонтирована на печатной плате, она должна быть заключена в защитный футляр, или корпус, и снабжена внешними связующими штырями, или выводами. На иллюстрации справа представлено несколько разновидностей корпусов, получивших свое название по форме и организации выводов корпуса. DIP — переключатель, или двухрядный корпус, имеет два ряда выводов. PLP — это уплощенный корпус, с выводами по двум сторонам. LCC — керамический кристаллодержатель без выводов. ZIP — плоский корпус со штырьковыми выводами, расположенными зигзагообразно. QFP — это плоский корпус с четырьмя рядами выводов по бокам. SIP — корпус с однорядным расположением выводов.
Монолитный микропроцессор
Схема на изображении внизу включает микропроцессор, а также схемы ПЗУ, ОЗУ и контроллеры (регуляторы ввода/вывода). Эти компьютерные схемы широко применяются для управления машинным оборудованием и многими бытовыми приборами.
Ряды схем. Печатная плата на илл. слева, объединительная плата ПК, содержит несколько видов ИС, включая микропроцессор, контроллерные схемы и ЗУ.
Обсуждение:Интегральная схема — Википедия
Статья объединена со статьями Микросхема и Интегральная микросхема. На них, а также на статьи Чип и Микрочип установлён редирект. —Alex Spade 14:00, 9 сентября 2006 (UTC)
Лучше все объединить в статье Микросхема. Это слово более известно большинству людей и более применимо. А Интегральная (микро)схема, чип и другие — это синонимы слова микросхема. Надо это объединить с тем, что я пишу. —Navchel 08:34, 10 сентября 2006 (UTC)
- Категорически Против. Аргумент — это слово более известно весьма слабый. Для этого и служат редиректы. Более того, смотрим интегральная схема по энциклопедиям. Интегральная схема присутствует чаще именно в названиях, а микросхема уже в тексте.—Alex Spade 09:17, 10 сентября 2006 (UTC)
- За Всё же эти понятия означают одно и тоже. Gordon01 10:16, 23 октября 2006 (UTC)
- Уже объединено и редиректы поставлены. —Alex Spade 11:11, 23 октября 2006 (UTC)
- Более того я не согласен, когда вы пишите для некоторых логик устаревшая — как это оценить? Да они сейчас меньше используются, но используются. И зачем в главном тексте статьи так расписывать про СССР, почему бы не уделить больше внимание общей концепции или современному положению разработки ИС в России. А СССР выделить в подраздел, история ИС (микросхем) в СССР, иначе получается статья о какой-то рухляди… 🙁
- PS В настоящий момент я не являюсь разработчиком ИС, однако в нашем универе (точнее факультете) уделяли достаточно много внимания разработке ИС.—Alex Spade 09:26, 10 сентября 2006 (UTC)
- Зайдите хотя бы на сйты российских производителей Микрон или Ангстерм — посмотрите, что они производят.—Alex Spade 09:37, 10 сентября 2006 (UTC)
- Я постарался провести некторую терминологическую разницу, и подготовил начало статьи под любой вариант переезда (хотя я по прежнему Против)—Alex Spade 10:55, 10 сентября 2006 (UTC)
- Кроме того, я считаю что подраздел Интегральная схема#Серии микросхем соверешенно не нужен, ибо бесконечен. А вот описать корпуса по классификации (не по номерам, которых тоже бесконечно много) было бы интересно.—Alex Spade 10:55, 10 сентября 2006 (UTC)
- Насчёт МИС, СИС, БИС, СБИС, УБИС и ГБИС — не только в СССР так классифицировали. Аналогичные термины есть и английском варианте en:Integrated circuit—Alex Spade 11:07, 10 сентября 2006 (UTC)
- Я убрал указание «устаревшая» с ТТЛ, как не соот. действительности. Да ТТЛШ является её усовершенствовамием, но изготовление диодов Шотки на кристалле несколько более сложное и дорогое, поэтому ТТЛ по прежнему широко используется.—Alex Spade 11:33, 10 сентября 2006 (UTC)
- Заблуждение о дороговизне изготовления диодов Шотки в планарной технологии
Вы, уважаемый Alex Spade, здесь заблуждаетесь, диоды Шотки, шунтирующие коллекторно-базовый переход, для исключения насыщения базы неосновными носителями, получаются «бесплатно», осаждением пленки алюминия на вскрытую от диоксида кремния поверхность монокристалла кремния, где выходит на неё коллекторно-базовый n-p переход.
Кстати, ТТЛ-чипы уже давно вытеснены ТТЛШ-микросхемами, (приблизительно, с 1989 г.). Д.Ильин 17:56, 15 августа 2012 (UTC)
Не категорически, но попытаюсь ругаться:
- что значит редирект — наверно это где-то написано, но я, к сожалению, этого не видел и не знаю. Подскажите пожалуйста.
- малогабаритный (микроминиатюрный) микроэлектронный прибор переведем на русский:
маленького размера маленький маленький маленький электронный прибор — слишком масло масленное получается. А вот слово прибор означает некое устройство, обычно довольно сложное, для измерения чего-нибудь. А если прибор электронный, то в нем и микросхем куча будет. Называть микросхему прибором совершенно не правильно. Микросхема — это действительно схема, которую засунули в маленький корпус.
- содержащий множество — да не надо говорить множество, в пентимуме их милионы, а в простых микросхемах десятки, но все равно и то и другое микросхема.
- радиоэлементов — это опять сложное слово, которым могут и микросхему назвать.
- одном единном неразборном корпусе — опять масло маслянное.
Вы слишком усложняете понятие микросхема, используете непонятные слова, в объяснении которых наверняка будет использовано слово микросхема. Хотя я понимаю, что это вы, может быть, и не сами придумали. Привожу пример из справочника по интегральным микросхемам в котором ссылаются на ГОСТ 17021-75 «Микросхемы интегральные. Термины и определения».
- Интегральная микросхема (ИС) — микроэлектронное изделие, выполняющее определенную функцию преобразования и обработки сигнала и имеющее высокую плотность упаковки электрически соединенных элементов (или элементов и компонентов) и (или) кристаллов, которое с точки зрения требований к испытаниям, приемке, поставке и эксплуатации рассматривается как единое целое.
На мой взгляд, это ГОСТовское определение полная чепуха!
Еще один образец терминологии из «Справочник радиолюбителя-конструктора»:
Микросхема (МС) — микроэлектронное изделие, выполняющее определенную функцию преобразования и обработки сигнала и имеющее высокую плотность упаковки электрически соединенных элементов, компонентов, кристалов.
Чем отличается микросхема от электрической схемы? И та и другая выполняют какую-то функцию. Плотность упаковки понятие абстрактное. Электрическая схема тоже имеет высокую плотность. Единственная существенная разница: микросхема — неразборное целое в стандартном корпусе, а электрическая схема — это компоненты, к которым есть доступ, и габариты произвольные.Navchel 11:59, 11 сентября 2006 (UTC)
- редирект — он же REDIRECT — функция Википедии по автоматическому перебросу с синонимов на главную статью — для иллюстрации откройте Чип — вы будете автоматически переброшены на Интегральная схема, но вверху будет написано откуда вас перебросили — если же щёлкнуть уже по этой верхней ссылке вы попадёте на синоним, который при необходимости можно отредактировать—Alex Spade 20:10, 11 сентября 2006 (UTC)
- мало… (микро…) микро… прибор переведем на русский — вы правы надо будет подсократить
- А вот слово прибор’ — не-а, уже транзисторы и различные диоды — являются полупроводниковыми приборами — даже раздел техники про них так и называется Физика полупроводниковых приборов (она же Эф-три-Пэ — ФППП), в отличии от собственно Физика полупроводников (Эф-два-Пэ — ФПП) и объединённой дисциплины ФППППП (иначе ФППиППП или ФПППиПП). Не говоря уже про ламповую технику…
- радиоэлементов — … которым могут и микросхему назвать — не-а — могут и Петю, Юлей назвать. Радиоэлементы — это резисторы, конденсаторы, диоды, транзисторы и т.д.
- Чем отличается микросхема от электрической схемы? Какая такая элетрическая? Я писал электронная. Многим отличается и много общего, смотря, что-же конкретно вы имели в виду по электрической схемой — (печатную плату, некоторую «напаенную» плату, принципиальную электрическую, логическую или схемо- и системотехническую схемы).
Если электронную, то ИС — это её подвид. —Alex Spade 20:10, 11 сентября 2006 (UTC)
Чем отличается микросхема от электронной схемы? И та и другая выполняют какую-то функцию. Плотность упаковки понятие абстрактное. Электронная схема тоже имеет высокую плотность. Существенная разница: микросхема — изготовлена на полупроводниковом кристалле, электронная схема — на печатной плате; микросхема — помещена в неразборный стандартный корпус, а электронная схема — это компоненты, к которым есть доступ на печатной плате, габариты которой разные у разных производителей и разных устройств, приборов.Navchel 03:40, 24 сентября 2006 (UTC)
Объяснять сложный термин надо более простыми словами. Говорить что микросхема — это прибор, бысмысленно, т.к. слово прибор еще сложнее слова микросхема. Вот примеры объяснения слова прибор:
- ПРИБОР — комплекс функционально значимых металлических элементов на ножнах клинкового холодного оружия
- ПРИБОР — м. 1). Приспособление, специальное устройство, аппарат для производства какойн. работы, управления, регулирования, контроля, вычислений. Измерительный п. Электрические приборы. Световые приборы. 2). Набор принадлежностей для чего-н.) Бритвенный п. Письменный п. Столовый п.| прил. приборный, ая, ое (к 1 знач.). П. щит. Приборные масла.
//Толковый словарь Ожегова//
- ПРИБОР — м. 1. Аппарат, приспособление для производства какой-н. работы. Измерительный прибор. Счетный прибор. Прибор сложной конструкции. 2. Комплект, Набор предметов, инструментов для какой-н. работы, для каких-н. действий (спец.). Письменный прибор (чернильница, пресс-папье и т. п.). Туалетный прибор. Столовый прибор (тарелки, вилки, ножи, ложки и т. п. для еды одному человеку). Накрыть стол на 5 приборов (для пяти обедающих). 3. Набор материалов, частей, принадлежностей для изготовления, устройства чего-н. (спец.). Печной прибор. Оконный и дверной прибор (петли, скобы, задвижки, накладки и т. п.). 4. Комплект приклада (петлицы, окантовка и т. п.) и знаков различия к обмундированию (спец.). //Толковый словарь Ушакова//
- ПРИБОР — м. 1. Устройство, аппарат, предназначенный для управления машинами, установками, для регулирования технологических процессов, вычислений и т.п. 2. Учебное наглядное пособие, служащее для демонстрации какой-л. закономерности. 3. Набор предметов для какого-л. пользования. // Комплект предметов, подаваемый для еды одному человеку. 4. Комплект предметов, предназначенный для изготовления, устройства чего-л. // Комплект приклада (петлицы, окантовка и т.п.) и знаков различия к обмундированию. //Толково-словообразовательный словарь Ефремовой//
Navchel 14:37, 24 сентября 2006 (UTC)
- Не буду далее спорить про пронятие прибор (я всё сказал ранее и словарями я тоже умею пользоватся, потоэтому цитировать (нагонять метраж страницы) совсем не обязательно — досточно сослаться). Заменим на более нейтральное — микроэлектронное устройство. Но дополним плёнками — плёночные технологии ещё живы (хоть и мало распростарнены), хотя почему мало — TFT-технология для мониторов — её прямой потомок, только что не микро- и не в корпусе. И уберём неразборных,
стандартный для микросхемкорпус. А то получается микросхема — это то, что помещено в корпус для микросхем. Тем более — что если я помещу кристалл в нетипичный или кастом (заказной) корпус — это уже перестанет быть микросхемой? 😉 - И большая просьба — установите себе нормальный Unicode редактор — не портите текст — восстанавливаю за вами Unicode-кодировку уже второй раз.—Alex Spade 08:37, 24 сентября 2006 (UTC)
Можно ли высекать искры из кремниевых микросхем путем соударения?[править код]
Можно ли высекать искру из кремниевых микросхем путем соударения? Нигде не смог найти информацию на эту тему. Я лично провел эксперимент, но искру не получил, предполагаю, что один из исследуемых процессоров имел какое-то покрытие. —VetMax 21:22, 27 января 2007 (UTC)
- Советую вставить в розетку два оголённых провода и класть микросхему на них. Особенно удобно использовать корпуса типа DIP, предварительно выпрямив ножки. Искра будет, гарантирую. —Panther @ 21:52, 27 января 2007 (UTC)
- Отвечайте пожалуйста по теме. —VetMax 00:10, 28 января 2007 (UTC)
- Да пожалуйста, просто для меня открытие, что такие вопросы можно задавать серьезно. Вы почитайте статьи Кремний и Кремень (точнее, en:Flint) и Вы сами поймёте разницу. —Panther @ 09:26, 28 января 2007 (UTC)
- Отвечайте пожалуйста по теме. —VetMax 00:10, 28 января 2007 (UTC)
- Нельзя. —Кae 03:44, 28 января 2007 (UTC)
- Может быть можно высечь хоть небольшую искорку, если поверхность микросхемы окислится?
- Искры даёт не кремень, а металл, по которому им ударяют. —Panther @ 20:56, 28 января 2007 (UTC)
- Неправда.—Genesiser 16:29, 6 января 2010 (UTC)
- Искры даёт не кремень, а металл, по которому им ударяют. —Panther @ 20:56, 28 января 2007 (UTC)
- Может быть можно высечь хоть небольшую искорку, если поверхность микросхемы окислится?
- Старые процессоры имели корпуса из керамики. Применять как кремень.—Genesiser 16:29, 6 января 2010 (UTC)
Ответ: в «кремниевой микросхеме» кремниевой является маленькая (площадью пару кв. миллиметров) тоненькая (доли миллиметра толщиной) пластинка, упрятанная (залитая) внутри корпуса (пластмассового или керамического). Ударить «кремнием о кремний», таким образом. крайне затруднительно ;-). Ну стучать корпусами можно, конечно, долго и упорно.) Tpyvvikky 18:29, 7 января 2010 (UTC)
Шаблон «Микросхемы СССР»[править код]
Попытка привнести некоторое единообразие и облегчить навигацию по теме. Оставляю шаблон на компоненты, убираю технологии (они уже включены) и процессоры — для них есть своя страница.
Да, безусловна, шаблон не догма, и конструктивные предложения, инициирующие написание новый тем и статей только приветствуются!
Добро пожаловать
—Mixabest 13:17, 18 сентября 2010 (UTC)
- Давно пора. Но шаблон мягко говоря нуждается в коррекции. Marlagram 09:23, 19 сентября 2010 (UTC)
Изменил в статье инфу про 22 нм, т.к. он уже вышел, и немного подправил про 14 нм а то некрасиво получалось —Cukarach 20:03, 24 сентября 2012 (UTC)
..ультрабольшая интегральная схема (УБИС) — до 1 млрд. элементов в кристалле и гигабольшая интегральная схема (ГБИС) — более 1 млрд. элементов в кристалле.. — может всё же миллион? Sergoman 10:10, 21 декабря 2014 (UTC)
Возможно, где-то неточность[править код]
Первая в СССР гибридная толстоплёночная интегральная микросхема (серия 201 «Тропа») была разработана в 1963-65 годах в НИИ точной технологии («Ангстрем»), серийное производство с 1965 года. В разработке принимали участие специалисты НИЭМ (ныне НИИ «Аргон»)[3][4].
А здесь сказано, что «Тропа» была второй, а первой — «Квант»:
Первая в мире гибридная интегральная схема «Квант» (позже получившая обозначение "ГИС серии 116") была разработана в 1962 году в ленинградском НИИ Радиоэлектроники...
Где правда? Или «Квант» не был толстоплёночным? А почему это настолько важно, что даже делает ГИС «Тропа» достойной упоминания в статье «ИС», а «Квант» выводит из рассмотрения? Толстоплёночная ГИС — «почти ИС», а не-толстоплёночная — совсем постороннее и чуждое устройство? —Michael MM (обс.) 05:14, 8 марта 2018 (UTC)