Site Loader

Разгадка электромобиля Николы Тесла — Ochkarik-48 — ЖЖ


За применение ряда изобретений Тесла компания «Дженерал моторс» подарила ему современнейший автомобиль. Он снял с него бензиновый двигатель и поставил вместо него электродвигатель мощностью 80 л.с. и скоростью вращения 1800 об/мин. Из обычных радиодеталей он собрал на двенадцати радиолампах устройство размером 60x30x15 см, из которого торчали два стержня.

После этого со словами «Теперь у нас есть энергия» сел в машину и поехал. Неделю он ездил со скоростью до 150 километро
в в час, а на вопросы о природе энергии, отвечал: «Из эфира вокруг всех нас». Когда появились слухи, что он вошел в связь с нечистой силой, Тесла рассердился, безо всяких разъяснений вынул таинственную коробочку из автомобиля и унес ее в свою лабораторию, где её тайна канула в небытие.

В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.

Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.
На самом деле ЭЛ. Двигатель не потребляет никакого тока.
В 20-е годы Маркони демонстрировал Муссолини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.
Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.

Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.

Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.

Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.

Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.

Принцип работы электроавтомобиля Теслы

Согласно закону причинно следственных связей, если второе вытекает из первого, то и первое может вытекать из второго. В физике это принцип обратимости всех процессов.

Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется «прямой пьезоэлектрический эффект». В тоже время характерно и обратное — возникновения механических деформаций под действием электрического поля — «обратный пьезоэлектрический эффект». Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.

Другой пример с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи — электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом — выделение тепла.

При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окружающей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что

электродвигатель работает не в абсолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений, на которые принято закрывать глаза.

Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потери энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с «вязкостью» эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (относительно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.

СХЕМА ПОТЕРЬ ЭНЕРГИИ В ОБЫЧНОМ ЭЛЕКТРОДВИГАТЕЛЕ

Что сделал Тесла. Тесла понял, что электродвигатель, который неизбежно «гонит волны» в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для получения резонанса в такой среде как эфир.

С другой стороны Тесла хорошо видел, что волны в эфире могут быть не побочным продуктом работы электродвигателя, не паразитарными потерями, а движущей силой электродвигателя, если эти волны поддерживать при минимальном расходе энергии. Как поддерживать эти волны Тесла хорошо знал. Для этого нужны резонансные ВЧ колебания. Тонкая природа эфира обуславливает необходимость высоких частот для достижения резонанса. Как известно, резонанс наступает при приближении частоты внешнего воздействия (колебания ВЧ генератора) к одной из тех частот, с которыми происходят собственные колебания в системе (в данном случае, принудительные колебания в эфире затухающие медленно относительно частоты ВЧ генератора), возникающие в результате внешнего принудительного воздействия.

Оптимальное поддержание волн в эфире представляет собой процесс резонансного накачивания стоячей волны вокруг ВЧ генератора.

Ввиду понимания Теслой изложенного, решение не представляло технической сложности. Он буквально на коленях, в номере гостиницы, собрал ВЧ генератор, устройство, которое «поднимает волну» в пространстве где работает электродвигатель. (Генератор ВЧ, а не низкочастотный просто, потому что низкочастотный не позволил бы создать стоячую волну через резонанс. Так как рассеивание волн опережало бы импульсы генератора). Частота ВЧ генератора должна была быть в кратном резонансе с частотой электродвигателя. Например если частота двигателя 30 Гц, то частота генератора может быть 30 МГц. Таким образом ВЧ генератор является как бы посредником между средой и двигателем.

ВЧ генератор потребляет немного энергии. Как устройство он оптимален (в отличие от электродвигателя) для создания и поддержания волн в эфире. А волны в эфире, если они в резонансе с колебательным контуром работающего двигателя, превращаются в движущую силу (а не в паразитарные потери) для совершения электродвигателем работы. Питание двигателю при такой схеме не нужно. Питание нужно чтобы гнать волну, вызывающую сопротивление среды. А здесь сама среда держит волну и поддерживает вращение двигателя, который с этой волной в резонансе. Таким образом ел. двигатель превращается в генератор, который преобразует энергию колебаний эфира через свое вращение в электрический ток, который из него истекает.

ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той энергии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.

Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Здесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигаель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разумная организация процесса.

Фаза всасывания и рассеивания. На фазе всасывания конденсаторы заряжаются. На фазе рассевания отдают в цепь, компенсируя потери. Таким образом, КПД не 90% а возможно 99%. Возможно ли увеличив количество конденсаторов получить больше чем 99%? По видимому нет. Мы не можем собрать на фазе рассеивания больше, чем двигатель отдает. Поэтому дело не в количестве емкостей, а в расчете оптимальной емкости.

Пьезоэлектричество (от греч. piezo — давлю и электричество), явления возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновения механических деформаций под действием электрического поля (обратный пьезоэлектрический эффект). Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.

Кварцевый генератор, маломощный генератор электрических колебаний высокой частоты, в котором роль резонансного контура играет кварцевый резонатор — пластинка, кольцо или брусок, вырезанные определённым образом из кристалла кварца. При деформации кварцевой пластинки на её поверхностях появляются электрические заряды, величина и знак которых зависят от величины и направления деформации. В свою очередь, появление на поверхности пластины электрических зарядов вызывает её механическую деформацию (см. Пьезоэлектричество). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот. К. г. характеризуются высокой стабильностью частоты генерируемых колебаний: Dn/n, где Dn — отклонение (уход) частоты от её номинального значения n составляет для небольших промежутков времени 10-3—10-5%, что обусловлено высокой добротностью (104—105) кварцевого резонатора (добротность обычного колебательного контура ~ 102).

Частота колебаний К. г. (от нескольких кГц до нескольких десятков МГц) зависит от размеров кварцевого резонатора, упругости и пьезоэлектрической постоянных кварца, а также от того, как вырезан резонатор из кристалла. Например, для Х — среза кристалла кварца частота (в МГц) n=2,86/d, где d — толщина пластинки в мм.

Мощность К. г. не превышает нескольких десятков Вт. При более высокой мощности кварцевый резонатор разрушается под влиянием возникающих в нём механических напряжений.

К. г. с последующим преобразованием частоты колебаний (делением или умножением частоты) используются для измерения времени (кварцевые часы, квантовые часы) и в качестве стандартов частоты.

Естественная Анизотропия — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок Резонанс (франц. resonance, от лат. resono — звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы.

Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы). Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt, или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону . Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х — смещение массы от положения равновесия, k — коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид: Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно суперпозиции принципу, будет равен сумме эффектов от отдельных гармонических воздействий.

Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия. В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С и индуктивности L, Р. состоит в том, что при приближении частот внешней эдс к собственной частоте колебательной системы, амплитуды эдс на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс, создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс на цепь, состоящую из параллельно включенных ёмкости и индуктивности, имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов. В линейной системе с двумя степенями свободы, в частности в двух связанных системах (например, в двух связанных электрических контурах), явление Р. сохраняет указанные выше основные черты. Однако, т. к. в системе с двумя степенями свободы собственные колебания могут происходить с двумя различными частотами (т. н. нормальные частоты, см. Нормальные колебания), то Р. наступает при совпадении частоты гармонического внешнего воздействия как с одной, так и с другой нормальной частотой системы. Поэтому, если нормальные частоты системы не очень близки друг к другу, то при плавном изменении частоты внешнего воздействия наблюдаются два максимума амплитуды вынужденных колебаний . Но если нормальные частоты системы близки друг к другу и затухание в системе достаточно велико, так что Р. на каждой из нормальных частот «тупой», то может случиться, что оба максимума сольются. В этом случае кривая Р. для системы с двумя степенями свободы теряет свой «двугорбый» характер и по внешнему виду лишь незначительно отличается от кривой Р. для линейного контура с одной степенью свободы.

Т. о., в системе с двумя степенями свободы форма кривой Р. зависит не только от затухания контура (как в случае системы с одной степенью свободы), но и от степени связи между контурами. Р. весьма часто наблюдается в природе и играет огромную роль в технике. Большинство сооружений и машин способны совершать собственные колебания, поэтому периодические внешние воздействия могут вызвать их Р.; например Р. моста под действием периодических толчков при прохождении поезда по стыкам рельсов, Р. фундамента сооружения или самой машины под действием не вполне уравновешенных вращающихся частей машин и т. д. Известны случаи, когда целые корабли входили в Р. при определённых числах оборотов гребного вала.

Во всех случаях Р. приводит к резкому увеличению амплитуды вынужденных колебаний всей конструкции и может привести даже к разрушению сооружения. Это вредная роль Р., и для устранения его подбирают свойства системы так, чтобы её нормальные частоты были далеки от возможных частот внешнего воздействия, либо используют в том или ином виде явление антирезонанса (применяют т. н. поглотители колебаний, или успокоители).

В др. случаях Р. играет положительную роль, например: в радиотехнике Р. — почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций. Нужно подобрать емкость так, чтобы пошло смещение по фазе. Противофаза это аспект оппозиции. Совпадение — это аспект соединения. Соединения дает бросок, но и равное падение. Возможно, что максимальное содействие получается, когда работает аспект тригона. Это смещение по фазе не на 180%, а на 120%. Емкость должна быть рассчитана так, чтобы она давала смещение по фазе в 120%, возможно, что это даже лучше, чем соединение. Может именно поэтому, Тесла любил число 3. Потому что использовал тригональный резонанс. Тригональный резонанс, в отличие от резонанса соединения должен быть более мягкий (не деструктивный) и более стабильный, более живучий. Тригональный резонанс должен держать мощность и не идти в разнос. ВЧ резонанс создает накачку стоячей волны вокруг передатчика. Поддержание резонанса в эфире не требует большой мощности. В тоже время образовавшаяся стоячая волна может обладать огромной мощностью для совершения полезной работы. Этой мощности хватит и на поддержание работы генератора и на поддержание гораздо более мощных устройств

Источник

САЙТ МЭФ «ИНТЕНТ» — Статьи

«Резерфорд называл Тесла «вдохновенным пророком электричества». Это Тесла предсказал возможность лечения больных током высокой частоты, появление электропечей, люминесцентных ламп, электронного микроскопа. Изобретателем беспроводной связи и передачи энергии считается Маркони, но на самом деле это был Тесла…

Ему удалось добиться в этой области выдающихся достижений. Так, он экспериментально передавал такое количество энергии на расстояние 40 км, что ее было достаточно, чтобы зажечь 200 лампочек! Незадолго до смерти Тесла объявил, что он изобрел «лучи смерти», в которых на расстояние 400 км передается такое количество энергии, что можно уничтожить 10000 самолетов или миллионную армию. Эту тайну он унес с собой в могилу.

В предыдущих публикациях на страницах сайта мы уже рассказывали о судьбе славянского гения и о его удивительных эксперементах. См. так же статьи на сайте: «Время Николы Тесла«, «Беспроволочный передатчик энергии Николы Тесла и Тунгусский взрыв 1908г«, «Тесла и Время«.

Сегодня мы предлагаем Вашему вниманию очередной материал, посвященный незаслуженно забытому величайшему ученому и эксперементатору.



В 1931 г. Тесла продемонстрировал публике удивительный электромобиль. Из обычной автомашины извлекли бензиновый двигатель и установили электромотор. Потом Тесла на глазах у публики поместил под капот невзрачную коробочку, из которой торчали два стерженька, которые ученый подключил к двигателю. Сказав: ‘Теперь мы имеем энергию’, Тесла сел на место водителя, нажал на педаль, и … автомобиль поехал!

Эта машина, приводимая в движение мотором переменного тока, развивала скорость до 150 км/ч (!) [в это время средняя скорость самолета составляла 200-250 км/ч], а главное, не требовала подзарядки. По крайней мере в течение недели, что ее испытывали, газеты того времени трубили об этом удивительном испытании. Все спрашивали Тесла: ‘Откуда берется энергия?’ Он отвечал: «Из эфира вокруг всех нас».»

Еще одно усилие Тесла, и мир бы невероятно изменился. Нефтяные короли мира в такой ситуации оказывались на краю полного банкротства …

Рус Эвенс

Загадка электромобиля Николы Тесла

Ни для кого не является новостью, что угроза энергетического кризиса в индустриально развитых странах уже не напоминает выдумку писателей-фантастов, а становится мрачной реальностью ближайшего будущего.

Озадаченные грядущим энергетическим кризисом США и ведущие европейские державы в срочном порядке выделяют многомиллиардные финансовые ресурсы на разработку альтернативных видов топлива. В автомобильных салонах ведущих производителей уже красуются эксперементальные модели, работающие на электричестве, сжиженном газе, воде и даже … на сене.

Однако эти модели еще не готовы прийти на смену своим чадящим выхлопами старшим собратьям. Высокая дороговизна технологии их производства, низкие эксплутационные показатели и неудобства в использовании оставяют их только эксперементальными образцами. Инженерная мысль упрямо продолжает искать выход из ситуации близкой к тупиковой.

Странно, но кардинальное решение сегодняшней проблемы, похоже, было найдено еще 80 (!) лет назад…

Начнем с рассмотрения современной статьи в газете «Утренние Даллаские Новости». Статья была помещена под рубрикой «Словесные портреты Штата Техас» и написана господином A.C. Greene. Имеется также второй файл с мыслями англоязычного автора относительно Тесловской «коробочки с энергией» (файл внесен в список на KeelyNet как TESLAFE2.ASC):

«Источник энергии Триумфального Электрического Автомобиля все еще остается тайной»
A.C. Greene
(24-ого января, воскресенье — Даллас Утренние Новости,
Рубрика Словесных Портретов Штата Техас)


(перевод Руса Эвенса)

«Недавно, Словесные Портреты Штата Техас расказали историю Генри Гарретта и его сына с их автомобилем, который ездит на воде. Это автомобиль успешно демонстрировался в 1935 в Скалах Белого Озера в Далласе.

Юджин Лангкоп Даллаский (любитель Паккардов, подобно многим из нас) обращает внимание на то, что «удивительный автомобиль» будущего может быть связан с восстановлением электрического автомобиля. Такой автомобиль не использует никакого бензина, никакого масла — только некоторые стыки смазки — не имеет никакого радиатора, который нужно охлаждать, никаких проблем карбюратора, никакого глушителя, который нужно заменять и не выделяет никаких загрязнителей.

Известные в прошлом электромобили охватывали Columbia, Rauch & Lang and Detroit Electric.

В Далласе были электрические автомобили по доставке товаров в 1920-ых и 30х годах. Много электрических транспортных средств доставки использовались в больших городах и в 1960-ые.

Главными недостатками электроавтомобилей были медленная скорость и короткий диапазон.

В пределах прошлого десятилетия два человека, Джордж Тиесс и Джек Хукер, объявили, что они разработали батареи, работающие на магние от морской воды, при этом диапазон их электромобиля от стандартного около 100-ни миль увеличился до 400-500 миль.

Но здесь речь пойдет о совсем другом автомобиле. Это — автомобиль-загадка, однажды продемонстрированный Николой Тесла (изобретателем использования переменного тока), который мог бы похоронить все бензиновые двигатели, навсегда.

При поддержке компаний Pierce-Arrow Co. and General Electric в 1931, Тесла снял бензиновый двигатель с нового автомобиля фирмы «Pierce-Arrow» и заменил его электромотором переменного тока мощностью в 80 л.с. без каких бы то ни было традиционно известных внешних источников питания.

В местном радио магазине он купил 12 электронных ламп, немного проводов, горстку разномастных резисторов, и собрал все это хозяйство в коробочку длиной 60 см., шириной 30 см. и высотой 15 см. с парой стержней длинной 7.5 см. торчащих снаружи. Укрепив коробочку сзади за сиденьем водителя он выдвинул стержни и возвестил «Теперь у нас есть энергия». После этого он ездил на машине неделю, гоняя ее на скоростях до 150 км/ч.

Поскольку на машине стоял двигатель переменного тока и не имелось никаких батарей, справедливо возникает вопрос, откуда же в нем бралась энергия?

Популярные комментарии привлекали обвинения «в черной магии» (как буд-то такое объяснение сразу расставляло все точки над «i»). Чувствительному гению не понравились скептические комментарии прессы. Он снял с машины таинственную коробочку, и возвратился в свою лабораторию в Нью-Йорке и тайна его источника энергии умерла вместе с ним.»

автор: A.C. Greene
историк Штата Техас,
который живет в Salado.

Ниже приводится статья-оригинал, котрую мр.Грин использовал при написании своей заметки:

«Забытое Искусство Электромобилей»
Артур Абром


(перевод Руса Эвенса)

«Хотя электроавтомобили были одним из самых ранних изобретений, мода на них прошла быстро. Развитие электричества как источника энергии для человечества проходило с большими противоречиями.

Томас А. Эдисон был первым, кто начал продавать электросистемы (т.е. электрогенераторы) имеющие какую-то коммерческую ценность. Его исследования и изоретательский талант позволили развить системы постоянного тока. Этими системами оборудовались суда, муниципалитеты начинали освещать улицы. В то время Эдиссон был единственным источником электричества!

В то время как коммерциализация электричества набирала оборотов Эдиссон нанял человека, явившего миру невиданный ранее научный талант и развившего совершенно новые подходы к электроэнергии. Этим человеком был иностранец Никола Тесла. Его разработки затмевали даже самого Эдиссона! В то время как Эдиссон был великим экспериментатором, Тесла был великим теоретиком. Постоянные эксперименты Эдиссона его несколько раздражали.

Тесла предпочитал математически рассчитывать возможность какого-то процесса, чем сразу хвататься за паяльник и постоянно эксперименторовать. Так, однажды, после очередного горячего спора, он покинул лабораторию Эдиссона в West Orange, New Jersey.

Работая самостоятельно Тесла продумал и создал первый генератор перменного тока. Он, и только он, является ответственным за все преимущества, которыми мы наслаждаемся сегодня благодаря электроэнергии переменного тока.

Рассерженный Эдиссоном в самом начале 1900-х Тесла продал свои новые патенты Джорджу Вестингаусу за 15 млн. долларов. Тесла стал полностью независимым после чего продолжил исследования в своей лаборатории на 5-й Авеню в Нью-Йорке.

Джордж Вестингаус начал торговать этой новой системой электрогенераторов создавая конкуренцию Эдисону. Вестингаус одержал победу, благодаря очевидному преимуществу новых генераторов по сравнению с менее эффективными генраторами Эдиссона. Сегодня переменный ток — единственный источник электричества мирового потребления и, пожалуйста, помните, Никола Тесла — человек который сделал его доступным для людей.

Теперь, что касается раннего становления электромобилей. Электромобиль имеет ряд преимуществ которые шумные, капризные, дымные автомобили с двигателями внутреннего сгорания предложить не могут.

Прежде всего — абсолютная тишина которая сопровождает ваз при поездке в электромобиле. Не имеется даже намека на шум. Только поворот ключа и нажатие на педаль — как транспортное средство начинает немедленно двигаться. Никакого дребезжания в начале, никакого переключения скоростей, никаких топливных насосов и проблем с ними, никаких уровней масла и т.п. Просто поворот выключателя и вперед!

Второе — это ощущение мощности и покорности двигателя. Если хотите увеличить скорость — просто давите на педаль, и никаких рывком при этом. Отпускаете педаль и транспортное средство немедленно замедляется. Вы всегда полностью контролируете управление. Не трудно понять, почему эти транспортные средства были так популярны на рубеже веков и почти до 1912.

Большим неудобством этих автомобилей был их диапазон и потребность в перезарядке каждой ночью. Все эти электрические транспортные средства использовали ряд батарей и двигатели постоянного тока. Батареи требовали перезарядки каждую ночь и диапазон перемещения был ограничен приблизительно 100-ней миль. Это ограничение не было серьезным в начале этого столетия. Доктора начали выезжать на вызова на электрических автомобилях потому что они больше не нуждались в лошадях всего лишь поключить автомобиль в электрическое гнездо на ночь! Никакие перемещения не мешают получать чистую прибыль.

Многие из больших универмагов в столичных областях начали использовать электромобили для доставки товаров. Они были тихими и не испускали никаких загрязнителей. Обслуживание электромобилей было минимальным. Городская жизнь обещала большое будущее электромобилю. Однако, обратите внимание, все электромобили работали на постоянном токе.

Произошли две вещи, которые положили конец популярности электромобиля. Каждый подсознательно жаждал скорости, которая захватила всех автоэнтузиатов той эры. Каждый изготовитель стремился показать как далеко его автомобиль может ехать и какова его наивысшая скорость.

Построенная Полковником Вандербилтом первая твердая гоночная круговая орбита с прямолинейными секциями в Лонг Айленде стала воплощением страсти «красивой жизни». Газеты постоянно печатают сводки о новых рекордах в скоростях. И, конечно, изготовители автомобилей были скоры на руку, чтобы извлечь свою выгоду из рекламного эффекта этих новых пиков скорости. Все это создавало имидж электромобилей как транспортных средств для старых леди или отставных джентельменов.

Электрические транспортные средства не могли достигать скоростей 45 или 50 m.p.h. Этого не выдежали бы их батареи. Максимальные скорости от 25 до 35 m.p.h. могли поддерживаться на мгновение или около этого. Обычно, крейсерская скорость — в зависимости от условий движения, была от 15 до 20 m.p.h. Для стандартов годов от 1900 до 1910, это была приемлемая скорость, чтобы получать удовлетворение от электрического транспортного средства.

Пожалуйста обратите внимание, что ни один из изготовителей электрических автомобилей никогда не использовал ГЕНЕРАТОР постоянного тока. Это позволило бы подпитывать небольшим зарядом батареи, во время движения и таким образом увеличивать дальность его пробега. Это рассматривалось как некоторое подобие вечного двигателя и конечно считалось абсолютно не возможным! Фактически, генераторы постоянного тока могли бы успешно работать и помочь выживанию электромобилей.

Как было упомянуто ранее, электрооборудование переменного тока Г. Вестингоуса, продавалось распространялось по стране. Более ранние системы постоянного тока удалялись и игнорировалось. (В качестве любопытного замечания: Объединенная Компания Эдиссона в Нью-Йорке все еще использует один из генераторов постоянного тока Эдиссона установленных на его 14-й электростанции и он все еще работает!) Приблизительно в указанное время, другая гигантская корпорация была сформирована и вступила в производство оборудования переменного тока — Дженерал Электрик. Это положило абсолютный конец для систем электропитания Эдисона как коммерческих средств производства и распределения электроэнергии.

Электрические автомобили не были приспособлены, чтобы размещать на них многофазные двигатели (переменного тока), так как они использовали батареи в качестве источника мощности, их исчезновение было предрешено. Никакая батарея не может производить переменный ток. Конечно, мог бы использоваться конвертер для преобразования тока в переменный, но размер соответствующего оборудования в то время был слишком большим, чтобы размещать его на автомобилях.

Итак, окло 1915 года, электрический автомобиль канул в лету. Правда, United Parcel Service все еще использует несколько электрических грузовиков в Нью-Йорке сегодня, но большая часть их транспортных средств использует бензин или дизельное топливо. Сегодня электромобли мертвы — они рассматриваются как динозавры прошлого.

Но, позвольте нам на секунду остановиться, чтобы рассмотерть преимущества использования электроэнергии как средства передвижения транспортных средств. Обслуживание их абсолютно минимально. Масло почти не требуется для двигателя. Не имеется никакого масла, чтобы заменять, никакого радиатора, чтобы чистить и заполнять, никаких передач, чтобы загрязняться, никаких топливных насосов, никаких водных насосов, никаких проблем с корбюратором, никаких кривошипно-шатунных механизмов, чтобы гнить или заменять и никаких загрязнений, испускаемых в атмосферу. Разве это не тот ответ, который все вроде бы ищут!

Поэтому, эти две проблемы, стоящие перед нами, невысокая скорость с небольшим расстоянием передвижения и замена постоянного переменным током сегодня уже могут быть решены. При сегодняшних технологиях это уже не кажется непреодолимым. Фактически, эта проблема уже была решена в прошлом. Отдаленном прошлом. И не очень отдаленном. Стоп! Задумайтесь над сказанным на несколько мгновений прежде чем продолжать!

Несколько ранее в этой статье, я упомянул человека, Николу Теслу и заявил, что он был самым большим гением, который когда-либо жил. Американское Патентное бюро имеет 1,200 патентов, зарегистрированных от имени Николы Теслы, и, по оценкам, он мог запатентовать дополнительно 1,000 или около этого из памяти!

Но вернемся к нашим электромобилям — в 1931, при финансировании Pierce-Arrow и George Westinghouse. В 1931 Pierce-Arrow была отобрана, чтобы быть проверенной в фабричных территориях в Buffalo, N.Y. Стандартный двигатель внутреннего сгорания был удален и 80 л.с. 1800 об/мин электродвигатель, был установлен на муфту к передаче. Двигатель переменного тока имел длину 100 см. и 75 см. в диаметре. Энергия, которая его питала, находилась «в воздухе» и никаких больше источников питания.

В назначенное время, Никола Тесла прибыл из Нью-Йорка и осмотрел автомобиль Pierce-Arrow. Затем он пошел в местный радио магазин и купил 12 радиоламп, провода и разные резисторы. Коробка, имела размеры длиной 60 см., шириной 30 см. и высотой 15 см. Укрепив коробочку сзади за сиденьем водителя он присоединил провода к безщеточному двигателю воздушного охлаждения. Два стержня диаметром 0.625 мм. и около 7,5 см. длинной торчали из коробки.

Тесла занял водительское место, подключил эти два стержня и заявил, «Теперь мы имеем энергию». Он нажал на педаль и автомобиль поехал! Это транспортное средство приводимое в движение мотором переменного тока развивало до 150 км/ч и обладало характеристиками лучшими, чем любой автомобиль с двигателем внутреннего сгорания на то время! Одна неделя была потрачена на испытания транспортнго средства. Несколько газет в Буффало сообщили об этом испытании. Когда спрашивали: «откуда берется энергия?», Тесла отвечал: «Из эфира вокруг всех нас». Люди поговаривали, что Тесла был безумен и так или иначе в союзе со зловещими силами вселенной. Теслу это рассердило, он удалил таинственную коробку с транспортного средства и возвратился в свою лабораторию в Нью-Йорке. Его тайна ушла вместе с ним!»

Здесь хотелось бы заметить, что обвинения в магии постоянно сопровождали деятельность Теслы. Его лекции в Нью-Йорке пользовались большой популярностью, причем приходили люди далекие от физики. И не только потому что Тесла обладал способностью объяснять физические законы простым человеческим языком аналогий, но скорее потому, что во время лекций он демонстрировал эксперименты, которые даже сегодня могли бы вызвать удивление у студентов факультетов радиоэлектроники, не то что у простых обывателей.

Например Тесла доставал из своего портфеля небольшой ТЕСЛА-ТРАНСФОРМАТОР, работающий при высоковольтном напряжении и переменном токе высокой частоты при крайне низкой силе тока. Когда он его включал вокруг него начинали извиваться молнии, при этом он спокойно ловил их руками, тогда как люди с первых мест в зале спешно перемещались назад. Этот фокус куда забавнее, чем распиливание человека.

Также хорошим шоу был эксперимент с электролампочками. Тесла включал свой трансформатор и обычная лампочка начинала светиться в его руках. Это уже вызывало изумление. Когда же он доставал из портфеля лампочку лишенную спирали накала, просто пустая колба, и она все-равно светилась — удивлению слушателей небыло предела и иначе как массовым гипнозом или магией они это объяснить не могли.

«Фокусы» с лампочками объясняются просто, если знать некоторые законы. Как писал Тесла, при определенной частоте колебаний разряженный воздух проводит ток также или даже лучше чем медный провод. Конечно, это было бы невозможно, если бы отсутсвовала единая волновая среда («эфир»). В отсутствие воздуха эфир становится чистым проводником, тогда как воздух только мешает, поскольку является изолятором.

Некотрые исследователи привлекают к объяснению работы тесловского электромобиля магнитное поле Земли, которое Тесла мог использовать в своем генераторе. Вполне возможно, что используя схему высокочастотного высоковольтного переменного тока Тесла настраивал ее в резонанс с колебаниями «пульса» Земли (около 7.5 герц). При этом, очевидно, частота колебаний в его схеме должна была быть как можно более выскокой, оставаясь при этом кратной 7.5 герцам (точнее — между 7.5 и 7.8 герц.).

В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.

Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.

На самом деле ЭЛ. Двигатель не потребляет никакого тока.

В 20-е годы Маркони демонстрировал Муссолини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.

Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.

Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.

Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.

Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.

Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.

Согласно закону причинно следственых связей, если второе вытекает из первого то и первое может вытекать из второго. В физике это принцип обратимости весех процессов.

Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется «прямой пьезоэлектрический эффект». В тоже время характерно и обратное — возникновения механических деформаций под действием электрического поля — «обратный пьезоэлектрический эффект». Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.

Другой приер с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи — электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом — выделение тепла.

При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окржующей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что электодвигатель работает не в абслолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений на которые принято закрывать глаза.

Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потреи энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с «вязкостью» эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (отностельно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.

Схема потерь энергии в ОБЫЧНОМ электродвигателе:

Что сделал Тесла. Тесла понял, что электродвигатель который неизбежно «гонит волны» в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для полученя резонанса в такой среде как эфир.

С другой стороны Тесла хорошо видел, что волны в эфире могут быть не побочным продуктом работы электродвигателя, не паразитарными потерями, а движущей силой электродвигателя, если эти волны поддреживать при минимальном расходе энергии. Как подерживать эти волны Тесла хорошо знал. Для этого нужны резонансные ВЧ колебания. Тонкая природа эфира обуславливает необходимость высоких частот для достижения резонанса. Как известно, резонанс наступает при приближении частоты внешнего воздействия (колебания ВЧ генератора) к одной из тех частот, с которыми происходят собственные колебания в системе (в даном случае, принудительные колебания в эфире затухающие медленно относительно частоты ВЧ генератора), возникающие в результате внешнего принудительного воздействия. Оптимальное поддержание волн в эфире представляет собой процесс резонансного накачивания стоячей волны вокруг ВЧ генератора.

Ввиду понимания Теслой изложенного, решение не представляло технической сложности. Он буквально на коленях, в номере гостинницы, собрал ВЧ генератор, устростройство, которое «поднимает волну» в пространстве где работает электродвигатель. (Генератор ВЧ а не низкочастотный просто потому что низкочастотный не позволил бы создать стоячую волну через резонанс. Так как рассеивание волн опережало бы импульсы генератора). Частота ВЧ генератора должна была быть в кратном резонанссе с частотой электродвигателя. Например если частота двигателя 30 Гц, то частота генератора может быть 30 МГц. Таким образом ВЧ генератор является как бы посредником между средой и двигателем. ВЧ генератор потребляет немного энергии. Как устройство он оптимален (в отличие от электродвигатиеля) для создания и поддрежания волн в эфире. А волны в эфире, если они в резонансе с колебательным контуром работающего двигателя, превращаются в движущую силу (а не в паразитарные потери) для соврешения электродвигателем работы. Питание двигателю при такой схеме не нужно. Питание нужно чтобы гнать волну, вызывающую сопротивление среды. А здесь сама среда держит волну и поддерживает вращение двигателя, котороый с этой волной в резонансе. Таким образом эл. двигатель превращается в генератор, который преобразует энергию колебний эфира через свое вращение в электрический ток, котороый из него истекает.

ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той эенргии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.

На втором рисунке наглядно показан принцип работы элктродвигателя в схеме использованной Теслой:

Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Сдесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигаель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разуманя организация процесса.

Фаза всасывания и рассеивания. На фазе всасывания кондесаторы заряжаются. На фазе рассевания отдают в цепь компенсируя потери. Таким образом КПД не 90% а возможно 99%. Возможно ли увеличив количество коднесаторов получить больше чем 99%? По вилимому нет. Мы не можем собрать на фазе рассеивания больше чем двигатель отдает. Поэтому дело не в колчестве емкостей, а в рассчете оптимальной емкости.

Пьезоэлектричество (от греч. piezo — давлю и электричество), явления возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновения механических деформаций под действием электрического поля (обратный пьезоэлектрический эффект). Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.

Кварцевый генератор, маломощный генератор электрических колебаний высокой частоты, в котором роль резонансного контура играет кварцевый резонатор — пластинка, кольцо или брусок, вырезанные определённым образом из кристалла кварца. При деформации кварцевой пластинки на её поверхностях появляются электрические заряды, величина и знак которых зависят от величины и направления деформации. В свою очередь, появление на поверхности пластины электрических зарядов вызывает её механическую деформацию (см. Пьезоэлектричество). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот. К. г. характеризуются высокой стабильностью частоты генерируемых колебаний: Dn/n, где Dn — отклонение (уход) частоты от её номинального значения n составляет для небольших промежутков времени 10-3—10-5%, что обусловлено высокой добротностью (104—105) кварцевого резонатора (добротность обычного колебательного контура ~ 102).

Частота колебаний К. г. (от нескольких кГц до нескольких десятков МГц) зависит от размеров кварцевого резонатора, упругости и пьезоэлектрической постоянных кварца, а также от того, как вырезан резонатор из кристалла. Например, для Х — среза кристалла кварца частота (в МГц) n=2,86/d, где d — толщина пластинки в мм.

Мощность К. г. не превышает нескольких десятков Вт. При более высокой мощности кварцевый резонатор разрушается под влиянием возникающих в нём механических напряжений.

К. г. с последующим преобразованием частоты колебаний (делением или умножением частоты) используются для измерения времени (кварцевые часы, квантовые часы) и в качестве стандартов частоты.

Естественная Анизотропия. — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок Резонанс (франц. resonance, от лат. resono — звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы.

Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы). Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt, или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону . Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х — смещение массы от положения равновесия, k — коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид: Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно суперпозиции принципу, будет равен сумме эффектов от отдельных гармонических воздействий.

Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия. В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С и индуктивности L, Р. состоит в том, что при приближении частот внешней эдс к собственной частоте колебательной системы, амплитуды эдс на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс, создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс на цепь, состоящую из параллельно включенных ёмкости и индуктивности, имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов. В линейной системе с двумя степенями свободы, в частности в двух связанных системах (например, в двух связанных электрических контурах), явление Р. сохраняет указанные выше основные черты. Однако, т. к. в системе с двумя степенями свободы собственные колебания могут происходить с двумя различными частотами (т. н. нормальные частоты, см. Нормальные колебания), то Р. наступает при совпадении частоты гармонического внешнего воздействия как с одной, так и с другой нормальной частотой системы. Поэтому, если нормальные частоты системы не очень близки друг к другу, то при плавном изменении частоты внешнего воздействия наблюдаются два максимума амплитуды вынужденных колебаний . Но если нормальные частоты системы близки друг к другу и затухание в системе достаточно велико, так что Р. на каждой из нормальных частот «тупой», то может случиться, что оба максимума сольются. В этом случае кривая Р. для системы с двумя степенями свободы теряет свой «двугорбый» характер и по внешнему виду лишь незначительно отличается от кривой Р. для линейного контура с одной степенью свободы.

Т. о., в системе с двумя степенями свободы форма кривой Р. зависит не только от затухания контура (как в случае системы с одной степенью свободы), но и от степени связи между контурами. Р. весьма часто наблюдается в природе и играет огромную роль в технике. Большинство сооружений и машин способны совершать собственные колебания, поэтому периодические внешние воздействия могут вызвать их Р.; например Р. моста под действием периодических толчков при прохождении поезда по стыкам рельсов, Р. фундамента сооружения или самой машины под действием не вполне уравновешенных вращающихся частей машин и т. д. Известны случаи, когда целые корабли входили в Р. при определённых числах оборотов гребного вала.

Во всех случаях Р. приводит к резкому увеличению амплитуды вынужденных колебаний всей конструкции и может привести даже к разрушению сооружения. Это вредная роль Р., и для устранения его подбирают свойства системы так, чтобы её нормальные частоты были далеки от возможных частот внешнего воздействия, либо используют в том или ином виде явление антирезонанса (применяют т. н. поглотители колебаний, или успокоители).

В др. случаях Р. играет положительную роль, например: в радиотехнике Р. — почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций. Нужно подобрать емкость так, чтобы пошло смещение по фазе. Противофаза это аспект оппозиции. Совпадение — это аспект соединения. Соеднинения дает бросок но и равное падение. Возможно что максимальное содействие получается когда работает аспект тригона. Это смещение по фазе не на 180%, а на 120%. Емкость должна быть рассчитана так, чтобы она давала смещение по фазе в 120%, возможно, что это даже лучше, чем соединение. Может имеено поэтому Тесла любил число 3. Потому что использовал тригональный резонанс. Тригональный резонанс, в отличие от резонанса соединения должен быть более мягкий (не деструктивный) и болле стабильный, более живучий. Тригональный резонанс должен держать мощность и не идти в разнос. ВЧ резонанс создает накачку стоячей волны вокруг передатчика. Поддержание резонанса в эфире не требует большой мощности. В тоже время образовавшаяся стоячая волна может обладать огромной мощностью для совершения полезной работы. Этой мощности хватит и на поддержание работы генератора и на поддержание гораздо более мощных устройтв.

 

Разгадка электромобиля Николы Тесла — Изобретения и научные работы

Разгадка электромобиля Николы Тесла

В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.


Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.
На самом деле ЭЛ. Двигатель не потребляет никакого тока.
В 20-е годы Маркони демонстрировал Муссолини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.
Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.

Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.


Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.


Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.


Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.


Принцип работы электроавтомобиля Теслы

Согласно закону причинно следственных связей, если второе вытекает из первого, то и первое может вытекать из второго. В физике это принцип обратимости всех процессов.
Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется «прямой пьезоэлектрический эффект». В тоже время характерно и обратное — возникновения механических деформаций под действием электрического поля — «обратный пьезоэлектрический эффект». Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.
Другой пример с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи — электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом — выделение тепла.


При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окружающей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что электродвигатель работает не в абсолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений, на которые принято закрывать глаза.


Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потери энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с «вязкостью» эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (относительно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.

 

СХЕМА ПОТЕРЬ ЭНЕРГИИ В ОБЫЧНОМ ЭЛЕКТРОДВИГАТЕЛЕ


Что сделал Тесла. Тесла понял, что электродвигатель, который неизбежно «гонит волны» в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для получения резонанса в такой среде как эфир.


С другой стороны Тесла хорошо видел, что волны в эфире могут быть не побочным продуктом работы электродвигателя, не паразитарными потерями, а движущей силой электродвигателя, если эти волны поддерживать при минимальном расходе энергии. Как поддерживать эти волны Тесла хорошо знал. Для этого нужны резонансные ВЧ колебания. Тонкая природа эфира обуславливает необходимость высоких частот для достижения резонанса. Как известно, резонанс наступает при приближении частоты внешнего воздействия (колебания ВЧ генератора) к одной из тех частот, с которыми происходят собственные колебания в системе (в данном случае, принудительные колебания в эфире затухающие медленно относительно частоты ВЧ генератора), возникающие в результате внешнего принудительного воздействия. Оптимальное поддержание волн в эфире представляет собой процесс резонансного накачивания стоячей волны вокруг ВЧ генератора.


Ввиду понимания Теслой изложенного, решение не представляло технической сложности. Он буквально на коленях, в номере гостиницы, собрал ВЧ генератор, устройство, которое «поднимает волну» в пространстве где работает электродвигатель. (Генератор ВЧ, а не низкочастотный просто, потому что низкочастотный не позволил бы создать стоячую волну через резонанс. Так как рассеивание волн опережало бы импульсы генератора). Частота ВЧ генератора должна была быть в кратном резонансе с частотой электродвигателя. Например если частота двигателя 30 Гц, то частота генератора может быть 30 МГц. Таким образом ВЧ генератор является как бы посредником между средой и двигателем.

 

ВЧ генератор потребляет немного энергии. Как устройство он оптимален (в отличие от электродвигателя) для создания и поддержания волн в эфире. А волны в эфире, если они в резонансе с колебательным контуром работающего двигателя, превращаются в движущую силу (а не в паразитарные потери) для совершения электродвигателем работы. Питание двигателю при такой схеме не нужно. Питание нужно чтобы гнать волну, вызывающую сопротивление среды. А здесь сама среда держит волну и поддерживает вращение двигателя, который с этой волной в резонансе. Таким образом ел. двигатель превращается в генератор, который преобразует энергию колебаний эфира через свое вращение в электрический ток, который из него истекает.


ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той энергии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.

 

Принцип работы электродвигателя в схеме, использованной Теслой.



Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Здесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигаель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разуманя организация процесса.


Фаза всасывания и рассеивания. На фазе всасывания конденсаторы заряжаются. На фазе рассевания отдают в цепь, компенсируя потери. Таким образом, КПД не 90% а возможно 99%. Возможно ли увеличив количество конденсаторов получить больше чем 99%? По видимому нет. Мы не можем собрать на фазе рассеивания больше, чем двигатель отдает. Поэтому дело не в количестве емкостей, а в расчете оптимальной емкости.


Пьезоэлектричество (от греч. piezo — давлю и электричество), явления возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновения механических деформаций под действием электрического поля (обратный пьезоэлектрический эффект). Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.


Кварцевый генератор, маломощный генератор электрических колебаний высокой частоты, в котором роль резонансного контура играет кварцевый резонатор — пластинка, кольцо или брусок, вырезанные определённым образом из кристалла кварца. При деформации кварцевой пластинки на её поверхностях появляются электрические заряды, величина и знак которых зависят от величины и направления деформации. В свою очередь, появление на поверхности пластины электрических зарядов вызывает её механическую деформацию (см. Пьезоэлектричество). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот. К. г. характеризуются высокой стабильностью частоты генерируемых колебаний: Dn/n, где Dn — отклонение (уход) частоты от её номинального значения n составляет для небольших промежутков времени 10-3—10-5%, что обусловлено высокой добротностью (104—105) кварцевого резонатора (добротность обычного колебательного контура ~ 102).


Частота колебаний К. г. (от нескольких кГц до нескольких десятков МГц) зависит от размеров кварцевого резонатора, упругости и пьезоэлектрической постоянных кварца, а также от того, как вырезан резонатор из кристалла. Например, для Х — среза кристалла кварца частота (в МГц) n=2,86/d, где d — толщина пластинки в мм.


Мощность К. г. не превышает нескольких десятков Вт. При более высокой мощности кварцевый резонатор разрушается под влиянием возникающих в нём механических напряжений.


К. г. с последующим преобразованием частоты колебаний (делением или умножением частоты) используются для измерения времени (кварцевые часы, квантовые часы) и в качестве стандартов частоты.


Естественная Анизотропия. — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок Резонанс (франц. resonance, от лат. resono — звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы.


Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы). Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt, или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону . Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х — смещение массы от положения равновесия, k — коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид: Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно суперпозиции принципу, будет равен сумме эффектов от отдельных гармонических воздействий.


Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия. В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С и индуктивности L, Р. состоит в том, что при приближении частот внешней эдс к собственной частоте колебательной системы, амплитуды эдс на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс, создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс на цепь, состоящую из параллельно включенных ёмкости и индуктивности, имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов. В линейной системе с двумя степенями свободы, в частности в двух связанных системах (например, в двух связанных электрических контурах), явление Р. сохраняет указанные выше основные черты. Однако, т. к. в системе с двумя степенями свободы собственные колебания могут происходить с двумя различными частотами (т. н. нормальные частоты, см. Нормальные колебания), то Р. наступает при совпадении частоты гармонического внешнего воздействия как с одной, так и с другой нормальной частотой системы. Поэтому, если нормальные частоты системы не очень близки друг к другу, то при плавном изменении частоты внешнего воздействия наблюдаются два максимума амплитуды вынужденных колебаний . Но если нормальные частоты системы близки друг к другу и затухание в системе достаточно велико, так что Р. на каждой из нормальных частот «тупой», то может случиться, что оба максимума сольются. В этом случае кривая Р. для системы с двумя степенями свободы теряет свой «двугорбый» характер и по внешнему виду лишь незначительно отличается от кривой Р. для линейного контура с одной степенью свободы.


Т. о., в системе с двумя степенями свободы форма кривой Р. зависит не только от затухания контура (как в случае системы с одной степенью свободы), но и от степени связи между контурами. Р. весьма часто наблюдается в природе и играет огромную роль в технике. Большинство сооружений и машин способны совершать собственные колебания, поэтому периодические внешние воздействия могут вызвать их Р.; например Р. моста под действием периодических толчков при прохождении поезда по стыкам рельсов, Р. фундамента сооружения или самой машины под действием не вполне уравновешенных вращающихся частей машин и т. д. Известны случаи, когда целые корабли входили в Р. при определённых числах оборотов гребного вала.


Во всех случаях Р. приводит к резкому увеличению амплитуды вынужденных колебаний всей конструкции и может привести даже к разрушению сооружения. Это вредная роль Р., и для устранения его подбирают свойства системы так, чтобы её нормальные частоты были далеки от возможных частот внешнего воздействия, либо используют в том или ином виде явление антирезонанса (применяют т. н. поглотители колебаний, или успокоители).


В др. случаях Р. играет положительную роль, например: в радиотехнике Р. — почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций. Нужно подобрать емкость так, чтобы пошло смещение по фазе. Противофаза это аспект оппозиции. Совпадение — это аспект соединения. Соединения дает бросок, но и равное падение. Возможно, что максимальное содействие получается, когда работает аспект тригона. Это смещение по фазе не на 180%, а на 120%. Емкость должна быть рассчитана так, чтобы она давала смещение по фазе в 120%, возможно, что это даже лучше, чем соединение. Может именно поэтому, Тесла любил число 3. Потому что использовал тригональный резонанс. Тригональный резонанс, в отличие от резонанса соединения должен быть более мягкий (не деструктивный) и более стабильный, более живучий. Тригональный резонанс должен держать мощность и не идти в разнос. ВЧ резонанс создает накачку стоячей волны вокруг передатчика. Поддержание резонанса в эфире не требует большой мощности. В тоже время образовавшаяся стоячая волна может обладать огромной мощностью для совершения полезной работы. Этой мощности хватит и на поддержание работы генератора и на поддержание гораздо более мощных устройств.

 


«Pierce-Arrow», на котором Тесла установил электромотор
переменного тока мощностью в 80 л.с.
 

 

Разгадка Электрического Автомобиля Николы Тесла

В переводе Руса Эвенса

Этот текст родился под впечатлением статьи в местной газете “Утренние Даллаские Новости”. Статья была помещена под рубрикой “Словесные портреты Штата Техас” и написана господином A.C. Greene. Имеется также второй файл с мыслями англоязычного автора относительно Тесловской “коробочки с энергией” (файл внесен в список на KeelyNet как TESLAFE2.ASC).

24-ого января, воскресенье – Даллас Утренние Новости, Рубрика Словесных Портретов Штата Техас

“Источник энергии Триумфального Электрического Автомобиля все еще остается тайной.” A.C. Greene

Недавно, Словесные Портреты Штата Техас рассказали историю Генри Гарретта и его сына с их автомобилем, который ездит на воде. Это автомобиль успешно демонстрировался в 1935 в Скалах Белого Озера в Далласе.

Юджин Лангкоп Даллаский (любитель Паккардов, подобно многим из нас) обращает внимание на то, что “удивительный автомобиль” будущего может быть связан с восстановлением электрического автомобиля. Такой автомобиль не использует никакого бензина, никакого масла – только некоторые стыки смазки – не имеет никакого радиатора, который нужно охлаждать, никаких проблем карбюратора, никакого глушителя, который нужно заменять и не выделяет никаких загрязнителей.

Известные в прошлом электромобили охватывали Columbia, Rauch & Lang and Detroit Electric.

В Далласе были электрические автомобили по доставке товаров в 1920-ых и 30х годах. Много электрических транспортных средств доставки использовались в больших городах и в 1960-ые.

Главными недостатками электромобилей были медленная скорость и короткий диапазон.

В пределах прошлого десятилетия два человека, Джордж Тиесс и Джек Хукер, объявили, что они разработали батареи, работающие на магние от морской воды, при этом диапазон их электромобиля от стандартного около 100-ни миль увеличился до 400-500 миль.

Но здесь речь пойдет о совсем другом автомобиле. Это – автомобиль-загадка, однажды продемонстрированный Николой Тесла (изобретателем использования переменного тока), который мог бы похоронить все бензиновые двигатели, навсегда.

При поддержке компаний Pierce-Arrow Co. and General Electric в 1931, Тесла снял бензиновый двигатель с нового автомобиля фирмы “Pierce-Arrow” и заменил его электромотором переменного тока мощностью в 80 л.с. без каких бы то ни было традиционно известных внешних источников питания.

В местном радио магазине он купил 12 электронных ламп, немного проводов, горстку разномастных резисторов, и собрал все это хозяйство в коробочку длиной 60 см., шириной 30 см. и высотой 15 см. с парой стержней длинной 7.5 см. торчащих снаружи. Укрепив коробочку сзади за сиденьем водителя он выдвинул стержни и возвестил “Теперь у нас есть энергия”. После этого он ездил на машине неделю, гоняя ее на скоростях до 150 км/ч.

Поскольку на машине стоял двигатель переменного тока и не имелось никаких батарей, справедливо возникает вопрос, откуда же в нем бралась энергия?

Популярные комментарии привлекали обвинения “в черной магии” (как буд-то такое объяснение сразу расставляло все точки над “i”). Чувствительному гению не понравились скептические комментарии прессы. Он снял с машины таинственную коробочку, и возвратился в свою лабораторию в Нью-Йорке и тайна его источника энергии умерла вместе с ним.

A.C. Greene – автор и историк Штата Техас, который живет в Salado.

Статья-оригинал, которую Мр. Грин использовал при написании своей заметки следует ниже

Забытое Искусство Электромобилей

Артур Абром, (в переводе Руса Эвенса)

Хотя электромобили были одним из самых ранних изобретений, мода на них прошла быстро. Развитие электричества как источника энергии для человечества проходило с большими противоречиями.

Томас А. Эдисон был первым, кто начал продавать электросистемы (т.е. электрогенераторы) имеющие какую-то коммерческую ценность. Его исследования и изобретательский талант позволили развить системы постоянного тока. Этими системами оборудовались суда, муниципалитеты начинали освещать улицы. В то время Эдисон был единственным источником электричества!

В то время как коммерциализация электричества набирала оборотов Эдиссон нанял человека, явившего миру невиданный ранее научный талант и развившего совершенно новые подходы к электроэнергии. Этим человеком был иностранец Никола Тесла. Его разработки затмевали даже самого Эдисона! В то время как Эдисон был великим экспериментатором, Тесла был великим теоретиком. Постоянные эксперименты Эдисона его несколько раздражали.

Тесла предпочитал математически рассчитывать возможность какого-то процесса, чем сразу хвататься за паяльник и постоянно экспериментировать. Так, однажды, после очередного горячего спора, он покинул лабораторию Эдиссона в West Orange, New Jersey.

Работая самостоятельно Тесла продумал и создал первый генератор переменного тока. Он, и только он, является ответственным за все преимущества, которыми мы наслаждаемся сегодня благодаря электроэнергии переменного тока.

Рассерженный Эдисоном в самом начале 1900-х Тесла продал свои новые патенты Джорджу Вестингаусу за 15 млн. долларов. Тесла стал полностью независимым после чего продолжил исследования в своей лаборатории на 5-й Авеню в Нью-Йорке.

Джордж Вестингауз начал торговать этой новой системой электрогенераторов создавая конкуренцию Эдисону. Вестингауз одержал победу, благодаря очевидному преимуществу новых генераторов по сравнению с менее эффективными генераторами Эдисона. Сегодня переменный ток – единственный источник электричества мирового потребления и, пожалуйста, помните, Никола Тесла – человек который сделал его доступным для людей.

Теперь, что касается раннего становления электромобилей. Электромобиль имеет ряд преимуществ которые шумные, капризные, дымные автомобили с двигателями внутреннего сгорания предложить не могут.

Прежде всего – абсолютная тишина которая сопровождает ваз при поездке в электромобиле. Не имеется даже намека на шум. Только поворот ключа и нажатие на педаль – как транспортное средство начинает немедленно двигаться. Никакого дребезжания в начале, никакого переключения скоростей, никаких топливных насосов и проблем с ними, никаких уровней масла и т.п. Просто поворот выключателя и вперед!

Второе – это ощущение мощности и покорности двигателя. Если хотите увеличить скорость – просто давите на педаль, и никаких рывком при этом. Отпускаете педаль и транспортное средство немедленно замедляется. Вы всегда полностью контролируете управление. Не трудно понять, почему эти транспортные средства были так популярны на рубеже веков и почти до 1912.

Большим неудобством этих автомобилей был их диапазон и потребность в перезарядке каждой ночью. Все эти электрические транспортные средства использовали ряд батарей и двигатели постоянного тока. Батареи требовали перезарядки каждую ночь и диапазон перемещения был ограничен приблизительно 100-ней миль. Это ограничение не было серьезным в начале этого столетия. Доктора начали выезжать на вызова на электрических автомобилях потому что они больше не нуждались в лошадях всего лишь подключить автомобиль в электрическое гнездо на ночь! Никакие перемещения не мешают получать чистую прибыль.

Многие из больших универмагов в столичных областях начали использовать электромобили для доставки товаров. Они были тихими и не испускали никаких загрязнителей. Обслуживание электромобилей было минимальным. Городская жизнь обещала большое будущее электромобилю. Однако, обратите внимание, все электромобили работали на постоянном токе.

Произошли две вещи, которые положили конец популярности электромобиля. Каждый подсознательно жаждал скорости, которая захватила всех авто энтузиастов той эры. Каждый изготовитель стремился показать как далеко его автомобиль может ехать и какова его наивысшая скорость.

Построенная Полковником Вандербилтом первая твердая гоночная круговая орбита с прямолинейными секциями в Лонг Айленде стала воплощением страсти “красивой жизни”. Газеты постоянно печатают сводки о новых рекордах в скоростях. И, конечно, изготовители автомобилей были скоры на руку, чтобы извлечь свою выгоду из рекламного эффекта этих новых пиков скорости. Все это создавало имидж электромобилей как транспортных средств для старых леди или отставных джентльменов.

Электрические транспортные средства не могли достигать скоростей 45 или 50 mph. Этого не выдержали бы их батареи. Максимальные скорости от 25 до 35 mph могли поддерживаться на мгновение или около этого. Обычно, крейсерская скорость – в зависимости от условий движения, была от 15 до 20 mph. Для стандартов годов от 1900 до 1910, это была приемлемая скорость, чтобы получать удовлетворение от электрического транспортного средства.

Пожалуйста обратите внимание, что ни один из изготовителей электрических автомобилей никогда не использовал ГЕНЕРАТОР постоянного тока. Это позволило бы подпитывать небольшим зарядом батареи, во время движения и таким образом увеличивать дальность его пробега. Это рассматривалось как некоторое подобие вечного двигателя и конечно считалось абсолютно не возможным! Фактически, генераторы постоянного тока могли бы успешно работать и помочь выживанию электромобилей.

Как было упомянуто ранее, электрооборудование переменного тока Г. Вестингоуса, продавалось распространялось по стране. Более ранние системы постоянного тока удалялись и игнорировалось. (В качестве любопытного замечания: Объединенная Компания Эдисона в Нью-Йорке все еще использует один из генераторов постоянного тока Эдисона установленных на его 14-й электростанции и он все еще работает!) Приблизительно в указанное время, другая гигантская корпорация была сформирована и вступила в производство оборудования переменного тока – Дженерал Электрик. Это положило абсолютный конец для систем электропитания Эдисона как коммерческих средств производства и распределения электроэнергии.

Электрические автомобили не были приспособлены, чтобы размещать на них многофазные двигатели (переменного тока), так как они использовали батареи в качестве источника мощности, их исчезновение было предрешено. Никакая батарея не может производить переменный ток. Конечно, мог бы использоваться конвертер для преобразования тока в переменный, но размер соответствующего оборудования в то время был слишком большим, чтобы размещать его на автомобилях.

Итак, около 1915 года, электрический автомобиль канул в лету. Правда, United Parcel Service все еще использует несколько электрических грузовиков в Нью-Йорке сегодня, но большая часть их транспортных средств использует бензин или дизельное топливо. Сегодня электромобли мертвы – они рассматриваются как динозавры прошлого.

Но, позвольте нам на секунду остановиться, чтобы рассмотреть преимущества использования электроэнергии как средства передвижения транспортных средств. Обслуживание их абсолютно минимально. Масло почти не требуется для двигателя. Не имеется никакого масла, чтобы заменять, никакого радиатора, чтобы чистить и заполнять, никаких передач, чтобы загрязняться, никаких топливных насосов, никаких водных насосов, никаких проблем с карбюратором, никаких кривошипно-шатунных механизмов, чтобы гнить или заменять и никаких загрязнений, испускаемых в атмосферу. Разве это не тот ответ, который все вроде бы ищут!

Поэтому, эти две проблемы, стоящие перед нами, невысокая скорость с небольшим расстоянием передвижения и замена постоянного переменным током сегодня уже могут быть решены. При сегодняшних технологиях это уже не кажется непреодолимым. Фактически, эта проблема уже была решена в прошлом. Отдаленном прошлом. И не очень отдаленном. Стоп! Задумайтесь над сказанным на несколько мгновений прежде чем продолжать!

Несколько ранее в этой статье, я упомянул человека, Николу Теслу и заявил, что он был самым большим гением, который когда-либо жил. Американское Патентное бюро имеет 1,200 патентов, зарегистрированных от имени Николы Теслы, и, по оценкам, он мог запатентовать дополнительно 1,000 или около этого из памяти!

Но вернемся к нашим электромобилям – в 1931, при финансировании Pierce-Arrow и George Westinghouse. В 1931 Pierce-Arrow была отобрана, чтобы быть проверенной в фабричных территориях в Buffalo, N.Y. Стандартный двигатель внутреннего сгорания был удален и 80 л.с. 1800 об/мин электродвигатель, был установлен на муфту к передаче. Двигатель переменного тока имел длину 100 см. и 75 см. в диаметре. Энергия, которая его питала, находилась “в воздухе” и никаких больше источников питания.

В назначенное время, Никола Тесла прибыл из Нью-Йорка и осмотрел автомобиль Pierce-Arrow. Затем он пошел в местный радио магазин и купил 12 радиоламп, провода и разные резисторы. Коробка, имела размеры длиной 60 см., шириной 30 см. и высотой 15 см. Укрепив коробочку сзади за сиденьем водителя он присоединил провода к без щеточному двигателю воздушного охлаждения. Два стержня диаметром 0.625 мм. и около 7,5 см. длинной торчали из коробки.

Тесла занял водительское место, подключил эти два стержня и заявил, “Теперь мы имеем энергию”. Он нажал на педаль и автомобиль поехал! Это транспортное средство приводимое в движение мотором переменного тока развивало до 150 км/ч и обладало характеристиками лучшими, чем любой автомобиль с двигателем внутреннего сгорания на то время! Одна неделя была потрачена на испытания транспортного средства. Несколько газет в Буффало сообщили об этом испытании. Когда спрашивали: “откуда берется энергия?”, Тесла отвечал: “Из эфира вокруг всех нас”. Люди поговаривали, что Тесла был безумен и так или иначе в союзе со зловещими силами вселенной. Теслу это рассердило, он удалил таинственную коробку с транспортного средства и возвратился в свою лабораторию в Нью-Йорке. Его тайна ушла вместе с ним!

Здесь хотелось бы заметить, что обвинения в магии постоянно сопровождали деятельность Теслы. Его лекции в Нью-Йорке пользовались большой популярностью, причем приходили люди далекие от физики. И не только потому что Тесла обладал способностью объяснять физические законы простым человеческим языком аналогий, но скорее потому, что во время лекций он демонстрировал эксперименты, которые даже сегодня могли бы вызвать удивление у студентов факультетов радиоэлектроники, не то что у простых обывателей.

Например Тесла доставал из своего портфеля небольшой ТЕСЛА-ТРАНСФОРМАТОР, работающий при высоковольтном напряжении и переменном токе высокой частоты при крайне низкой силе тока. Когда он его включал вокруг него начинали извиваться молнии, при этом он спокойно ловил их руками, тогда как люди с первых мест в зале спешно перемещались назад. Этот фокус куда забавнее, чем распиливание человека.

Также хорошим шоу был эксперимент с электролампами. Тесла включал свой трансформатор и обычная лампочка начинала светиться в его руках. Это уже вызывало изумление. Когда же он доставал из портфеля лампочку лишенную спирали накала, просто пустая колба, и она все-равно светилась – удивлению слушателей не было предела и иначе как массовым гипнозом или магией они это объяснить не могли.

“Фокусы” с лампочками объясняются просто, если знать некоторые законы. Как писал Тесла, при определенной частоте колебаний разряженный воздух проводит ток также или даже лучше чем медный провод. Конечно, это было бы невозможно, если бы отсутсвовала единая волновая среда (“эфир”). В отсутствие воздуха эфир становится чистым проводником, тогда как воздух только мешает, поскольку является изолятором.

Некоторые исследователи привлекают к объяснению работы тесловского электромобиля магнитное поле Земли, которое Тесла мог использовать в своем генераторе. Вполне возможно, что используя схему высокочастотного высоковольтного переменного тока Тесла настраивал ее в резонанс с колебаниями “пульса” Земли (около 7.5 герц). При этом, очевидно, частота колебаний в его схеме должна была быть как можно более выскочкой, оставаясь при этом кратной 7.5 герцам (точнее – между 7.5 и 7.8 герц.).

(с) 2003 Рус Эвенс, независимый исследователь.

В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.

Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.

На самом деле ЭЛ. Двигатель не потребляет никакого тока.

В 20-е годы Маркони демонстрировал Муссоллини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.

Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.

Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.

Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.

Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.

Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.

Понимание работы электромобиля Теслы.

Согласно закону причинно следственных связей, если второе вытекает из первого то и первое может вытекать из второго. В физике это принцип обратимости всех процессов.

Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется “прямой пьезоэлектрический эффект”. В тоже время характерно и обратное – возникновения механических деформаций под действием электрического поля – “обратный пьезоэлектрический эффект”. Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках.

Другой пример с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи — электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом — выделение тепла.

При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окружающей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что электродвигатель работает не в абсолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений на которые принято закрывать глаза.

Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потреи энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с “вязкостью” эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (относительно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.

Что сделал Тесла. Тесла понял, что электродвигатель который неизбежно “гонит волны” в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для получения резонанса в такой среде как эфир.

С другой стороны Тесла хорошо видел, что волны в эфире могут быть не побочным продуктом работы электродвигателя, не паразитарными потерями, а движущей силой электродвигателя, если эти волны поддерживать при минимальном расходе энергии. Как подерживать эти волны Тесла хорошо знал. Для этого нужны резонансные ВЧ колебания. Тонкая природа эфира обуславливает необходимость высоких частот для достижения резонанса. Как известно, резонанс наступает при приближении частоты внешнего воздействия (колебания ВЧ генератора) к одной из тех частот, с которыми происходят собственные колебания в системе (в даном случае, принудительные колебания в эфире затухающие медленно относительно частоты ВЧ генератора), возникающие в результате внешнего принудительного воздействия. Оптимальное поддержание волн в эфире представляет собой процесс резонансного накачивания стоячей волны вокруг ВЧ генератора.

Ввиду понимания Теслой изложенного, решение не представляло технической сложности. Он буквально на коленях, в номере гостинницы, собрал ВЧ генератор, устройство, которое “поднимает волну” в пространстве где работает электродвигатель. (Генератор ВЧ а не низкочастотный просто потому что низкочастотный не позволил бы создать стоячую волну через резонанс. Так как рассеивание волн опережало бы импульсы генератора). Частота ВЧ генератора должна была быть в кратном резонансе с частотой электродвигателя. Например если частота двигателя 30 Гц, то частота генератора может быть 30 МГц. Таким образом ВЧ генератор является как бы посредником между средой и двигателем. ВЧ генератор потребляет немного энергии. Как устройство он оптимален (в отличие от электродвигателя) для создания и поддержания волн в эфире. А волны в эфире, если они в резонансе с колебательным контуром работающего двигателя, превращаются в движущую силу (а не в паразитарные потери) для совершения электродвигателем работы. Питание двигателю при такой схеме не нужно. Питание нужно чтобы гнать волну, вызывающую сопротивление среды. А здесь сама среда держит волну и поддерживает вращение двигателя, который с этой волной в резонансе. Таким образом эл. двигатель превращается в генератор, который преобразует энергию колебаний эфира через свое вращение в электрический ток, который из него истекает.

ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той эенргии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.

Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Сдесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигаель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разуманя организация процесса.

Like this:

Like Loading…

Related

Миниатюрная и простая катушка Тесла своими руками

Здравствуйте, уважаемые читатели и самоделкины!
Наверняка почти каждый из Вас много раз слышал про знаменитую катушку Тесла, но никак не доходили руки до ее сборки. Возможно многие считают, что это весьма сложное устройство.
В данной статье, автор YouTube канала «KJDOT» расскажет Вам, как изготовить это устройство в миниатюре.

Эта самоделка очень проста в изготовлении, и с ней справится даже школьник.

Материалы.
— Медные провода 0,25 и 1,2 мм диаметром
— Транзистор 2N2222A
— Резистор 22КОм
— Батарейка 9 В (крона)
— Разъем для батареи
— Припой
— Полиэтиленовая трубка, кусочек фанеры
— Изоляционная лента
— Наждачная бумага.



Инструменты, использованные автором.
— Клеевой пистолет
— Паяльник
— Ножовка, кусачки, ножницы.

Процесс изготовления.
Итак, автор предлагает для начала ознакомиться со схемой устройства.

В качестве корпуса катушки автор будет использовать полиэтиленовую трубку, также подойдет и ПВХ труба. Ее внешний диаметр должен быть около 20 мм. На одном краю трубки он зафиксировал изоляционной лентой край эмалированного провода диаметром 0,25 мм, и начал намотку. Это будет вторичная, высоковольтная обмотка.

Всего потребуется сделать 200 витков, важно укладывать их плотно друг к другу, не допуская перехлестов и пропусков. Также недопустимы разрывы. Последние витки также фиксируются изоляционной лентой.


Излишек длины трубки автор обрезает ножовкой.

Для изготовления первичной обмотки нужен провод диаметром 1,2 мм. Его края зачищаются наждачной бумагой, или ножом. Количество витков обмотки — четыре.

Итак, катушка приклеивается к небольшой дощечке при помощи горячего клея.


Затем на катушку надевается первичная обмотка, и фиксируется в ее нижней части. Также к основанию приклеивается транзистор.


Коллектор транзистора припаивается к одному из выводов первичной обмотки.

К базе транзистора припаивается один вывод высоковольтной обмотки. Второй останется свободным.


Ножки резистора укорачиваются, и он припаивается между базой транзистора, и вторым выводом первичной обмотки.

Теперь остается припаять отрицательный провод питания к коллектору, а положительный — ко второму выводу первичной обмотки. Все места пайки желательно тщательно заизолировать. Горячий клей вполне справится с этой задачей.

Можно подключать батарейку к клеммам, и начинать испытания. Люминесцентная лампа засветилась. Также светится и светодиод, припаянный к небольшой катушке.

А вот так это выглядит в темноте.

Благодарю автора за простую, и легкую для повторения схему катушки Тесла!
Повторите и Вы это простое устройство! Будьте внимательны, Вы имеете дело с высокими напряжениями!
Всем хорошего настроения, удачи, и интересных идей!

Авторское видео можно найти здесь.


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

ИЗОБРЕТЕНИЯ ТЕСЛА

   Было справедливо замечено, что у нас на сайте мало информации для новичков, особенно справочных материалов. Сегодня мы начинаем дополнять этот раздел и первая тема, на мой взгляд самая интересная и таинственная, поскольку она связана с очень таинственной личностью по имени — Никола Тесла. Величайшим изобретением этого человека был демонстрационный генератор беспроводной передачи тока на расстояния. Оказывается метод такой передачи тока на расстояния исвестен уже более 100 лет, еще в далеком 1890 году сербский ученый, гений всех времен и народов Никола Тесла делал эксперементы по этой линии. Из архивов известно, что Тесла втыкал лампы накаливания прямо в землю и они светились ярким светом, патент зарегистрирован именно Теслой.

Н. Тесла

   С Теслой также связывают падение тунгусского метеорита в 1908 году, половина ученых думают, что Тесла спас мир, а некоторые думают что он хотел его разрушить. Еще мальчишкой Тесла придумал гениальный способ передачи тока без проводов — генератор резонанса, который позже получит имя трансформатор или катушка Теслы. Ученые считают, что все изобретения которые появились на свет после рождения Теслы принадлежат именно ему.

тесла генератор

   И правда, Тесла еще 100 лет назад придумал способ беспроводной передачи информации на далекие расстояния, именно на этой основе с развитием техники и науки изобрели интернет, мобильный телефон, Wi-Fi и другое. Многие не знают истиную историю Теслы и его изобретений, поскольку благодаря Т. Эдисону имя Никола Тесла было стерто из страниц истории. Кто изобрел телевизор? Сергей Зворыкин или все же Адамян? Ошиблись друзья — телевизор изобрел Тесла в 1901 году, он же трансформировал первую телепередачу, неоновые лампочки, трансформаторы и преобразователи напряжения и многое многое другое.

Изобретения Н. Тесла - схема генератора

   Но сегодня поговорим о самом известном его изобретении — генераторе резонанса. Как известно информацию можно передать на дальние расстояния (мобильная связь интернет и т.п.), но напряжение… Способ предложенный Теслой очень прост — источник высокого напряжения, высоковольтный конденсатор, искровый промежуток и сама катушка Теслы, которая состоит из двух обмоток — первичная и вторичная. Источник высокого напряжения (в несколько тысяч вольт) заряжает высоковольтный конденсатор, и через искровый зазор конденсатор дает свой потенциал первичной обмотке катушки, из вторичной обмотки уже образуются разряды высокого напряжения (у Теслы доходили до многих миллионов вольт), вес фокус в том, что у трансформатора нет сердечника, мы знаем, что сетевые трансформаторы (50-60 герц в основном имеют железный сердечик, импульсные — ферритовый, последние работают на высокой частоте (до десятков килогерц).

Трансформатор Тесла или передача тока без проводов

   Катушка Теслы работает на частоте свыше пол мегагерц (500 килогерц) и образуются свободные колебания. Катушку Теслы еще называют демонстрационным генератором быстропеременных токов. Эта катушка является передающей (передатчик) который модулирует высокочастотный ток высокого напряжения, но для приема тока должен быть еще и приемник, о конструкции которого вы узнаете в следующей статье. автор: Артур Касьян (АКА).

   Форум по Тесла генераторам

   Обсудить статью ИЗОБРЕТЕНИЯ ТЕСЛА


Безумные изобретения Николы Тесла : kolybanov — LiveJournal

Безумные изобретения Николы Тесла

 

Безумные изобретения Николы Тесла!

Николай Тесла — кто же он, этот безумный гений
опередивший время, и принесший человечеству ряд уникальных изобретений,
таких как: индукционный двигатель, флуоресцентный свет, асинхронная
машина, трехфазные и многофазные трансформаторы, однопроводная линия,
беспроволочная передача энергии, построил первые электрические часы,
турбину, двигатель на солнечной энергии. Он изобрёл радио раньше
Маркони и Попова, получил трёхфазный ток раньше Доливо-Добровольского и
многое другое.

Известно, что воззрения Никола Тесла на природу электромагнитных явлений
отличались от общепринятых. Впрочем это не помешало присвоению ему
почётных учёных званий ведущими научными центрами 13 стран, в том числе
Парижским, Венским, Пражским и многими другими университетами, но это
была лишь надводная часть айсберга. Никола Тесла сегодня — это
технологии беспроводной передачи электроэнергии и прикосновение к
управлению временем ( проект «Радуга» и «Филадельфийский Эксперимент»).
Некоторые эксперименты, такие как электромобиль тесла и шаровые молнии
продемонстрированные им публике , до сих пор поражают воображение….

Никола Тесла родился 10 июля 1856 года, в селе Смиляны (Хорватия), у
отца Милутина Теслы, сербского православного священника, и у матери
Георгины, по прозвищу Дьюка, рождённой в семье Мандич. Никола Тесла был
четвёртым ребёнком, и казалось ему уготована обычная судьба сельского
подростка, тем более что отец мечтал о духовной карьере сына и запретил
ему поступать в Политехническом институте в Граце. Однако тут произошло
то, что можно назвать «божьим промыслом». Никола тяжело заболел. Когда
наступил кризис и было ясно, что он может не выжить, отец согласился с
желанием сына и Тесла выздоровел .

При этом Никола Тесла стал после умственного напряжения страдать от странного нарушения —
появления чётких видений, сопровождавшихся иногда сильными световыми
вспышками. Вот что писал об этом сам Тесла :

«Сильные вспышки света покрывали картины реальных объектов и попросту заменяли мои
мысли. Эти картины предметов и сцен имели свойство действительности, но
всегда осознавались как видения.. Дабы избавиться от мук, вызванных
появлением «странных реальностей», я сосредоточенно переключался на
видения из ежедневной жизни. Вскоре я обнаружил, что лучше всего себя
чувствую тогда, когда расслабляюсь и допускаю, чтобы само воображение
влекло меня всё дальше и дальше. Постоянно у меня возникали новые
впечатления, и так начались мои ментальные путешествия. Каждую ночь, а
иногда и днём, я, оставшись наедине с собой, отправлялся в эти
путешествия — в неведомые места, города и страны, жил там, встречал
людей, создавал знакомства и завязывал дружбу и, как бы это ни казалось
невероятным, но остаётся фактом, что они мне были столь же дороги, как
и моя семья, и все эти иные миры были столь же интенсивны в своих
проявлениях».

К своему удовольствию Тесла замечал, что может
отчётливо визуализировать свои открытия, даже не нуждаясь в
экспериментах, моделях, чертежах. Так он развил свой новый метод
материализации творческих концепций. Тесла очень ясно разграничивал
идеи, которые встраиваются в мысль благодаря видениям, и те, что
возникают путём гиперболизации (преувеличения).

Момент,когда кто-то конструирует воображаемый прибор, связан с проблемой
перехода от сырой идеи к практике. Поэтому любому сделанному таким
образом открытию недостаёт деталей, и оно обычно неполноценно. Мой
метод иной. Я не спешу с эмпирической проверкой. Когда появляется идея,
я сразу начинаю её дорабатывать в своём воображении: меняю конструкцию,
усовершенствую и «включаю» прибор, чтобы он зажил у меня в голове. Мне
совершенно всё равно, подвергаю ли я тестированию своё изобретение в
лаборатории или в уме. Даже успеваю заметить, если что-то мешает
исправной работе. Подобным образом я в состоянии развить идею до
совершенства, ни до чего не дотрагиваясь руками. Только тогда я придаю
конкретный облик этому конечному продукту своего мозга. Все мои
изобретения работали именно так. За двадцать лет не случилось ни одного
исключения. Вряд ли существует научное открытие, которое можно
предвидеть чисто математически, без визуализации. Внедрение в практику
недоработанных, грубых идей — всегда потеря энергии и времени».

В 1900 году, в Нью-Йорке Тесла взялся за строительство Всемирной станции
беспроволочной передачи энергии. Проект был основан на идее резонансной
раскачки ионосферы, предусматривал участие 2000 человек и получил
название «Wardenclyffe».

На острове Лонг-Айленд началось строительство огромного научного городка.

Строится грандиозная башня
высотой 57 метров со стальной шахтой, углублённой в землю на 36 метров.
На верху башни — 55-тонный металлический купол диаметром 20 метров.
Пробный пуск состоялся в 1905 году и произвёл потрясающий эффект.
«Тесла зажёг небо над океаном на тысячи миль», — писали газеты.
Эксперимент был столь же грандиозным, сколь и опасным. Башню высотой в
несколько десятков метров венчала большая медная полусфера — гигантский
усилительный передатчик -, и при включении установки бушевали молнии
длиной до сорока метров, гром был слышен за 15 миль. Вокруг башни пылал
огромный световой шар. Идущие по улице люди шарахались, с ужасом
наблюдая, как между их ногами и землёй проскакивают искры. Лошади
получали электрошоковые удары через железные подковы. Даже бабочки
«беспомощно кружились на своих крыльях, бьющих струйками синих
ореолов». На всех металлических предметах сияли огни святого Эльма. Но,
главное, цель опытов была достигнута: за двадцать пять миль от башни
разом загорелись 200 электрических лампочек. Электрический заряд был
передан без проводов, через землю.

Вторую башню — для передачи
без проводов мощных потоков энергии — изобретатель намеревался
построить у Ниагарского водопада. Но ещё 12 декабря 1900 года Маркони
послал первый трансатлантический сигнал из английского Корнуэлла в
Канаду и его система связи показалась людям более перспективной (или
более «понятной»). Хотя Тесла построил первый волновой радиопередатчик
в 1893 году, на годы опередив Маркони (в 1943 году Верховный суд США
подтвердил приоритет Теслы ), он признался своему спонсору Моргану, что
его интересует не система связи, а беспроводная передача энергии в
любую точку планеты. Но Моргану нужна была именно связь, и он прекратил
финансирование. Охлаждению банкира отчасти способствовали и странные
заявления Теслы, что он регулярно общается с инопланетными
цивилизациями.

Башня
Ворденклифф через ионосферу вполне могла передать огромную энергию в
другую часть света и некоторые приписывают ей Тунгусскую катастрофу
1908 г. Тесла ушел из проекта в 1905 году, но все оборудование стояло
на месте… Когда началась первая мировая война, американское
правительство, обеспокоенное возможностью использования башни
вражескими лазутчиками, приняло решение взорвать ее.

В 1931 г.
Никола Тесла продемонстрировал публике загадочный автомобиль. Для
эксперимента была отобрана Pierce-Arrow. Стандартный двигатель
внутреннего сгорания был удален и 80 л.с. 1800 об/мин электродвигатель,
был установлен на муфту к передаче. Энергия, которая питала двигатель
переменного тока, находилась «в воздухе» и никаких больше источников
питания.

В назначенное время, Никола Тесла прибыл из Нью-Йорка и
осмотрел автомобиль. Затем он в местном радио магазине купил 12
электронных ламп, немного проводов, горстку разномастных резисторов, и
собрал все это хозяйство в коробочку длиной 60 см., шириной 30 см. и
высотой 15 см. с парой стержней длинной 7.5 см. торчащих снаружи.
Укрепив коробочку сзади за сиденьем водителя он выдвинул стержни и
возвестил «Теперь у нас есть энергия». После этого он ездил на машине
неделю, гоняя ее на скоростях до 150 км/ч, при этом транспортное
средство обладало характеристиками лучшими, чем любой автомобиль с
двигателем внутреннего сгорания на то время.

Когда спрашивали:
«откуда берется энергия?», Тесла невозмутимо отвечал: «Из эфира,
который нас окружает». Наверное, мы сегодня уже бы ездили на
автомобилях с вечным двигателем, если бы люди не заговорили о нечистой
силе. Теслу это рассердило, он удалил таинственную коробку с
транспортного средства и возвратился в свою лабораторию в Нью-Йорке.
Тайна ее не разгадана до сих пор.

Некоторые исследователи
считают что Тесла мог использовать в своем генераторе магнитное поле
Земли. Вполне возможно, что используя схему высокочастотного
высоковольтного переменного тока Тесла настраивал ее в резонанс с
колебаниями «пульса» Земли (около 7.5 герц). При этом, очевидно,
частота колебаний в его схеме должна была быть как можно более
выскокой, оставаясь при этом кратной 7.5 герцам (точнее — между 7.5 и
7.8 герц.).

Подробнее о безтопливных генераторах Никола Тесла можете прочесть здесь.
Трансформатор Никола Тесла.

Схема
Трансформатора Тесслы. Самый простейший трансформатор Тесла состоит из
двух индуктивно не связанных ( без общего сердечника) катушек.
Первичная обмотка изготовлена из нескольких витков толстого провода.
Вторичная, высоковольтная, обмотка содержит гораздо большее число
витков (вспомните обычный повышающий трансформатор).

Конденсатор
заряжается до напряжения в несколько десятков киловольт и как только
напряжение на нём достигает напряжения пробоя искрового промежутка,
возникает разряд и через первичную обмотку течёт мощный импульсный ток,
создавая СВЧ электроволну. ( Можно обойтись и без конденсатора, подавая
на разрядник переменный ток ( до 100 кГц), тогда частоту питающего
напряжения находят по максимуму искрения в разряднике). Настроенная ( с
помощью ферритового сердечника) в резонанс с первичной, вторичная
обмотка позволяет получить выходное напряжение до нескольких миллионов
вольт, приводящее к коронному разряду в воздухе ( генератор молний). У
трансформаторов Теслы коэффициент трансформации всегда в 10-50 раз выше
отношения числа витков вторичной обмотки к числу витков первичной и
пропорционален добротности вторичного контура..

Совершенно
необъясним источник знаний Теслы о неизвестных и никем не исследованных
явлениях. Слова — гениальная интуиция, озарение — ровным счётом ничего
не объясняют. Ведь спектр открытий Теслы чрезвычайно широк. Как он
рассчитывал и выбирал параметры своих установок, не имевших и не
имеющих до сих пор аналогов и дававших столь удивительные эффекты? Не
находя никакого другого объяснения, некоторые исследователи считают,
что свои технические и научные откровения он получал, находясь в
изменённых состояниях сознания, позволявших черпать информацию из
единого информационного поля Земли.

Далеко не случаен
непреходящий глубокий интерес Теслы к «тонкому миру», миру эфира, одним
из первооткрывателей которого он и был. Там распространялись радиоволны
его устройств, оттуда он принимал неслышимые ранее никем сигналы. Он
первый техническими средствами исследовал фундаментальную роль
резонансов и вибраций в Природе. Именно в электромагнитных волнах эфира
он надеялся услышать доселе никому не слышимые голоса. Голоса других
миров или, может быть, уловить следы витающих в ледяных безднах Космоса
электромагнитных вибраций живших ранее или неизвестных нам эфирных
существ, будущего материального воплощения человечества по Циолковскому.

В
отличие от современных учёных, он немедленно приступил от слов к делу,
создав аппаратуру и оборудовав ею специальную яхту. Это обеспечивало
сохранение тайны. Тесла отлично понимал, что в его эпоху набиравшего
силу воинствующего материализма его стремления и цели могли показаться,
мягко говоря, странными. Поэтому он был крайне осторожен в своих
высказываниях на эти волнующие его темы. Сохранились лишь упоминания,
что он принимал сигналы техногенной природы неизвестного происхождения,
одним из возможных источников которых он назвал Марс. У некоторых это
вызвало улыбки, а со стороны Теслы — завесу молчания.

О роли
Теслы и масштабе его гения лучше всего свидетельствует факт В
предвоенные годы Тесла начал работать над секретными проектами для
военно-морского ведомства США. Сюда входила и беспроводная передача
энергии для поражения противника, и создание резонансного оружия, и
попытки управления временем.

С
1936 по 1942 год он был директором проекта «Радуга» — по технологии
Стелс, — в рамках которого состоялся печально известный
Филадельфийский эксперимент. Тесла предвидел возможность человеческих
жертв и затягивал проведение эксперимента, настаивал на переделке
оборудования. Однако в условиях войны на это не хватило ни времени, ни
средств, а жертвы считались неизбежными.

Через десять месяцев
после смерти Теслы американский военный флот провел эксперимент по
невидимости корабля для радаров. Для этого на эсминце «Элдридж» создали
«электромагнитный пузырь» — экран, который отводил бы излучение радаров
мимо корабля. С помощью генераторов Николы Теслы.

В ходе
эксперимента выявился совершенно непредвиденный побочный эффект.
Корабль стал невидим не только для радара. Но и для невооруженного
глаза. Более того, свидетели уверяют, что неожиданно увидели его в
Норфолке, на удалении в сотни миль.

Для задействованных в
проекте людей эта телепортация стала катастрофой. Пока корабль
«перемещался» из филадельфийской базы ВМС в Норфолк и обратно, члены
судовой команды полностью потеряли ориентацию. Во времени и
пространстве.

По возвращении на базу многие не могли
передвигаться, не опираясь на стены. И находились в состоянии
неизбывного ужаса. Впоследствии, после длительного периода
реабилитации, все члены команды были уволены как «психически
неуравновешенные».

В итоге проект «Радуга» прикрыли. А
результаты эксперимента засекретили. Что там было на самом деле — не
знает никто. Автора фантасмагории, способного разъяснить случившееся,
уже не было в живых. Может быть преследовались и другие цели, но велись
работы по созданию магнитных полей сверхвысокой напряженности на основе
уникальных установок Теслы. Бесчисленные публикации и журналистские
домыслы на эту тему наводят на мысль о специально проводимой до сих пор
дезинформации. Только сейчас мы начинаем осознавать, дверь в какой
неизведанный мир открыл Тесла и какие открытия ждут нас там.

Исследователи жизни Николы Теслы утверждают:

«Всё
указывает на то, что этот период не был лишён новых открытий. Именно
тогда, уже будучи зрелым учёным, он приходит к фундаментальным выводам,
которые наверняка вскоре станут новой вехой в науке. Ведь из истории
известно, что, как только научная мысль оказывается на перепутье,
учёные оборачиваются к прошлому, ища в нём опору и вдохновение.»

Каким
образом Тесла доходил до своих открытий: влияние сверхнизкочастотных
электромагнитных волн на биологические системы, в особенности на работу
головного мозга, и слияние энергетических структур, так называемых
«огненных шаров», из индукционного поля первичных и вторичных
электромагнитных катушек, и сверхпроводимость естественных и
искусственных сред, так называемый беспроволочный перенос энергии и пр.

Каковы
основные аксиомы космологии Теслы? Каким образом они следуют из его
метафизики? Как он применял их в своих физических опытах? Почему
теоретики и эмпирики современной физики времени так заинтересованы в
том, чтобы реконструировать теорию физической реальности Теслы и его
взгляд на электромагнитные явления? Почему Тесла не сформулировал своей
научной теории и не опубликовал её? Могут ли воззрения Теслы на
этическую сторону научных открытий помочь в облагораживании современных
естественных наук, особенно физики, находящейся в кризисе? Что можно в
более или менее близком будущем ожидать от изучения идей Теслы? Будет
ли преувеличением сказать, что Тесла в 1900 году обосновал возможность
глобального информационного общества в своей знаменитой статье
«Общемировая система»?

Это техническая и технологическая основа
того, что на сегодняшний день именуется «новым мировым устройством»?
Является ли Тесла духовным предвестником новой научно-технологической
цивилизации, именуемой Теслианой, господствующей технологией которой,
возможно, станет «конструирование времени», где единственным,
неисчерпаемым источником энергии будет время, вернее, асинхронность
различных уровней физических процессов?

Его сложный
электромагнитный осциллятор — Башня Ворденклиф (построенная на Лонг
Айленде под Нью-Йорком в 1901-1905 гг.), с помощью которой он мог
производить одновременные вибрации ионосферы и Земли.

Различия взглядов серба Теслы и еврея Эйнштейна на проблему физической реальности фундаментальны…

Согласно
Эйнштейну, максимальная скорость достигается в вакууме, и это —
скорость света, равная 300000км/сек. Для Теслы скорость
электромагнитных волн не ограничена, и проводимые опыты и вычисления
показывают, что в принципе возможен перенос волн и энергии на любые
расстояния, а скорость механических и электроволн сквозь Землю намного
превышает скорость света в вакууме.

Некоторые ученые сейчас
увлеклись изучением торсионного поля, и сведения о нем ищут в
отрывочных записях Теслы. Но их осталось мало. Большинство дневников и
рукописей Николы Тесла исчезли при невыясненных обстоятельствах.

Джерело: http://www.cosmosfera.ru/index.php?…p2_articleid=98

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *