Биполярный транзистор автосигнализации
Транзистор — это полупроводниковый прибор, который может усиливать слабые сигналы и управлять большой мощностью при помощи относительно слабых воздействий.
Рисунок 48. Транзистор управляет большим током при помощи малого |
Транзистор, в отличие от диода, имеет 3 вывода. У биполярных транзисторов эти выводы называются база, эмиттер и коллектор.
Рисунок 49. Виды корпусов биполярных транзисторов |
Состоит биполярный транзистор из кристалла полупроводника (в нем имеются границы сочетания полупроводников с разными типами проводимости), корпуса и металлических выводов, которыми транзистор впаивается в электрическую цепь.
Биполярные транзисторы бывают двух типов — п-р-п и р-п-р.
Рисунок 50. Типы биполярных транзисторов |
Р-п-р транзисторы пропускают ток от эмиттера к коллектору, п-р-п — наоборот. В п-р-п транзисторах основные носители заряда — электроны, а в р-п-р — так называемые «дырки», которые менее мобильны (в смысле скорости переноса мощности), соответственно п-р-п транзисторы быстрее переключаются в общем случае.
В сигнализациях StarLine используются современные компактные транзисторы, предназначенные для поверхностного монтажа ( SMD-монтаж)
Рисунок 51. SMD-транзистор
Транзистор проявляет свои усилительные свойства в трех видах основных схем: схема с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК).
Рисунок 52. Схема включения биполярного транзистора «общий эмиттер» |
При включении транзистора по схеме ОЭ входной сигнал поступает между базой и эмиттером, а нагрузка включена между коллектором и источником питания. Такая схема является наиболее распространенной, так как она дает наибольшее усиление по мощности (в тысячи раз).
Достоинствами схемы с общим эмиттером являются: большой коэффициент усиления по току и большее, чем у схемы с общей базой, входное сопротивление.
Кроме того, для питания схемы требуются два однополярных источника, то есть, на практике можно обойтись одним источником питания.
Единственным серьезным недостатком является худшие температурные и частотные свойства по сравнению со схемой с общей базой.
Рисунок 53. Схема включения биполярного транзистора «общая база» |
В схеме ОБ входной сигнал подается на эмиттер и базу, а нагрузка подключается между коллектором и источником питания. Входная цепь транзистора представляет собой открытый эмиттерный переход, поэтому входное сопротивление мало (десятки Ом).
Недостатки схемы: не усиливает ток и для ее питания требуется два разных источника напряжения. Но схема с общей базой имеет хорошие температурные и частотные свойства.
Рисунок 54. Схема включения биполярного транзистора «общий коллектор» |
В схеме О К входной сигнал поступает на переход эмиттер-база, проходит через нагрузку, а сама нагрузка подключается к эмиттеру и источнику питания. В этой схеме выходное напряжение равно входному, поэтому она получила название «эмиттерный повторитель». При включении общего коллектора напряжение сигнала не усиливается, а лишь повторяется. При этом эмиттерная нагрузка может быть очень небольшой, выходное сопротивление усилителя измеряется сотнями и даже десятками ом. В то же время входное сопротивление очень большое — сотни килоом и даже мегаомы.
При монтаже автомобильных охранных систем биполярный транзистор чаще всего используется в качестве ключа, который либо заперт (не проводит ток), либо открыт (пропускает ток).
на базу не поступает ток управления — транзистор закрыт, тока нет, лампа не горит на базу поступил ток управления — транзистор открылся, ток пошел, лампа зажглась Рисунок 55. Работа транзистора в качестве ключа |
Отпирание или запирание транзистора в режиме ключа происходит при подаче тока на его базу. Например, часто в описании сигнализации пишут «дополнительный канал выполнен по схеме «открытый коллектор». Это значит, что внутри блока сигнализации спрятан биполярный транзистор п-р-п типа, включенный по схеме ОЭ. При срабатывании этого канала на выходе будет появляться масса (через проводящую структуру транзистора), а в исходном состоянии выход ни к чему не подсоединен.
Как правило, выходы, выполненные по схеме «открытый коллектор», допускают небольшой ток нагрузки (до 300 мА). То есть подключить к этому выходу напрямую мощную нагрузку нельзя — оборудование выйдет из строя. Для подключения к такому выходу необходимо использовать дополнительное реле.
Рисунок 56. Схема-подсказка «Транзистор» |
NPN транзистор. Устройство и принцип работы, схема подключения
Итак, транзистор, в котором один полупроводник p-типа размещен между двумя полупроводниками n-типа, известен как NPN-транзистор.
Транзистор NPN усиливает сигнал, поступающий на базу, и генерирует усиленный сигнал на коллекторе. В NPN-транзисторе направление движения электрона происходит от эмиттера к коллектора, из-за чего ток и протекает через транзистор. Устройства такого типа очень часто используют в электрических схемах, потому что их основными носителями заряда являются электроны, которые имеют высокую подвижность по сравнению с дырками (положительно заряженные носители).
Конструкция NPN транзистора
Транзистор NPN, по сути, это два диода, соединенных друг с другом. Диод на левой стороне называется диод на основе перехода «эмиттер-база», а диоды на правой стороне называют диод на основе коллекторного перехода. Имена были подобраны согласно названию переходов.
Транзистор NPN имеет три клеммы, а именно эмиттер, коллектор и базу. Средняя часть NPN-транзистора слегка легирована, и это является наиболее важным фактором его работы. Эмиттер умеренно легирован, а коллектор сильно легирован.
Схема включения NPN транзистора
Принципиальная схема NPN-транзистора показана на рисунке ниже. Коллектор и база подключены в обратном смещении, а эмиттер и база подключены в прямом смещении. Коллектор и база, через которую ведется управление состоянием транзистора ВКЛ./ВЫКЛ., всегда подключены к положительному полюсу источника питания, а эмиттер подключен к отрицательному полюсу источника питания.
Как работает NPN транзистор
Принципиальная схема NPN-транзистора показана на рисунке ниже. Прямое смещение применяется через соединение эмиттер-база, а обратное смещение применяется через соединение коллектор-база. Напряжение прямого смещения VEB мало по сравнению с напряжением обратного смещения VCB.
Эмиттер NPN-транзистора сильно легирован. Когда прямое смещение прикладывается к эмиттеру, большинство носителей заряда движутся к базе. Это вызывает протекание тока эмиттера IE. Электроны входят в материал P-типа и соединяются с дырками.
База NPN-транзистора слегка легирована. Из-за чего только несколько электронов объединяются, а оставшиеся составляют ток базы IB. Ток базы проникает в область коллектора. Обратный потенциал смещения области коллектора прикладывает высокую силу притяжения к электронам, достигающим коллектора. Таким образом, привлекают или собирают электроны на коллекторе.
Весь ток эмиттера входит в базу. Таким образом, можно сказать, что ток эмиттера является суммой токов коллектора и базы.
Транзисторы: описание, подключение, схема, характеристики
Транзистор — электронная “кнопка” в цепи питания, которая нажимается не пальцем, а электрическим сигналом, например от контроллера, что позволяет управлять сильным импульсом при помощи слабого.
Содержание
- Назначение
- Биполярные транзисторы
- Полевые транзисторы
- Пример
- Вывод
Назначение транзисторов
Транзистор — электронная “кнопка” в цепи питания, которая нажимается не пальцем, а электрическим сигналом, например от контроллера, что позволяет управлять сильным импульсом при помощи слабого. Также применяется для преобразования и коммутации электрических сигналов, что широко используется в электронных устройствах любой сложности, в том числе в микросхемах, в качестве атомарного триггера и так далее.Как правило, у транзистора имеется три ноги: для входа, для выхода и для управляющего сигнала.
В DIY-разработках чаще всего используются транзисторы в двух корпусах: ТО-92 для небольших нагрузок и ТО-220 — более крупный и более мощный.
Транзисторы бывают двух типов: биполярные и полевые, каждый из которых имеет свои особенности, преимущества и недостатки.
Биполярные транзисторы.
Простое, надежное, компактное и недорогое устройство. Три контакта имеют следующие названия и назначения:
- Коллектор — контакт для мощного положительного тока, которым следует управлять.
- Эмиттер — контакт для “земли” мощного тока, на который открывается или закрывается транзит в зависимости от состояния Базы.
- База — та самая “кнопка”, подавая небольшой ток на которую можно разблокировать связь коллектор-эмиттер, а заземлив его — заблокировать.
В роли затвора, в нашем случае, чаще всего выступает пин Ардуино. Токоограничивающий резистор нужен для того, чтобы этот самый пин не сгорел, так как при подаче сигнала этот контакт замкнется на землю. Для этой цели достаточно резистора номиналом от 180 Ом.
Основной характеристикой биполярного транзистора является является коэффициент усиления hfe, соотношение между управляющим током и током нагрузки:
Ice = Ibe * hfe
Давайте рассчитаем, какой ток можно пропустить через типовой транзистор bc337 в корпусе ТО-92. Согласно даташита, коэффициент усиления такого транзистора составляет от 160 до 400, возьмем 300 как разумно-оптимальный. Примем номинал токоограничивающего резистора за 1 кОм, значит на базе получим ток:
Ibe = V/R = 5/1000 = 0.005 А
Вычисляем максимальный управляемый ток при помощи нехитрой формулы:
Ice = 5 мА * 300 = 1500 мА
Ответ: при помощи транзистора bc337 мы (теоретически) можем управлять нагрузкой до 1.5 А. При более высокой нагрузке транзистор откроется не полностью, “лишняя” часть пойдет на нагрев и транзистор быстро сгорит.
К основным характеристикам биполярного транзистора также можно причислить максимальное напряжение коллектор-эмиттер и максимальный ток через коллектор. Для нашего примера bc337 эти параметры, соответственно, 50 В и 0.8 А. Получается, что расчетные 1.5 А мы пропускать через этот транзистор все-таки не сможем, максимум 0.8. Поэтому, перед выбором транзистора, обязательно изучите его характеристики и свойства нагрузки.
Биполярные транзисторы выпускаются в двух разновидностях: NPN и PNP.
Транзистор из рассмотренного выше примера — NPN (Negative-Positive-Negative), такие более эффективны, а значит и распространены. PNP-транзисторы работают по обратной логике: при заземлении базы открываются, при подаче на нее питания закрываются.
Полевые транзисторы
Полевый транзисторы позволяют управлять гораздо более мощными нагрузками, при тех же размерах корпуса. В отличие от биполярных транзисторов, ток через затвор полевых не проходит, он изолирован от главной нагрузки, управление происходит только при помощи напряжения, а значит токоограничивающий резистор для них не нужен.- Сток — для подачи управляемой нагрузки;
- Исток — для заземления, связь с которым открывается или закрывается в зависимости от состояния затвора;
- Затвор — управляющий контакт, подаем напряжение — открываем транзистор, заземляем — закрываем.
Основными характеристиками полевого транзистора являются:
- Максимальное напряжение сток-исток;
- Максимальный ток через сток;
- Сопротивление сток-исток;
- Рассеиваемая мощность;
Наиболее известная разновидность полевого транзистора — MOSFET, чаще всего в DIY используются именно они. Особое внимание обратите на транзисторы с буквой L в маркировке, например IRLZ44n, они очень удобны для работы с контроллерами благодаря логическому уровню управления. Это значит, что для полного открытия гарантированно хватит сигнала с пина, обычно это от 2,5 В и выше. Максимальный ток сток-исток таких транзисторов многократно больше, чем у полевых, в случае IRLZ44n это аж 45 А, против 0,8 А у bc337. Поэтому для управления серьезной нагрузкой рекомендуется использовать именно их.
Пример
Рассматривать применение транзисторов в качестве простого выключателя мы здесь не будем, тем более, что такие схемы уже приведены выше. Давайте попробуем сделать из них что-то более сложное и полезное. Например, управление асинхронным электромотором с возможностью реверса. Для этого применим схему подключения, известную как Н-мост. Простейший вариант будет выглядеть так:Для запуска мотора в одном направлении, подаем на первый пин единицу, на второй ноль. Нетрудно заметить на схеме, что при этом ток пойдет по красной линии, плюс на левый контакт мотора, минус на правый. Если выставим состояние пинов в обратное положение, ток пойдет по синей линии и мотор будет крутиться в противоположном направлении. Если оба пина выставить в одинаковое положение, мотор вращаться не будет, так как на его контактах будет отсутствовать разница потенциалов.
Можно обойтись и одним пином, для этого подключить второй управляющий контакт через логический инвертор, как пример — микросхему 74HC04, которая превращает ноль в единицу и наоборот. Тогда на пинах всегда будет разноименный сигнал и мотор будет вращаться в ту или другую сторону, в зависимости от подключения и состояния единственного управляющего пина.
Вывод
Транзистор — очередной элементарный “кирпичик”, один из базовых элементов электроники, наряду с резистором и конденсатором и диодом. Комбинацией этих “кубиков” создается подавляющее количество электронных схем. Знать эти элементы, их свойства, разновидности и уметь ими пользоваться должен каждый DIY-мастер.
схемы включения. Схема включения биполярного транзистора с общим эмиттером
Статическим режимом работы транзистора называется такой режим, при котором отсутствует нагрузка в выходной цепи, а изменение входного тока или напряжения не вызывает изменение выходного напряжения Рис.7.
Статические характеристики транзисторов бывают двух видов: входные и выходные . На Рис.8. изображена схема установки для измерения статических характеристик транзистора, включённого по схеме с общим эмиттером.
Рис.8. Схема
измерений статических
параметров транзистора с ОЭ.
Входная статическая характеристика I Б от входного напряжения U БЭ при постоянном выходном напряжении U КЭ . Для схемы с общим эмиттером:
I Б = f (U БЭ) при U ЭК = const.
Поскольку ветви входной статической характеристики для U КЭ > 0 расположены очень близко друг к другу и практически сливаются в одну, то на практике с достаточной точностью можно пользоваться одной усреднённой характеристикой (Рис.9а ). Особенность входной статической характеристики является наличие в нижней части нелинейного участка в районе изгиба U 1 (приблизительно 0,2…0,3 В для германиевых транзисторов и 0,3…0,4 В – для кремниевых).
Выходная статическая характеристика – это зависимость выходного тока I К от выходного напряжения U КЭ при постоянном входном токе I Б . Для схемы включения с общим эмиттером:
I К = f (U КЭ) при I Б = const.
Из Рис.9б видно, что выходные характеристики представляют собой прямые линии, почти параллельные оси напряжения. Это объясняется тем, что коллекторный переход закрыт независимо от величины напряжения база-коллектор, и ток коллектора определяется только количеством носителей заряда, проходящих из эмиттера через базу в коллектор, т. е. током эмиттера I Э .
Динамическим режимом работы транзистора называется такой режим, при котором в выходной цепи стоит нагрузочный резистор R К , за счёт которого изменение входного тока или напряжения U ВХ будет вызывать изменение выходного напряжения U ВЫХ = U КЭ (Рис.10).
Рис.9. Статические характеристики транзистора с ОЭ: а – входные; б – выходные.
Входная динамическая характеристика – это зависимость входного тока I Б от входного напряжения U БЭ при наличии нагрузки. Для схемы с общим эмиттером:
I Б = f (U БЭ)
Поскольку в статическом режиме для U КЭ > 0 мы пользуемся одной усреднённой характеристикой, то входная динамическая характеристика совпадает со входной статической (Рис.11а ).
Рис.10. Схема включения транзистора в динамическом режиме с ОЭ.
Выходная динамическая (нагрузочная) характеристика представляет собой зависимость выходного напряжения U КЭ от выходного тока I К при фиксированных значениях входного тока I Б (Рис.11б ):
U КЭ = E К – I К R К
Так как это уравнение линейное, то выходная динамическая характеристика представляет собой прямую линию и строится на выходных статических характеристиках по двум точкам, например: А , В на Рис.11б .
Координаты точки А [U КЭ = 0; I K = Е К ⁄ R К ] – на оси I K .
Координаты точки В [I K = 0; U КЭ = Е К ] – на оси U КЭ.
Координаты точки Р [U 0К; I 0 K ] – соответствуют положению рабочей точки РТ в режиме покоя (при отсутствии сигнала).
Рис.11. Динамические характеристики транзистора с ОЭ: а) – входная; б) – выходная.
Нагрузочная пряма проводится через любые две точки А, В, или Р, координаты которых известны.
В зависимости от состояния p-n переходов транзисторов различают несколько видов его работы – режим отсечки, режим насыщения, предельный и линейный режимы (Рис.11).
Режим отсечки. Это режим, при котором оба его перехода закрыты – транзистор заперт. Ток базы в этом случае равен нулю. Ток коллектора будет равен обратному току I К0 , а напряжение U КЭ = E К.
Режим насыщения – это режим, когда оба перехода – и эмиттерный и коллекторный открыты, а в транзисторе происходит свободный переход носителей зарядов. При этом ток базы будет максимальный, ток коллектора будет равен току коллектора насыщения, а напряжение между коллектором и эмиттером стремиться к нулю.
I Б = max; I К ≈ I КН; U КЭ = E К – I КН R Н; U КЭ → 0.
Предельные режимы – это режимы, работа в которых ограничена максимально-допустимыми параметрами: I К доп, U КЭ доп, P К доп (Рис.11б ) и I Б нас, U БЭ доп (Рис.11а ) и связана с перегревом транзистора или выхода его из строя.
Линейный режим – это режим, в котором обеспечивается достаточная линейность характеристик и он может использоваться для активного усиления.
Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный , поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки . Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.
Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.
Устройство биполярного транзистора.
Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей . Это похоже на два диода , соединенных лицом к лицу или наоборот.
У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter ). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.
Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.
Как уже говорилось в статье о типах проводимости в полупроводниках , в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.
Подключим источник напряжения между коллектором и эмиттером V КЭ (V CE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.
Теперь подключим напряжение между базой и эмиттером V BE , но значительно ниже чем V CE (для кремниевых транзисторов минимальное необходимое V BE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.
В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.
В итоге мы получаем два тока: маленький — от базы к эмиттеру I BE , и большой — от коллектора к эмиттеру I CE .
Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы I B , сильно меняется ток коллектора I С. Так и происходит усиление сигнала в биполярном транзисторе . Cоотношение тока коллектора I С к току базы I B называется коэффициентом усиления по току. Обозначается β , hfe или h31e , в зависимости от специфики расчетов, проводимых с транзистором.
Простейший усилитель на биполярном транзисторе
Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.
1.Описание основных элементов цепи
Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.
2. Расчет входного тока базы I b
Теперь посчитаем ток базы I b . Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (V max) и минимальном (V min). Назовем эти значения тока соответственно — I bmax и I bmin .
Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер V BE . Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода , и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером V BE = 0.6V. А поскольку эмиттер подключен к земле (V E = 0), то напряжение от базы до земли тоже 0.6V (V B = 0.6V).
Посчитаем I bmax и I bmin с помощью закона Ома:
2. Расчет выходного тока коллектора I С
Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора (I cmax и I cmin).
3. Расчет выходного напряжения V out
Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:
4. Анализ результатов
Как видно из результатов, V Cmax получился меньше чем V Cmin . Это произошло из-за того, что напряжение на резисторе V Rc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение V out /V in в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.
Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток I b , несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.
Таким образом, на вывод V out поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.
Режимы работы биполярного транзистора
В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:
- Режим отсечки (cut off mode).
- Активный режим (active mode).
- Режим насыщения (saturation mode).
- Инверсный ражим (reverse mode).
Режим отсечки
Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки .
Активный режим
В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.
Режим насыщения
Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.
В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».
Инверсный режим
В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.
Основные параметры биполярного транзистора.
Коэффициент усиления по току – соотношение тока коллектора I С к току базы I B . Обозначается β , hfe или h31e , в зависимости от специфики расчетов, проводимых с транзисторов.
β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.
Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается R in (R вх ). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.
R вх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).
Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.
Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление R out = 0 (R вых = 0)).
Страница 1 из 2
Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два электронно-дырочных перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы. В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р и n-р-n. Условные графические обозначения транзисторов р-n-р и n-р-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер.
Принцип работы транзисторов р-n-р и n-р-n одинаков, поэтому в дальнейшем будем рассматривать лишь работу транзистора со структурой р-n-р.
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало: у высокочастотных транзисторов оно менее 10 микрометров (1 мкм = 0,001 мм), а у низкочастотных не превышает 50 мкм.
При работе транзистора на его переходы поступают внешние напряжения от источника питания. В зависимости от полярности этих напряжений каждый переход может быть включен как в прямом, так и в обратном направлении. Различают три режима работы транзистора: 1) режим отсечки — оба перехода и, соответственно, транзистор полностью закрыты; 2) режим насыщения — транзистор полностью открыт;3) активный режим — это режим, промежуточный между двумя первыми. Режимы отсечки и насыщения совместно применяются в ключевых каскадах, когда транзистор попеременно то полностью открыт, то полностью заперт с частотой импульсов, поступающих на его базу. Каскады, работающие в ключевом режиме, применяются в импульсных схемах (импульсные блоки питания, выходные каскады строчной развертки телевизоров и др.). Частично в режиме отсечки могут работать выходные каскады усилителей мощности.
Наиболее часто транзисторы применяются в активном режиме. Такой режим определяется подачей на базу транзистора напряжения небольшой величины, которое называется напряжением смещения (U см.) Транзистор приоткрывается и через его переходы начинает течь ток. Принцип работы транзистора основан на том, что относительно небольшой ток, текущий через эмиттерный переход (ток базы), управляет током большей величины в цепи коллектора. Ток эмиттера представляет собой сумму токов базы и коллектора.
Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (I ЭБО ) И коллектора (I КБО ). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).
Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения . Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками U ЭБ и U КБ . В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (I Э.нас ) и коллектора (I К.нас ).
Для усиления сигналов применяется активный режим работы транзистора .
При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях.
Под действием прямого напряжения U ЭБ происходит инжекция дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в ней неосновными носителями заряда и под действием сил диффузии движутся (диффундируют) к коллекторному р-n-переходу. Часть дырок в базе заполняется (рекомбинирует) имеющимися в ней свободными электронами. Однако ширина базы небольшая — от нескольких единиц до 10 мкм. Поэтому основная часть дырок достигает коллекторного р-n-перехода и его электрическим полем перебрасывается в коллектор. Очевидно, что ток коллектора I К
p не может быть больше тока эмиттера, так как часть дырок рекомбинирует в базе. Поэтому I K
p
= h 21Б I э
Величина h 21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h 21Б = 0,90…0,998. Так как коллекторный переход включен в обратном направлении (часто говорят — смещен в обратном направлении), через него протекает также обратный ток I КБО , образованный неосновными носителями базы (дырками) и коллектора (электронами). Поэтому полный ток коллектора транзистора, включенного по схеме с общей базой
I к = h 21Б I э + I КБО
Дырки, не дошедшие до коллекторного перехода и прорекомбинировавшие (заполнившиеся) в базе, сообщают ей положительный заряд. Для восстановления электрической нейтральности базы в нее из внешней цепи поступает такое же количество электронов. Движение электронов из внешней цепи в базу создает в ней рекомбинационный ток I
Б.рек. Помимо рекомбинационного через базу протекает обратный ток коллектора в противоположном направлении и полный ток базы
I
Б = I
Б.рек — I КБО
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.
В предыдущей схеме электрическая цепь, образованная источником U ЭБ , эмиттером и базой транзистора, называется входной, а цепь, образованная источником U КБ , коллектором и базой этого же транзистора,— выходной. База является общим электродом транзистора для входной и выходной цепей, поэтому такое его включение называют схемой с общей базой, или сокращенно «схемой ОБ».
На следующем рисунке изображена схема, в которой общим электродом для входной и выходной цепей является эмиттер. Это схема включения с общим эмиттером, или сокращенно «схема ОЭ» .
В ней выходным током, как и в схеме ОБ, является ток коллектора I
К , незначительно отличающийся от тока эмиттера I
э , а входным — ток базы I
Б , значительно меньший, чем коллекторный ток. Связь между токами I
Б и I
К в схеме ОЭ определяется уравнением: I
К = h 21 Е I
Б + I КЭО
Коэффициент пропорциональности h 21 Е
называют статическим коэффициентом передачи тока базы. Его можно выразить через статический коэффициент передачи тока эмиттера h 21Б
h 21 Е
= h 21Б /
(1 —h 21Б )
Если h 21Б находится в пределах 0,9…0,998, соответствующие значения h 21 Е
будут в пределах 9…499.
Составляющая I кэо
называется обратным током коллектора в схеме ОЭ. Ее значение в 1+h 21 Е
раз больше, чем I КБО
, т. е.I КЭО
=(1+ h 21 Е) I КБО.
Обратные токи I КБО
и I КЭО
не зависят от входных напряжений U
ЭБ и U
БЭ и вследствие этого называются неуправляемыми составляющими коллекторного тока. Эти токи сильно зависят от температуры окружающей среды и определяют температурные свойства транзистора. Установлено, что значение обратного тока I КБО
удваивается при повышении температуры на 10 °С для германиевых и на 8 °С для кремниевых транзисторов. В схеме ОЭ температурные изменения неуправляемого обратного тока I КЭО
могут в десятки и сотни раз превысить температурные изменения неуправляемого обратного тока I КБО
и полностью нарушить работу транзистора. Поэтому в транзисторных схемах применяются специальные меры термостабилизации транзисторных каскадов, способствующие уменьшению влияния температурных изменений токов на работу транзистора.
На практике часто встречаются схемы, в которых общим электродом для входной и выходной цепей транзистора является коллектор. Это схема включения с общим коллектором, или «схема ОК» (эмиттерный повторитель) .
Необходимые пояснения даны, переходим к сути.
Транзисторы. Определение и история
Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)
Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.
Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.
Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.
В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.
Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.
И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.
Биполярный транзистор. Принцип работы. Основные характеристики
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.
Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.
Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой — слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».
Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.
Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.
Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.
Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.
Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.
Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.
Третий параметр биполярного транзистора — коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.
Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .
Также параметрами биполярного транзистора являются:
- обратный ток коллектор-эмиттер
- время включения
- обратный ток колектора
- максимально допустимый ток
Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.
Режимы работы биполярного транзистора
Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.- Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
- Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
- Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
- Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.
Схемы включения биполярных транзисторов
Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.
Схема включения с общим эмиттером
Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.
Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.
Схема включения с общей базой
Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.
В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.
Схема включения с общим коллектором
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.
Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала
Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.
В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.
Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).
Два слова о каскадах
Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.
Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).
Другие области применения биполярных транзисторов
Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.Маркировка
Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173
Теги: Добавить метки
Являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.
Классификация
Транзисторы разделяют на группы:
- По материалам: чаще всего используются арсенид галлия и кремний.
- По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
- По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
- По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.
Как работают транзисторы?
Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.
Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.
База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей — электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.
Схемы включения способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.
Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками — основными носителями. Образуется базовый ток I б. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.
Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: I э = I б + I к.
Параметры транзисторов
- Коэффициенты усиления по напряжению U эк /U бэ и току: β = I к /I б (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
- Входное сопротивление.
- Частотная характеристика — работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.
Биполярный транзистор: схемы включения, режимы работы
Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.
1. Схема с ОК
Схема включения с общим коллектором: сигнал поступает на резистор R L , который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.
Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.
2. Схема с ОБ
Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С 1 , а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.
Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.
3. Схема с ОЭ
Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор R L , а к эмиттеру подключается отрицательный полюс внешнего питания.
Переменный сигнал со входа поступает на электроды эмиттера и базы (V in), а в коллекторной цепи он становится уже больше по величине (V CE). Основные элементы схемы: транзистор, резистор R L и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С 1 , препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R 1 , через который транзистор открывается.
В коллекторной цепи напряжения на выходе транзистора и на резисторе R L вместе равны величине ЭДС: V CC = I C R L + V CE .
Таким образом, небольшим сигналом V in на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения — в 10-200 раз. Соответственно, мощность также повышается.
Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании Выходное сопротивление составляет 2-20 кОм.
Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.
Режимы работы
На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.
1. Режим отсечки
Данный режим создается, когда значение напряжения V БЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.
2. Активный режим
Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.
3. Режим насыщения
Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.
Все режимы работы зависят от характера выходных характеристик, изображенных на графике.
Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.
Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания V CC , а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: I C = (V CC — V CE)/R C . Из рисунка следует, что рабочая точка, определяющая ток коллектора I C и напряжение V CE , будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы I В.
Зона между осью V CE и первой характеристикой выхода (заштрихована), где I В = 0, характеризует режим отсечки. При этом обратный ток I C ничтожно мал, а транзистор закрыт.
Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении I В коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью I C и самой крутой характеристикой.
Как ведет себя транзистор в разных режимах?
Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.
Биполярный транзистор: схемы включения, усилитель
Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.
Работу усилителя хорошо видно на временных диаграммах.
Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.
Работа в режиме переключения
Предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.
Заключение
Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.
Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.
Транзистор
Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“
На этом занятии Школы начинающего радиолюбителя мы продолжим изучение полупроводников. На прошлом занятии мы рассматривали диоды, а на этом занятии рассмотрим более сложный полупроводниковый элемент – транзисторы.
Транзистор является более сложной полупроводниковой структурой, чем диод. Он состоит из трех слоев кремния (бывают еще и германиевые транзисторы) с разной проводимостью. Это могут быть структуры типа n-p-n или p-n-p. Функционирование транзисторов, также как и диодов, основывается на свойствах p-n переходов.Центральный, или средний слой, называют базой (Б), а два других соответственно – эмиттер (Э) и коллектор (К). Следует отметить, что существенной разницы между двумя типами транзисторов нет, и многие схемы могут быть собраны с тем или другим типом, при соблюдении соответствующей полярности источника питания. На рисунке ниже приведено схемное изображение транзисторов, транзистор p-n-p отличается от транзистора n-p-n направлением стрелки эмиттера:
Выделяют два основных типа транзисторов: биполярные и униполярные, которые различаются по конструктивным особенностям. В рамках каждого типа существует много разновидностей. Главное различие этих двух типов транзисторов заключается в том, что управление процессами, происходящими в ходе работы прибора, в биполярном транзисторе осуществляется входным током, а в униполярном транзисторе – входным напряжением.
Биполярные транзисторы, как уже говорилось выше, представляют собой слоенный пирог из трех слоев. В упрощенном виде транзистор можно представить как два встречно включенных диодов:(при этом, следует отметить, что переход база – эмиттер представляет собой обычный стабилитрон, напряжение стабилизации которого 7…10 вольт). Исправность транзистора можно проверить также как и исправность диода, обычным омметром, измеряя сопротивление между его выводами. Переходы, аналогичные имеющимся в диоде, существуют в транзисторе между базой и коллектором, а также между базой и эмиттером. На практике такой способ для проверки транзисторов используется очень часто. Если омметр подключить между коллекторным и эмиттерным выводами, прибор покажет разрыв цепи (при исправном транзисторе), что естественно так как диоды включены встречно. А это означает, что при любой полярности приложенного напряжения один из диодов включен в прямом направлении, а второй в обратном, поэтому ток проходить не будет.
Объединение двух пар переходов приводит к проявлению чрезвычайно интересного свойства, именуемого транзисторным эффектом. Если к транзистору между коллектором и эмиттером приложить напряжение, тока практически не будет (о чем и говорилось чуть выше). Если же произвести подключение в соответствии со схемой (как на рисунке ниже), где на базу через ограничивающее сопротивление (чтобы не повредить транзистор) подается напряжение, то через коллектор будет проходить ток более сильный чем ток базы. При повышении тока базы ток коллектора тоже будет увеличиваться.
С помощью измерительного прибора можно определить соотношение токов базы, коллектора и эмиттера. Это можно проверить простым способом. Если сохранить напряжение питания, к примеру на уровне 4,5 В, изменив значение сопротивления в цепи базы с R до R/2, ток базы удвоится, пропорционально увеличится и ток коллектора, к примеру:
U=4,5 В; сопротивление =R | U=4,5 В; сопротивление =R/2 |
Iб=1 мА | Iб=2 мА |
Iэ=100 мА | Iэ=200 мА |
Iк=99 мА | Iк=198 мА |
Следовательно, при любом напряжение на сопротивление R, ток коллектора будет в 99 раз больше тока базы, то есть транзистор имеет коэффициент усиления по току равный 99. Другими словами, транзистор усиливает ток базы в 99 раз. Этот коэффициент обозначают буквой ?. Коэффициент усиления равен отношению тока коллектора к току базы:
? = Iк/Iб
На базу транзистора можно подать и переменное напряжение. Но, необходимо, чтобы транзистор работал в линейном режиме. Для нормального функционирования в линейном режиме транзистору следует подать на базу постоянное напряжение смещения и подвести переменное напряжение, которое он будет усиливать. Таким образом транзисторы усиливают слабые напряжения, поступающие к примеру с микрофона, до уровня, который способен привести в действие громкоговоритель. Если коэффициент усиления не достаточен, можно использовать несколько транзисторов или их последовательных каскадов. Чтобы при соединении каскадов не нарушать режимов работы каждого из них по постоянному току ( при которых обеспечивается линейность), используют разделительные конденсаторы. Биполярные транзисторы обладают электрическими характеристиками, обеспечивающими им определенные преимущества по сравнению с другими усилительными компонентами.
Как мы уже знаем, существуют еще (кроме биполярных) и униполярные транзисторы. Коротко рассмотрим два их них – полевые и однопереходные транзисторы. Как и биполярные они бывают двух типов и имеют по три вывода:
Электродами полевых транзисторов являются: затвор – З, сток – С, соответствующий коллектору и исток – И, отождествляемый с эмиттером. Полевые транзисторы с n- и p- каналом различаются по направлению стрелки затвора. Однопереходные транзисторы, которые иногда называют двухбазовыми диодами, в основном используются в схемах генераторов импульсных периодических сигналов.
Имеется три фундаментальных схемы включения транзисторов в усилительном каскаде:
?
с общим эмиттером (а)?
с общим коллектором (б)?
с общей базой (в)Биполярный транзистор, включенный по схеме с общим эмиттером, в зависимости от выходного сопротивления источника питания R1 и сопротивления нагрузки Rн усиливает входной сигнал и по напряжению, и по току. Коэффициент усиления биполярного транзистора обозначается как h31э (читается: аш-два-один-э, где э – схема с общим эмиттером), и у каждого транзистора он разный. Величина коэффициента h31э (его полное название – статический коэффициент передачи тока базы h31э) зависит только от толщины базы транзистора (ее изменить нельзя) и от напряжения между коллектором и эмиттером, поэтому при небольшом напряжении (менее 20 В) его коэффициент передачи тока при любом токе коллектора практически неизменен и незначительно увеличивается при увеличении напряжения на коллекторе.
Коэффициент усиления по току – Кус.i и коэффициент усиления по напряжению – Кус.u биполярного транзистора, включенного по схеме с общим эмиттером, зависит от отношения сопротивления нагрузки (на схеме обозначено как Rн) и источника сигнала (на схеме обозначено как R1). Если сопротивление источника сигнала в h31э раза меньше сопротивления нагрузки, то коэффициент усиления по напряжению чуть меньше единицы (0,95…0,99), а коэффициент усиления по току равен h31э. Когда сопротивление источника сигнала более чем в h31э раза меньше сопротивления нагрузки, то коэффициент усиления по току остается неизменным (равным h31э), а коэффициент усиления по напряжению уменьшается. Если же, наоборот, входное сопротивление уменьшить, то коэффициент усиления по напряжению становится больше единицы, а коэффициент усиления по току, при ограничении протекающего через переход база-эмиттер транзистора тока, не изменяется. Схема с общим эмиттером – единственная схема включения биполярного транзистора, которая требует ограничения входного (управляющего) тока. Можно сделать несколько выводов: – базовый ток транзистора нужно ограничивать, иначе сгорит или транзистор, или управляющая им схема; – с помощью транзистора, включенного по схеме ОЭ, очень легко управлять высоковольтной нагрузкой низковольтным источником сигнала. Через базовый, а следовательно и коллекторный переходы протекает значительный ток при напряжении база-эмиттер всего 0,8…1,5 В. Если амплитуда (напряжение) больше этого значения – нужно поставить между базой транзистора и выходом управляющей схемы токоограничивающий резистор (R1). Рассчитать его сопротивление можно по формулам:
Ir1=Irн/h31э R1=Uупр/Ir1 где:
Irн – ток через нагрузку, А; Uупр – напряжение источника сигнала, В; R1 – сопротивление резистора, Ом.
Еще одна особенность схемы с ОЭ – падение напряжения на переходе коллектор-эмиттер транзистора можно практически уменьшить до нуля. Но для этого надо значительно увеличивать базовый ток, что не очень выгодно. Поэтому такой режим работы транзисторов используют только в импульсных, цифровых схемах.
Транзистор, работающий в схеме усилителя аналогового сигнала, должен обеспечивать примерно одинаковое усиление сигналов с разной амплитудой относительно некоторого “среднего” напряжения. Для этого его нужно немножко “приоткрыть”, постаравшись не “переборщить”. Как видно из рисунка ниже (левый):
ток коллектора и падение напряжения на транзисторе при плавном увеличении тока базы вначале изменяются почти линейно, и лишь потом, с наступлением насыщения транзистора, прижимаются к осям графика. Нас интересуют только прямые части линий (до насыщения) – очевидно, что они символизируют линейное усиление сигнала, то есть, при изменении управляющего тока в несколько раз во столько же раз изменится и ток коллектора (напряжение в нагрузке).
Форма аналогового сигнала показана на рисунке выше (справа). Как видно из графика, амплитуда сигнала постоянно пульсирует относительно некоего среднего напряжения Uср, причем она может как увеличиваться, так и уменьшаться. Но биполярный транзистор реагирует только на увеличение входного напряжения (вернее тока). Вывод: нужно сделать так, чтобы транзистор даже при минимальной амплитуде входного сигнала был немножко приоткрыт. При средней амплитуде Uср он откроется чуть сильнее, а при максимальной Umax откроется максимально. Но при этом он не должен входить в режим насыщения (см.рис. выше) – в этом режиме выходной ток перестает линейно зависеть от входного, в следствии чего происходит сильное искажение сигнала.
Обратимся снова к форме аналогового сигнала. Так как и максимальная и минимальная амплитуды входного сигнала относительно средней примерно одинаковы по величине (и противоположны по знаку), то нам нужно подать на базу транзистора такой постоянный ток (ток смещения – Iсм), чтобы при “среднем” напряжении на входе транзистор был открыт ровно наполовину. Тогда при уменьшении входного тока транзистор будет закрываться и ток коллектора будет уменьшатся, а при увеличении входного тока он будет открываться еще сильнее.
2.16. Составной транзистор (схема Дарлингтона)
ГЛАВА 2. ТРАНЗИСТОРЫ
Некоторые типы усилительных каскадов
Если соединить транзисторы, как показано на рис. 2.60, то полученная схема будет работать как один транзистор, причем его коэффициент β будет равен произведению коэффициентов β составляющих транзисторов. Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс.
Рис. 2.60. Составной транзистор Дарлингтона.
В транзисторе Дарлингтона падение напряжения между базой и эмиттером в два раза больше обычного, а напряжение насыщения равно по крайней мере падению напряжения на диоде (так как потенциал эмиттера транзистора Т1 должен превышать потенциал эмиттера транзистора Т2, на величину падения напряжения на диоде). Кроме того, соединенные таким образом транзисторы ведут себя как один транзистор с достаточно малым быстродействием, так как транзистор T1 не может быстро выключить транзистор Т2. С учетом этого свойства обычно между базой и эмиттером транзистора Т2 включают резистор (рис. 2.61). Резистор R предотвращает смешение транзистора Т2 в область проводимости за счет токов утечки транзисторов Т1 и Т2. Сопротивление резистора выбирают так, чтобы токи утечки (измеряемые в наноамперах для малосигнальных транзисторов и в сотнях микроампер для мощных транзисторов) создавали на нем падение напряжения, не превышающее падения напряжения на диоде, и вместе с тем чтобы через него протекал ток. малый по сравнению с базовым током транзистора Т2. Обычно сопротивление R составляет несколько сотен ом в мощном транзисторе Дарлингтона и несколько тысяч ом в малосигнальном транзисторе Дарлингтона.
Рис. 2.61. Повышение скорости выключения в составном транзисторе Дарлингтона.
Промышленность выпускает транзисторы Дарлингтона в виде законченных модулей, включающих, как правило, и эмиттерный резистор. Примером такой стандартной схемы служит мощный n-p-n — транзистор Дарлингтона типа 2N6282, его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.
Соединение транзисторов по схеме Шиклаи (Sziklai). Соединение транзисторов по схеме Шиклаи представляет собой схему, подобную той. которую мы только что рассмотрели. Она также обеспечивает увеличение коэффициента β. Иногда такое соединение называют комплементарным транзистором Дарлингтона (рис. 2.62). Схема ведет себя как транзистор n-p-n — типа, обладающий большим коэффициентом β. В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения, как и в предыдущей схеме, равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора Т2 рекомендуется включать резистор с небольшим сопротивлением. Разработчики применяют эту схему в мощных двухтактных выходных каскадах, когда хотят использовать выходные транзисторы только одной полярности. Пример такой схемы показан на рис. 2.63. Как и прежде, резистор представляет собой коллекторный резистор транзистора T1 Транзистор Дарлингтона, образованный транзисторами Т2 и Т3. ведет себя как один транзистор n-p-n — типа. с большим коэффициентом усиления по току. Транзисторы Т4 и Т5, соединенные по схеме Шиклаи, ведут себя как мощный транзистор p-n-p — типа. с большим коэффициентом усиления. Как и прежде, резисторы R3 и R4 имеют небольшое сопротивление. Эту схему иногда называют двухтактным повторителем с квазидополнительной симметрией. В настоящем каскаде с дополнительной симметрией (комплементарном) транзисторы Т4 и Т5, были бы соединены по схеме Дарлингтона.
Рис. 2.62. Соединение транзисторов по схеме Шиклаи («дополняющий транзистор Дарлингтона»).
Рис. 2.63. Мощный двухтактный каскад, в котором использованы выходные транзисторы только n-p-n — типа.
Транзистор со сверхбольшим значением коэффициента усиления по току. Составные транзисторы — транзистор Дарлингтона и ему подобные — не следует путать с транзисторами со сверхбольшим значением коэффициента усиления по току, в которых очень большое значение коэффициента h21э получают в ходе технологического процесса изготовления элемента. Примером такого элемента служит транзистор типа 2N5962. для которого гарантируется минимальный коэффициент усиления по току, равный 450, при изменении коллекторного тока в диапазоне от 10 мкА до 10 мА; этот транзистор принадлежит к серии элементов 2N5961-2N5963, которая характеризуется диапазоном максимальных напряжений Uкэ от 30 до 60 В (если коллекторное напряжение должно быть больше, то следует пойти на уменьшение значения C). Промышленность выпускает согласованные пары транзисторов со сверхбольшим значением коэффициента β. Их используют в усилителях с низким уровнем сигнала, для которых транзисторы должны иметь согласованные характеристики; этому вопросу посвящен разд. 2.18. Примерами подобных стандартных схем служат схемы типа LM394 и МАТ-01; они представляют собой транзисторные пары с большим коэффициентом усиления, в которых напряжение Uбэ согласовано до долей милливольта (в самых хороших схемах обеспечивается согласование до 50 мкВ), а коэффициент h21э — до 1%. Схема типа МАТ-03 представляет собой согласованную пару p-n-p — транзисторов.
Транзисторы со сверхбольшим значением коэффициента β можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316.
Некоторые типичные транзисторные схемы
Основные схемы включения транзисторов
Усилитель представляет собой четырехполюсник, два вывода которого предназначены для подключения входного сигнала и два оставшихся вывода служат для снятия с них усиленного сигнала (напряжения или тока). У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя. В зависимости от того, какой вывод транзистора является общим как для входа, так и для выхода усилителя, схемы включения транзистора называются:
- Схема с общим эмиттером
- Схема с общей базой
- Схема с общим коллектором
Следует отметить, что данные схемы включения применяются не только для биполярных транзисторах, но и для всех типов полевых транзисторов. В них эти схемы будут называться схемами с общим истоком, общим затвором и общим стоком соответственно. Во всех последующих схемах границы четырехполюсника усилителя будут показаны пунктирной линией. Для подключения источника сигнала и нагрузки в них предусмотрено по два вывода.
Схема с общим эмиттером
Наиболее распространенной схемой включения транзистора является схема с общим эмиттером (ОЭ). Это связано с наибольшим усилением этой схемы по мощности. Схема с общим эмиттером обладает усилением, как по напряжению, так и по току. Функциональная схема включения транзистора с общим эмиттером приведена на рисунке 1.
Рисунок 1. Функциональная схема включения транзистора с общим эмиттером
На данной схеме цепи питания коллектора и базы транзистора не показаны. Мы рассмотрим их позднее при подробном изучении схемы усилительного каскада с общим эмиттером. Входное сопротивление схемы включения транзистора с общим эмиттером определяется входной характеристикой транзистора. Оно зависит от базового, а, следовательно, и коллекторного тока транзистора. Для большинства маломощных усилителей оно составляет значение порядка 2,5 кОм.
Что касается амплитудно-частотной характеристики схемы с общим эмиттером, то в данном включении транзистора верхняя частота усиления будет минимальная по сравнению с остальными схемами включения транзистора. Верхняя частота усиления транзистора, включенного по схеме с общим эмиттером, ограничена частотой fβ (fh31э). [Подробнее]
Схема с общей базой
Схема с общей базой обычно применяется на высоких частотах. Коэффициент усиления по мощности данной схемы включения транзистора меньше по сравнению со схемой с общим эмиттером. Это связано с тем, что схема включения транзистора с общей базой не усиливает по току. В данной схеме производится усиление только по напряжению. Функциональная схема включения транзистора с общей базой приведена на рисунке 2.
Рисунок 2. Функциональная схема включения транзистора с общей базой
На этой схеме цепи питания коллектора и базы тоже не показаны. В качестве входного сопротивления схемы включения транзистора с общей базой служит эмиттерное сопротивление транзистора, поэтому входное сопротивление схемы с общей базой мало. Её входное сопротивление самое маленькое из всех схем включения транзистора, однако для данной схемы это не является недостатком, т.к. входное сопротивление высокочастотных усилителей должно быть равно 50 Ом.
Амплитудно-частотная характеристика схемы с общей базой — самая широкополосная из всех схем включения транзистора, поэтому она широко используется в высокочастотных усилителях радиочастоты. Частотная характеристика схемы с общей базой ограничивается предельной частотой усиления транзистора fα (fh31б). [Подробнее]
Схема с общим коллектором
Схема с общим коллектором обычно применяется для получения высокого входного сопротивления. Коэффициент усиления по мощности данной схемы включения транзистора меньше по сравнению со схемой с общим эмиттером и соизмерим с коэффициентом усиления схемы с общей базой. Это связано с тем, что схема включения транзистора с общим коллектором не усиливает по напряжению. В данной схеме производится усиление только по току. Функциональная схема включения транзистора с общим коллектором приведена на рисунке 3.
Рисунок 3. Функциональная схема включения транзистора с общим коллектором
На схеме, приведенной на рисунке 5, цепи питания коллектора и базы не показаны. В качестве входного сопротивления схемы включения транзистора с общим коллектором служит сумма сопротивления базы транзистора (как в схеме с общим эмиттером) и пересчитанного ко входу сопротивления резистора в цепи эмиттера, поэтому входное сопротивление схемы с общим коллектором очень велико. Её входное сопротивление самое большое из всех схем включения транзистора.
Амплитудно-частотная характеристика схемы включения транзистора с общим коллектором достаточно широкополосна. Однако полоса пропускания усилителя может быть серьёзно ограничена из-за шунтирования высокого входного сопротивления схемы с общим коллектором паразитными емкостями, поэтому в основном схема с общим коллектором применяется в качестве буферного усилителя с высоким входным сопротивлением. Иногда она применяется для ослабления влияния нагрузки на характеристики высокочастотных генераторов и синтезаторов частоты. [Подробнее]
- Шило В. Л. «Линейные интегральные схемы в радиоэлектронной аппаратуре» под ред. Е.И. Гальперина — М.: «Сов. радио» 1974
- Усилительный каскад на биполярном транзисторе Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
- Биполярный транзистор. Часть 5
Вместе со статьей «Схемы включения транзистора» читают:
СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА
Любой усилитель, независимо от частоты, содержит от одного до нескольких каскадов усиления. Для того, чтобы иметь представление по схемотехнике транзисторных усилителей, рассмотрим более подробно их принципиальные схемы.
Транзисторные каскады, в зависимости от вариантов подключения транзисторов, подразделяются на:
1 Каскад с общим эмиттером (на схеме показан каскад с фиксированным током базы – это одна из разновидностей смещения транзистора).
2 Каскад с общим коллектором
3 Каскад с общей базой
Каскад с общим эмиттером обладает высоким усилением по напряжению и току. К недостаткам данной схемы включения можно отнести невысокое входное сопротивление каскада (порядка сотен ом), высокое (порядка десятков Килоом) выходное сопротивление. Отличительная особенность – изменение фазы входного сигнала на 180 градусов (то есть – инвертирование). Благодаря высокому коэффициенту усиления схема с ОЭ имеет преимущественное применение по сравнению с ОБ и ОК.
Рассмотрим работу каскада подробнее: при подаче на базу входного напряжения – входной ток протекает через переход «база-эмиттер» транзистора, что вызывает открывание транзистора и, в следствии этого, увеличение коллекторного тока. В цепи эмиттера транзистора протекает ток, равный сумме тока базы и тока коллектора. На резисторе в цепи коллектора, при прохождении через него тока, возникает некоторое напряжение, величиной значительно превышающей входное. Таким образом происходит усиление транзистора по напряжению. Так как ток и напряжение в цепи – величины взаимосвязанные, аналогично происходит и усиление входного тока.
Схема с общим коллектором обладает высоким входным и низким выходным сопротивлениями. Коэффициент усиления по напряжению этой схемы всегда меньше 1. Входное сопротивление каскада с ОК зависит от сопротивления нагрузки (Rн) и больше его (приблизительно) в Н21э раз . (Величина «Н21э» – это статический коэффициент усиления данного экземпляра транзистора, включенного по схеме с Общим Эмиттером). Данная схема используется для согласования каскадов, либо в случае использования источника входного сигнала с высоким входным сопротивлением. В качестве такого источника можно привести, например, пьезоэлектрический звукосниматель или конденсаторный микрофон. Схема с ОК не изменяет фазы входного сигнала. Иногда такую схему называют Эмиттерным повторителем .
Схема включения транзистора с общей базой используется преимущественно в каскадах усилителей высоких частот. Усиление каскада с ОБ обеспечивает усиление только по напряжению. Данное включение транзистора позволяет более полно использовать частотные характеристики транзистора при минимальном уровне шумов. Что такое частотная характеристика транзистора? Это – способность транзистора усиливать высокие частоты, близкие к граничной частоте усиления, Эта величина зависит от типа транзистора. Более высокочастотный транзистор способен усиливать и более высокие частоты. С повышением рабочей частоты, коэффициент усиления транзистора понижается. Если для построения усилителя использовать, например, схему с общим эмиттером, то при некоторой (граничной) частоте каскад перестает усиливать входной сигнал. Использование этого – же транзистора, но включенного по схеме с общей базой, позволяет значительно повысить граничную частоту усиления. Каскад, собранный по схеме с общей базой, обладает низким входным и невысоким выходным сопротивлениями (эти параметры очень хорошо согласуются при работе в антенных усилителях с использованием так называемых «коаксиальных» несимметричных высокочастотных кабелей, волновое сопротивление которых как правило не превышает 100 ом). Если сравнивать величины сопротивлений для каскада с ОЭ и ОБ, то входное сопротивление каскада с ОБ в (1+Н21э) раз меньше, чем с ОЭ, а выходное в (1+Н21э) раз больше. Каскад с ОБ не изменяет фазы входного сигнала.
В практике радиолюбителя иногда приходится использовать параллельное включение транзисторов для увеличения выходной мощности (коллекторного тока). Один из вариантов данного включения приведен ниже:
При таком включении нужно стремиться использовать транзисторы с близкими параметрами Вст. Транзисторы большой мощности при этом должны устанавливаться на один теплоотвод. Для дополнительного выравнивания токов в данной схеме в цепях эмиттеров применены резисторы. Сопротивление резисторов следует выбирать исходя из падения напряжения на них (в интервале рабочих токов) около 1 вольта (или, по крайней мере, – не менее 0,7 вольта). Данная схема должна применяться с большой осторожностью, так как даже транзисторы одного типа и из одной партии выпуска имеют очень большой разброс по параметрам. Выход из строя одного из транзисторов неизбежно приведет к выходу из строя и других транзисторов в цепочке. При параллельном включении двух транзисторов максимальный суммарный ток коллектора не должен превышать 1,6-1,7 от предельного тока коллектора одного из транзисторов! Количество транзисторов, включенных по этой схеме может быть сколько угодно большим – все зависит от целесообразности.
В радиолюбительской практике иногда необходим транзистор с проводимостью, отличной от имеющегося (например – в выходном каскаде УЗЧ и проч.) . Выйти из положения позволяет схема включения, приведенная ниже:
В данном каскаде используется как правило маломощный транзистор VT1 необходимой проводимости, транзистор VT2 необходимой мощности , но другой проводимости. Данный каскад (в частности) эквивалентен транзистору с проводимостью N-P-N большой мощности с высоким коэффициентом передачи тока базы (h31Э). Если мы используем в качестве VT1, VT2 транзисторы противоположной проводимости – получим мощный составной транзистор с проводимостью P-N-P.
Если в данной схеме применить транзисторы одной структуры – получим так называемый Составной транзистор. Такое включение транзисторов называют Схемой Дарлингтона . Промышленность выпускает такие транзисторы в одном корпусе. Существуют как маломощные (типа КТ3102 и т.п.) так и мощные (например – КТ825) составные транзисторы.
А сейчас поговорим немного о температурной стабилизации усилителя.
Транзистор, являясь полупроводниковым прибором, изменяет свои параметры при изменении рабочей температуры. Так, при повышении температуры, усилительные свойства транзистора ухудшаются. Обусловлено это рядом причин : при повышении температуры значительно увеличивается такой параметр транзистора, как обратный ток коллектора . Увеличение обратного тока коллектора транзистора приводит к значительному увеличению коллекторного тока и к смещению рабочей точки в сторону увеличения тока. При некоторой температуре коллекторный ток транзистора возрастает до такой величины, при которой транзистор перестает реагировать на слабый входной (базовый) ток. Попросту говоря – каскад перестает быть усилительным. Для того, чтобы расширить диапазон рабочих температур, необходимо применять дополнительные меры по температурной стабилизации рабочей точки транзистора. Самым простым способом является коллекторная стабилизация рабочего тока смещения. Рассмотренная нами выше схема каскада по схеме с общим эмиттером является схемой с фиксированным током базы. Ток коллектора в данной схеме зависит от параметров конкретного экземпляра транзистора и должен устанавливаться индивидуально при помощи подбора величины резистора R1. При смене транзистора начальный (при отсутствии сигнала) ток коллектора приходится подбирать заново, так как транзисторы даже одного типа имеют очень большой разброс статического коэффициента усиления тока базы (h31 Э). Другая разновидность каскада – схема с фиксированным напряжением смещения. Эта схема также обладает недостатками, описанными выше:
Для повышения термостабильности каскада необходимо использовать специальные схемы включения:
Схема коллекторной стабилизации, обладая основными недостатками схемы с общим эмиттером (подбор резистора базового смещения под конкретный экземпляр транзистора), тем не менее позволяет расширить диапазон рабочих температур каскада. Как видим, данная схема отличается подключением резистора смещения не к источнику питания, а в коллекторную цепь. Благодаря такому включению удалось значительно (за счет применения отрицательной обратной связи ) расширить диапазон рабочих температур каскада. При увеличении обратного тока коллектора транзистора, увеличивается ток коллектора, что вызывает более полное открывание транзистора и уменьшение коллекторного напряжения. Уменьшение коллекторного напряжения, в свою очередь, уменьшает напряжение начального смещения транзистора, что вызывает уменьшение коллекторного тока до приемлемой величины. Таким образом – осуществляется отрицательная обратная связь, которая несколько уменьшает усиление каскада, но зато позволяет увеличить максимальную рабочую температуру.
Более качественную стабилизацию температурных параметров каскада усиления можно осуществить, если несколько усложнить схему и применить так называемую » эмиттерную » температурную стабилизацию . Данная схема, несмотря на сложность, позволяет каскаду сохранять усилительные свойства в очень широком интервале рабочих температур. Кроме того, применение данной схемы стабилизации дает возможность замены транзисторов без последующей настройки. Отдельно скажу о конденсаторе С3 . Этот конденсатор служит для повышения коэффициента усиления каскада на переменном токе. Он устраняет отрицательную обратную связь каскада. Емкость этого конденсатора зависит от рабочей частоты усилителя. Для усилителя звуковых частот емкость конденсатора может колебаться от 5 до 50 микрофарад, для диапазона радиочастот – от 0,01 до 0,1 микрофарады (но его в некоторых случаях может и не быть) .
Теперь давайте попробуем расчитать термостабильный каксад по постоянному току:
ВНИМАНИЕ! Данные расчета получаются довольно приблизительные! Окончательный номинал резистора R1 потребуется подобрать при наладке более точно!
Для начала нам нужно определиться с исходными данными для расчета. На верхнем прямоугольнике даны постоянные величины соответственно для германиевого (Ge) и кремниевого (Si) транзистора.
Теперь давайте расчитаем работу каскада по переменному току:
Сначала определяем сопротивление Rэ. Для нашего случая (ток коллектора 1 миллиампер) Rэ = 26 ом,
Далее определим проводимость S = 38.46 микросименса (ориентировочно),
Вычисляем значение R11. Для транзистора типа КТ315Б среднее значение параметра h31э равно 200, отсюда R11 равно 5200,
Величину Rb необходимо определить для вычисления входного сопротивления каскада, являющегося нагрузкой расчитываемого. Она равна (при номиналах резисторов, взятых в нашем примере) 5,75 килоом,
Для упрощения расчета можно не вычислять сопротивление Rн, а принять его равным R3.
Ожидаемый коэффициент усиления данного каскада на транзисторе типа КТ315Б со средним значением h31э равным 200 получается около 40.
Следует иметь в виду, что полученное значение коэффициента усиления каскада весьма приблизительно! На практике это значение может отличаться в 1,5 – 2 раза (иногда – больше) и зависит от конкретного экземпляра транзистора!
При расчете коэффициента усиления транзистороного каскада по переменному току следует учитывать, что этот коэффициент зависит от частоты усиливаемого сигнала. Максимальная частота примененного транзистора должна быть по крайней мере в 15-20 раз выше предельной частоты усиления (определяется по справочнику).
Для написания этой странички использовались материалы из книги «Краткий радиотехнический справочник.» Авторы Богданович и Ваксер, Издательство «Беларусь» 1976 год.
Литература по теме: Небольшой учебник «Азы транзисторной схемотехники» (около 380 килобайт), найденный мной в интернете, можно скачать по этой ссылке .
Книжка «Расчет схем на транзисторах» лежит здесь (довольно древняя – 1969 года издания, но вполне актуальная!) обьем около 8 мБайт.
Транзистор, как полупроводниковый прибор, имеющий три электрода (эмиттер, базу, коллектор), можно включить тремя основными способами (рис. 3.1 — 3.6). Как известно, входной сигнал поступает на усилитель по двум проводам; выходной сигнал отводится также по двум проводам. Следовательно, для трех-электродного усилительного прибора при подаче входного и съеме выходного сигнала по двум проводам один из электродов будет непременно общим. Соответственно тому, какой из электродов в схеме включения транзистора будет являться общим, различают три основные схемы включения: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ).
Рис. 3.1. Схема с общим эммитером (ОЭ)
Рис. 3.2. Схема с общим коллектором (ОК)
Практические варианты схем включения транзисторов структуры п-р-п и р-п-р приведены на рис. 3.1 — 3.6. Как следует из сопоставления рисунков, схемы эти идентичны и различаются лишь полярностью подаваемого напряжения.
Для определения входного (RBX.) и выходного (RBbix.) сопротивления каждой из схем включения, а также коэффициентов усиления по току (К,), напряжению (Ки) и мощности (КР=К|ХКи) расчетные и экспериментальные значения и формулы приведены в таблицах 3.1 и 3.2.
Таблица с формулами приведена для приближенных расчетов, а для первоначальной, первичной оценки и сравнения свойств основных схем включения транзисторов предназначена вторая таблица с численными оценками.
Рис. 3.3. Схема с общей базой (ОБ)
Обозначения в таблице следующие: RH — сопротивление нагрузки; R3 — сопротивление эмиттера или отношение изменения напряжения на эмиттерном переходе к изменению тока эмиттера в режиме короткого замыкания в выходной цепи по переменному току; RB — сопротивление базы или отношение изменения напряжения между эмиттером и базой к изменению тока коллектора в режиме холостого хода входной цепи по переменному току; а — коэффициент усиления по току для схемы с общей базой; р — коэффициент усиления по току для схемы с общим эмиттером.
Рис. 3.4. Схема с общим эммитером (ОЭ)
Рис. 3.5. Схема с общим коллектором (ОК)
Рис. 3.6. Схема с общей базой (ОБ)
Наиболее часто в практических схемах используют режим включения транзистора с общим эмиттером (как обладающий наибольшим коэффициентом усиления по мощности).
Эмиттерные повторители (схемы с общим коллектором) применяют для согласования высокого выходного сопротивления источника сигнала с низким входным сопротивлением нагрузки. Для построения высокочастотных усилителей (имеющих низкое входное сопротивление) используют схемы с общей базой.
В зависимости от наличия, полярности и величины потенциалов на электродах транзисторов различают несколько режимов его работы. Насыщение — транзистор открыт, напряжение на переходе К— Э минимально, ток через переходы максимален. Отсечка — транзистор закрыт, напряжение на переходе К — Э максимально, ток через переходы минимален. Активный — промежуточный между режимом насыщения и отсечки. Инверсный — характеризуется подачей на электроды транзистора обратной (инверсной) полярности рабочего напряжения.
В переключательно-коммутирующих схемах, имеющих только два состояния: включено (сопротивление ключевого элемента близко к нулю) и выключено (сопротивление ключевого элемента стремится к бесконечности), используются режимы насыщения и отсечки. Активный режим широко применяют для усиления сигналов. Инверсный режим используют достаточно редко, поскольку улучшить показатели схемы при таком включении транзистора не удается.
Для того чтобы без расчетов первоначально оценить величины RC-элементов, входящих в состав схем (рис. 3.1, 3.2, 3.4, 3.5), можно принять величину сопротивления в коллекторной (эмиттерной) цепи равной нескольким кОм, а величину сопротивления в цепи базы в 30. 50 раз большим. При этом напряжение на коллекторе (эмиттере) должно быть равно половине напряжения питания. Для схемы с общей базой (рис. 3.3, 3.6) величина сопротивления R3, обычно не превышает 0,1. 1 кОм, величина сопротивления R2 составляет несколько кОм.
Величины реактивных сопротивлений конденсаторов С1 — СЗ для наиболее низких частот, которые требуется усилить, должны быть примерно на порядок ниже соединенных с ними активных сопротивлений R1 — R3 (рис. 3.1 — 3.6). В принципе, величины этих емкостей можно было бы выбрать со значительным запасом, но в этом случае увеличиваются габариты переходных конденсаторов, их стоимость, токи утечки, длительность переходных процессов и т.д.
В качестве примера приведем таблицу 3.3 для быстрого определения величины реактивного сопротивления конденсаторов для нескольких частот.
Напомним, что реактивное сопротивление конденсатора Хс, Ом, можно вычислить по формуле:
Для постоянного тока реактивное сопротивление конденсаторов стремится к бесконечности. Следовательно, для усилителей постоянного тока (нижняя граничная частота усиления равна нулю) переходные конденсаторы не требуются, а для разделения каскадов необходимо предусматривать специальные меры. Конденсаторы в цепях постоянного тока равносильны обрыву цепи. Поэтому при построении схем усилителей постоянного тока используют схемы с непосредственными связями между каскадами. Разумеется, в этом случае необходимо согласование уровней межкаскадных напряжений.
При усилении переменного тока в цепи нагрузки усилительных каскадов зачастую используют индуктивные элементы. Отметим, что реактивное сопротивление индуктивностей растет с увеличением частоты. Соответственно, с изменением сопротивления нагрузки от частоты, растет и коэффициент усиления такого каскада.
Помимо биполярных транзисторов широкое распространение приобрели более современные элементы — полевые транзисторы (рис. 3.7 — 3.9).
Рис. 3.7. Схема с общим истоком (ОИ)
Рис. 3.8. Схема с общим стоком (ОС)
По аналогии со схемами включения биполярных транзисто ров полевые включают с общим истоком, общим стоком и с об щим затвором.
Основные расчетные соотношения для этих схем включения полевых транзисторов приведены в таблице 3.4, где S — крутизна характеристики полевого транзистора, мА/В; R, — внутреннее сопротивление транзистора.
Рис. 3.9. Схема с общим затвором (03)
Основные расчетные соотношения для этих схем включения полевых транзисторов приведены в таблице 3.4, где S — крутизна характеристики полевого транзистора, мА/В; R, — внутреннее сопротивление транзистора.
Ориентировочно величина R1 (рис. 3.7 — 3.9) может быть от нескольких Ом до единиц МОм R2 — несколько кОм. Отметим, что, как и для биполярных транзисторов, полевые также допускают работу с отсечкой, с насыщением; активный и инверсный режимы.
Для увеличения коэффициента передачи по току биполярного транзистора используют «составные» транзисторы, включаемые по схеме Дарлингтона (рис. 3.10 — 3.13). Общий их коэффициент усиления несколько отличается от произведения коэффициентов усиления каждого из транзисторов. Одновременно ухудшается температурная стабильность схемы.
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год
Как работают транзисторы (NPN и MOSFET)
Транзистор — это простой компонент, который можно использовать для создания множества интересных проектов. В этом практическом руководстве вы узнаете, как работают транзисторы, и сможете использовать их в своей следующей схеме.
На самом деле это довольно просто, если вы изучите основы. Мы сосредоточимся на двух наиболее распространенных транзисторах; NPN и MOSFET .
Транзистор работает как электронный переключатель. Он может включать и выключать ток. Проще всего представить себе транзистор как реле без каких-либо движущихся частей.Транзистор похож на реле в том смысле, что вы можете использовать его для включения и выключения чего-либо.
Но транзистор также можно частично включить, что полезно для создания усилителей.
Как работают транзисторы (тип NPN)
Начнем с классического транзистора NPN. Имеет три ножки:
- База (б)
- Коллектор (в)
- Излучатель (д)
Если вы включите его, через него может течь ток от коллектора к эмиттеру.Когда он выключен, ток не может течь.
В приведенном ниже примере схемы транзистор выключен. Это означает, что через него не может протекать ток, поэтому светоизлучающий диод (LED) также выключен.
Чтобы включить транзистор, необходимо напряжение около 0,7 В между базой и эмиттером.
Если бы у вас была батарея 0,7 В, вы могли бы подключить ее между базой и эмиттером, и транзистор включился бы.
Поскольку у большинства из нас нет 0.Аккумулятор 7В, как включить транзистор?
Легко! Часть транзистора база-эмиттер работает как диод. Диод имеет прямое напряжение , которое он «берет» из имеющегося напряжения. Если вы добавите резистор последовательно, остальная часть напряжения упадет на резисторе.
Таким образом, вы автоматически получите около 0,7 В, добавив резистор.
Это тот же принцип, который вы используете для ограничения тока через светодиод, чтобы он не взорвался.
Если вы также добавите кнопку, вы можете управлять транзистором и, следовательно, светодиодом, включаться и выключаться с помощью кнопки:
Выбор значений компонентов
Чтобы выбрать значения компонентов, вам нужно знать еще одну вещь о том, как работают транзисторы:
Когда ток течет от базы к эмиттеру, транзистор включается, так что больший ток может течь от коллектора к эмиттеру.
Существует связь между величинами двух токов.Это называется усилением транзистора.
Для транзистора общего назначения, такого как BC547 или 2N3904, это может быть около 100.
Это означает, что если у вас есть ток 0,1 мА от базы к эмиттеру, у вас может быть 10 мА (в 100 раз больше), протекающее от коллектора к эмиттеру.
Резистор какого сопротивления нужен для R1, чтобы получить ток 0,1 мА?
Если батарея 9В, а база-эмиттер транзистора захватывает 0.7 В, на резисторе осталось 8,3 В.
Вы можете использовать закон Ома, чтобы найти номинал резистора:
Треугольник закона ОмаЗначит нужен резистор на 83 кОм. Это не стандартное значение, но 82 кОм, и это достаточно близко.
R2 предназначен для ограничения тока светодиода. Вы можете выбрать значение, которое вы выбрали бы, если бы вы подключили светодиод и резистор непосредственно к батарее 9 В, без транзистора. Например, 1 кОм должен работать нормально.
Посмотрите видеообъяснение транзистора, которое я сделал несколько лет назад (простите за олдскульное качество):
Как выбрать транзистор
NPN-транзистор является наиболее распространенным из биполярных переходных транзисторов (BJT) .Но есть еще один, называемый PNP-транзистором, который работает точно так же, только все токи имеют противоположное направление.
При выборе транзистора важно помнить, какой ток транзистор может выдерживать. Это называется током коллектора (I C ).
БЕСПЛАТНЫЙ бонус: Загрузите основные электронные компоненты [PDF] — мини-книгу с примерами, которая научит вас, как работают основные компоненты электроники.
Как работает полевой МОП-транзистор
MOSFET-транзистор — еще один очень распространенный тип транзисторов. Он также имеет три контакта:
- Gate (g)
- Source (s)
- Drain (d)
МОП-транзистор работает аналогично NPN-транзистору, но с одним важным отличием:
В NPN-транзисторе , ток от базы к эмиттеру определяет, сколько тока может протекать от коллектора к эмиттеру.
В MOSFET-транзисторе напряжение между затвором и истоком определяет, сколько тока может протекать от стока к истоку.
Пример: как включить полевой МОП-транзистор
Ниже приведен пример схемы включения полевого МОП-транзистора.
Значение R1 не критично, но около 10 кОм должно работать нормально. R2 устанавливает яркость светодиода. 1 кОм подойдет для большинства светодиодов. Q1 может быть практически любым n-канальным MOSFET, например BS170.
Чтобы включить MOSFET-транзистор, вам необходимо напряжение между затвором и истоком, которое выше порогового напряжения вашего транзистора.Например, BS170 имеет пороговое напряжение затвор-исток , равное 2,1 В. (Вы найдете эту информацию в таблице).
Пороговое напряжение полевого МОП-транзистора — это фактически напряжение, при котором он отключается. Итак, чтобы правильно включить транзистор, вам нужно напряжение немного выше этого.
Насколько выше, зависит от того, какой ток вы хотите иметь (и вы найдете эту информацию в таблице данных). Если вы поднимете на пару вольт выше порогового значения, этого обычно более чем достаточно для слаботочных вещей, таких как включение светодиода.
Обратите внимание, что даже если вы используете достаточно высокое напряжение для протекания тока 1 А, это не означает, что вы получите 1 А. Это просто означает, что у может быть ток с током 1А, если вы захотите. Но то, что вы к нему подключаете, определяет фактический ток.
Таким образом, вы можете подниматься настолько высоко, насколько хотите, при условии, что вы не превышаете максимально допустимое напряжение затвор-исток (которое составляет 20 В для BS170).
В приведенном выше примере ворота подключаются к напряжению 9 В, когда вы нажимаете кнопку.Это включает транзистор.
Как выключить полевой МОП-транзистор?
Одна важная вещь, которую нужно знать о MOSFET, заключается в том, что он также действует как конденсатор. То есть часть затвор-исток. Когда вы прикладываете напряжение между затвором и истоком, это напряжение остается там до тех пор, пока оно не разрядится.
Без резистора (R1) в приведенном выше примере транзистор не выключился бы. С резистором есть путь для разряда конденсатора затвор-исток, чтобы транзистор снова отключился.
Как выбрать МОП-транзистор
В приведенном выше примере используется полевой МОП-транзистор с N-каналом . P-channel MOSFET работают точно так же, только ток течет в противоположном направлении, а напряжение затвор-исток должно быть отрицательным, чтобы включить его.
Существуют тысячи различных полевых МОП-транзисторов на выбор. Но если вы хотите построить схему, приведенную выше, и получить конкретную рекомендацию, BS170 и IRF510 — два обычных.
При выборе полевого МОП-транзистора следует учитывать две вещи:
- Пороговое напряжение затвор-исток .Для включения транзистора требуется более высокое напряжение.
- Непрерывный ток утечки . Это максимальное количество тока, которое может протекать через транзистор.
Есть и другие важные параметры, о которых следует помнить, в зависимости от того, что вы делаете. Но это выходит за рамки данной статьи. Помните об этих двух параметрах, и у вас будет хорошая отправная точка.
Зачем нужен транзистор?
Мне часто задают вопрос: зачем нам транзистор? Почему бы не подключить светодиод и резистор напрямую к аккумулятору?
Преимущество транзистора заключается в том, что вы можете использовать небольшой ток или напряжение для управления гораздо большими током и напряжением.
Это очень полезно, если вы хотите управлять такими вещами, как двигатели, мощные светодиоды, динамики, реле и многое другое с Raspberry Pi / Arduino / микроконтроллера. Выходные контакты этих плат обычно могут обеспечить всего несколько миллиампер при напряжении 5 В. Поэтому, если вы хотите управлять уличным освещением 110 В для патио, вы не можете сделать это напрямую с помощью булавки.
Вместо этого вы можете сделать это через реле. Но даже реле обычно требует большего тока, чем может обеспечить вывод. Итак, вам понадобится транзистор для управления реле:
Подключите левую сторону резистора к выходному контакту (например, от Arduino) для управления реле.Но транзисторы также полезны для более простых схем датчиков, таких как эта схема светового датчика, схема сенсорного датчика или схема H-моста.
Транзисторы используются практически во всех схемах. Это действительно самый важный компонент в электронике.
Транзистор как усилитель
Транзистор — это еще и то, что заставляет работать усилители. Вместо того, чтобы иметь только два состояния (ВКЛ / ВЫКЛ), он также может быть где угодно между «полностью включен» и «полностью выключен».
Это означает, что слабый сигнал почти без энергии может управлять транзистором, чтобы создать гораздо более сильную копию этого сигнала в части коллектор-эмиттер (или сток-исток) транзистора.Таким образом, транзистор может усиливать слабые сигналы.
Ниже представлен простой усилитель для управления динамиком. Чем выше входное напряжение, тем выше ток от базы к эмиттеру и тем выше ток через динамик.
Изменяющееся входное напряжение приводит к изменению тока в динамике, что создает звук.
Усилитель с общим эмиттеромОбычно вы добавляете еще пару резисторов к смещению транзистора. В противном случае вы получите много искажений.Но это уже для другой статьи.
Если вы хотите узнать больше об использовании транзистора в качестве усилителя, на сайте electronics-lab.com есть несколько хороших руководств по трем основным настройкам усилителя BJT.
Вопросы?
Вы понимаете, как сейчас работают транзисторы? Или вы все еще в замешательстве? Позвольте мне знать в комментариях ниже.
Эксперимент: Проектирование схем транзисторов
Процедура
Примечание: Эта схема была разработана, когда мы только учились обучать работе транзисторов.Теперь мудрее, мы знаем, что ниже есть некоторые ошибки в математике с вычислениями фильтра. Мы перепроектируем эту схему, когда позволят время и ресурсы, но учтите, что схема все еще работает (может усиливать пики).
Все, что вам нужно, чтобы построить усилитель, — это транзистор, источник питания, резисторы и конденсаторы. Есть много способов смешать их вместе, что является искусством (Стив Джобс часто называл компоновку схем «цифровым искусством»), но мы дадим вам некоторые основные условия и предположения, с которыми можно поработать, а затем проведем вас через дизайн вашего самого первый простой био-усилитель!
Существует несколько конфигураций с использованием транзисторов NPN, но мы будем использовать «конфигурацию с общим эмиттером», потому что она позволяет получить высокий коэффициент усиления по напряжению.Почему его называют «усилителем с общим эмиттером»? — поскольку база — это вход, коллектор — это выход, а «общий» или земля — это эмиттер.
Как любой прилежный инженер, давайте начнем с «требований», что является скучным способом сказать: «что мы хотим, чтобы эта машина действительно выполняла». В нашем биоусилителе мы хотим «усилить» очень слабые электрические сигналы в нервах тараканов. Давайте стремимся к «усилению» 150 или увеличению амплитуды сигнала в 150 раз. Мы также хотим ограничить то, что мы усиливаем, чтобы гарантировать, что мы обращаем внимание только на всплески (потенциалы действия), а не на другие электрические сигналы, такие как электрический шум от вашего дома.Итак, как и в реальном SpikerBox, мы хотим измерять только сигналы с компонентами выше 300 Гц (циклов в секунду). Это также называется «высокочастотным» сигналом.
Таким образом, у нас есть два требования
- Прирост 150.
- Настройка фильтра: фильтр высоких частот 300 Гц.
А теперь вернемся к искусству дизайна электроники. В основе нашего усилителя лежит превосходная книга Пола Шерца «Практическая электроника для изобретателей».
Детали
Помимо тараканов, кабеля и электрода, упомянутых выше, вам необходимо посетить местный дружественный RadioShack, чтобы получить:- два NPN транзистора (2N4401) — из набора образцов транзисторов
- четыре 4.Резисторы 7 кОм — из набора образцов резисторов
- четыре резистора 1 кОм из того же набора образцов
- Один резистор 50 Ом из того же набора образцов
- два конденсатора по 1 мкФ
- четыре конденсатора по 10 мкФ
- немного перемычки
- макетная плата без пайки
- Разъем аккумулятора 9В
- аккумулятор 9В
- разъем RCA
- динамик RadioShack (мы любим эти вещи)
Проектирование схемы
Эмиттерные и коллекторные резисторы
Поскольку мы будем использовать батарею на 9 В, и наши шипы имеют как положительный, так и отрицательный компонент:
Мы хотим, чтобы нейронный сигнал превышал +4,5 В, чтобы у нас было достаточно «места» для напряжения, чтобы усилить как отрицательную, так и положительную части сигнала. Таким образом, необходимо, чтобы V c или напряжение на коллекторе составляло 1/2 V cc (это сбивает с толку, но Vcc означает «общий ток» или, в более общем смысле, наш источник питания 9 В).Таким образом, нам нужно поставить резистор на V c , чтобы установить V c = 1/2 V cc , и мы используем закон Ома V = IR, который мы можем переписать как:
I c — это ток через коллектор и функция транзистора (для его расчета вы используете лист данных транзистора). Мы будем использовать значение 1 мА для I c .
4,7 кОм — стандартное значение для комплекта резисторов, поэтому мы будем использовать 4,7 кОм для R c
.Коэффициент усиления нашей схемы, как он есть, составляет ΔV c / ΔV e , что равно отношению R c / R e .
Мы уже установили R c = 4,7 кОм, а R e уже встроен в транзистор. Его R e называется транссопротивлением, которое рассчитывается как:
I e примерно такое же, как I c , поэтому сопротивление составляет 26 Ом.
Мы можем рассчитать выигрыш следующим образом:
Однако в транзисторе может быть нестабильное сопротивление, поэтому нам нужно добавить собственное сопротивление R в дополнение к сопротивлению.Шерц рекомендует V e с напряжением 1 В для стабилизации нестабильности сопротивления, поэтому согласно закону Ома:
Но обратите внимание, что добавление этого R к схеме:
У нас будет изменение в прибыли. Новое усиление:
о нет! Наше первоначальное усиление 180 исчезло! И наш выигрыш теперь намного меньше, чем нам нужно! Но не бойтесь, мы можем добавить конденсатор параллельно с резистором 1 кОм, который фактически заставит 1 кОм исчезнуть для нашего пикового сигнала.Мы все равно хотим добавить конденсатор, так как нам нужно сделать:
Фильтр высоких частот
Резистор и конденсатор, включенные параллельно, действуют как фильтры высоких частот, и, как указано выше, мы хотим, чтобы наш фильтр высоких частот составлял 300 Гц. Это легко подсчитать.
У нас уже есть R = 1 кОм, а f должно быть 300 Гц, поэтому емкость конденсатора составляет 20 мкФ.
Все, что остается, — это входной конденсатор для устранения любого смещения постоянного тока на входном сигнале и поддержания стабильности нашей схемы. Давайте просто установим его на 1 мкФ.
Установка напряжений смещения
Помните из нашей теории транзисторов, что транзистор не включится без нажатия нижнего предела напряжения, а это примерно 0,6 В для схем на основе кремния. Нам нужно добавить резисторы смещения.
Мы хотим, чтобы напряжение на базе V b было на 0,6 В выше, чем напряжение на уровне V e , поэтому
Мы знаем, что V e составляет 1 В из-за падения напряжения, рассчитанного выше, поэтому V b должно быть 1.6В. Сделаем делитель напряжения!
Наш V в равен 9 В, а наш V out равен 1,6 В, и мы используем классическое уравнение делителя напряжения:
Мы можем переставить уравнение и вычислить …
Таким образом, R1 должен быть в ~ 4,6 раза больше, чем R2. Звучит достаточно просто, но, как показывает практика, для этой конструкции транзистора:
Итак, мы просто выберем R2 = 1 кОм и R1 = 4,7 кОм в качестве значений, поскольку мы уже используем эти значения резисторов и имеем их под рукой.
Вот и все! Пришло время …
Построить схему
Вы посчитали, и теперь пришло время физически построить свою схему. Поместите аккумулятор, транзистор, резисторы, конденсаторы и компоненты ввода / вывода на макетную плату, как показано ниже:
Присмотритесь к схеме на макетной плате:
Вставьте электроды в лапу таракана, как вы делали в предыдущих экспериментах, и подключите динамик к цепи.Полностью поверните динамик и почистите ногу таракана зубочисткой. Вы можете услышать очень слабый ответ, но он будет скрыт в шуме. Давайте еще немного усилим шипы. Вы можете создать «вторую стадию» усиления, как мы это делаем с нашим обычным SpikerBox, где у вас есть выход схемы, идущий на вход другой копии схемы, как показано ниже:
Однако вы обнаружите, что это «удвоение» делает схему немного нестабильной, поэтому давайте немного снизим усиление на втором этапе.Мы добавили резистор 50 Ом параллельно с R e , чтобы немного снизить усиление второй ступени, но все равно сделают более громкие всплески, когда вы подключите эту схему к ноге таракана. Смотрите видео ниже.
Теперь вы создали свой собственный усилитель на транзисторах! Поздравляю! Сообщите нам, если вы нашли способ сделать схему проще, чище и с большим усилением.
Обсуждение
Вы находитесь на пути к изобретению еще многих чудесных вещей.История науки определяется изобретением нового оборудования в руках творческих умов. Телескоп позволяет видеть вещи очень далеко. Микроскоп позволяет увидеть очень маленькое. Аппарат ПЦР позволяет измерять молекулы ДНК, а транзистор позволяет наблюдать крошечные электрические сигналы. С помощью этих инструментов мы можем видеть и пытаться понять мир, недоступный нашим невооруженным чувствам. Теперь начнем открывать.Вопросы для обсуждения
- Почему шипы от нашего простого двухтранзисторного биоусилителя «шумнее», чем SpikerBox? Что делает SpikerBox? Подсказка: SpikerBox имеет намного больше транзисторов и использует их для создания операционных усилителей, которые затем смешиваются с инструментальными усилителями.Добро пожаловать в искусство электроники!
Транзисторы 101
Транзисторы 101 Изучение транзисторов(через простую схему драйвера светодиода)
Светодиод
Светодиод — это устройство, показанное выше. Кроме красные, они также могут быть желтыми, зелеными и синими. Буквы LED означают свет Излучающий диод. Что важно помнить о диодах (включая светодиоды) заключается в том, что ток может течь только в одном направлении.
Чтобы светодиод заработал, нужен источник питания и резистор.Если вы попытаетесь использовать светодиод без резистора, вы, вероятно, перегорите светодиод. Светодиод имеет очень маленькое сопротивление поэтому через него будет протекать большое количество тока, если вы не ограничите ток с резистором. Если вы попытаетесь использовать светодиод без источника питания, вы можете быть очень разочарованы.
Итак, в первую очередь сделаем наш Светодиод загорается при настройке схемы ниже.
Шаг 1.) Сначала вам нужно найти положительная ножка светодиода. Самый простой способ сделать это — поискать нога, которая длиннее.
Шаг 2.) Как только вы узнаете, с какой стороны положительный, включите светодиод макет таким образом, положительный отрезок находится в одном ряду, а отрицательный — в другом. (На картинке ниже ряды вертикальные.)
Шаг 3.) Поместите одну ногу 220 резистор Ом (неважно, на какой ноге) в том же ряду, что и отрицательный ножка светодиода. Затем поместите другую ножку резистора в пустой ряд.
Шаг 4.) Отключите блок питания. адаптер от блока питания. Затем поместите заземляющий (черный провод) конец адаптер питания в боковом ряду с синей полосой рядом Это.Затем вставьте положительный (красный провод) конец адаптера источника питания в боковой ряд с красной полосой рядом.
Шаг 5.) Используйте короткую перемычку. (используйте красный цвет, поскольку он будет подключен к положительному напряжению), чтобы перейти от положительный ряд мощности (тот, рядом с которым есть красная полоса) к положительному ножка светодиода (не в том же отверстии, а в том же ряду). Использовать другой короткая перемычка (используйте черный цвет) для перехода от заземляющего ряда к резистору (нога, не подключенная к светодиоду).См. Картинку ниже если необходимо.
Макет должен выглядеть как на картинке ниже.
Теперь подключите блок питания к стену, а затем подключите другой конец к адаптеру питания и Светодиод должен загореться. Ток течет от положительной ножки светодиода. через светодиод к отрицательной ножке. Попробуйте повернуть светодиод. Должно не загорается. Ток не может течь от отрицательного полюса светодиода к положительная нога.
Люди часто думают, что резистор должен быть первым на пути от положительного к отрицательному, чтобы ограничить количество тока, протекающего через светодиод.Но ток ограничен резистор независимо от того, где находится резистор. Даже когда вы впервые включаете мощность, ток будет ограничен определенной величиной, и его можно найти используя закон Ома.
Вездесущая полезность закона Ома:
[Напряжение (вольт) = ток (амперы) X сопротивление (Ом)]
Закон Ома может использоваться с резисторами найти ток, протекающий по цепи. Закон I = V / R (где I = ток, V = напряжение на резисторе и R = сопротивление).Для В приведенной выше схеме мы можем использовать только закон Ома для резистора, поэтому мы должны использовать то что при горит светодиоде на нем падение напряжения 1.9 (Кстати: падение напряжения зависит от типа светодиода). Это означает, что если положительная нога подключена к 5 вольт, отрицательная нога будет на 3,1 вольта (т. е. 5,0–1,9 = 3,1). Теперь, когда мы знаем напряжение на обеих сторонах резистор и может использовать закон Ома для расчета тока. Текущий (5,0-1,9) / 220 = 3,6 / 2000 = 0.0014 Ампер = 14 мА
Это ток, протекающий через путь от 5В к GND. Это означает, что через оба канала проходит 14 мА. Светодиод и резистор (так как они включены последовательно). Если мы хотим изменить ток, протекающий через светодиода (таким образом, изменяя яркость) мы можем поменять резистор. Меньший резистор пропускает больше тока, а резистор большего размера пропускает меньше текущий поток. Будьте осторожны при использовании резисторов меньшего размера, потому что они будут раздражаться. Кроме того, некоторые светодиоды будут повреждены, если вы ими воспользуетесь. за пределами их максимального текущего рейтинга…поэтому не используйте такой маленький резистор что вы будете генерировать чрезвычайно высокий ток (примечание: наш светодиод имеет максимум рабочий ток 20 мА).
Далее мы хотим иметь возможность превратить светодиод включается и выключается без изменения схемы. Для этого мы научимся использовать другой электронный компонент, транзистор.
Транзистор
Транзисторы — основные компоненты во всей современной электронике. Это просто переключатели, которые мы можем использовать для включения и выключения.Несмотря на то, что они простые, они самый важный электрический компонент. Например, транзисторы почти единственные компоненты, используемые для построения процессора Pentium. Один Pentium 4 имеет около 55 миллионов транзисторов (именно поэтому эти микросхемы становятся такими чертовыми). горячий). Те, что в Pentium, меньше чем те, которые мы будем использовать, но они работают одинаково.
Транзисторы (2N2222), которые мы будем использовать в наших проектах, выглядят так:
Транзистор имеет три ножки, Коллектор (C), база (B) и эмиттер (E).Иногда они помечены на плоская сторона транзистора. Транзисторы обычно имеют одну круглую сторону и одна плоская сторона. Если плоская сторона обращена к вам, ножка эмиттера Слева опорная ножка находится посередине, а коллекторная ножка находится на справа (примечание: некоторые специальные транзисторы имеют другую конфигурацию контактов, чем пакет ТО-92, описанный выше).
Символ транзистора
В электрические схемы (схемы) для представления NPN транзистора
Базовая схема
База (B) — переключатель включения / выключения для транзистора.Если к базе идет ток, будет путь от коллектора (C) к эмиттеру (E), где может течь ток (Переключатель включен.) Если к базе не течет ток, значит, нет ток может течь от коллектора к эмиттеру. (Переключатель выключен.)
Ниже приведена базовая схема, которую мы будем использовать для всех наших транзисторов.
Чтобы построить эту схему, нам нужно только добавить транзистор и еще один резистор к схеме, которую мы построили выше для светодиода.Перед внесением любых изменений отключите блок питания от адаптера блока питания. на макете. Чтобы вставить транзистор в макет, разъедините ножки немного и поместите его на макет так, чтобы каждая ножка находилась в отдельном ряду. В коллекторная ножка должна быть в том же ряду, что и ножка резистора, который подключен к земле (с помощью черной перемычки). Затем переместите перемычку переход от земли к резистору 220 Ом к эмиттеру транзистора.
Затем поместите одну ногу 100 кОм резистор в ряду с базой транзистора и другой ножкой в пустая строка, и ваша макетная плата должна выглядеть, как на картинке ниже.
Теперь наденьте один конец желтой перемычки. провод в положительном ряду (рядом с красной линией), а другой конец — в ряд с ножкой резистора 100 кОм (конец не подключен к База). Снова подключите источник питания, транзистор включится и Загорится светодиод. Теперь переместите один конец желтой перемычки из положительный ряд к основному ряду (рядом с синей линией). Как только ты снимите желтую перемычку с плюса питания, есть ток не течет к базе.Это заставляет транзистор выключиться и ток не может течь через светодиод. Как мы увидим позже, очень через резистор 100 кОм протекает небольшой ток. Это очень важно потому что это означает, что мы можем контролировать большой ток в одной части цепи (ток, протекающий через светодиод) только с небольшим током от Вход.
Назад к закону Ома
Мы хотим использовать закон Ома, чтобы найти ток на пути от входа к базе транзистора и ток, протекающий через светодиод.Для этого нам нужно использовать два основных факты о конкретных транзисторах, которые мы используем:
1.) Если транзистор включен, тогда базовое напряжение на 0,7 вольт выше, чем напряжение эмиттера.
2.) Если транзистор включен, напряжение коллектора на 1,6 вольт выше, чем напряжение эмиттера.
Итак, когда резистор 100 кОм подключен к 5 В постоянного тока, схема будет выглядеть так:
Таким образом, ток, протекающий через резистор 100 кОм, равен (5-0.7) / 100000 = 0,000043 А = 0,043 мА.
Ток, протекающий через резистор 220 Ом, равен (3,1 — 1,6) / 220 = 0,0068 А = 6,8 мА.
Если мы хотим, чтобы ток протекал больше через светодиод мы можем использовать меньший резистор (вместо 220) и мы будет получать больше тока через светодиод без изменения величины тока который идет от входной линии к базовому резистору 100 кОм. Это означает , что мы можем контролировать вещи, которые используют большая мощность (например, электродвигатели) с дешевыми транзисторными схемами малой мощности. Скоро вы узнаете, как использовать компьютер для управления событиями в реальном мире. Несмотря на то Выходы стандартного компьютера под управлением Windows не могут обеспечить достаточный ток для включения света и двигателей включения и выключения, компьютер может включать и выключать транзисторы (поскольку для этого требуется слабый ток) и Транзисторы могут управлять большим током для ламп и двигателей. Эта концепция называется усилением и представляет собой фундаментальную концепцию компьютерного интерфейса для эксперименты в реальном мире.
Примечание :
Это руководство в значительной степени основано на том, что изначально появилось на несуществующем веб-сайте www.iguanalabs.com
(Посмертное спасибо ребятам из лаборатории игуаны).
Общие сведения о конструкции схем транзисторов »Электроника
Разработка электронной схемы с использованием биполярных транзисторов довольно проста, используя простые принципы проектирования и несколько уравнений.
Руководство по проектированию схем транзисторов Включает:
Проектирование схем транзисторов
Конфигурации схемы
Общий эмиттер
Конструкция схемы с общим эмиттером
Эмиттер-повторитель
Общая база
См. Также: Типы транзисторных схем
Транзисторные схемы занимают центральное место в современных технологиях проектирования электронных схем.Хотя в наши дни интегральные схемы используются во многих схемах, базовая конструкция транзисторной схемы часто требуется в самых разных областях.
Хотя использование дискретных электронных компонентов с транзисторами требует большего количества компонентов, можно адаптировать схему для обеспечения именно той функциональности, которая требуется. Соответственно, схемы, использующие дискретные транзисторы и несколько дополнительных электронных компонентов, до сих пор остаются в основе конструкции электронных схем.
Это означает, что понимание конструкции транзисторных схем по-прежнему важно, поскольку оно не только позволяет проектировать базовые транзисторные схемы, но также обеспечивает лучшее понимание работы интегральных схем, основанных на технологии биполярных транзисторов.
BC547 Транзистор с пластиковыми выводамиОсновы биполярного транзистора
Очевидно, что ключевым электронным компонентом в любой транзисторной схеме является сам транзистор. Эти электронные компоненты могут быть получены в дискретной форме или могут находиться в интегральной схеме.
Транзисторы производятся в различных форматах, и их можно получить для выполнения различных функций — от слабого сигнала до высокой мощности, от аудио до ВЧ и коммутации.
Они также бывают как PNP-транзисторы и NPN-транзисторы — из этих NPN-транзисторов более широко используются, поскольку они подходят для широко используемой системы отрицательного заземления, а также их характеристики лучше с точки зрения скорости.
Хотя транзисторы NPN более широко используются, это не означает, что транзисторы PNP не используются. Они часто находят применение в качестве дополнения к транзисторам NPN и некоторым другим схемам.
Базовая структура транзистора и условные обозначения схемПримечание по биполярному транзистору:
Биполярный транзистор представляет собой устройство с тремя выводами, которое обеспечивает усиление по току, когда ток коллектора в раз больше тока базы. Биполярный транзистор широко доступен, и его характеристики оптимизируются в течение многих лет.
Подробнее о Устройство на биполярных транзисторах и принцип его работы
Биполярный транзистор доступен уже более семидесяти лет — его технология очень хорошо отработана, и хотя технология полевых транзисторов, вероятно, более широко используется в интегральных схемах, биполярные транзисторы все еще используются в огромных количествах в различных аналоговых и цифровых схемах, как в интегральных схемах и в виде дискретных электронных компонентов.
Биполярный транзистор был впервые изобретен в 1949 году группой ученых, работающих в Bell Labs в США. Его открытие представляет собой интересное чтение.
Примечание к истории транзисторов:
Биполярный транзистор был изобретен тремя исследователями, работающими в Bell Labroratories: Джоном Бардином, Уолтером Браттейном и Уильямом Шокли. Они работали над идеей, в которой для управления током в полупроводнике использовался эффект поля, но они не смогли реализовать эту идею.Они обратили свое внимание на другую возможность и создали трехконтактное устройство, используя два близко расположенных точечных контакта на пластине из германия. Эта идея сработала, и они смогли продемонстрировать, что она принесла прибыль в конце 1949 года.
Подробнее о История биполярных транзисторов
Расчетные параметры схемы транзистора
Перед тем, как приступить к проектированию электронной схемы для транзисторной схемы, необходимо определить требования к схемам: некоторые из основных параметров, связанных с транзисторными схемами.
В требованиях к конструкции транзисторной схемы может быть ряд параметров:
Коэффициент усиления по напряжению: Коэффициент усиления по напряжению часто является ключевым требованием для проектирования электронных схем. Коэффициент усиления схемы — это увеличение напряжения от входа к выходу схемы. С математической точки зрения, коэффициент усиления по напряжению A v — это выходное напряжение, деленное на входное.
Коэффициент усиления по напряжению — одна из ключевых целей многих схем, поскольку она обеспечивает «размер»
Коэффициент усиления по току: Коэффициент усиления по току схемы часто важен при проектировании электронных схем, особенно когда схема управляет нагрузкой с низким сопротивлением.Часто требуется схема без усиления по напряжению, и требуется только усиление по току, чтобы схема с относительно высоким выходным импедансом могла управлять другой схемой с более низким импедансом.
Есть много примеров этого: генератору RF часто требуется буферный каскад, чтобы гарантировать, что сам контур генератора не загружен чрезмерно, но выход необходим для управления другими цепями. Коэффициент усиления по току также используется в цепях питания, где элемент последовательного прохода регулятора напряжения должен обеспечивать значительные уровни тока, но с использованием опорного напряжения низкого тока.Есть много других примеров того, где необходимо усиление тока.
Как и шкала напряжения, коэффициент усиления схемы по току сравнивает входной и выходной уровни, но с точки зрения тока. Коэффициент усиления по току равен выходному току, деленному на входной ток.
Входное сопротивление: Входное сопротивление транзисторной цепи всегда важно. Он определяет нагрузку на предыдущем этапе, а также важен в ВЧ схемах, где согласование импеданса является важным параметром.
Во многих конструкциях электронных схем желателен высокий входной импеданс, потому что это означает, что предыдущий каскад не нагружен чрезмерно. Если входной импеданс транзисторной схемы слишком низок, она будет загружать предыдущую, уменьшая уровень сигнала и, возможно, вызывая искажения в некоторых случаях. Настройка транзисторного каскада для обеспечения правильного входного импеданса является ключевым элементом процесса проектирования электронной схемы.
Выходное сопротивление: Выходное сопротивление также важно.Если транзисторная схема управляет схемой с низким импедансом, то ее выход должен иметь низкий импеданс, в противном случае на выходном каскаде транзистора произойдет большое падение напряжения и в некоторых случаях может возникнуть искажение сигнала.
Если полное сопротивление нагрузки низкое, то обычно требуется схема с высоким коэффициентом усиления по току, и подходящий формат схемы может быть выбран в процессе проектирования электронной схемы. Если допустимо более высокое выходное сопротивление, то часто более подходящей является схема с более высоким коэффициентом усиления по напряжению.
Частотная характеристика: Частотная характеристика — еще один важный фактор, влияющий на конструкцию схемы транзистора. Конструкции низкочастотных или аудиотранзисторных схем сильно отличаются от схем, используемых для радиочастотных приложений. Также выбор электронных компонентов в схеме определяет отклик: транзисторы, а также номиналы конденсаторов и резисторов в конструкции электронной схемы — все влияют на частотную характеристику.
На ранней стадии проектирования схемы необходимо иметь определенные требования к необходимой частотной характеристике, а затем схема может быть спроектирована в соответствии с требованиями.
Напряжение и ток питания: Одним из ключевых параметров любой схемы является требуемая мощность с точки зрения требуемого напряжения и тока. Таким образом, на этапе проектирования электронных схем можно гарантировать, что правильное напряжение будет обеспечено с требуемой допустимой нагрузкой по току.
Рассеиваемая мощность: Еще одним параметром, во многом связанным с напряжением и током, подаваемым в схему, является рассеиваемая мощность.Если рассеиваемая мощность высока, то может потребоваться устройство для охлаждения и общего отвода тепла от цепи, и в частности любых электронных компонентов, которые могут рассеивать большое количество тепла. Обычно это транзистор, но другие компоненты тоже могут рассеивать тепло.
Функция цепи транзистора
Транзисторные схемы могут выполнять множество различных функций. Обычно существуют стандартные блоки для общих функций, таких как усилитель, генератор, фильтр, источник тока, дифференциальный усилитель и множество других.
Эти стандартные форматы схем широко используются и могут быть приняты, а значения электронных компонентов определены в процессе проектирования электронных схем.
Схемы часто соответствуют проверенным схемам, которые использовались в течение многих лет. Эти схемы часто использовались со старой технологией вакуумных ламп или термоэмиссионных клапанов и одинаково хорошо работают с биполярными транзисторами, а также с полевыми транзисторами, полевыми транзисторами и иногда даже с операционными усилителями.
Принимается основной формат и определяются значения для электронных компонентов, обеспечивающие требуемую производительность.
Часто для этого требуются небольшие эксперименты, но в наши дни программное обеспечение для моделирования схем способно точно воспроизвести работу схемы, так что значения электронных компонентов могут быть оптимизированы для достижения требуемых характеристик и функциональности.
Конфигурация или топология схемы транзистора
Какова бы ни была общая функция схемы, необходимо также учитывать топологию в начале процесса проектирования электронной схемы.
Цепи транзисторовмогут быть спроектированы с использованием различных топологий, каждая из которых имеет разные характеристики, особенно с точки зрения входного и выходного сопротивления.
Эти топологии конфигураций выбираются в соответствии с требованиями проектирования электронных схем и включают общий эмиттер, общий коллектор или эмиттерный повторитель и общую базу.
Процесс проектирования схемы транзистора
Процесс проектирования транзистора состоит из нескольких этапов. Обычно они выполняются в логическом порядке, но часто необходимо пересмотреть различные этапы, чтобы оптимизировать значения различных электронных компонентов для обеспечения требуемой общей производительности.
Определите требования: Определение реальных требований является важным этапом, и его правильное выполнение будет означать, что концепция схемы не изменится в будущем.
Определите функцию и топологию схемы: После того, как общие требования для всего электронного устройства определены, необходимо выбрать фактическую схему транзистора. Например, существует множество схем генераторов, фильтров, усилителей и т. Д.для транзисторов и оптимальный тип может быть выбран для конкретных требований. Это часто также определяет фактическую топологию схемы, то есть использование общего эмиттера, общего коллектора, общей базы, но в противном случае это может составлять часть общего принятия решения в это время, потому что нагрузка на генераторы, усиление, выходное сопротивление и т. можно рассмотреть в это время.
Установите условия смещения: В любой схеме одной из ключевых особенностей конструкции электронной схемы является обеспечение уровней смещения для активных устройств: в этом случае биполярные транзисторы настроены правильно.Если смещение неправильное, схема транзистора не будет работать. Определение значений электронных компонентов (в основном резисторов), задающих смещение, является одним из ключевых этапов проектирования.
Определите функциональные значения электронных компонентов: Наряду с установкой условий смещения, необходимо определить значения для других электронных компонентов, чтобы обеспечить функциональность схемы. Эта часть процесса проектирования электронной схемы продолжается вместе с установкой условий смещения, поскольку значения для одного будут влиять на другое, и наоборот.
Пересмотрите значения электронных компонентов для смещения и функции: После установки значений схемы всегда требуется небольшая итерация, чтобы сбалансировать требования к смещению и общей функциональности схемы. Скорее всего, этот процесс будет повторяться.
Тестовая цепь: Тестирование цепи — ключевой элемент любой конструкции. Часто во многих лабораториях есть программное обеспечение для моделирования схем, и поэтому схема может быть смоделирована до того, как она будет построена, чтобы устранить большинство проблем.Однако заключительным испытанием является создание и запуск схемы в условиях, максимально приближенных к рабочим условиям.
Переделка и модификация: Часто бывает необходимо изменить электронную схему. Если это необходимо, то он переделывается и тестируется с новыми значениями электронных компонентов, компоновкой и т. Д.
Представляют собой некоторые из основных параметров схемы, требуемых для проектирования схемы транзистора. Знание этих параметров может повлиять на выбор конфигурации схемы и, безусловно, будет определять параметры компонентов и многие другие факторы.
Соответственно, необходимо знать параметры, управляющие работой транзисторной схемы, прежде чем можно будет приступить к проектированию.
Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем
Вернуться в меню «Конструкция схемы». . .
Введение в транзисторы
Схемы, которые я рассмотрю в этой статье, более сложные, чем обсуждалось ранее.Вы узнаете о функциях и применении транзисторов с биполярным переходом (BJT) и полевых транзисторов (FET).
В моей предыдущей статье Introduction to Basic Electronics Circuits вы познакомились с простейшими, самыми основными типами электронных схем. Это отличное место для начала изучения электроники, но в конечном итоге любая реальная схема будет более сложной, чем те, которые обсуждались в той первой статье.
В этой статье я сосредоточился на так называемых пассивных схемах .К пассивным компонентам относятся резисторы, конденсаторы, катушки индуктивности, трансформаторы и т. Д. Активная схема , с другой стороны, использует более сложные компоненты, такие как транзисторы. Электронный компонент считается активным, если он позволяет устройству управлять током в других частях цепи.
Схемы, которые я рассмотрю в этой статье, будут более сложными, но все они относительно простые схемы. Я не хочу вас ошеломлять, и очень важно начинать с простых и постепенно переходить к более сложным схемам.
Мы будем анализировать две широкие категории транзисторов: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET). Транзисторы могут работать как цифровые переключатели или использоваться в аналоговых приложениях, таких как усилители и регуляторы мощности.В этой вводной статье я не буду вдаваться в подробности физики этих транзисторов, которые, вероятно, только вызовут путаницу, и вместо этого основное внимание будет уделено их функциональности и применению.
Биполярные переходные транзисторы (BJT)
Давайте сначала рассмотрим транзисторы с биполярным переходом, названные так потому, что они состоят из двух диодных переходов.Биполярный транзистор бывает двух видов: NPN и PNP. Буквы N и P указывают на то, легирована ли область полупроводникового кремния отрицательно или положительно.
Рисунок 1 — Биполярные переходные транзисторы (BJT) (n-тип = NPN и p-тип = PNP)
Биполярный транзистор состоит из трех выводов: коллектора, базы и эмиттера. Для биполярного транзистора NPN ток будет течь от коллектора к эмиттеру. Для транзистора PNP ток будет течь от эмиттера к коллектору.
Для включения NPN-транзистора базовое напряжение должно быть больше, чем напряжение эмиттера. Обратное верно для транзистора PNP, где базовое напряжение должно быть меньше напряжения эмиттера.
В большинстве схем эмиттер NPN будет связан с землей (или связан с резистором, который соединяется с землей), а эмиттер PNP будет связан с положительным источником питания (возможно, снова через резистор).
Биполярный транзистор имеет три зоны работы:
Активная область:
При работе в активной области транзистор действует как усилитель.Напряжение между выводами базы и эмиттера (обычно называемое V — ) контролирует величину тока, протекающего между коллектором и эмиттером.
Это экспоненциальная зависимость, поэтому малейшее изменение Vbe может иметь огромное влияние на ток коллектора. Поскольку этот переход база-эмиттер на самом деле представляет собой просто диод, напряжение ( В будет ) всегда будет близко к 0,7 В. Это соотношение регулируется следующим уравнением:
I
C = I S * exp (V be / V T )Где I C = ток коллектора, I S = ток обратного насыщения (известная константа порядка 10 −15 до 10 −12 ампер), а V T называется тепловым напряжением. которая пропорциональна температуре (примерно 26 мВ при комнатной температуре).
Биполярный транзистор, работающий в активной области, также обеспечивает усиление тока. Ток, протекающий через вывод базы, будет увеличиваться параметром транзистора, известным как β (бета) или иногда h FE . Этот накопленный ток будет течь между коллектором и эмиттером. Уравнение для этого:
I
C = β * I BГде I C = ток коллектора, β — коэффициент усиления по току для транзистора, а I B = ток базы.
Наконец, ток эмиттера для BJT равен сумме токов базы и коллектора:
I
E = I C + I BНасыщенность и отсечка:
В области насыщения биполярный транзистор полностью включен и действует как замкнутый переключатель между выводами коллектора и эмиттера. В то время как в области отсечки транзистор полностью выключен и действует как разомкнутый переключатель.
Однако для приложений цифровой коммутации я предпочитаю использовать полевые транзисторы вместо транзисторов с биполярным переходом.
Полевые транзисторы (FET)
Другая широкая классификация транзисторов называется полевыми транзисторами. Как и в случае с BJT, у полевого транзистора есть три контакта, которые служат для аналогичных целей. Контрольный штифт называется затвором (вместо основания). Ток в полевом транзисторе протекает между стоком (аналогично коллектору на BJT) и истоком (так же, как эмиттер BJT).
Одним из наиболее значительных функциональных различий между BJT и FET является то, что управляющий вывод (затвор) электрически изолирован изолирующим оксидным слоем.В затвор не течет ток, как в случае с базой биполярного транзистора. Полевой транзистор — это устройство, управляемое только напряжением.
Как и биполярные транзисторы, полевые транзисторы бывают двух видов: n-типа и p-типа. Доступны различные типы полевых транзисторов, но наиболее распространенный тип — полевые МОП-транзисторы. MOS означает металл-оксид-полупроводник, и это просто относится к изоляционному материалу, который образует изолированный затвор.
Полевой транзистор n-типа обычно называют NFET или NMOS для полевых МОП-транзисторов n-типа.Полевой транзистор p-типа называется PFET или PMOS для полевых МОП-транзисторов p-типа.
Рисунок 2 — Полевые транзисторы (FET) (n-тип = NFET и p-тип = PFET)
Полевые транзисторы имеют три зоны работы:
Обрезка зоны:
Важным параметром полевого транзистора является так называемое пороговое напряжение (V t ). Это минимальное напряжение между выводами затвора и истока (называемое V GS ), при котором устройство начинает включаться.Если V GS меньше, чем V t , то ток не будет течь между стоком и истоком. Этот регион известен как режим отсечки или подпороговый режим:
Если V
GSВ области отсечки полевой транзистор действует как разомкнутый переключатель.
Как только V GS станет больше, чем пороговое напряжение (V t ), тогда полевой транзистор войдет либо в линейную область, либо в активную область, в зависимости от напряжения между выводами стока и истока.
Линейная область (также называемая омическим режимом или триодным режимом):
Когда V GS больше порогового напряжения, но напряжение на выводах сток-исток меньше разницы между V GS и V t , тогда полевой транзистор работает в линейной области.
Если V
GS > V t и V DSВ линейной области полевой транзистор действует как резистор, управляемый напряжением.В этой области, если напряжение затвора достаточно велико, полевой транзистор будет действовать как замкнутый переключатель (то есть резистор с низким сопротивлением).
Активная область
Когда V GS больше, чем V t , а напряжение сток-исток (V DS ) больше, чем разница между V GS и V t , тогда полевой транзистор находится в активной области .
Если V
GS > V t и V DS > V GS — V t = Активная областьВ активной области полевой транзистор может выполнять такие функции, как усиление напряжения.
Биполярный транзистор известен как экспоненциальное устройство из-за экспоненциальной зависимости между выходным током и управляющим напряжением (уравнение 1) при работе в активной области.
ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .
С другой стороны, полевой транзистор является квадратичным устройством, что означает, что выходной ток пропорционален квадрату управляющего напряжения (V GS ) при работе в активной области.Уравнение для полевого транзистора выглядит следующим образом:
I
D = k ’* (V GS — V т ) 2, где I D = ток стока, а k ’- константа, связанная с конкретным полевым транзистором.
Это было лишь очень простым введением в некоторые фундаментальные концепции, связанные с транзисторами. В зависимости от того, насколько глубоко вы хотите погрузиться, вам предстоит еще многому научиться. Фактически, было написано много книг, посвященных физике транзисторов и / или проектированию транзисторных схем.
Теперь, когда у вас есть базовое представление о биполярных и полевых транзисторах, давайте применим их к определенному использованию, соединив их в электронную схему.
Ключи транзисторные
Простое и распространенное использование транзистора — это включение и выключение светодиодного индикатора. На схеме ниже показано, как для этой цели можно использовать биполярный транзистор NPN и транзистор NFET. Прямоугольный сигнал, показанный ниже, может быть выводом ввода-вывода, поступающим от микроконтроллера.
Многие микроконтроллеры могут подавать / потреблять ток в несколько миллиампер, поэтому в некоторых случаях можно просто подключить светодиод непосредственно к контакту ввода-вывода без необходимости в транзисторе.Но в случаях, когда вам нужен ток светодиода выше, чем может поддерживать ваш микроконтроллер, вы должны использовать транзисторный переключатель.
Рисунок 3 — Транзисторные переключатели драйвера светодиода
Когда прямоугольный сигнал (управляющее напряжение) высокий, тогда Q1 (биполярный NPN) и Q2 (NFET) оба полностью включены и выглядят как замкнутый переключатель. Это позволяет току течь через каждый светодиод. Резисторы, включенные последовательно со светодиодами, используются для установки уровня тока, который течет, когда транзисторы закрыты.
Обратите внимание на резистор (R4) в базе транзистора NPN. Такой базовый резистор требуется на биполярном транзисторе, чтобы ограничить ток и предотвратить повреждение. Помните, что переход база-эмиттер на биполярном транзисторе — это просто диод.
Как вы, вероятно, уже знаете, для диода требуется резистор, ограничивающий ток, и это верно и для биполярных транзисторов. Напряжение на переходе база-эмиттер очень близко к 0,7 В, поэтому, если вы попытаетесь подать 5 В на этот переход (без базового резистора), это приведет к серьезным повреждениям.
Преобразователи транзисторные
Инвертор — одна из самых простых схем, которые вы можете спроектировать. Инвертор принимает 0 и превращает его в 1 или наоборот. Мы собираемся рассмотреть возможность использования только полевых транзисторов для создания инвертора.
Схема, показанная на рисунке 4, состоит всего из двух инверторов. Первый инвертор состоит из Q1 и R1, а второй инвертор использует Q2 и Q3. Q1 и Q3 — это полевые транзисторы, а Q2 — полевые транзисторы.
Если на затворе NFET высокий уровень (по сравнению с его выводом истока), то транзистор полностью открыт и выглядит как замкнутый переключатель.Когда затвор низкий, то полевой транзистор полностью выключен и выглядит как разомкнутый переключатель.
PFET — это как раз наоборот. Если затвор низкий, то включается PFET. Если он высокий, значит, он выключен. Для PFET источник, вероятно, будет привязан к положительному источнику питания.
Рисунок 4 — Цифровые инверторы на полевых транзисторах
Когда V1 равен нулю, Q1 выключен и выглядит как разомкнутая цепь; это означает, что напряжение в узле V2 подтягивается до напряжения питания наверху через резистор R1, потому что теперь Q1 выключен.Если V1 высокий, теперь Q1 полностью включен, что подтягивает V2 к земле.
Итак, если V1 равен нулю, V2 равен единице. Если V1 равен единице, то V2 равен нулю. Это инвертор.
Однако лучший способ сделать инвертор — это заменить верхний резистор (R1) на полевой транзистор. Проблема с использованием резистора для функции подтягивания заключается в том, что подтягивающий ток будет довольно небольшим. Небольшой подтягивающий ток означает, что выходной сигнал инвертора будет медленно изменяться от нуля до единицы.
Отклик этого первого инвертора будет асимметричным.Он очень быстро потянет узел V2 вниз через Q1, но будет намного медленнее поднимать V2 на высокий уровень. Эта проблема устраняется использованием PFET вместо резистора для этой подтягивающей функции.
Для инвертора NFET / PFET (Q2 и Q3), когда его входное напряжение (V2) низкое, NFET полностью выключен, а PFET полностью включен. Таким образом, выходное напряжение (V3) будет высоким.
С другой стороны, если V2 высокий, теперь PFET выключен, а NFET включен, поэтому V3 понижается.Вы вставляете единицу, получаете ноль. Вы ставите ноль, вы получаете единицу. Он выполняет ту же функцию, что и Q1 и R1, но с симметричным временем нарастания и спада на выходе.
Схема биполярного транзистора
Наконец, мы рассмотрим схему с биполярным транзистором или, в частности, NPN.
Рисунок 5 — Простая схема NPN
Как ранее обсуждалось в уравнении 2, бета — это коэффициент усиления по току для биполярного транзистора.Например, если Beta равно 100, а ток базы равен 1uA, это означает, что ток коллектора будет 100uA, а ток эмиттера будет 101uA.
Для схемы, показанной на рисунке 5, ток, протекающий через R1 в базу, усиливается бета-версией, а затем течет через R2.
Если вы хотите рассчитать выходное напряжение этой цепи, первым делом необходимо вычислить базовый ток. Для этого вам нужно найти падение напряжения на R1, а затем использовать закон Ома для расчета тока.Левая сторона R1 связана с напряжением питания, а правая сторона идет к основанию NPN.
Помните, переход база-эмиттер биполярного транзистора — это просто диодный переход с напряжением приблизительно 0,7 В. Итак, чтобы рассчитать базовый ток, вы должны использовать следующее уравнение:
I
B = (VS1 — 0,7 В) / R1Чтобы вычислить ток коллектора, вы просто умножаете ток базы на бета-коэффициент транзистора, как ранее показано в уравнении 2.
Ток, протекающий через резистор R2, равен току коллектора транзистора. Чтобы рассчитать выходное напряжение этой схемы, вам теперь нужно рассчитать падение напряжения на R2 и просто вычесть это из положительного напряжения питания:
В
выход = VS1 — (I C * R2)Это действительно простая схема, не имеющая большого практического применения, но она знакомит вас с некоторыми основами биполярных транзисторов.
Заключение
Эта статья познакомила вас с самыми основными концепциями схем на активных транзисторах.Типы схем, которые могут быть построены с использованием транзисторов, действительно захватывают дух. Транзисторы лежат в основе любого электронного устройства.
При этом, с момента изобретения интегральной схемы (ИС) потребность в разработке сложных дискретных транзисторных схем снизилась в основном до инженеров, проектирующих микросхемы ИС.
Тем не менее, все еще существует потребность в базовом понимании транзисторов, и во многих конструкциях будет использоваться несколько дискретных транзисторов. Но в большинстве проектов сейчас для любых сложных функций используются интегральные схемы вместо дискретных транзисторных схем.
Если вы не планируете стать проектировщиком микросхем, вам, скорее всего, потребуется только вводное понимание транзисторных схем.
Если вам понравилась эта статья, поделитесь ею или если у вас есть вопросы, просто оставьте комментарий ниже, и я отвечу на ваши вопросы.
Наконец, не забудьте загрузить бесплатно PDF : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.Другой контент, который может вам понравиться:
Конфигурации схем транзисторов»Примечания по электронике
В схемах транзисторовиспользуется одна из трех конфигураций транзисторов: общая база, общий коллектор (эмиттерный повторитель) и общий эмиттер — одна выбирается в процессе проектирования электронной схемы.
Руководство по проектированию схем транзисторов Включает:
Проектирование схем транзисторов
Конфигурации схемы
Общий эмиттер
Конструкция схемы с общим эмиттером
Эмиттер-повторитель
Общая база
См. Также: Типы транзисторных схем
При рассмотрении конструкции электронной схемы для транзисторной схемы можно использовать три различные основные конфигурации схемы.
Три различные конфигурации схемы транзисторов: общий эмиттер, общая база и общий коллектор (эмиттерный повторитель), эти три конфигурации схемы имеют разные характеристики, и в зависимости от требований будет выбран один тип схемы.
Каждый из них имеет разные свойства с точки зрения усиления, входного и выходного импеданса и т. Д., И в результате в процессе проектирования электронной схемы будет выбрана конкретная конфигурация.
Каждая из различных топологий транзисторов имеет входы и выходы, подключенные к разным точкам, причем одна клемма является общей для входа и выхода.
В дополнение к выбору правильной конфигурации схемы или топологии на этапе проектирования электронной схемы для обеспечения требуемых основных характеристик вокруг транзистора размещаются дополнительные электронные компоненты: обычно резисторы и конденсаторы, и значения рассчитываются для получения точных необходимых характеристик. .
Выбор топологии и расчет значений электронных компонентов являются ключевыми элементами процесса проектирования электронных схем.
Конфигурации транзисторных схем
Названия трех основных конфигураций транзисторов указывают на вывод транзистора, который является общим для входных и выходных цепей. Это дает начало трем терминам: общая база, общий коллектор и общий эмиттер.
2N3553 Транзистор в металлической банке TO39Термин «заземленный», т.е. заземленная база, заземленный коллектор и заземленный эмиттер, также может использоваться в некоторых случаях, потому что сигнал общего элемента обычно заземлен.
Существуют конфигурации эквивалентных схем для полевых транзисторов, а также термоэмиссионных клапанов / вакуумных ламп. Эти конфигурации имеют одинаковые типы свойств, хотя и немного изменены в зависимости от типа используемого электронного устройства.
Для полевых транзисторов используются такие термины, как общий сток, общий исток и общий затвор, а для клапанов / трубок терминология включает общий катод, общий анод и общую сетку.
Конфигурация транзистора с общей базой
По алфавиту это первая конфигурация транзистора, но, вероятно, она будет использоваться с наименьшей вероятностью.
Эта конфигурация транзистора обеспечивает низкий входной импеданс при высоком выходном сопротивлении. Несмотря на высокое напряжение, коэффициент усиления по току невелик, а общий коэффициент усиления по мощности также невелик по сравнению с другими доступными конфигурациями транзисторов. Другой важной особенностью этой конфигурации является то, что вход и выход находятся в фазе.
Эта конфигурация транзистора, вероятно, используется меньше всего, но она дает преимущества, заключающиеся в том, что база, общая для входа и выхода, заземлена, и это дает преимущества в уменьшении нежелательной обратной связи между выходом и входом для различных приложений проектирования радиочастотных схем.Это происходит потому, что база, которая физически является электродом между эмиттером и коллектором, заземлена, тем самым обеспечивая барьер между ними.
В результате общая базовая конфигурация обычно используется для усилителей РЧ, где повышенная изоляция между входом и выходом дает больший уровень стабильности и снижает вероятность нежелательных колебаний. Как подтвердит любой, кто занимается проектированием радиочастот, это очень полезный атрибут.
Кроме того, низкий входной импеданс часто может обеспечить хорошее согласование с сопротивлением 50 Ом, что является полезным атрибутом для многих сценариев проектирования ВЧ.
Конфигурация схемы общей базы транзистораОбщий коллектор (эмиттерный повторитель)
Конфигурация схемы с общим коллектором, возможно, более широко известна как эмиттерный повторитель, потому что напряжение эмиттера следует за напряжением базы, хотя и ниже по напряжению на величину, равную напряжению включения базового эмиттерного перехода.
Общий коллектор, эмиттерный повторитель обеспечивает высокое входное сопротивление и низкое выходное сопротивление. Коэффициент усиления по напряжению равен единице, хотя коэффициент усиления по току велик.Входной и выходной сигналы синфазны.
Принимая во внимание эти характеристики, конфигурация эмиттерного повторителя широко используется в качестве буферной схемы, обеспечивающей высокий входной импеданс для предотвращения нагрузки предыдущего каскада и низкий выходной импеданс для управления следующими каскадами.
Конфигурация схемы общего коллектора транзистораКак видно из схемы, в этой конфигурации транзистора коллекторный электрод является общим как для входных, так и для выходных цепей. Несколько дополнительных электронных компонентов используются с резистором для эмиттера, возможно, конденсаторами на входе и выходе и резисторами смещения на базе, если это необходимо.В некоторых случаях эмиттерный повторитель может быть напрямую соединен с предыдущим каскадом, поскольку выходное напряжение постоянного тока может быть подходящим для размещения цепью повторителя. Это означает, что требуется очень мало дополнительных электронных компонентов.
Конфигурация транзистора с общим эмиттером
Эта конфигурация транзисторов, вероятно, является наиболее широко используемой. Схема обеспечивает средний уровень входного и выходного сопротивления. Прирост как по току, так и по напряжению можно описать как средний, но выход является обратным входу, т.е.е. Изменение фазы на 180 °. Это обеспечивает хорошую общую производительность и поэтому часто является наиболее широко используемой конфигурацией.
Конфигурация схемы общего эмиттера транзистораКак видно из схемы, в этой конфигурации транзистора электрод эмиттера является общим как для входной, так и для выходной цепи.
Сводная таблица конфигурации схемы транзистора
В таблице ниже приведены основные характеристики различных конфигураций транзисторов.При разработке транзисторной схемы важным аспектом является не только усиление, но и такие параметры, как входное и выходное сопротивление.
Сводная таблица конфигурации транзисторов | |||
---|---|---|---|
Конфигурация транзистора | Общая база | Общий коллектор (эмиттерный повторитель) | Общий эмиттер |
Коэффициент усиления по напряжению | Высокая | Низкая | Средний |
Коэффициент усиления по току | Низкая | Высокая | Средний |
Прирост мощности | Низкая | Средний | Высокая |
Соотношение фаз вход / выход | 0 и град. | 0 ° | 180 ° |
Входное сопротивление | Низкая | Высокая | Средний |
Выходное сопротивление | Высокая | Низкая | Средний |
Дополнительные электронные компоненты
Какая бы форма подтверждения транзистора ни была выбрана на этапе проектирования электронной схемы, вокруг транзистора потребуются дополнительные компоненты: резисторы для установки точек смещения и конденсаторы для обеспечения связи и развязки.
Схема транзистора с общим эмиттером, показывающая дополнительные компоненты, необходимые для обеспечения смещения, связи и развязки и т. Д.В этой схеме усилителя с общим эмиттером базовая конфигурация устанавливает основные условия схемы: среднее входное сопротивление, среднее выходное сопротивление, приемлемое напряжение. усиление и тому подобное. Затем рассчитываются дополнительные электронные компоненты, чтобы обеспечить требуемые рабочие условия сверх указанных.
Каждый из электронных компонентов должен быть рассчитан на этапе проектирования электронной схемы, чтобы обеспечить требуемую производительность.
Хотя общий эмиттер, вероятно, будет чаще всего встречаться с электронными компонентами, такими как резисторы и конденсаторы, при использовании для проектирования ВЧ-схемы в схему также могут быть включены такие компоненты, как индукторы и трансформаторы. То же самое верно и для других конфигураций транзисторных схем.
Наиболее часто используемая конфигурация схемы — это общий эмиттер — он используется для многих каскадов усилителя, обеспечивающих усиление по напряжению. Эмиттерный повторитель или общий коллектор также широко используется.Обеспечивая высокий входной импеданс и низкий выходной импеданс, он действует как буфер и обеспечивает только усиление по току — его усиление по напряжению равно единице. Общая база используется в более специализированных приложениях и заметно меньше.
Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .
Типовые схемы транзисторов
Дифференциальный усилитель усиливает разницу между двумя напряжениями и. Дифференциальное усиление имеет многие приложения, например, первая стадия операционные усилители (операционные усилители).
Два транзистора и в схеме идентичны одинаковые свойства, а их эмиттеры подключены к источнику тока с постоянным током, чтобы .Если увеличивается, уменьшится, и наоборот. Рассмотрим эти три случая:
Таким образом, вывод отражает только разницу между двумя входы и, но он остается неизменным, если оба входа становятся выше или ниже, т.е. это дифференциальный усилитель. Выход напряжение может быть дополнительно усилено следующей схемой.На рисунке также показан простой источник тока. Базовое напряжение транзистора фиксируется примерно на , так что ток нагрузки также приблизительно постоянна, независимо от нагрузки, т.е.е., схему можно использовать как источник тока обеспечивающий ток, определяемый нагрузкой, но не зависящий от нее. А лучший способ поддерживать постоянство — заменить диоды на диоды с обратным смещением. Стабилитрон. Когда стабилитрон имеет обратное смещение напряжением, превышающим его напряжение пробоя , падение напряжения на нем, в цепи, поддерживается при напряжении пробоя, постоянном значении, не зависящем от каких-либо другие переменные в схеме. Следовательно, тоже постоянный.
Схема токового зеркала, показанная ниже, представляет собой простой источник тока. что обеспечивает постоянный ток независимо от нагрузки.
Эта схема состоит из двух согласующих транзисторов и с идентичным поведением, таким как входные и выходные характеристики а также . Это входные и выходные каскады схемы соответственно. В качестве входа используется эталонный ток можно определить как
(129) |
(130) |
- Во входном каскаде, так как коллектор и база закорочены,
он ведет себя как диод с точки зрения соотношения между
а также
, напряжение и ток через базу-эмиттер
PN переход:
где — обратный ток насыщения БЭ PN-перехода, тепловое напряжение.Таким образом, транзистор можно рассматривать как преобразователь тока в напряжение, с помощью которого ток коллектора преобразуется в выходное напряжение, которое поддерживается постоянным из-за цикл отрицательной обратной связи:(131)
В виде определяется исключительно , и поэтому будет постоянно независимым нагрузки.(132) - В выходном каскаде, так как и идентичны и
, у нас есть
а также
.
Ток нагрузки определяется, но не зависит от нагрузки:
Обратите внимание, что приведенное выше обсуждение действительно только в том случае, если держит, я.е., оба и должны работать в линейной (активной) области вдали от области отсечки или насыщения.(133)
Токовое зеркало Уилсона:
Опять же, здесь транзистор можно рассматривать как вольт-амперную преобразователь, с помощью которого сквозной ток преобразуется в базовое напряжение разделяется как на, так и на. Следующие отрицательная обратная связь удерживает ток нагрузки постоянный:
(134) |
Транзистор Дарлингтона (пара Дарлингтона) представляет собой соединение
структура состоит из двух транзисторов, эмиттер которых
ток первого транзистора становится базовым током
второго транзистора.Главное преимущество Дарлингтона
транзистор — его высокий коэффициент усиления по току
, который
можно найти, выполнив следующие действия:
Напряжение база-эмиттер равно .
Правильно настроив рабочую точку постоянного тока транзисторной схемы, он может работать в любом из следующих режимов:
- Класс A: Транзистор остается проводящим во всей синусоидальной цикл (угол проводимости ). Рабочая точка постоянного тока в середине линейного диапазона транзистора, чтобы минимизировать искажения (вырезка).Тем не менее, потребление мощности постоянного тока увеличивается даже при переменном токе. синусоидальный сигнал равен нулю.
- Класс B: Транзистор проводит и усиливает сигнал переменного тока. только в половине синусоидального цикла (угол проводимости ), пока он выключен и не потребляет энергию для другой половины.
- Класс AB: это промежуточное звено между классом A и B, двумя транзисторы активны и проводят ток более половины время.
- Класс C: используется менее половины сигнального цикла (угол проводимости )
Эту схему можно рассматривать как усилитель класса AB, обычно используется в качестве последней ступени системы усиления, такой как в схеме операционного усилителя для усиления мощности с большим током и низкое выходное сопротивление для работы с большой нагрузкой (малой).Толкать-тянуть Схема состоит из пары двух транзисторов, которые работают поочередно в течение двух полупериодов синусоидального сигнала. Схема может быть реализуется одним из следующих двух способов:
- Двухтактная пара (одна NPN, другая PNP) получает одинаковые входной сигнал с их баз. Во время положительного полупериода Транзистор NPN является проводящим и пропускает ток через нагрузку. , при этом транзистор PNP отключен; во время отрицательного полупериода, Транзистор PNP NPN является проводящим и потребляет ток от нагрузки , а транзистор NPN отключен.При любой полярности выход сопротивление проводящего транзистора невелико.
- Двухтактная пара (обе NPN) получает входной сигнал не в фазе (например, от трансформатора или от коллектора и эмиттера транзистора на предыдущем этапе). Транзистор принимающий положительный пик входа активен и пропускает ток, с небольшими выходное сопротивление, в то время как другой транзистор получает отрицательный пик отсечка (обрыв). В течение следующего полупериода два транзистора ролевые переключатели с проводящим транзистором, потребляющим ток от нагрузки.
- Еще одним преимуществом двухтактной схемы является ее малая мощность. потребление. Когда входной сигнал переменного тока равен нулю, оба транзистора близок к отключению, проводит небольшой ток и, следовательно, потребляет мало энергии. Это можно сравнить с транзистором класса А. усилитель, где рабочая точка постоянного тока находится в середине линейная область, т.е. , , а потребляемая мощность , даже когда сигнал переменного тока равен нулю.
Генератор — это схема, которая не получает входного сигнала, но генерирует синусоидальную вывод с желаемой частотой.Типичная схема генератора основана на активный компонент (транзистор или операционный усилитель) с положительной обратной связью и LC-контур (контур резервуара). Первоначально срабатывает при включении цепи, LC-контур начинает резонировать на частоте , а также активный компонент с положительной обратной связью компенсирует затухание из-за неизбежного сопротивления в цепи и держит колебания идущий.
В частности, осцилляторы Хартли и Колпиттса представляют собой два типичных колебания. схемы.В любом случае используется транзисторный усилитель для приема положительных сигналов. обратная связь, взятая из LC-цепи в качестве импеданса коллектора, максимизируется на резонансной частоте, таким образом, усиление напряжения этой цепи также максимизирован. Часть синусоиды на коллекторе положительно подается обратно на излучатель, чтобы предотвратить затухание.
В обеих схемах обратная связь составляет часть выходного сигнала.(135) |
(136) |
Когда транзистор используется для усиления, его рабочая точка постоянного тока составляет усилитель типа A обычно устанавливается в середине линии нагрузки, чтобы максимизировать линейный динамический диапазон и тем самым минимизировать сигнал искажение (избегая нелинейной области транзисторной схемы).
Однако в некоторых приложениях нелинейное поведение транзистора схема используется, например, в частотном смесителе , используется для преобразования всех радиочастот разных радио / ТВ широковещательные каналы на промежуточную частоту , так что схема усиления приемника может быть специализирована для эта промежуточная частота, а не широкий диапазон всех возможных частоты вещания.В радиоприеме, КГц для AM (535-1605 кГц) и МГц для FM (88-108 МГц).
Как обсуждалось ранее, выходной ток составляет примерно экспоненциальная функция входного напряжения:
(137) |
т.е. | (138) |
где мы использовали тождества тригонометрии:
(140) |
Обратите внимание, что конкретное нелинейное поведение схемы не имеет значения, поскольку разложение в ряд Тейлора любой нелинейной функции будет содержать константу, члены первого и второго порядка в качестве экспоненциальной функции, принятой выше, и в результате будут те же частотные составляющие.
Смеситель частоты — важный компонент в супергетеродинный прием который используется во всем современном радио- и телевещании. Здесь частота гетеродина заменяется конденсатором переменной емкости, который можно регулировать вместе с конденсатором схемы настройки, поэтому что гетеродина меняется с несущей частота (радиочастота) принимаемого сигнала вещания антенной таким образом, чтобы их разница всегда была постоянной:
(141) |
Принципиальная схема простого супергетеродинного радиоприемника представлена ниже.