Site Loader

Содержание

Схемы включения tl431

TL одна из самых массово выпускаемых интегральных микросхем, с начала своего выпуска в году TL устанавливалась в большинство блоков питания компьютеров, ноутбуков, телевизоров, видео-аудио техники и другой бытовой электроники. TL является прецизионным программируемым источником опорного напряжения. Такая популярность обусловлена низкой стоимостью, высокой точностью и универсальностью. Принцип работы TL легко понять по структурной схеме: если напряжение на входе источника ниже опорного напряжения Vref, то и на выходе операционного усилителя низкое напряжение соответственно транзистор закрыт и ток от катода к аноду не протекает точнее он не превышает 1 мА. Если входное напряжение станет превышать Vref, то операционный усилитель откроет транзистор и от катода к аноду начнет протекать ток.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Микросхема TL431: схема включения и аналог микросхемы
  • Схема включения стабилитрона tl431 и проверка микросхемы мультиметром
  • Описание регулируемого стабилитрона TL431. Схемы включения, цоколевка, аналоги, datasheet
  • TL431, что это за «зверь» такой?
  • Проверка мультиметром стабилизатора tl431 и схема включения
  • Управляемый стабилизатор напряжения TL431 (ON Semiconductor)
  • Характеристики и схема включения TL431
  • TL431 – регулируемый стабилитрон. Описание, распиновка, схема включения, datasheet
  • TL431, TL432 — «цифровой» регулируемый стабилизатор тока и напряжения
  • TL431 datasheet, TL431 схема включения

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как проверить оптопару (оптрон) PC817.

С иллюстрациями. Часть 1.

Микросхема TL431: схема включения и аналог микросхемы


Микросхема TL — это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания. Микросхема стабилитрон TL может использоваться не только в схемах питания. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжения. Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL вывод 1 меньше 2,5В, стабилитрон TL заперт, через него проходит только малый ток, обычно, менее 0,4 мА.

Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм. Максимальный ток проходящий через стабилитрон TL находится в районе мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3. Его сопротивление можно рассчитать по формуле:. Также необходимо помнить, что для стабилитрона TL максимально допустимое напряжение составляет 36 В.

Величина напряжения Uз при котором срабатывает сигнализатор светится светодиод , определяется делителем на сопротивлениях R1 и R2. Его параметры можно подсчитать по формуле:.

Если необходимо точно выставить уровень срабатывания, то необходимо на место сопротивления R2 установить подстроечный резистор, с бОльшим сопротивлением. После окончания точной настройки, данный подстроичник можно заменить на постоянный. Иногда необходимо проверять несколько значений напряжения. В таком случае понадобятся несколько подобных сигнализатора на TL настроенных на свое напряжение.

Разница данной схемы от предшествующей в том, что светодиод подключен по-иному. Если же контролируемое значение напряжения превосходит уровень, определенный делителем Rl и R2, микросхема TL открывается, и ток течет через сопротивление R3 и выводы микросхемы TL Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.

В момент, когда исследуемая величина окажется меньше порога определенного делителем Rl и R2, микросхема TL закроется, и на ее выходе потенциал будет значительно выше 2В, вследствие этого светодиод HL1 засветится.

Если необходимо следить всего лишь за изменением напряжения, то устройство будет выглядеть следующим образом:. В этой схеме использован двухцветный светодиод HL1. Если потенциал ниже порога установленного делителем R1 и R2, то светодиод горит зеленым цветом, если же выше порогового значения, то светодиод горит красным цветом.

Если же светодиод совсем не светится, то это означает что контролируемое напряжение на уровне заданного порога 0,05…0,1В.

Для обобщения принципа работы на данной схеме отображены различные датчики. К примеру, если в качестве датчика применить фототранзистор , то в конечном итоге получится фотореле, реагирующее на степень освещенности. До тех пор пока освещение велико, сопротивление фототранзистора мало.

Вследствие этого напряжение на управляющем контакте TL ниже заданного уровня, из-за этого светодиод не горит.

При уменьшении освещенности увеличивается сопротивление фототранзистора. По этой причине увеличивается потенциал на контакте управления стабилитрона TL При превышении порога срабатывания 2,5В HL1 загорается. Данную схему можно использовать как датчик влажности почвы. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга.

После высыхания почвы, сопротивление между электродами возрастает и это приводит к срабатыванию микросхемы TL, светодиод загорается. Уровень срабатывания схемы во всех случаях устанавливается посредством резистора R1.

Помимо приведенных световых устройств, на микросхеме TL можно смастерить и звуковой индикатор. Схема подобного устройства приведена ниже.

Данный звуковой сигнализатор можно применить в качестве контроля за уровнем воды в какой-либо емкости. Датчик представляет собой два нержавеющих электрода расположенных друг от друга на расстоянии мм. Как только вода коснется датчика, сопротивление его понизится, и микросхема TL войдет в линейный режим работы через сопротивления R1 и R2. Нет, полностью — нельзя. Там десяток транзисторов. Цешкой можно только только проверить на пробой переход коллектор-эмиттер выходного транзистора.

Большое спасибо! Ценная и грамотно изложенная информация. Вообще сайт беру в закладки: посещаю не первый раз и всегда получаю необходимую мне информацию. Весьма благодарен за столь такую ценную информацию и её грамотное описание. Главное в простоте и доступности большой аудитории радиолюбителей. Объясните, пожаулйста, назначение резистора R2 например, на первых двух схемах? Получать уведомления по электронной почте об ответе на свой комментарий. Схемы включения, цоколевка, аналоги, datasheet.

Блок питания Набор для сборки регулируемого блока питания Регулируемый стабилитрон TL Отправить сообщение об ошибке. Похожие записи: Простой терморегулятор на tl Схема и описание Электронный предохранитель на полевом транзисторе.

Схема и описание Балансир для li-ion аккумуляторов своими руками. Схема и описание. Схемы читаются легко, описание работы простое. Ответить Спасибо! Отличная работа. Ответить Респект и уважуха Ответить Большое спасибо! Ответить Большое спасибо!!!

Ответить много хорошего узнал спасибо Ответить Большое спасибо! Ответить Спасибо Ответить Большое Спасибо за информацию!!! Ответить Хорошее, удобное описание, спасибо. Просмотрю весь сайт. Ответить Спасибо за подробное описание и за программу -Калькулятор для TL Ответить спасибо большое за подробное объяснение.

Ответить Китайские в корпусе sot , по цоколёвке как , тоесть управляющий перекинут с катодом. Ответить Весьма благодарен за столь такую ценную информацию и её грамотное описание. Ответить очень большое спасибо все грамотно и доходчиво Ответить Здорово помогли , грамотно и понятно. Ответить Спасибо. Информация помогла. Ответить Огромное спасибо! Очень нужная информация. Ответить Объясните, пожаулйста, назначение резистора R2 например, на первых двух схемах? Ответить А на lm такое возможно построить?

Ответить Добавить комментарий Отменить ответ Ваш электронный адрес не будет опубликован.


Схема включения стабилитрона tl431 и проверка микросхемы мультиметром

Применение TL Аналог стабилитрона. Схемы источников напряжения. Схемы источников тока. Схемы комбинированных источников питания. Схемы комбинированных источников питания с регулировкой напряжения от нуля.

Для tl схема включения зависит от того, для каких целей предназначается устройство. Простейшее его.

Описание регулируемого стабилитрона TL431. Схемы включения, цоколевка, аналоги, datasheet

TL одна из самых массово выпускаемых интегральных микросхем, с начала своего выпуска в году TL устанавливалась в большинство блоков питания компьютеров, ноутбуков, телевизоров, видео-аудио техники и другой бытовой электроники. TL является прецизионным программируемым источником опорного напряжения. Такая популярность обусловлена низкой стоимостью, высокой точностью и универсальностью. Принцип работы TL легко понять по структурной схеме: если напряжение на входе источника ниже опорного напряжения Vref, то и на выходе операционного усилителя низкое напряжение соответственно транзистор закрыт и ток от катода к аноду не протекает точнее он не превышает 1 мА. Если входное напряжение станет превышать Vref, то операционный усилитель откроет транзистор и от катода к аноду начнет протекать ток. Получается чем больше соотношение R1 к R2, тем больше выходное напряжение. Микросхема фактически стабилизирует напряжение на своем входе на уровне 2,5 В. В данной схеме R3 рассчитывается точно также, как если бы использовался обычный стабилитрон, то есть зависит от выходного напряжения, диапазона входного напряжения и диапазона токов нагрузки. Но есть и существенное отличие: в этой схеме на выход не стоит устанавливать конденсатор, так как этот конденсатор может вызвать генерацию паразитных колебаний.

TL431, что это за «зверь» такой?

Войдите , пожалуйста. Хабр Geektimes Тостер Мой круг Фрилансим. Войти Регистрация. Реверс-инжиниринг TL, крайне распространенной микросхемы, о которой вы и не слышали Автор оригинала: Ken Shirriff.

Состояние отпатрулирована.

Проверка мультиметром стабилизатора tl431 и схема включения

TL была создана в конце х и по настоящее время широко используется в промышленности и в радиолюбительской деятельности. Но не смотря на её солидный возраст, не все радиолюбители близко знакомы с этим замечательным корпусом и его возможностями. В предлагаемой статье я постараюсь ознакомить радиолюбителей с этой микросхемой. Для начала давайте посмотрим, что у неё внутри и обратимся к документации на микросхему, «даташиту» кстати, аналогами этой микросхемы являются — КА, и наши микросхемы КРЕН19А, КЕР5х. А внутри у неё с десяток транзисторов и всего три вывода, так что же это такое? Оказывается всё очень просто.

Управляемый стабилизатор напряжения TL431 (ON Semiconductor)

By Borodach , March 20, in Аналоговые блоки питания и стабилизаторы напряжения. Мы принимаем формат Sprint-Layout 6! Экспорт в Gerber из Sprint-Layout 6. Да, TL уже лет 25 как минимум как говорится в народе — «люди столько не живут» широко применяется в качестве источника образцового напряжения в различных схемах. Есть был и отечественный аналог. Рисунки — стандартное включение TL как источника образцового напряжения — подаём 5 вольт и имеем на выходе очень стабильное Uref 4,87 вольт. Такую схему давно применяем, скажем, при постройке металлодетекторов кто в теме — знает. Вторая схема — применение TL в качестве порогового элемента в сигнализации зарядного устройства для вольтового кислотного аккумулятора.

включение tl, TL стабилизатор тока, TL стабилизатор tl что это, Проверка tl, Тестирование TL,tl, схема.

Характеристики и схема включения TL431

Электронный компонент tl — это одна из интегральных микросхем, чьё производство поставлено на массовый поток, начиная, с года. Она широко используется в большинстве компьютерных блоков питания, телевизоров и другой бытовой технике в качестве прецизионного программируемого источника опорного напряжения. На практике сложилось несколько схем включения tl

TL431 – регулируемый стабилитрон. Описание, распиновка, схема включения, datasheet

Сохранить и прочитать потом —. В полной мере сказанное относится не только к ламповым проектам, поэтому все, что будет описано ниже, пригодится и для цифровых, и для аналоговых трактов на полупроводниках. А жизнь, между прочим, не так проста, как кажется на первый взгляд. Любимые всеми интегральные стабилизаторы серий LM78, LM79, LM и LM очень удобны и стоят копейки, но в технике класса High End применяются крайне редко из-за широкого спектра ВЧ-шумов, которые у них вообще не нормируются. Эти шумы не слышны, но, взаимодействуя с полезным сигналом, становятся причиной интермодуляции. А вот она уже ведет к излишней жесткости на верхних частотах и частичной потере разрешения.

Стабилизатор интегральный TL, как правило, используется в блоках питания.

TL431, TL432 — «цифровой» регулируемый стабилизатор тока и напряжения

Выпуск интегральной микросхемы начался с далекого года и продолжается по сегодняшний день. Микросхема дает возможность изготовить различные виды сигнализации и зарядные устройства для повседневного применения. Микросхема tl нашла широкое применение в бытовых приборах: мониторах, магнитофонах, планшетах. TL — это своего рода программируемый стабилизатор напряжения. Принцип работы довольно прост. В стабилизаторе есть постоянная величина опорного напряжения , и если подаваемое напряжение меньше этого номинала, то транзистор будет закрыт и не допустит прохождение тока.

TL431 datasheet, TL431 схема включения

Устройство TL является стабилизатором напряжения и программируемым источником опорного напряжения. Оно является наиболее популярным в сфере использования импульсных источников питания. Также указаны технические характеристики и прилагаются схемы подключения и применения устройства.


Схема фотореле на tl431 с гистерезисом. Использование в качестве датчика освещенности фоторезистора, фотодиода и фототранзистора

Микросхема tl431 содержит всего три вывода: катод, анод и управляющий электрод, который, как видно из блок-схемы, является неинвертирующим входом операционного усилителя. ОУ здесь работает как компаратор: на инвертирующий вход подается 2,5В от внутреннего источника опорного напряжения, на неинвертирующий вход подается напряжение от схемы. Если оно достигнет 2,5В, компаратор сработает и выходной транзистор откроется.

Максимальный ток катода 100мА, напряжение катод-анод не более 36В. Микросхема обладает хорошей термостабильностью: в интервале температур от -40 до +120 градусов напряжение срабатывания изменяется всего на 7мВ.

Распиновка микросхемы tl431, вид сверху:

Проверить исправность tl431 можно мультиметром в режиме прозвонки диодов. Для этого красный щуп мультиметра соединяем с анодом а черный с катодом, мультиметр покажет падение 0,6В на внутреннем диоде. Меняем местами щупы и мультиметр покажет обрыв. Теперь не отсоединяя щупы соединим управляющий электрод с катодом. Мультиметр покажет падение 2,49В

Микросхема применяется в основном в источниках питания в качестве управляемого стабилитрона. Но можно собрать на ней и очень простое фотореле:

Схема очень простая, но имеет недостатки. При медленном изменении освещенности светодиод загорается и тухнет плавно, отсутствует гистерезис, требуется высокоомный резистор.

Если поменять местами фотодиод и резистор схема инвертируется: светодиод будет загораться при увеличении освещенности. В этом случае резистор потребуется меньшего номинала, а чтобы светодиод опять загорался при уменьшении освещенности его тоже нужно подключить инверсно — между катодом и анодом tl431:

Чтобы еще больше уменьшить сопротивление этого резистора, можно применить фототранзистор. В этом случае будет достаточно сопротивления 100-150кОм:

Если нет готового фототранзистора можно использовать соединение фотодиода и транзистора. Транзистор можно взять любой маломощный. Подойдет даже кт315. Чем больше коэффициент передачи этого транзистора, тем чувствительнее будет фототранзистор.

Гистерезис и резкое переключение можно получить добавив еще один транзистор.

При уменьшении освещенности фототранзистора его сопротивление растет, напряжение на нем нарастает. Когда оно начнет приближаться к отметке 2,49В стабилитрон tl431начнет открываться. Вместе с ним начнет открываться транзистор и напряжение на управляющем выводе tl431 начнет нарастать быстрее за счет резистора обратной связи R2. Приоткрывание tl431 вызывает приоткрывание транзистора, а приоткрывание транзистора вызывает еще большее открывание tl431. Процесс происходит лавинообразно.

Транзистор и tl431 полностью открыты, светодиод светится. Если теперь начать плавно увеличивать освещенность фототранзистора, это не вызовет моментального закрытия tl431 и транзистора. Транзистор у нас полностью открыт, к верхнему плечу делителя R1VT1 — резистору R1, оказывается параллельно подключен резистор R2. Этим резистором обеспечивается гистерезис. Сопротивление верхнего плеча делителя стало меньше, и теперь для закрытия tl431 нужно осветить фототранзистор чуть сильнее чем он был освещен в момент включения светодиода. Чем меньше сопротивление резистора R2, тем шире петля гистерезиса, то есть тем сильнее нужно теперь осветить фототранзистор, чтобы светодиод погас.

Намного проще понять что такое гистерезис, собрав схему самому, и наблюдая за ее работой при различных значениях резистора R2.

Чтобы этой схемой включать большую нагрузку можно на место светодиода поставить оптопару и симистор. Для механического реле нужно добавить в схему стабилизатор напряжения для питания делителя, так как при срабатывании реле проседает напряжение питания и реле начинает быстро включатся и выключатся.

Стабилизатор можно поставить на напряжение от 5 до 9В. Диод D1 отключает резистор R2 от минуса. В предыдущей схеме он был не нужен, так как в коллекторной цепи был резистор 1кОм и светодиод. Сопротивление обмотки реле обычно очень маленькое и при закрытом транзисторе резистор R2 окажется подключен параллельно фототранзистору и схема работать не будет.

Транзистор VT1 должен быть с током коллектора превышающим ток срабатывания реле. Резистор R4 ограничивает базовый ток транзистора. Берем ток, достаточный для срабатывания реле. Пусть это будет скажем 200mA. Коэффициент передачи тока транзистора пусть будет 100. Значит для получения такого тока коллектора, базовый ток должен быть не менее чем 2mA. То есть взяли желаемый ток коллектора и поделили на коэффициент передачи тока транзистора, получили минимальный базовый ток. Этот ток лучше всегда брать с запасом, так как коэффициент передачи транзисторов имеет разброс. Теперь находим нужный номинал резистора. Берем напряжение питания, отнимаем 2,5-3 вольта(столько падает на tl431 и переходе транзистора) и делим на необходимый ток базы. Расчетное сопротивление получилось 4,5кОм. Берем ближайшее меньшее значение 4,3кОм. Резистор R3 служит для надежного закрытия транзистора.

характеристики, datasheet, схема включения и аналоги

Микросхема TL431 по своим техническим характеристикам которые указаны в datasheet является регулируемым стабилизатором, гарантирующим хорошую температурную стабильность. Если использовать два внешних резистора в качестве делителя, микросхема способна обеспечить стабильное напряжение на участке от 2,5 до 36 В. Так же TL431 может использоваться совместно с низковольтными МДП транзисторами для создания очень экономичных стабилизаторов. Кроме этого она часто используется в импульсных блоках питания использующих оптронную пару для развязки высоковольтных цепей.

Цоколевка

Существует пять разновидностей корпусов, в которых выпускается микросхема TL431. Это ТО-92, SOT-23, SOT-25, SOT-89 и SOP-8. Расположение выводов показано на рисунке, представленном ниже:

 

Технические характеристики

Рассмотрим максимально допустимые характеристики микросхемы TL431. Если при работе они будут превышены, то прибор выйдет из строя. Длительная эксплуатация устройства с параметрами, близкими к предельным, также опасна для него. Значения этих параметров представлены ниже:

  • наибольшее возможное напряжение между анодом и катодом  – 37 В;
  • диапазон токов, протекающих через катод на протяжении длительного времени – от -100 до +150мА;
  • диапазон токов на входе (управляющем электроде) устройства – от -0,05 до +10 мА;
  • максимальная рассеиваемая мощность зависит от типа корпуса:
  • SOT-89 – 0. 8 Вт;
  • ТО-92 – 0,78 Вт;
  • SO-8 – 0.75 Вт;
  • SOT-23 – 0,33 Вт;
  • SOT-25 – 0,5 Вт.
  • диапазон рабочих температур – от -25 до +85ОС;
  • предельно допустимая температура кристалла – +150 ОС;
  • диапазон температур при которых может хранится изделие — -65 до +150 ОС.

В технической документации производители приводят диапазон рекомендуемых рабочих характеристик. Напряжение на катоде VKA может изменяться от минимального, равного управляющему VREF, до максимального 36 В. Катодный ток должен находиться в пределах от 1 до 100 мА.

При конструировании нового устройства следует также обращать внимание на электрические характеристики. Измерение производилось при температуре TC= 25°C. Остальные параметры тестирования приведены в колонке «Режимы измерения».

ПараметрыРежимы измеренияОбозн. min typmaxЕд. изм
Управляющее напряжениеVKA=VREF,IKA=10 мAVREF2,4552,4952,535В
Величина отклонения управляющего напряжения при изменении температурыVKA=VREF,IKA=10 мA, Ta = от 0°C до +85°CVDEV9,020мВ
Изменение напряжения на управляющем электроде в зависимости от изменения напряжения на катодеIKA=10 мA

ΔVKA=10V~VREF

ΔVKA=36V~10V

ΔVREF

ΔVКА

 

 

 

-1,0

-0,5

 

-2,7

-2,0

 

мВ/В

мВ/В

Ток через управляющий электродIKA=10 мAIREF1,54мкА
Отклонение управляющего (опорного) тока при изменении температурыIKA=10 мAΔIREF

ΔT

0,41,2мкА
Минимальный управляющий ток через катод,VKA=VREFIKA(MIN)0,30,5мА
Ток через катод при закрытом переходеVKA=36V, VREF=0IKA(OFF)0,051,0мкА
Динамическое сопротивлениеVKA=VREF, f≤1. 0 кГц IKA=1 to 100 мAZKA0,150,5Ом

Аналоги

Существует отечественная микросхема, похожая по своим параметрам на рассматриваемую, это 142ЕН19. Полным аналогом TL431 является IR943N. Среди устройств с одинаковыми выводами, но немного отличающимися электрическими параметрами можно назвать HA17431A, KIA431. Если нет других альтернатив, для замены можно попробовать использовать APL1431. Однако в этом случае возможно придётся изменить монтажную плату.

Производители

Первая микросхема TL431 изготовлена американской фирмой Texas Instruments в далеком 1977 году и с тех пор завоевала популярность. Сейчас ее производством занимаются множество зарубежных компаний: Texas Instruments, ON Semiconductor, Unisonic Technologies, STMicroelectronics, IK Semicon Co, HTC Korea TAEJIN Technology, NXP Semiconductors, Microsemi Corporation, Motorola, Fairchild Semiconductor, Analog Intergrations Corporation, Guangdong Kexin Industrial, Diodes Incorporated, Wing Shing Computer Components, KEC(Korea Electronics), SHIKE Electronics, Calogic, Continental Device India Limited, Sangdest Microelectronic (Nanjing), SeCoS Halbleitertechnologie GmbH, Hotchip Technology, Foshan Blue Rocket Electronics, Compact Technology, GUANGDONG HOTTECH INDUSTRIAL, Sames, Kersemi Electronic, Sirectifier Global, Shenzhen Jin Yu Semiconductor, Nanjing International Group, DONGGUAN YOU FENG WEI ELECTRONICS. На Российском рынке представлена продукция таких компаний: Diodes Incorporated, Texas Instruments, STMicroelectronics, NXP Semiconductors, ON Semiconductor, Fairchild Semiconductor, Unisonic Technologies.

Скачать datasheet на TL431 можно кликнув на подсвеченное название производителя.

Схема включения

Разберёмся, как работает TL431, для чего посмотрим на структурную схему включения. Если действующее напряжение на входе не превышает опорное (Vref), на выходе ОУ также небольшое напряжение, поэтому транзистор закрыт. Величина тока протекающего через него невелика, не больше 1 мА. Когда напряжение действующее на входе нарастает и превышает Vref, открывается ОУ. Таким образом через транзистор начинает течь ток.

 

 

 

Параметрический стабилизатор

Чтобы задать напряжение, в выходной цепи стабилизатора должен находиться делитель напряжения, состоящий из двух резисторов R1 и R2. Разность потенциалов на выходе устройства при этом равна:

Uвых=Vref(R1/R2+1),

где Vref – опорное напряжение, для рассматриваемой микросхемы TL431 равно 2,5 В.

 

 

При увеличении соотношения между резисторами R1/R2 растет выходное напряжение. Зная величину напряжения действующего на выходе и задавшись значением R2, можно определить сопротивление R1:

R1=R2(Uвых/Vref–1)

Величина сопротивления R3 подбирается также, как и для устройств с стабилитроном. Устанавливать конденсатор на выходе схемы не рекомендуется, чтобы предотвратить паразитную генерацию.

Компенсационный стабилизатор

Компенсационный стабилизатор работает же, как и при использовании стабилитрона. В них для уравновешивания разницы напряжений действующих на входе и выходе используется мощный транзистор. Однако точность стабилизации в устройствах с TL431 будет выше. Здесь величина сопротивления R1 рассчитывается на наименьший ток 5 мА. R2 и R3 рассчитываются так же, как и для параметрического стабилизатора.

 

Рассмотренный выше стабилизатор не может работать с выходными токами равными единицам или даже десяткам ампер. Чтобы построить мощный блок питания нужно использовать усилительный каскад с двумя транзисторами, включёнными как в схеме эмиттерного повторителя.

Ниже представлена схема работы стабилизатора напряжения TL431. Здесь R2 ограничивает ток, текущий через базу VT1. Резистор R3 нужен для компенсации обратного коллекторного тока VT2. Конденсатор С1 используется для увеличения стабильности работы на больших частотах.

 

 

Стабилизатор тока

Приведём схему  стабилизатора тока на TL431. Здесь на сопротивлении R2, при помощи обратной связи, установлено напряжение 2,5 В. Тогда ток на нагрузке будет равен Iн=2,5/R2 (током базы пренебрегаем). При подстановке в данную формулу величины сопротивления в омах получим ток в амперах, а если в килоомах, ток будет в миллиамперах.

 

Если у вас остались вопросы по TL431, по ее характеристикам или вы не можете найти нужный datasheet то пишите об этом в комментариях, мы обязательно Вам поможем.

Верен ли мой анализ схемы TI TL431?

Добро пожаловать на EDAboard.

com
Добро пожаловать на наш сайт! EDAboard.com — это международный дискуссионный форум по электронике, посвященный программному обеспечению EDA, схемам, схемам, книгам, теории, документам, asic, pld, 8051, DSP, сети, радиочастотам, аналоговому дизайну, печатным платам, руководствам по обслуживанию… и многому другому. более! Для участия необходимо зарегистрироваться. Регистрация бесплатна. Нажмите здесь для регистрации.

Регистрация Авторизоваться

JavaScript отключен. Для лучшего опыта, пожалуйста, включите JavaScript в вашем браузере, прежде чем продолжить.