Site Loader

cxema.org — Схема защиты блока питания и зарядных устройств

Схема защиты блока питания и зарядных устройств

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания — сетевыми, импульсными и аккумуляторами постоянного тока.

Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.

Схема защиты блока питания

Силовая часть — мощный полевой транзистор — в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается.

Схема одновременно является защитой от переполюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных.

Шунт можно сделать также из резисторов с мощностью 1-3 ватт.

Схема защиты блока питания, шунтСхема защиты блока питания, шунт

Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора.

Схема защиты блока питания, регулятор ограничения токаСхема защиты блока питания, регулятор ограничения тока

При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным.

Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные — IRF3205, IRL3705, IRL2505 и им подобные.

Схема защиты блока питания, плата

Схема защиты блока питания, плата

Схема защиты блока питания, платаСхема защиты блока питания, плата

Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.

Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

С уважением — АКА КАСЬЯН

Простая защита БП от КЗ нагрузки


Простая защита БП от КЗ нагрузки

  Зарядные устройства (ЗУ), как правило, снабжены электронной системой защиты от короткого замыкания на выходе. Однако в радиолюбительской практике еще встречаются простые ЗУ, состоящие из понижающего трансформатора и выпрямителя. Необходимые же компоненты для того, чтобы собрать электронную защиту, не всегда доступны. В этом случае можно применить несложную электромеханическую защиту с использованием реле или автоматических выключателей многократного действия (например, автоматические предохранители или АВМ в квартирных электросчетчиках). Достоинства предлагаемой защиты: простота и отсутствие дорогих полупроводниковых приборов. Недостаток ее — высокая инерционность. Быстродействие релейной защиты составляет примерно 0,1 с, с использованием АВМ- 1…3с.

  Когда аккумулятор (или аккумуляторная батарея) соединен с выходом устройства, реле К1 срабатывает и своими контактами К1.1 подключает ЗУ (см. схему). При коротком замыкании выходное напряжение резко уменьшится, обмотка реле будет обесточена, что приведет к размыканию контактов и отключению аккумулятора от ЗУ. Повторное включение после устранения неисправности осуществляется кнопкой SB1. Конденсатор С1, заряженный до выходного напряжения выпрямителя, подключается к обмотке реле. Резистор R1 ограничивает импульс тока при ошибочном включении, когда короткое замыкание на выходе не устранено. Резистор R2 ограничивает ток короткого замыкания выпрямительных диодов. Его можно не включать в цепь, если диоды рассчитаны на импульсные токи такого значения. В противном случае — резистор R2 обязателен. Однако следует помнить, что выходное напряжение ЗУ должно быть в этом случае больше на значение падения напряжения на резисторе R2 при номинальном зарядном токе. АВМ защищает при перегрузках по току, что релейная защита выполнить не может. Автоматический предохранитель (или выключатель) подключают последовательно с контактами реле. Сопротивление АВМ — около 0,4 Ом. В этом случае резистор R2 можно не включать.

  Параметры элементов конструкции зависят от типа ЗУ. Например, для ЗУ автомобильных аккумуляторных батарей необходимо выбрать реле на номинальное напряжение 12 В с допустимым током не менее 20 А. Этим условиям удовлетворяет реле РЭН34 (паспорт ХП4.500.030-01), замыкающие контакты которого следует включить параллельно. Для ЗУ с номинальным током до 1 А можно применить реле РЭС22 (паспорт РФ4.523.023-05). Конденсатор С1 — оксидный (К50-12,К50-16 и т.д.).

Д. АТАЕВ, г. Стерлитамак
РАДИО №8, 1998, c.65

Источник: shems.h2.ru

Защита импульсных блоков питания от КЗ

Опубликовал admin | Дата 18 августа, 2019

Схема защиты импульсных блоков питания от превышения тока нагрузки

Все защитные схемы конкретного ИИП, имеющего на выходе несколько выходных напряжений, можно объединять под общим названием — комбинированные защиты. Т.к. срабатывание любой из этих защитных схем ведет к отключению всех питающих напряжений посредством воздействия на управляющую микросхему ИИП. Все выходные каналы ИИП можно условно, разделить на слаботочные и сильноточные. Необходимость раздельной защиты каждого из этих каналов объясняется тем, что чувствительность схемы защиты сильноточного канала недостаточна для обнаружения неисправности в слаботочной схеме.

В данной статье будет рассмотрена одна из классических и эффективных схем защиты для импульсных блоков питания с сильноточным выходом, реализованных на контроллере ТL494 или его аналогах.

Подробнее рассмотрим механизм защитного отключения в зависимости от максимальной ширины управляющего импульса. Суть защитного отключения заключаются в том, чтобы силовые транзисторы инвертора переставали переключаться и оставались бы в закрытом состоянии неограниченно долго при возникновении аварийной ситуации. Для того чтобы оба силовых транзистора инвертора оказались закрыты одновременно, на их базах должны отсутствовать управляющие импульсы. Источником управляющих импульсов является микросхема ТL494, поэтому для того чтобы отключить появление импульсов на выходах микросхемы необходимо заблокировать работу ее цифровой части. При этом оба выходных транзистора ее окажутся в закрытом состоянии и импульсы на выводах 8 и 11 или 9 и 10 будут отсутствовать. Амплитуда пилообразного напряжения составляет +3,2В.

Поэтому, если на вывод 4 ТL494 будет подан потенциал, превышающий +3.2В, то произойдет блокировка работы микросхемы ТL494. Однако необходимо отметить, что генератор пилообразного напряжения при этом не прекращает своей работы, т.е. несмотря на отсутствие выходных импульсов, пилообразное напряжение продолжает вырабатываться. Схема узла защиты показана на рисунке ниже.

Работа схемы защиты

Тр1 – трансформатор тока, R11 – нагрузка трансформатора, VD3 и 4 – выпрямительные диоды – это преобразователь длительности проходящих через первичную обмотку рабочих импульсов тока в пропорциональное напряжение на его выходе. Чем больше длительности рабочих импульсов, тем на большее положительное напряжение заряжается конденсатор С7. Преобразователь имеет двухполупериодную схему выпрямления со средней точкой, на которой появляются только положительные по знаку импульсы. Напряжение пропорциональное длительности рабочих импульсов с конденсатора С7 поступает на резистивный делитель R7 и R6. Вместо этого делителя можно поставить потенциометр со шкалой и при необходимости выставлять нужный ток защиты. Цепь, состоящая из резистора R5 и конденсатора С4 – это Т-образный фильтр, от емкости С4 также зависит время реакции защиты на внештатную ситуацию. Если выбрать этот конденсатор недостаточной емкости, то защита сработает раньше, чем закончатся все переходные процессы при включении блока питания. БП просто напросто не успеет включиться. Здесь нужен компромисс, чтобы блок питания стабильно включался, и чтобы время срабатывания защиты было как можно меньше.

Резистор R8 – подтягивающий резистор вывода 4 DD1 к общей шине схемы ИИП. R9 и С11 – цепь мягкого запуска. При включении ИИП на воде 14 контроллера появляется стабильное напряжение +5 вольт от внутреннего стабилизатора микросхемы. Начинается заряд конденсаторы С11 через резисторы R8,9R. На выводе 4 DD1 начинает плавно нарастать напряжение. По мере его нарастания увеличивается длительность рабочих импульсов. Диод VD1 служит для развязки формирующей цепочки от схемы защиты.

В рабочем состоянии блока питания в режиме номинального тока нагрузки напряжения с выхода фильтра R5, С4 не хватает для того, что бы открыть транзистор VT1. В таком режиме оба транзистора VT1 и VT2 закрыты и не влияют на работу микросхемы DD1. При увеличении тока нагрузки контроллер начнет увеличивать длительность выходных импульсов. Увеличение длительности рабочих импульсов мощных транзисторов VT3 и VT4 приводит к увеличению напряжения на базе транзистора VT1. Через открывающийся транзистор VT1 и резистор R2 начинает поступать открывающее отрицательное напряжение базу VT2. Процесс приобретает лавинообразный характер, в результате оба транзистора открываются и могут находиться в таком состоянии сколь угодно долго (транзисторный аналог тиристора). Через открытые транзистор VT2 на вывод 4 DD1 поступит напряжения превышающее +3,2В, что приведет к блокировке цифровой части контроллера. Оба его выходных транзистора окажутся в закрытом состоянии и на выходах 8,11 и 9,10 появятся статические потенциалы, которые не смогут передаваться на базы транзисторов VT3 и VT4, так как связь с ними происходит через согласующий трансформатор (на схеме не показан). Если ИИП имеет схему с запуском посредством самовозбуждения, то после закрытия мощных транзисторов пропадет и питание на контроллере и восстановить работоспособность блока питания можно, если его отключить и снова включить. Восстановить рабочее состояние ИИП с принудительным запуском можно, поставив кнопку рестарта, параллельно переходу база-эмиттер транзистора VT1.

Данная схема была проверена в четырех ИИП и показала прекрасные результаты. В качестве ТР1 можно использовать сердечники и каркасы к ним от энергосберегающих ламп. Смотрим фото. Но в данных сердечниках имеется конструктивный зазор на среднем керне, поэтому для трансформатора тока потребуется два одинаковых дросселя. На фото три показан самодельный трансформатор тока в ИИП.

Можно применить и ферритовые кольца. Как рассчитать трансформатор тока на ферритовом кольце можно посмотреть в статье «Расчет трансформатора тока»

Вторичная обмотка ТР1 содержит 120 х 2 витков провода диаметром 0,12 мм, мотается в два провода сразу. Вторичная обмотка содержит 2 витка провода – 0,8 или можно применить плоский жгут из нескольких проводов. Диоды VD3 и VD4 – КД522, 1N4148. VD1 – любой. Транзисторы 1 и 2 – КТ315 и КТ361, у меня стоят КТ209 и С945.

На этом все. Успехов. К.В.Ю.

Скачать статью

Скачать “Защита_импульсных_блоков_питания_от_КЗ” Защита_импульсных_блоков_питания_от_КЗ.rar – Загружено 125 раз – 163 KB

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:309


УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ


   Это небольшой блок универсальной защиты от короткого замыкания, что предназначен для использования в сетевых источниках питания. Она специально разработана так, чтобы вписаться в большинство блоков питания без переделки их схемы. Схема, несмотря на наличие микросхемы, очень проста для понимания. Сохраните её на компьютер, чтоб увидеть в лучшем размере.

Схема блока защиты БП

   Чтобы спаять схему вам понадобится:

  1. 1 — TL082 сдвоенный ОУ
  2. 2 — 1n4148 диод
  3. 1 — tip122 транзистор NPN
  4. 1 — BC558 PNP транзистор BC557, BC556
  5. 1 — резистор 2700 ом
  6. 1 — резистор 1000 ом
  7. 1 — резистор 10 ком
  8. 1 — резистор 22 ком
  9. 1 — потенциометр 10 ком
  10. 1 — конденсатор 470 мкф
  11. 1 — конденсатор 1 мкф
  12. 1 — нормально закрытый выключатель
  13. 1 — реле модели Т74 «G5LA-14»

Подключение схемы к БП

   Здесь резистор с низким значением сопротивления соединен последовательно с выходом источника питания. Как только ток начинает течь через него, появится небольшое падение напряжения и мы будем использовать это падение напряжения, чтобы определить, является ли питание результатом перегрузки или короткого замыкания. В основе этой схемы операционный усилитель (ОУ) включенный в качестве компаратора.

  • Если напряжение на неинвертирующем выходе выше, чем на инвертирующем, то на выходе устанавливается «высокий» уровень.
  • Если напряжение на неинвертирующем выход ниже, чем на инвертирующем, то на выходе устанавливается «низкий» уровень.

   Правда это не имеет ничего общего с логическим 5 вольтовым уровнем обычных микросхем. Когда ОУ находится в «высоком уровне», его выход будет очень близким к положительному потенциалу напряжения питания, поэтому, если питание +12 В, «высокий уровень» будет приближаться к +12 В. Когда ОУ находится в «низком уровне», его выход будет почти на минусе напряжения питания, поэтому, близко к 0 В.

   При использовании ОУ в качестве компараторов, мы обычно имеем входной сигнал и опорное напряжение для сравнения этого входного сигнала. Итак, у нас есть резистор с переменным напряжением, которое определяется в соответствии с током, который течет через него и опорным напряжением. Этот резистор является наиболее важной частью схемы. Он подключен последовательно с питанием выходного. Вам необходимо выбрать резистор, падение напряжения на котором составляет примерно 0.5~0.7 вольт при перегрузке тока, проходящего через него. Ток перегрузки появляется в тот момент, когда схема защиты срабатывает и закрывает выход питания для предотвращения повреждений на нем.

   Вы можете выбрать резистор, используя закон Ома. Первое, что нужно определить, является перегрузка током блока питания. Для этого надо знать максимальный допустимый ток блока питания.

   Допустим, ваш блок питания может выдать 3 ампера (при этом напряжение блока питания не имеет значения). Итак, мы получили Р= 0,6 В / 3 А. Р = 0.2 Ом. Следующее, что вы должны сделать, это рассчитать рассеиваемую мощность на этом резисторе по формуле: Р=V*I. Если мы используем наш последний пример, то получим: Р=0.6 В * 3 А. Р = 1,8 Вт — 3 или 5 Вт резистора будет более чем достаточно.

   Чтобы заставить работать схему, вы должны будете подать на неё напряжение, которое может быть от 9 до 15 В. Для калибровки подайте напряжение на инвертирующий вход ОУ и поверните потенциометр. Это напряжение будет увеличиваться или уменьшаться в зависимости от стороны, куда вы поворачиваете его. Значение необходимо скорректировать согласно коэффициента усиления входного каскада 0.6 Вольт (что-то около 2.2 до 3 вольт если ваш усилительного каскада похож на мой). Эта процедура занимает некоторое время, и лучший способ для калибровки это метод научного тыка. Вам может потребоваться настроить более высокое напряжение на потенциометре, так чтоб защита не срабатывала на пиках нагрузки. Скачать файл проекта.


Поделитесь полезными схемами

БЛОК ПИТАНИЯ 5В

   Блок предназначен для питания всех устройств комплекса учебных пособий по информатике и вычислительной техники. Устройства, собранные на полупроводниковых приборах (транзисторы, тринисторы, микросхемы) и электромагнитных реле, питаются от источников постоянного напряжения. Как правило, отклонение напряжения от нормального значения не должны выходить за границы отдельных допусков (например, для микросхем серии К155 питающее напряжение должно составлять 5 В).


КАК СДЕЛАТЬ МАШИНКУ ДЛЯ ТАТУИРОВОК

   Делаем машинку для татуировки своими руками. Само понятие наколки было сформулировано еще в 20- x годов 20 века. На сей день люди накаливают на своем теле все что угодно и платят за ниx большие деньги, но не многие знают, что сама татуировка родилась в зонаx еще 100 лет назад. И сегодня мы будем рассматривать устройство которое позволит делать татуировки профессиональным образом.





Схема защиты от перегрузки и короткого замыкания – Поделки для авто

Реализовать схему защиты не сложно, тем более что она очень важна для защиты всех своих устройств от короткого замыкания и перегрузки. Если в приборе по каким-либо причинам случается короткое замыкание это может привести к непоправимым последствиям для него. Чтобы защитить вас от лишних затрат, а прибор от выгорания, достаточно сделать небольшую доработку, по нижеприведенной схеме.

Схема защиты от перегрузки и короткого замыкания

Важно отметить что вся схема построена на комплементарной паре транзисторов. Для понимания расшифруем смысл фразы. Комплементарной парой называют транзисторы с одинаковыми параметрами, но разными направлениями p-n переходов.

Т.е. все параметры напряжения, тока, мощности и прочие у транзисторов абсолютно одинаковые. Отличие лишь проявляется в типе транзистора p-n-p или n-p-n. Также приведем примеры комплементарных пар, чтобы облегчить вам покупку. Из российской номенклатуры: КТ361/КТ315, КТ3107/КТ3102, КТ814/КТ815, КТ816/КТ817, КТ818/КТ819. В качестве импортных прекрасно подойдут BD139/BD140. Реле надо выбирать на рабочее напряжение не менее 12 В, 10-20 А.

Схема защиты от перегрузки и короткого замыкания

Принцип действия:

При превышении определенного порога (порог устанавливается переменным резистором, опытным путем) замыкаются ключи комплементарной пары транзисторов. Напряжение на выходе прибора пропадает и загорается светодиод, свидетельствующий о срабатывании защитной системы прибора.

Схема защиты от перегрузки и короткого замыкания

Кнопка между транзистора, позволяет осуществить сброс защиты (в стационарном состоянии замкнута, т.е. работает на размыкание). Сбросить защиту можно и другим путем, просто выключить и включить блок. Защита актуальна для источников питания или аккумуляторных зарядок.

Автор; АКА Касьян

Похожие статьи:

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *