Site Loader

Схемы и группы соединений обмоток трансформаторов / Публикации / Energoboard.ru

Разместить публикацию Мои публикации Написать
7 января 2012 в 10:00

Схемы и группы соединений обмоток трансформаторов

Трехфазный трансформатор имеет две трехфазные обмотки — высшего (ВН) и низшего (НН) напряжения, в каждую из которых входят по три фазные обмотки, или фазы. Таким образом, трехфазный трансформатор имеет шесть независимых фазных обмоток и 12 выводов с соответствующими зажимами, причем начальные выводы фаз обмотки высшего напряжения обозначают буквами A, B, С, конечные выводы — X, Y, Z, а для аналогичных выводов фаз обмотки низшего напряжения применяют такие обозначения: a,b,c,x,y,z

В большинстве случаев обмотки трехфазных трансформаторов соединяют либо в звезду -Y, либо в треугольник — Δ (рис. 1).

Выбор схемы соединений зависит от условий работы трансформатора. Например, в сетях с напряжением 35 кВ и более выгодно соединять обмотки в звезду и заземлять нулевую точку, так как при этом напряжение проводов линии передачи будет в √3 раз меньше линейного, что приводит к снижению стоимости изоляции.

 

Схемы и группы соединений обмоток трансформаторов

Рис.1

Осветительные сети выгодно строить на высокое напряжение, но лампы накаливания с большим номинальным напряжением имеют малую световую отдачу. Поэтому их целесообразно питать от пониженного напряжения. В этих случаях обмотки трансформатора также выгодно соединять в звезду (Y), включая лампы на фазное напряжение.

С другой стороны, с точки зрения условий работы самого трансформатора, одну из его обмоток целесообразно включать в треугольник (Δ ).

Фазный коэффициент трансформации трехфазного трансформатора находят, как соотношение фазных напряжений при холостом ходе:

nф = Uфвнх / Uфннх,

а линейный коэффициент трансформации, зависящий от фазного коэффициента трансформации и типа соединения фазных обмоток высшего и низшего напряжений трансформатора, по формуле:

nл = Uлвнх / Uлннх.

Если соединений фазных обмоток выполнено по схемам «звезда-звезда» (Y/Y) или «треугольник-треугольник» (Δ/Δ), то оба коэффициента трансформации одинаковы, т.е. nф = nл.

При соединении фаз обмоток трансформатора по схеме «звезда — треугольник» (Y/Δ) — nл = nф√3, а по схеме «треугольник-звезда» (Δ / Y) — nл = nф /√3

Группы соединений обмоток трансформатора

Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток. Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток.

Стандартные обозначения начал и концов обмоток высокого и низкого напряжения показаны на рис.1.

Рассмотрим вначале влияние маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 2 а).

 

Схемы и группы соединений обмоток трансформаторов

Рис.2

Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние — концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°.

Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° — группе 6 (рис. 3).

 

Схемы и группы соединений обмоток трансформаторов

Рис.3

В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров.

Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой.

Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y — О.

 

Схемы и группы соединений обмоток трансформаторов

Рис. 4

Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу Y/Y — б.

 

Схемы и группы соединений обмоток трансформаторов

Рис. 5

На рис. 6 представлена схема, в которой по сравнению со схемой рис 4 выполнена круговая перемаркировка зажимов вторичной обмотки (а→b , b→c, с→a). При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.

 

 

Схемы и группы соединений обмоток трансформаторов

Рис. 6

 

 

Схемы и группы соединений обмоток трансформаторов

Рис. 7

Схемы соединений Y/Y позволяют получить четные номера групп, при соединении обмоток по схеме Y/Δ номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 7. В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11.

Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: Y/Y — 0 и Y/Δ-11. Они, как правило, и применяются на практике.

 

Схемы и группы соединений обмоток трансформаторов

 

12 марта в 12:04 11

11 марта в 21:39

21

11 марта в 21:35 18

11 марта в 16:48

18

10 марта в 18:59 17

10 марта в 18:57

18

10 марта в 17:32 23

10 марта в 17:25 18

10 марта в 13:53 23

4 июня 2012 в 11:00 98525

12 июля 2011 в 08:56 20999

14 ноября 2012 в 10:00 11589

28 ноября 2011 в 10:00 10760

25 декабря 2012 в 10:00 10217

21 июля 2011 в 10:00 9527

24 мая 2017 в 10:00 8265

29 февраля 2012 в 10:00 8206

16 августа 2012 в 16:00 8027

27 февраля 2013 в 10:00 7485

Схемы и группы соединений обмоток трансформаторов



Обмотки трансформаторов имеют обычно схемы соединения: звезда Y, звезда с выведенной нейтралью Yn. и треугольник Δ.

Сдвиг фаз между ЭДС первичной и вторичной обмоток (E1 и Е2) принято выражать условно группой соединений.

В трехфазном трансформаторе применением разных способов соединений обмоток можно образовать двенадцать различных групп соединений, причем при схемах соединения обмоток звезда-звезда мы можем получить любую четную группу (2, 4, 6, 8, 10, 0), а при схеме звезда — треугольник или треугольник-звезда любую нечетную группу (1, 3, 5, 7, 9, 11).

Группы соединений указываются справа от знаков схем соединения обмоток. Трансформаторы по рис.1 имеют схемы и группы соединения обмоток: Y/Δ-11; Yn / Yn /Δ-0-11; Y/Δ/Δ-11-11.

Соединение в звезду обмотки ВН позволяет выполнить внутреннюю изоляцию из расчета фазной ЭДС, т.е. в √3 раз меньше линейной. Обмотки НН преимущественно соединяются в треугольник, что позволяет уменьшить сечение обмотки, рассчитав ее на фазный ток I/√3. Кроме того, при соединении обмотки трансформатора в треугольник создается замкнутый контур для токов высших гармоник, кратный трем, которые при этом не выходят во внешнюю сеть, вследствие чего улучшается симметрия напряжения на нагрузке.

Сверхмощные генераторы конструктивно выполняются с двумя трехфазными обмотками статора, ЭДС которых сдвинуты на 30°. Для работы в блоке с такими генераторами изготовляются мощные однофазные трансформаторы с двумя обмотками низшего напряжения и двумя обмотками высшего напряжения. В трехфазной группе для компенсации сдвига ЭДС обмоток статора генератора одна обмотка низшего напряжения соединяется по схеме Δ, а другая — по схеме Y.

Рис.1. Соединение обмоток и векторные диаграммы
напряжений однофазных трансформаторов для
присоединения к шестифазному генератору

На рис.1 показано соединение обмоток группы однофазных трансформаторов ОРЦ-533000/500, предназначенных для энергоблока 1200 МВт. Каждая фаза трансформатора выполнена на двухстержневом магнитопроводе. Соединение обмоток, расположенных на первом стержне, образует схему Δ/Yn-11, а на втором Y/Yn-0 (или 12).

Соединение обмоток в звезду с выведенной нулевой точкой применяется в том случае, когда нейтраль обмотки должна быть заземлена. Эффективное заземление нейтрали обмоток ВН обязательно в трансформаторах 330 кВ и выше и во всех автотрансформаторах. Системы 110, 150 и 220 кВ также работают с эффективно-заземленной нейтралью, однако для уменьшения токов однофазного КЗ нейтрали части трансформаторов могут быть разземлены. Так как изоляция нулевых выводов обычно не рассчитывается на полное напряжение, то в режиме разземления нейтрали необходимо снизить возможные перенапряжения путем присоединения вентильных разрядников к нулевой точке трансформатора (рис.2). Нейтраль заземляется также на вторичных обмотках трансформаторов, питающих четырехпроводные сети 380/220 и 220/127 В. Нейтрали обмоток при напряжении 10-35 кВ не заземляются или заземляются через дугогасящую катушку для компенсации емкостных токов.

Рис.2. Способы заземления нейтралей трансформаторов и автотрансформаторов
а — у трансформаторов 110-220 кВ без РПН,
б — у трансформаторов 330-750 кВ без РПН,
в — у трансформаторов 110 кВ с встроенным РПН,
г — у автотрансформаторов,
д — у трансформаторов 150-220 кВ с РПН,
е — у трансформаторов 330-500 кВ с РПН.



ОПРЕДЕЛЕНИЕ ГРУППЫ СОЕДИНЕНИЯ ОБМОТОК ТРЕХФАЗНЫХ ТРАНСФОРМАТОРОВ

⇐ ПредыдущаяСтр 3 из 5Следующая ⇒

 

Ц е л ь р а б о т ы: ознакомиться со схемами и группами соединения обмоток трехфазного трансформатора; научиться определять группы в прак-тических условиях и изменять группы соединения [1, c. 369–400; 2, c. 254–258; 3, c. 188–195].

 

Основные положения теории

Обмотки трехфазных трансформаторов могут быть соединены «звездой» или «треугольником». В трансформаторах средней мощности иногда обмотка низшего напряжения соединяется «зигзагом». На схемах эти соединения принято обозначать: «звезда» – Y илиУ; «треугольник» – D илиD; «зигзаг» –Z. Если «звезда» (или «зигзаг») имеет выведенную нулевую точку, то в обозначениях добавляют индекс «0», например, Y0,У0,Z0.

В общем обозначении схемы соединения обмоток трехфазных трансформаторов первым всегда указывается соединение обмоток высшего напряжения, например, Y/Y0, Y/D и т.п.

Начала фаз обмотки высшего напряжения принято обозначать прописными начальными буквами латинского алфавита (А,В,С), а концы – последними (X,Y,Z). Для обмоток низшего напряжения берутся соответственно строчные буквы – a,b,cиx,y, z.

Большое значение в практике эксплуатации трансформаторов (при включе-нии их на параллельную работу) имеет направление векторов первичного и вто-ричного линейных напряжений. Их взаимное расположение определяет группу соединения трансформатора.

Векторы первичного и вторичного линейных напряжений могут быть сдвинуты относительно друг друга на угол, кратный 300. Показатель кратности вводится в обозначение группы соединения. Например, на рис. 6, а показана 11-я группа соединения, на рис. 6, б – 6-я; на рис. 6, в – 4-я. Исключение представляет 0-я группа, показанная на рис. 6, г (ранее она называлась 12-й).

а б в г

Рис. 6

Таким образом, группа соединения обмоток трансформатора показывает взаимное расположение векторов первичного и вторичного линейных нап-ряжений.

Номер группы соединения можно определить и другим способом. Если вектор первичного линейного напряжения представить минутной стрелкой на циферблате часов и совместить его с цифрой 12, то вектор вторичного линейного напряжения (считая его часовой стрелкой) покажет номер группы соединения данного трансформатора.

Группа соединения зависит от направления намотки обмоток, маркировки выводов и схемы соединения. При одинаковом направлении намотки и одинако-вой маркировке начал и концов обмотки одного стержня трансформатора их фазовые напряжения будут совпадать по направлению. При изменении того или другого у одной из обмоток векторы фазных напряжений окажутся сдвинутыми на 1800. Таким образом, для изменения группы соединения на противоположную достаточно изменить маркировку выводов обмотки – поменять начала и концы одной из обмоток. Меняя маркировку выводов и схему соединения фаз обмотки, можно получить любую группу от 0 – й до 11 – й. Схема соединения Y/Y дает только четные группы, тогда как схема Y/Dили D/Y – только нечетные.

По ГОСТ 11677-85 основными группами соединения силовых транс-форматоров общепромышленного назначения приняты Y/Y00-я; D/Y0 – 11-я; Y/D –11-я; Y0/D –11-яи Y/Z –11-я. Первые две группы используются главным образом в распределительных сетях низкого напряжения; оставшиеся – для линий электропередач, причем для напряжений 110 кВ и выше возможны соединения Y0/Y0. В этом случае чаще всего используются трехобмоточные трансформаторы, одна из обмоток которых для улучшения формы кривой напряжений соединена «треугольником».

На электрифицированных железных дорогах, работающих на переменном токе, с целью симметрирования нагрузки на питающих ЛЭП,допускается приме-

нение других групп соединения тяговых трансформаторов.

 

Экспериментальная часть

 

1) Включить трансформатор по схеме Y/Y и определить группу соединения; изменить группу на противоположную.

2) Проделать то же самое для схемы Y/D.

3) Включить трансформатор по схеме, предложенной преподавателем, и оп-ределить группу соединения.

 

Расчеты и построения

 

1) Определить группы соединения расчетным путем.

2) Построить векторные диаграммы для различных групп соединения.

3) Построить векторную диаграмму и определить группу соединения для схемы, заданной преподавателем.

 

Методические указания

 

Группу соединения можно определить с помощью вольтметра и последую-щего построения совместной векторной диаграммы. С этой целью соединяются перемычкой два одноименных зажима первичной и вторичной обмотки, например А и а, и замеряются напряжения на оставшихся выводах: UАВ, Uab, UBb, UCb, UBc и UCc. Результаты эксперимента заносятся в табл. 5, последний столбец которой заполняется после построения векторной диаграммы. Измерение напряжений производится путем прикосновения проводов, соединенных с вольтметром, к соответствующим зажимам трансформатора.Будьте внимательны и осторожны!

Величина kлв табл. 5 и последующих расчетах представляет собой коэф-фициент трансформации по линейным напряжениям:

(17)

Для изменения группы соединения на противоположную необходимо изменить маркировку выводов одной из обмоток. В данном случае это проще осуществить со стороны питания (рис. 7, а – до изменения, б – после изменения). Схема соединения вторичной обмотки при этом остается без изменений.

Для определения группы соединения аналитическим путем необходимо рассчитать напряжения UBb, UCb, UBc и UCcпо выражениям, приведенным в табл. 6 (напряжение U2=Uab), и за-полнить ее расчетную часть. Затем из табл. 5 выбрать соответствующую строку, имеющую те же (или близкие) напряжения, полученные опытным пу-

а б

Рис. 7

тем.

 

Таблица 5

 

Экспериментальные данные

 

Схема соединения Напряжение, В Коэффи-циент kл Группа соединения
Uab UBb UBc UCb UCc
Y/Y               Y/Y
и т. д.                

 

Таблица 6

 

Расчетные соотношения для определения группы соединения

 

В табл. 6 приведены расчетные выражения только для четырех предусмот-ренных стандартом групп соединения, поэтому группа соединения для схемы, заданной преподавателем, определяется только по векторной диаграмме.

Для построения совмещенной векторной диаграммы вначале строится в

масштабе треугольник первичных линейных напряжений (рис. 8). Поскольку пер-

вичная система напряжений симметрична, этот треугольник будет равносто-ронним со стороной, равной напряжению UАВ (рис. 8, а).

Треугольник вторичных линейных напряжений строится методом засечек

(рис. 8, б). Потенциалы соединенных перемычкой зажимов равны, поэтому точки А и а на диаграмме оказываются совмещенными. Из вершин треугольника В и С делаются засечки радиусами UBbи UCb, точка их пересечений дает вершину треугольника b. Точка пересечения засечек радиусами UBc и UCc даст вершину с. Соединив точки a, b и c, получим треугольник вторичных линейных напряжений. Угол между напряжениями UАВи Uab покажет группу соединения.

 

Рис. 8

Аналогично следует поступать и при других соединениях.

В отчете необходимо дать письменные ответы на контрольные вопросы 2, 3, 4, 6, 7, 13, 14.

3.4. Контрольные вопросы

 

1) Какие схемы применяются для соединения обмоток силовых трехфазных трансформаторов?

2) Как различаются линейные и фазовые напряжения и токи при различных схемах соединения обмоток?

3) Как маркируются начала и концы обмоток фаз трансформатора?

4) Что показывает группа соединения трансформатора?

5) Как определить номер группы соединения по циферблату часов?

6) От каких факторов зависит группа соединения?

7) Как можно изменить группу соединения?

8) Каким образом изменить группу соединения трансформатора на про-тивоположную?

9) Какие группы соединения можно получить при схеме соединения «звезда – звезда»?

10) Какие группы соединения можно получить при схеме соединения «звезда – треугольник»?

11) Какие группы соединения можно получить при схеме соединения «треугольник – звезда»?

12) Какие группы соединения используются в трансформаторах, выпуска-ющихся в Российской Федерации?

13) Как практически определить группу соединения трансформатора?

14) С какой целью необходимо знать группу соединения?

 

Лабораторная работа 4

 




Схемы и группы соединений обмоток трехфазных трансформаторов — КиберПедия

Для электрификации сельского хозяйства применяют трехфазные трехстержневые трансформаторы. Трехфаз­ный трансформатор, образованный из трех однофазных, называется групповым. Групповые трансформаторы до­роже, занимают больше места, имеют более низкий к. п. д., но их применяют при боль­ших мощностях, так как трансформатор, собранный из трех однофазных, более удобен для перевозки, резерв стоит де­шевле (для резерва достаточно иметь одну фазу трансформатора). В групповом транс­форматоре токи холостого хода я магнит­ные потоки во всех фазах одинаковы, а в трехстержневом намагничивающие токи крайних фаз больше, чем в средней фазе, так как сопротивление участка магнитной цепи для магнитных потоков, создаваемых обмотками крайних фаз, больше, чем для средней. Эта несимметрия незначитель­ная и существенного значения не имеет, так как уже при небольшой нагрузке она сглажи­вается.

В советских трансформаторах обмотки соединяют в звезду или в треугольник. За границей, кроме того, при­меняют соединение обмоток в зигзаг, при котором ка­ждую фазу вторичной обмотки делят пополам и распо­лагают на двух различных стержнях (рис. 124). При сое­динении обмоток в зигзаг сглаживается несимметрия намагничивающих токов, но провода расходуется больше. В СССР «соединение обмоток в зигзаг не применяют, но в последнее время выпущена опытная партия трансформа­торов с соединением обмоток в зигзаг.

Схемы соединений обмоток трехфазных трансформа­торов, принятые в СССР, приведены на рисунке 125. В условном обозначении над чертой показано соединение обмоток высшего напряжения, под чертой — низшего напряжения, индекс 0 обозначает выведенную нулевую точку, а цифра показывает группу соединений обмоток. При соединении обмоток в звезду, которое обозначают знаком Y, концы обмоток соединяют вместе, а начала присоединяют к выводам. При соединении обмоток в треу­гольник, которое обозначают знаком Δ, начало первой фазной обмотки соединяют с концом второй, начало второй — с концом третьей и начало третьей — с концом первой. Точки обмоток а, в, с присоединяют к выводам.

Начала фазных обмоток высшего напряжения обо­значают буквами А, В, С, а концы их — буквами X, У, Z. Начала и концы обмоток низшего напряжения обозна­чают соответственно буквами а, в, с и х, у, z.

При включении трансформаторов на параллельную работу большое значение имеет способ соединения обмоток трансформатора, который определяется группой соеди­нения. Цифрой обозначают угол между векторами линей­ных напряжений обмоток высшего и низшего напряжений, отсчитанный в единицах углового смещения по часовой стрелке от вектора линейного напряжения обмотки высшего напряжения. За единицу углового смещения принят угол в 30°.



Необходимо отметить, что понятия начала и конца обмоток условны, но они необходимы для правильного соединения обмоток.

Первичная и вторичная обмотки намотаны на одном стержне и пронизываются одним и тем же магнитным потоком. Если обе обмотки намотаны в одну и ту же сто­рону и верхние зажимы обмоток принять за их начала, а нижние — за концы, то э. д. с, индуктируемые в обмотках, будут одинаково направлены, допустим, в данный момент от конца к началу (рис. 126, а), т. е э. д. с. направ­лены согласно и совпадают по фазе.

Если обмотки намотать в разные стороны, сохранив то же обозначение зажимов, то векторы э. д. с. будут направ­лены встречно (рис. 126, б). Встречно будут направлены векторы э д. с. и в том случае, когда поменять местами обозначения зажимов, верхний зажим вторичной обмотки обозначить буквой х, а нижний — буквой а (рис. 126, в).

Рассмотрим методику построения векторных диаграмм для определения группы соединения обмоток трансфор­маторов. При построении векторных диаграмм исходят из следующих соображений:

а) векторы фазных напряжений обмоток высшего и низшего напряжений одной фазы всегда параллельны, так как индуктируются одним и тем же магнитным потоком и могут быть направлены согласно или встречно в зави­симости от способа выполнения обмотки и обозначения зажимов;

б) если на схеме концы обмоток соединены в одной точке, то и на векторной диаграмме соответствующие точки векторов фазных напряжений, обозначенных теми же бук­вами, также соединены вместе.

Построим векторную диаграмму напряжений для группы соединения обмоток Y/Y0 — 12.

Векторная диаграмма фазных и линейных напряжений обмотки высшего напряжения, подключенной в данном случае к сети, определяется напряжением сети (рис. 127, а). Построим векторную диаграмму напряжений для обмотки низшего напряжения и определим группу соединений обмоток.



Так как векторы .фазных напряжений обмоток парал­лельны и направлены согласно, то вектор ха фазного напряжения фазы а проводим параллельно вектору фаз­ного напряжения ХА фазы А (рис. 127, а).

Так как на схеме точки х, у, z соединены вместе, то и соответствующие точки векторов будут соединены в одной точке.

Проводим из точки х вектор фазного напряжения ув, параллельно вектору УВ и далее проводим из той же точки вектор zc, параллельный вектору ZC. Соединяя точки а, в, с, получаем векторы линейных напряжений вторичной обмотки.

Для определения группы соединения обмоток перене­сем параллельно самому себе вектор линейного напряже­ния ав к вектору линейного напряжения АВ так, чтобы точки А и а совпали. Как видно из рисунка 127, а, угол между векторами равен 360°, или 360 : 30 = 12 единиц углового смещения, т. е. группа соединений обмоток 12. При встречном направлении векторов э. д. с. получим группу Y/Y0 — 6 (рис. 127, б).

Построим векторную диаграмму для группы Y/Δ — 11.

Векторная диаграмма напряжений обмотки высшего напряжения определяется напряжением сети (рис. 127, в). Строим векторную диаграмму для обмотки низшего напряжения. Вектор ха проводим параллельно вектору ХА. Так как на схеме точки а и у соединены вместе, то и на векторной диаграмме точки векторов a и y соеди­няем вместе. Из точки а проводим вектор ув параллельно вектору УВ. Так как на схеме точки в и z соединены вме­сте, то из точки в проводим вектор zc параллельно век­тору ZC.

В результате построения мы получили треугольник фазных и линейных напряжений обмотки низшего напря­жения авс. Для определения группы соединения пере­носим параллельно самому себе вектор линейного напря­жения ав к вектору линейного напряжения АВ так, чтобы точки А и а совпали. Угол между векторами линейных напряжений, отсчитанный по часовой стрелке от вектора линейного напряжения обмотки высшего напряжения, равен 330°, или 330 : 30 = 11 единиц углового смещения, т. е. группа соединения обмоток 11.

Если векторы э. д. с. обеих обмоток направлены встреч­но, то мы получим 5 группу (рис. 127, г).


 

Для выражения угла сдвига между векторами линей­ных напряжений используют циферблат часов. Вектор линейного напряжения обмотки высшего напряжения принимают за минутную стрелку и устанавливают на цифру 12, а вектор линейного напряжения обмотки низ­шего напряжения принимают за часовую стрелку и уста­навливают на цифру, соответствующую положению этого вектора на векторной диаграмме. Цифра, на которую ука­зывает часовая стрелка, определяет группу соединений обмоток трансформатора. В первом случае при соедине­нии обмоток Y/Y0 — 12 обе стрелки будут установлены на цифре 12, а при соединении обмоток Y/Δ — 11 — минутная стрелка на цифре 12, а часовая на цифре 11.

Группу соединений Y/Y0 — 12 применяют для транс­форматоров небольшой мощности напряжением 10/0,4 кв или 6/0,4 кв с выведенной нулевой точкой при смешанной осветительной и силовой нагрузке и напряжении с низ­кой стороны до 400 в.

Группу соединений Y/ Δ —11 применяют для транс­форматоров при напряжении больше 400 в на обмотке низшего напряжения, например в трансформаторах 6/0,525 кв; 10/0,525 кв; 35/10 кв; 35/6 кв.

Группу соединений Y0/ Δ — 11 применяют при напря­жении обмоток с высшей стороны 110 кв и выше.

Соединять обмотки в звезду выгодно при высших на­пряжениях, так как тогда на фазу подводится фазное напряжение, которое в раза меньше линейного, что дает возможность удешевить изоляцию обмотки.

Соединение треугольником обычно применяют при низких напряжениях и больших токах, что дает возмож­ность уменьшить сечение проводов обмоток, так как в этом случае фазный ток в проводах обмотки меньше раза линейного тока (рис. 128).

Если при соединении обмоток Y/Y отношение линей­ных напряжений на первичной и вторичной обмотках при холостом ходе равно коэффициенту трансформации k, то при соединении обмоток Y/Δ отношение линейных

напряжений равно • k, а при соединении обмоток Δ /Y это отношение равно , где k—отношение фазных напряжений на первичной и вторичной обмотках трансфор­матора при холостом ходе.

На щитке трансформатора всегда указывают линейные напряжения и токи.

В современных трансформаторах сталь сердечника насыщена вследствие того, что допускают большие значе­ния магнитной индукции (свыше 1,4 тл), поэтому форма кривой тока холостого хода несинусоидальна (см § 1, гл. XII). Как известно из теоретической электротехники, несинусоидальную кривую тока можно разложить на ряд синусоидальных кривых — основную, третью гармони­ческую, пятую гармоническую и т. д. Значительную

 

 

величину имеет третья гармоническая тока, которую необходимо учитывать, рассматривая работу трансфор­матора. Например, при индукции в стали трансформа­тора 1,4 тл третья гармоника равна примерно 30% основ­ной составляющей намагничивающего тока (рис. 129). Из теоретической электротехника известно, что токи третьей гармоники во всех фазах одинаково направлены, т. е. во всех фазах они текут или от конца к началу обмотки фазы, или наоборот (рис. 129, б, в). Так как при соедине­нии обмотки трансформатора в звезду токи третьей гар­моники взаимно уравновешиваются, то отсутствие тока третьей гармоники в кривой тока

холостого хода делает ее синусоидальной, что приводит к искажению кривой магнитного потока: магнитный поток в магнитопроводе становится несинусоидальным и содержит третью гармо­нику. На рисунке 130, а показано построение кривой маг­нитного потока при синусоидальной форме намагничиваю­щего тока. В IV квадранте изображена синусоидальная кривая тока, а в I квадранте кривая зависимости маг­нитного потока Ф от величины намагничивающего тока с учетом насыщения стали. Построенная с помощью этой кривой кривая магнитного потока во II квадранте неси­нусоидальна, но ее можно разложить на две синусои­дальные гармонические составляющие — первую (основ­ную) Ф1 и третью Ф3.

Отсюда видно, что в трехстержневых трансформаторах, кроме основной составляющей магнитного потока Ф1, соз­даются третьи гармонические составляющие магнитных потоков, направленные во всех трех стержнях в одну и ту же сторону, поэтому они должны замыкаться по маслу, воздуху и стали бака трансформатора (рис. 130, б). Этот путь магнитного потока обладает очень малой магнитной приводимостью, вследствие чего третья гармоническая потока выражена слабо и практически не искажает кривой э. д. с. Но магнитные потоки третьей гармоники, замыкаясь по стали бака, стяжным болтам и другим стальным дета­лям, создают в стали вихревые токи, что повышает нагрев этих деталей и понижает к. п. д. трансформатора.

При магнитной индукции около 1,4 тл эти добавочные потери составляют около 10% основных потерь холостого хода, но при увеличении индукции эти потери быстро растут. Вследствие этого соединение обмоток Y/Y имеет ограниченное применение. Его применяют в трансформа­торах мощностью не более 1800 ква.

При соединении обмоток трансформатора по схеме Y/Δ или Δ/Y токи третьей гармоники, протекая во всех обмотках в одном направлении, замыкаются по контуру, образуемому обмотками, соединенными в треугольник (рис. 129, в). При наличии токов третьей гармоники в токе холостого хода кривая тока холостого хода будет пико-образной, форма кривой магнитного потока и э. д. б. — синусоидальны, поэтому магнитных потоков третьей гар­моники не будет и не будет тех вредных воздействий маг­нитных потоков третьей гармоники, как при соединении обмоток Y/Y- Поэтому предпочтение отдается схемам соединения обмоток Y/Δ и Δ/Y-

Пример. Дан трехфазный трансформатор мощностью SH = 240 ква, напряжением U1 = 6000 в, U20= 400 в, Iн1 = 23,1 а, Iн2 = 347 а, соединение обмоток Y/Y0, Р0= 1400 вт, Рk = 4900 вm, UK = 330 в, r1 = r2, х1 = х’2.

Определить для этого трансформатора r1\, r2, х1, х2и к. п. д. при номинальной нагрузке и cos ф2 = 0,8. Найти ΔU% при номинальной нагрузке и cosф2 = 0,8. Вычис­лить наивыгоднейший kнг.

Решение. При решении задач с трехфазными транс­форматорами сопротивления обмоток определяем для одной фазы. Находим zK:

Здесь UKделится на для того, чтобы найти UKфазное. Находим rк:

Здесь Ркделится на 3 для того, чтобы узнать мощность короткого замыкания на одну фазу. Находим хк:

Но так как rк = r1 + r’2, а xк = x1 + x’2и по условию r1 = r2 и х1 = х’2, находим сопротивления обмоток:

Найдены действительные сопротивления первичной обмотки r1 и х1, а для вторичной обмотки подсчитаны при­веденные сопротивления. Для того чтобы определить действительные сопротивления вторичной обмотки, находим коэффициент трансформации k:

Находим действительные сопротивления вторичной обмотки:

]

Находим изменение напряжения ΔU% при номинальной нагрузке трансформатора и cosф2=0,8:

Находим Ua%:

Определяем Uр%:

 

Схемы и группы соединения трансформаторов

При эксплуатации трансформаторов в электрических системах необходимо знать угол сдвига по фазе напряжений обмоток ВН и НН. Этот угол понимается как угол между напряжениями обмоток ВН и НН, измеренными на одноименных выводах, например, между напряжением обмотки ВН на выводах А и В и напряжением обмотки НН на выводах а и В
При эксплуатации трансформаторов в электрических системах необходимо знать угол сдвига по фазе ЭДС обмоток высшего и низшего напряжений. Этот угол понимается как угол между ЭДС обмоток ВН и НН, измеренными на одноименных выводах, например, между ЭДС обмотки ВН на выводах А и В и ЭДС обмотки НН на выводах а и b.

Определение группы соединения обмоток
Рис. 1. Определение группы соединения обмоток

Одно из возможных взаимных расположений комплексов линейных напряжений АВ и аb трехфазных трансформаторах показано на рис. 1  (направление от А к В и соответственно от а к b говорит о выбранном положительном направлении).
В однофазных трансформаторах угол между напряжениями ВН и НН может быть равен 0 или 180°, линейные напряжения ВН и НН трехфазных трансформаторов могут быть сдвинуты на угол, кратный 30°. Поскольку этот угол во всех случаях кратен 30°, его удобно выражать не в градусах или радианах, а в числе делений часового циферблата (угол между его соседними делениями равен 30°).
Трансформаторы, имеющие одинаковые углы между напряжениями, относятся к одной и той же группе соединения, характеризующейся своим номером.
При этом под номером группы соединения понимается время на часах, минутная стрелка которых совмещена с напряжением ВН и установлена на цифре 0 (12), а часовая совмещена с одноименным напряжением НН (в трехфазных трансформаторах о номере группы судят по углу между линейными напряжениями).
Применение этого правила иллюстрируется рис. 1, на котором показано взаимное расположение напряжения для трансформатора группы соединения П.
В обозначении трансформатора номер группы соединения указывается после обозначения схемы соединения его обмоток (например, Y/Y-0 или Y/A-11). Если обмотки фаз ВН и НН намотаны в одну сторону, то при определенном обозначении выводов ВН в однофазном трансформаторе имеется два возможных варианта маркировки выводов НН, показанных на рис. 2. Поскольку обмотки сцеплены с одним и тем же потоком Ф, напряжения, обозначенные одинаковыми буквами (рис. 2, а), будут находиться в фазе или в противофазе (рис. 2, б). При увеличении потока Ф во времени (рис. 2, а) напряжения ВН и НН направлены от ХкА и от х к а или напряжение ВН направлено в ту же сторону, а напряжение НН — от а кх (рис. 2, б).
Соединение однофазных трансформаторов по рис 2, а относится к группе 0 и обозначается 1/1-0, соединение по рис. 2, б относится к группе 6 и обозначается 1/1-6. Переход от группы 0 к группе 6 не требует пересоединений в самом трансформаторе, он может быть осуществлен путем перемаркировки выводов (а исправлено на х, х на а). В нашей стране однофазные трансформаторы выпускаются только с группой соединения 1/1-0.

Группы соединения обмоток и обозначения выводов однофазных трансформаторов
Рис, 2. Группы соединения обмоток и обозначения выводов однофазных трансформаторов
Распространяя на фазные обмотки ВН и НН трехфазного трансформатора все сказанное выше о фазах напряжений, можно выявить, что трехфазный трансформатор со схемой соединения Y/Y с маркировкой выводов по рис. 4.7, а относится, как видно из диаграммы напряжений, к группе 0 и обозначается Y/Y-0 (фазное напряжение ах совпадает по направлению с фазным напряжением АХ; by совпадает с BY, cz совпадает с CZ; линейное напряжение ab совпадает с АВ). Круговой перемаркировкой обозначений выводов (без внутренних пересоединений) из группы 0 можно получить группы (4) и [8]. При обозначениях выводов, указанных в круглых скобках (а), (b), (с), линейное напряжение (а) (b) совпадает по направлению с напряжением ЯС(так как эти напряжения измеряются на обмотках, расположенных на одних и тех же стержнях) и трансформатор переходит в группу соединения (4). При обозначениях выводов, указанных в квадратных скобках, напряжение [а] [b] совпадает по направлению с напряжением СА и трансформатор переходит в группу соединения [8]. Переход к соединению Y/Y-6 (рис. 4.7, б) требует переноса нулевой перемычки внутри трансформатора, изменяющей фазу всех напряжений обмотки НН на 180° (напряжение ab находится в противофазе с напряжением АВ). Круговой перемаркировкой выводов из группы 6 получаются группы (10) и [2] (см. на рис. 4.7, б обозначения, указанные в круглых и квадратных скобках). Этим исчерпываются все возможные четные номера групп, которые могут быть получены при соединении Y/Y.
Нечетные номера групп получаются при соединении Y/Д. При обозначениях выводов, указанных без скобок (а, b, с, х, у, z на рис. 4.7, в), линейное напряжение ab, являющееся одновременно фазным напряжением yb, совпадает по направлению с напряжением YB и трансформатор имеет группу соединения II.
Группы соединения трехфазных трансформаторов
Рис. 4.7. Группы соединения трехфазных трансформаторов
Путем круговой перемаркировки обозначений выводов, показанной на рис. 4.7, в, в круглых и квадратных скобках получаются группы (3) и [7] (каждая перемаркировка поворачивает одинаково обозначенное напряжение на угол 120° = 4×30°, изменяя номер группы на 4).
Меняя местами обозначения начала и концов фазных обмоток, можно осуществить переход от группы 11 к группе 5 (рис. 4.7, г — обозначение без скобок) и, наконец, от 5-й группы круговой перестановкой обозначений выводов, показанной на рис. 4.7, г; перейти к группам (9) и [1].
Из всех возможных групп соединения трехфазных двухобмоточных трансформаторов используются только группы 0 и 11 с выводом в случае необходимости нулевой точки звезды (Y/YH-0, Y/Л-11, YH/A-11). Кроме того, ГОСТ 11677-85 предусмотрена группа соединения, в которой треугольником соединены обмотки ВН A/YH-11.
Группа соединения A/Y-11
Рис. 4.8. Группа соединения A/Y-11
Рис. 4.9. Изменение группы трансформатора при использовании для обмотки ВН (НИ) схемы и маркировки обмотки НН (ВН)
Как видно из рис. 4.8, в этом случае применяется иной способ образования треугольника, чем при соединении Y/A-11 (А соединяется с Z, в то время как в треугольнике на низкой стороне а соединялось с у). Если бы треугольник на стороне ВН был соединен так же, как треугольник на стороне НН в соединении Y/Д-И по рис. 4.8, то соединение ДА» имело бы группу 1, а не 11.
Представляет интерес выяснить в общем случае, как изменится номер группы, если превратить обмотку НН в обмотку ВН, а обмотку ВН в обмотку НН с сохранением их соединений и маркировки.
Очевидно, угол между линейными напряжениями ВН (АВ) и НН (ab) сохранится и будет равен 30° х/У(рис. 4.9). Но теперь напряжение ab на диаграмме, показанной штриховой линией, будет на такой же угол 30° х ТУ опережать АВ, на который оно отставало на диаграмме, показанной сплошными линиями. Поэтому если отсчитывать угол всякий раз от напряжения АВ до напряжения ab по часовой стрелке, то угол во втором случае 30°х/У’ будет углом, дополняющим до 360° угол 30°х/Ув исходном состоянии:
30°хЛГ’ + 30°хЛГ= 360°.
Таким образом, номер N’ группы трансформатора можно определить
N’r 12-N,
где N — номер группы в исходном состоянии (если N — 11, N’ = = 12 — 11 = 1).
Исходной группой для получения группы A/YH-11 (N’ = 11) служит группа YH/A-1 (N= 12 -N’ — 1), которая, в свою очередь, получается из группы YH/A-11 путем изменения способа образования треугольника (см. ниже).  
Влияние способа образования треугольника на группу соединения
Рис. 4.10. Влияние способа образования треугольника на группу соединения
Следует заметить, что группа соединения трансформатора зависит не только от порядка маркировки начал и концов обмотки НН, но и от того, каким образом фазные обмотки объединены в треугольник. Треугольник на стороне НН должен образовываться путем соединения вывода а с выводом у; b с z и с с х, как сделано на рис. 4.7 или 4.10 сплошными линиями. Если вместо этого образовать треугольник путем соединения
зажима а с зажимом z, b с х п с с у (рис. 4.10, штриховая линия), то напряжение обмотки НН, например ab, повернется на угол 180 — 120 = 2 х 30° по часовой стрелке и номер группы соединения увеличится на 2 (при маркировке на рис. 4.10 вместо группы 3 получится группа 3 + 2 = 5). При соединении, показанном сплошными линиями, линейное напряжение ab, являющееся одновременно фазным напряжением, совпадает по направлению с напряжением ZC При соединении, показанном штриховой линией, линейное напряжение ab, являющееся теперь фазным напряжением ах, совпадает по направлению с напряжением BY, т.е. поворачивается по сравнению с прежним соединением на указанный угол 2×30°.
Это правило распространяется на любые другие нечетные группы соединения, и при использовании нерекомендуемого способа образования треугольника вместо группы N получается группа N’ = N + 2. Вместо 11 получается 1, а также 5 вместо 3, 9 вместо 7, 3 вместо 1, 7 вместо 5 и 11 вместо 9.
Соединение по схеме зигзаг используется только для обмотки НН, причем стандартизуется только группа Y/ZH-11 с выведенной нулевой точкой у зигзага.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *