Схема миниатюрного металлоискателя на микросхемах К561ЛЕ5 (К561ЛА7)
Малогабаритный металлоискатель может обнаруживать скрытые в стенах гвозди, шурупы, металлическую арматуру на расстоянии нескольких сантиметров.
В металлоискателе использован традиционный метод обнаружения, основанный па работе двух генераторов, частота одного из которых изменяется при приближении прибора к металлическому предмету. Отличительная особенность конструкции — отсутствие самодельных намоточных деталей. В качестве катушки индуктивности использована обмотка электромагнитного реле.
Металлоискатель (рис. 3.19, а) содержит:
- LC-генератор на элементе DD1.1;
- RC-генератор на элементах DD2.1 и DD2.2;
- буферный каскад на DD1.2;
- смеситель на DD1.3;
- компаратор напряжения на DD1.4, DD2.3;
- выходной каскад на DD2.4.
Работает устройство так. Частоту RC-генератора нужно устанавливать близкой к частоте LC-генератора. При этом на выходе смесителя будут присутствовать сигналы не только с частотами обоих генераторов, но и с разностной частотой.
Фильтр низкой частоты R3C3 выделяет сигналы разностной частоты, которые поступают на вход компаратора.
Рис. 3.19. Малогабаритный металлоискатель: а—принципиальная схема; 6—печатная плата.
На его выходе формируются прямоугольные импульсы такой же частоты.
С выхода элемента DD2.4 они поступают через конденсатор С5 на разъем XS1, в гнездо которого вставляют вилку головных телефонов сопротивлением около 100 Ом.
Конденсатор и телефоны образуют дифференцирующую цепочку, поэтому в телефонах будут раздаваться щелчки с появлением каждого фронта и спада импульсов, т. е. с удвоенной частотой сигнала. По изменению частоты щелчков можно судить о появлении вблизи прибора металлических предметов.
Вместо указанных на схеме допустимо использовать микросхемы:
- К561ЛА7;
- К564ЛА7;
- К564ЛЕ5.
Полярный конденсатор — серий К52, К53, остальные — К10-17, КЛС. Переменный резистор R1 — СП4, СПО, постоянные — МЛТ, С2-33. Разъем — с контактами, замыкающимися при вставленной в гнездо вилке телефонов.
Источник питания — батарея «Крона», «Корунд», «Ника» или аналогичный им аккумулятор.
Катушку L1 можно взять, например, из электромагнитного реле РЭС9, паспорт РС4.524.200 или РС4.524.201 с обмоткой сопротивлением около 500 Ом. Для этого реле нужно разобрать и удалить подвижные элементы с контактами.
Магнитная система реле содержит две катушки, намотанные на отдельных магнитопроводах и включенные последовательно. Общие выводы катушек нужно соединить с конденсатором С1, а магнитопровод также, как и корпус переменного резистора, — с общим проводом металлоискателя.
Детали устройства, кроме разъема, следует разместить на печатной плате (рис. 3.19, б) из двустороннего фольгиро-ванного стеклотекстолита. Одна из ее сторон должна быть оставлена металлизированной и соединена с общим проводом другой стороны.
На металлизированной стороне нужно закрепить батарею питания и «добытую» из реле катушку. Выводы катушки реле следует пропустить через раз-зенкованные отверстия и соединить с соответствующими печатными проводниками. Остальные детали размещаются со стороны печати.
Плату устанавите в корпус из пластмассы или жесткого картона, на одной из стенок которого закрепите разъем.
Налаживание устройства следует начинать с установки частоты LC-генератора в пределах 60—90 кГц подбором конденсатора С1.
Затем нужно переместить движок переменного резистора примерно в среднее положение и подбором конденсатора С2 добиться появления в телефонах звукового сигнала. При перемещении движка резистора в ту или иную сторону частота сигнала должна изменяться.
Для обнаружения металлических предметов переменным резистором предварительно нужно установить возможно меньшую частоту звукового сигнала. С приближением к предмету частота начнет изменяться. В зависимости от настройки, выше или ниже нулевых биений(равенства частот генераторов), или вида металла, частота изменится в большую или меньшую сторону.
Источник: Корякин-Черняк С.Л. Семьян А.П. — Металлоискатели своими руками. Как искать, чтобы найти монеты, украшения, клады.
Схема громкоговорящего приемника на микросхеме К176ЛА7 (СВ диапазон)
Некоторые цифровые микросхемы КМОП-логики, такие как К176ЛА7, К176ЛЕ5, К561ЛА7,К561ЛЕ5, а так же зарубежные аналоги 4001, 4011 могут работать и в линейном усилительном режиме.
Для этого вход и выход логического элемента нужно соединить резистором или RC-цепью отрицательной обратной связи, которая подаст напряжение с выхода элемента на его же вход и в результате на входе и выходе элемента установится одно и то же напряжение, где-то между значением логического нуля и логической единицы. По постоянному току элемент окажется в режиме усилительного каскада.
А коэффициент усиления будет зависеть от параметров этой цепи ООС. В таком режиме логические элементы выше указанных микросхем можно использовать в качестве аналоговых усилителей.
Принципиальаня схема маломощного УНЧ
На рисунке 1 показана схема маломощного УНЧ на основе микросхемы К561ЛА7 (4011). Усилитель получается двухкаскадный, если вообще здесь уместно говорить о каскадах. Первый каскад выполнен на логическом элементе D1.1, его вход и выход связаны между собой цепью ООС состоящей из резисторов R2, R3 и конденсатора С4.
Практически коэффициент усиления здесь зависит от соотношения сопротивлений резисторов R2 и R3.
Рис.1. Принципиальная схема усилителя мощности низкой частоты на микросхеме К176ЛА7.
Входной сигнал ЗЧ через регулятор громкости на резисторе R1 поступает через разделительный конденсатор С1 на вход элемента D1.1. Им сигнал усиливается и поступает на выходной усилитель мощности на оставшихся трех элементах микросхемы, включенных параллельно для увеличения их выходной мощности.
Нагружен выходной каскад на миниатюрный динамик В1 через разделительный конденсатор C3. Выходная мощность не оценивалась, но субъективно УНЧ работает примерно так же громко, как УНЧ карманного радиоприемника с выходной мощностью около 0,1W.
Динамики пробовал самые разные, от 4 Ом до 120 Ом. Работает с любым. Конечно, громкость различается. Налаживания практически никакого не требуется.
При напряжении питания более 5-6V появляются существенные искажения.
Схема радиовещательного приемника прямого усиления
На втором рисунке показана схема радиовещательного приемника прямого усиления для приема радиостанций в диапазоне длинных или средних волн.
Схема УНЧ почти такая же как на рисунке 1, но отличается тем, что один элемент микросхемы из выходного каскада исключен и на нем сделан усилитель радиочастоты, при этом, естественно, мощность выходного каскада, в теории, снизилась, но практически на слух какой-либо разницы замечено не было.
И так, на элементе D1.4 выполнен УРЧ. Для его перевода в усилительный режим между его выходом и входом включена цепь ООС, состоящая из резистора R4 и входного контура, образованного катушкой L1 и переменным конденсатором C6.
Рис.2. Принципиальная схема приемника на микросхеме К176ЛА7, К176ЛЕ5, CD4001.
Контур подключен ко входу УРЧ непосредственно, это стало возможным благодаря высокому входному сопротивлению элементов ИМС КМОП-логики.
Катушка L1 является магнитной антенной. Она намотана на ферритовом стержне диаметром 8 мм и длиной 12 мм (можно любой длины, но чем длиннее, тем лучше чувствительность приемника). Для приема на средних волнах обмотка должна содержать 80-90 витков.
Для приема на длинных волнах — около 250. Провод, практически любой обмоточный. Средневолновую катушку мотать виток к витку, длинноволновую — внавал 5-6-ю секциями.
Переменный конденсатор С6 — от «легендарного» набора для сборки приемника «Юность КП-101» 80-х годов прошлого века. Но, конечно же, можно и какой-то другой. Следует заметить, что используя КПЕ от карманного супергетеродинного приемника, соединив его секции параллельно (будет максимальная емкость 440-550 пФ в зависимости от типа КПЕ) можно будет уменьшить число витков катушки L1 в два и более раза.
С выхода УРЧ на D1.4 усиленное напряжение ВЧ поступает через разделительный конденсатор С8 на диодный детектор на германиевых диодах VD1 и VD2. Диоды должны быть обязательно германиевыми. Это могут быть Д9 с другими буквенными индексами, а так же, диоды Д18, Д20, ГД507 или зарубежного производства.
Продетектированный сигнал выделяется на конденсаторе С9 и через регулятор громкости на R1 поступает на УНЧ, выполненный на остальных элементах данной микросхемы.
Применение логических элементов в других схемах
Рис.3. Схема магнитного датчика на логическом элементе.
Логические элементы в усилительном режиме можно использовать и в других схемах, например, на рисунке 3 показана схема магнитного датчика, на выходе которого появляется импульс переменного напряжения, когда магнит перемещается перед катушкой, либо перемещается сердечник катушки.
Параметры катушки зависят от конкретного устройства, в котором этот датчик будет работать. Возможно так же, включение в качестве катушки динамического микрофона или динамического громкоговорителя, чтобы данная схема работала как усилитель сигнала от него. Например, в схеме, где нужно реагировать на шум или удары по поверхности, на которой этот датчик закреплен.
Тульгин Ю. М. РК-2015-12.
К561ЛА7
К561ЛА7 — логическая микросхема. Состоит из четырёх логических элементов 2И-НЕ. В состав каждого из этих элементов входят четыре полевых транзистора, два n-канальных — VT1 и VT2, два p-канальных — VT3 и VT4. Два входа А и В могут иметь четыре комбинации входных сигналов. Принципиальная схема и таблица истинности одного элемента микросхемы К561ЛА7 показаны ниже.
Логика работы К561ЛА7
Рассмотрим логику работы элемента микросхемы К561ЛА7. Если на оба входа элемента подать напряжение высокого уровня, то транзисторы VT1 и VT2 будут находиться в открытом состоянии, а VT3 и VT4 в закрытом. Таким образом, на выходе Q будет напряжение низкого уровня. Если на любой из входов подать напряжение низкого уровня, то один из транзисторов VT1, VT2 будет закрыт, а один из VT3, VT4 открыт. Это установит напряжение высокого уровня на выходе Q. Такой же результат, естественно, будет если на оба входа микросхемы К561ЛА7 будет подано напряжение низкого уровня. Девиз логического элемента И-НЕ — ноль на любом входе даёт единицу на выходе.
Вход | Выход Q | |
---|---|---|
A | B | |
H | H | B |
H | B | B |
B | H | B |
B | B | H |
Таблица истинности микросхемы К561ЛА7
Цоколёвка микросхемы К561ЛА7
Схематическое обозначение К561ЛА7.
Один элемент из четырёх.
Питание микросхемы 3÷15 вольт.
Микросхема К561ЛА7 имеет аналог — К176ЛА7. Только питание у аналога 9 вольт.
Две схемы сенсорных датчиков (К561ЛА7, К561ТЛ1, КР1006ВИ1)
Сенсорные датчики надежны и неприхотливы, что позволяет применять их в различных радиолюбительских устройствах. Ограничение на использование сенсоров только одно: датчики данного типа бесполезны вдали от электрических коммуникаций (в лесах, парках и т. п.), иногда ненадежно работают в сельской местности, в домах с земляным полом. Сенсор улавливает наведенное в теле человека переменное напряжение 0,050,5 В от находящихся рядом проводов электросетей. Если заземлить человека (намеренно или случайно) одновременно с касанием сенсорного контакта, эффекта от электрических наводок также не будет, все они уйдут «в землю». Далее рассмотрим два разных схемных решения, объединенных использованием сенсора в качестве чувствительного элемента.
На рис. 2.12 представлена электрическая схема сенсорного триггера с двумя сенсорами. Рассмотрим работу схемы на примере блока 1 (блок 2 аналогичен блоку 1).
С помощью коаксиального кабеля (РК-75) от телевизионной антенны конденсатор С1 подключается к небольшой токопроводящей площадке с максимальными размерами 60 х 60 мм. Длина коаксиального соединения может достигать 1 м. Экран кабеля подключается к общему проводу. Конденсатор С1 пропускает сетевые наводки от тела человека с частотой 50 Гц.
Диоды VD1, VD2 выпрямляют переменное напряжение наводок, и оно через ограничивающий резистор R1 поступает на вход первого инвертора. Полевые транзисторы на входе логического элемента обладают высокой чувствительностью и, кроме инверсии сигнала, еще и усиливают его.
Рис. 2.12. Электрическая схема триггера с двумя сенсорами
Резистор R2 необходим для нейтрализации ложных срабатываний от помех из-за колебания входных токов элемента D1.1. На выходе элемента импульсный сигнал свободно проходит через конденсатор С2 (гальваническую развязку) и уже имеет форму меандра сетевой частоты, она детектируется диодами VD3, VD4 и сглаживается конденсатором СЗ.
Далее положительный фронт импульса (при касании сенсора) усиливается и дважды инвертируется логическими элементами D1.2, D1.3. С вывода 8 микросхемы K561ЛA7 положительный фронт импульса проходит через диод развязки VD6 и управляет триггером Шмита на элементе D2.1. Элемент D2.1 находится в состоянии ожидания и удерживается делителем напряжения R4R5. Низкий логический уровень, поданный на вход D2.1, через диод VD7 от блока 2 переключит элемент (на его выходе появится и будет удерживаться состояние высокого логического уровня) транзисторный ключ откроется, включит реле. Оно своими контактами коммутирует маломощную нагрузку. Высокий логический уровень, поступивший на вход триггера Шмита через диод VD6 от блока 1, перебросит триггер в другое устойчивое состояние, транзисторный ключ на VT1 закроется, и реле отключит нагрузку.
Диод VD5 препятствует броскам обратного напряжения при коммутации реле, защищая транзистор. Напряжение питания схемы может варьироваться от +5 до +15 В. При максимальных значениях напряжения питания чувствительность сенсорного устройства уменьшается, оказывается необходимым точнее подобрать значения элементов Rl, R2, R3 и конденсаторов С1, С2. Наилучшие результаты получены при питании схемы стабилизированным напряжением 58 В. Разумеется, исполнительное реле следует подбирать исходя из напряжения питания.
На рис. 2.13 представлена другая очень чувствительная схема, реагирующая на прикосновение человека к сенсорной пластине Е1 даже через одежду.
В схеме предусмотрены регулировки чувствительности (подстроечный резистор R4) и задержки срабатывания (подстроечный резистор R1). Популярная микросхема DA1 КР1006ВИ1 (зарубежный аналог NE555) включена по стандартной схеме. Через 210 с после воздействия на сенсор (задержка определяется значениями элементов времязадающей цепи R1R2C1) на выводе 3 появляется исходный (низкий) уровень напряжения.
Транзистор VT1 закрывается, но не выключает реле, так как используется тиристор VS1 в ключевом режиме. Реле находится во включенном состоянии до тех пор, пока не будет (хотя бы кратковременно) нарушена цепь питания схемы переключателем S1. Контакты реле К1 коммутируют цепь маломощной нагрузки.
Рис. 2.13. Очень чувствительная схема сенсорного датчика
Данный электронный узел можно использовать универсально, как сигнальное устройство или устройство управления любой маломощной активной нагрузкой.
Резистор R4 исключать из схемы нельзя, так как без него устройство работает ненадежно. Как видно из рисунка, R4 задает смещение тиристору и тем регулирует его порог срабатывания. Если все элементы схемы правее (по схеме) точки А исключить, то получится надежный сенсорный узел, где выход DA1 (вывод 3) будет способен управлять любыми электронными устройствами. Амплитуда управляющего напряжения в этом случае составит 2/3 напряжения питания.
Кашкаров А. П. 500 схем для радиолюбителей. Электронные датчики.
Металлоискатель на ИМС К561ЛА7
C помощью этого компактного прибора можно обнаружить рублевую монету на глубине до 10 см, а железное ведро или крышку люка на глубине до 0,5 метра. Прибор основан на принципе изменения частоты LC-генера-тора с объемной катушкой. Есть два генератора, — поисковый, частота которого задается индуктивностью объемной катушки и емкостью контурного конденсатора и опорный генератор с кварцевой стабилизацией частоты. Сигналы генераторов поступают на смеситель и с выхода смесителя на динамик. Перед началом работы переменным конденсатором настраивают контур поискового генератора на частоту, очень близкую к частоте опорного генератора. В процессе данной настройки в динамике сначала появляется звуковой сигнал высокого тона. Затем, продолжая настройку переменным конденсатором, добиваются нулевых пульсаций (очень низкочастотное звучание, напоминающее потрескивание). При приближении поисковой катушки к металлическому объекту её индуктивность изменяется. Соответственно изменяется и частота генерации поискового генератора. В результате этого тон звучания резко возрастает (сначала потрескивания становятся чаще, а потом переходят в свист).
Принципиальная схема показана на рисунке в тексте. В основе — одна микросхема типа К561ЛА7 (четыре логических элемента 2И-НЕ). На элементе D1.1 выполнен опорный генератор. Частота определяется частотой резонанса кварцевого резонатора Q1. Здесь используется кварцевый (или керамический, точно не скажу) резонатор от пульта дистанционного управления типа RC-6. Там бывают резонаторы на 455 кГц, 465 кГц и 470 кГц. Подойдет любой резонатор в пределах частоты от 400 до 500 кГц, так что можно попробовать и резонаторы от связной аппаратуры на 500 кГц. В принципе, схему генератора опорной частоты можно сделать и на RC или LC компонентах, но стабильность будет низка и металлоискатель будет требовать постоянной поднастройки во время работы.
Резистор R1 является элементом отрицательной обратной связи и переводит элемент D1.1 в линейный режим усилителя, что необходимо для появления генерации. Через конденсатор СЗ импульсы, имеющие параболическую форму поступают на смеситель, выполненный на элементе D1.2. Резисторы R2 и R3 образуют делитель напряжения, устанавливающий на выводе 5 элемента D1.2 напряжение равное половине напряжения питания. Это нужно потому что параболическое напряжение на выходе D1.1 имеет небольшую амплитуду, — ниже порогов логических уровней, а наличие делителя на входе D1.2 добавляет постоянную составляющую к этому напряжению.
Поисковый генератор выполнен на элементе D1.3. В линейный режим элемент переведен с помощью резистора R6, включенного между его входом и выходом. Частота генерации определяется контуром L1-C4-C5. Плавно её настраивать можно переменным конденсатором С5, а средняя частота (при среднем положении ротора конденсатора С5) должна быть равна 455 кГц, то есть частоте опорного генератора. Выходное напряжение тоже имеет параболическую форму и по уровню меньше логического уровня. Далее переменное напряжение с выхода поискового генератора поступает на усилитель на элементе D1.4, который в линейный усилительный режим переведен отрицательной обратной связью с помощью резистора R5, включенного между его входом и выходом. Далее напряжение с частотой поискового генератора поступает на другой вход смесителя на элементе D1.2. На выходе этого элемента будет разность частот этих переменных напряжений. В идеальном случае, если эти частоты абсолютно одинаковы, на выходе D1.2 будет либо логическая единица, либо логический ноль постоянно. Но частоты равными не будут, даже при точной настройке переменным конденсатором будет какое-то различие. Поэтому на выходе D1.2 при точной настройки будет переменное напряжение частотой в несколько герц. Динамик В1 при этом потрескивает. С приближением поисковой катушки L1 к металлическому предмету индуктивность L1 изменяется, что неизбежно приводит к изменению частоты генерации поискового генератора. Соответственно и разность между частотами поискового и опорного генератора увеличивается. Треск в динамике становится быстрее и переходит в тональное звучание и чем ближе
к металлическому предмету тем выше тон звука.
Питается металлоискатель от батареи типа «Крона» или импортного аналога (как для мультиметра М830).
Конструкция поисковой катушки может быть различной. Здесь использована была катушка намотанная на куске полиэтиленовой сантехнической трубы диаметром 50 мм. Отрезано колечко шириной 10 мм. Катушка содержит 70 витков провода ПЭВ 0,12. Можно сделать катушку большего диаметра с меньшим числом витков.
Конденсатор С5 — переменный конденсатор от карманного супергетеродинного приемника с AM диапазонами. Обе его секции (по 9-270 пф) включены параллельно. Можно использовать и другой конденсатор аналогичного типа.
В качестве динамика В2 используется миниатюрный динамик от телефонного аппарата. Можно использовать практически любой динамик небольшой мощности с сопротивлением катушки от 1000 до 8 Ом. Но следует учесть что при сопротивлении катушки ниже 25-30 Ом будет наблюдаться очень заметное снижение громкости звучания. Можно использовать и пьезоэлектрический звукоизлучатель, в этом случае ключ на VT1 нужно убрать, а «пъезодинамик» подключить непосредственно между выходом элемента D1.2 и плюсом или минусом питания (выбрать как будет лучше). Однако, автор экспериментов с пьезоэлектрическим звукоизлучателем в данной схеме не проводил, поэтому здесь высказано только предположение.
Монтаж выполнен на печатной плате из фольгированного стеклотекстолита. Печатные дорожки расположены с одной стороны. На плате со стороны деталей есть одна перемычка. На схеме расположения дорожек печатные дорожки показаны условно, то есть, без демонстрации их ширины. Поскольку плата очень простая, по всей видимости, нет необходимости применять при её изготовлении такие сложные процессы, как метод «лазерного утюга» или фотоэкспонирования. Проще перевести точки положения отверстий с рисунка на плату путем кернения (слегка), а затем нарисовать печатные дорожки черным маркером для письма по компакт-дискам или стеклу. Положение дорожек может быть не строго точно как на схеме, — важно только чтобы все соединения были соблюдены и не было замыканий между дорожками (это сделать просто даже без линейки «от руки»). Травление в растворе хлорного железа. Смыть маркер можно бензином, спиртом, или одеколоном.
В процессе налаживания сначала проверяют работу кварцевого генератора, а потом поискового. Вращая ротор С5 находят положение с писком, далее медленно поворачивают до снижения тона и до нулевых биений. Если не получается или нулевые биения у самого края перестройки конденсатора нужно подкорректировать число витков L1, емкость С4.
К561ЛА7 — Меандр — занимательная электроника
Некоторые компьютерные мониторы при каждой подаче на них сетевого напряжения остаются выключенными, пока не будет нажата кнопка включения, даже если на их вход поступает видеосигнал. Это доставляет некоторые неудобства, не позволяя, например, включить монитор одновременно с компьютером нажатием всего на… Продолжить чтение →
Эта схема предназначена не только для регулировки скорости вращения вала электромоторчика, но и для изменения направления вращения. Регулировка осуществляется переменным резистором. В одном крайнем положении которого двигатель вращается в одну сторону, в другом — в другую. На среднем положении вал… Продолжить чтение →
Радиомодули FS1000A И XY-MK-5V сейчас очень популярных у радиолюбителей потому что стоят относительно недорого и при этом обеспечивают уверенную связь на частоте в диапазоне 433 MHz, при дальности до 100-1000 метров (в зависимости от ландшафта местности). Здесь описывается схема простого… Продолжить чтение →
Данное устройство реагирует на включение передатчика недалеко от него расположенного сотового телефона. При этом раздается звук высокой тональности. Сигнал передатчика сотового телефона принимается антенной, представляющей собой спицу длиной 9 см (длина подобрана экспериментально). От этой антенны сигнал поступает на детектор… Продолжить чтение →
Предлагаемый несложный стабилизатор с регулируемым в широких пределах выходным напряжением и токовой защитой может быть использован как в одноканальных, так и в многоканальных лабораторных источниках питания. Выходное напряжение стабилизатора можно регулировать от 3 до 27 В, Наибольший ток нагрузки —… Продолжить чтение →