POWER BANK СВОИМИ РУКАМИ
Частые поездки в командировки и по домашних делах, привела к мысли о покупке надежного зарядного устройства типа Power bank, для вечно нуждающегося в питании мобильника на ОС Android. Так как время доставки из заоблачной желает лучшего, а нужно еще вчера был выбран вариант «сам-пан-сделал из готового». Вовремя подвернулась статья на Elwo о зарядке для сейчас вездесущих LiPo/LiIon аккумуляторов.
Поход в магазин принес еще одну радость, готовый модуль зарядного DC-DC конвертера на 5 вольт. Их уже начали ввозить в связи со спросом нашего друга радиолюбителя.
Схему данного преобразователя, как и описание, свободно можно найти в интернете.
- KEY FEATURES
- Conversion Type DC to DC
- Input Voltage 2.3 to 4.8 V
- Output Voltage 5 V
- Output Current 1 A
- Efficiency 87 %
- Topology Boost
Схема сборки повербанк
Ну что же, все закуплено и проверено, УРА! Работает. LiIon ковырнул из убитого аккумулятора ноутбука купленного, несколько месяцев назад, на одном из сайтов где люди торгуют всякой ненужнятиной. Шесть аккумуляторов было соединено параллельно, в итоге хоть и не новые аккумуляторы но мощность Power bank поднять получилось.
Дело за малым, увы корпус в нашем магазине не подберешь, будем резать оргстекло, дихлорэтан дома есть в запасах. Порезал и склеил за полчаса так что фоток не будет, а вот готовое устройство пожалуйста.
После ходовых испытаний пришел к выводу что без контролера аккумулятора банки можно и убить. Тут тоже готовое решение, аккумулятор от мобилки, в моем случае Samsung. Разбираем и достаем контролер, который для наших целей как раз то что доктор прописал.
Контролер установил между DC/DC преобразователем и аккумулятором, проверка Powerbank показала, что данная схема работает и полной зарядки повербанка хватает чтобы четыре раза зарядить прожорливый Android.
Когда заряд на аккумуляторах опускается до 3,2 вольта контролер отключает преобразователь, в зарядке контролер участия не принимает, заряжает же его плата на основе микросхемы TP4056 до 4,2 вольт. Конденсатор на плату стабилизатора подкинул ради стабильной работы контролера с преобразователем. С уважением, UR5RNP.
Разработка power bank для ноутбука. От макета к готовому изделию. Часть первая / Habr
Сделать себе внешний аккумулятор для ноутбука я хотел уже давно, 3-4 года назад для работы в парке. Хоть и мечта рисовать схемы и трассировать платы в парке Горького или Битцевском лесу так и не реализовались (пока), но внешний аккумулятор (назовем его по-современному — PowerBank) я таки сделал. О том как это устройство проходило путь от макета до конечного изделия и почему я делал то, что уже есть на рынке, под катом.
Изначально я хотел написать небольшую статью про разработку PowerBank, но когда начал — понял, что одной частью не обойтись. Поэтому я разбил ее на 4 части и сейчас предлагаю вашему вниманию первую из них: макет (схемотехника).
Очевидно, что разработка любого электронного устройства начинается с технического задания (ТЗ), поэтому я обозначил для себя ряд параметров, которые мой PowerBank должен обеспечить:
- входное напряжение 19В (для возможности зарядки от стандартного ЗУ ноутбука)
- выходное напряжение 19В (как и у стандартного ЗУ)
- максимальный выходной ток 3,5А (как и у стандартного ЗУ)
- емкость ячеек не менее 60Вт*ч (+1 внутренняя АКБ)
Помимо основных требований я добавил еще несколько:
- КПД преобразователя и ЗУ не ниже 94% — чтобы обойтись без радиаторов.
- Частота преобразователя не ниже 300кГц — чтобы уменьшить размер самого преобразователя.
- USB порт для просмотра основных сведений о PowerBank таких как уровень заряда, здоровье, количество пройденных циклов, температура, ток и напряжение ячеек АКБ и т.д.
- Софт на ПК(Windows) для просмотра основных сведений о PowerBank.
- Возможность менять выходное напряжение, либо присутствие дополнительного выхода 5В для зарядки USB устройств.
- Светодиодная индикация уровня заряда и состояния PowerBank.
- Кнопка(Кнопки) для включения PowerBank и просмотра уровня заряда.
Для начала разработки я сделал структурную схему будущего устройства:
Комментируя схему, могу сказать, что управляющий МК я мог бы взять с USB, но побоялся трудностей разработки ПО для USB (в последствие понял, что зря) поэтому поставил преобразователь USART — USB.
Поскольку устройство изначально разрабатывалось для себя, то было решено делать макет преимущественно из тех деталей, которые были у меня в наличии и с которыми я уже работал (чтобы избежать подводных камней). При этом оптимизация по цене на этом этапе не проводилась. Поэтому я выбрал следующие комплектующие для PowerBank:
- МК — STM32F051K4U6 с прицелом заменить на STM32F042K4U6.
- Преобразователь USART<->USB — CP2102. Стоит не дорого, работает нормально, места занимает мало, обкатанное решение.
- Импульсный преобразователь напряжения — LTC3780IG. Далеко не самый дешевый/оптимальный вариант, но повышающе-понижающий, может 400кГц, имеет внешние ключи, обкатанное решение. В перспективе замена на LM5175 от TI или применения синхронного повышающего преобразователя.
- Линейный стабилизатор — LP2951ACD-3.3. Он был в наличии, не лучший вариант. Ток собственного потребления до 120мкА с прицелом заменить на MCP1703T-3302E/CB с током собственного потребления до 5мкА.
- Светодиоды зеленые и красные размером 0805.
- Кнопки обычные тактовые SMD.
Отдельно коснемся выбора зарядного устройства (ЗУ) и системы контроля и управления Li-ion аккумуляторами (Li-ion Battery Management System или BMS). Несколько лет назад я занимался ремонтом ноутбуков и в батареях частенько видел BMS от Texas Instruments. Поэтому в первую очередь я стал искать решение для своего устройства именно от этого производителя. Стоит отметить, что в общем-то альтернативы и нет поскольку производит подобные микросхемы лишь несколько контор (TI, Maxim, немного LT, ST-забросили, Intersil-экзотика для нас, может есть еще, но я не знаю). Так вот бродя по просторам сайта ti.com я наткнулся на очень интересную микросхему BQ40Z60RHBR это ЗУ и BMS в одной микросхеме. Она мне очень понравилась потому как заменяла собой 2 микросхемы. Такое решение явно дешевле, чем если делать отдельно ЗУ и BMS и места меньше занимает. Основные ТТХ микросхемы BQ40Z60:
- Ток заряда: до 4А
- Количество ячеек: до 4х
- Частота преобразования: 1МГц
- Входное напряжение: до 25В
- Емкость ячеек: до 65А*ч
- Функция балансировки
- Конфигурируемые светодиоды для индикации (заряд, емкость)
Микросхема достаточно новая (выпуск конца 2014 года), поэтому информации по ней мало и я немного переживал из-за этого зная, что BMS от TI достаточно сложны в программировании, а это еще и комбо (ЗУ + BMS). Также немного переживал из-за возможных косяках в кристалле, но зная, что буду использовать лишь базовый функционал надеялся, что никаких проблем не будет. Впрочем забегая вперед скажу, что так и вышло.
Кстати я не зря до этого не говорил практически ничего про ячейки и конфигурацию АКБ, только сейчас настал момент перейти к выбору. Для оптимального выбора конфигурации АКБ есть несколько критериев:
- Для уменьшения потерь на проводах нужно минимизировать токи между узлами устройства. С учетом этого батарея из 4х последовательно соединенных ячеек (общепринятое обозначение 4s1p или 4-serial 1-parallel) выгоднее, чем 4 параллельные ячейки (1s4p) см. рисунок.
- Поскольку ток заряда ограничен, то для того, чтобы повысить мощность (и скорость) заряда АКБ мы должны увеличивать напряжение. Этот критерий тоже за конфигурацию 4s1p.
- КПД преобразователя падает при росте разницы между входным и выходным напряжением. Вот график из документации на преобразователь MP2307DN.
С учетом того, что выходное напряжение устройства 19В опять же наиболее выгодной является конфигурация 4s1p.
Теперь рассчитаем некоторые параметры АКБ при условии емкости 60Вт*ч, конфигурации 4s1p (напряжение 14,8В):
Полученная цифра показалась мне слишком маленькой (ну или аппетит пришел во время еды) и я решил перейти к конфигурации 4s2p на ячейках LP 5558115 3500mAh, которые были в наличие. Итого мы имеем:
Емкость АКБ: 7А*ч (103Вт*ч)
Напряжение: 14,8В
Такой результат меня вполне устроил — это было больше, чем две внутренние батареи моего ноутбука (ASUS S451L, 46Вт*ч). Началась разработка макета…
На этапе макета я хотел заложить несколько дополнительных возможностей:
- подключил светодиоды BQ40Z60. У них есть функционал индикации уровня заряда с настраиваемыми порогами, а также процесса зарядки.
- добавил возможность регулировать частоту/режим работы (разрывных или неразрывных токов) преобразователя (с помощью ШИМ МК + RC-фильтр).
Схему обвязки BQ40Z60 срисовал с отладочной платы BQ40Z60EVM-578, обвязка LTC3780IG из ее документации, все остальное делал сам. В итоге получилась следующая схема.
Схема разбита на 3 блока:
- Блок преобразователя напряжения
- Блок ЗУ+BMS
- Блок управления на МК
Комментарии к схеме: блок преобразователя и ЗУ+BMS сделаны по схемам из документации [1],[2], блок управления делался из расчета реализовать спящий режим для минимального тока потребления в выключенном режиме. Забегая вперед скажу, что в паре моментов я таки накосячил, но с помощью ножа и паяльника смог заставить макет работать как надо. Полученная плата показана ниже:
Плата содержит 4 слоя по 18мкм, общая толщина 1мм, заказывал на seeedstudio.com.
Теперь пришло время коснуться главного показателя качества железа — это КПД всей системы в целом. Точнее у нас 2 КПД: при зарядке АКБ и при разряде. Строго говоря КПД при заряде стоит оптимизировать только для уменьшения нагрева устройства(рассчитывая, что энергии для заряда у нас много), в то время как потеря КПД при разряде фактически уменьшает реальную емкость PowerBank. Составим перечень элементов непосредственно влияющих на КПД при заряде:
ACFET — транзистор предотвращающий появление напряжения на разъеме внешнего питания при работе PowerBank от АКБ.
HighSideFET — верхний транзистор понижающего преобразователя ЗУ.
LowSideFET — нижний транзистор понижающего преобразователя ЗУ.
BuckInductor — дроссель понижающего преобразователя ЗУ.
CHGRCS — резистор датчика тока ЗУ.
CHGFET — зарядный транзистор АКБ.
DSGFET — разрядный транзистор АКБ.
CellCS — резистор датчика тока АКБ.
Транзисторы ACFET, CHGFET и DSGFET при работе имеют только статические потери поскольку они постоянно открыты и представляют собой резисторы с сопротивлением равным сопротивлению открытого канала транзистора Rds_on, поэтому эти транзисторы должны иметь как можно меньший Rds_on. Корпуса транзисторов я выбрал pqfn3.3×3.3 как подходящие по мощности и имеющие меньший размер по сравнению с моими любимыми pqfn5x6. С наименьшим сопротивлением канала из легкодоступных были IRFHM830D (Rds_on = 5мОм + диод Шоттки).
Транзисторы HighSideFET и LowSideFET работают в импульсном режиме, их выбор сложен и будет рассмотрен позже.
Попробуем оценить потери при входном напряжении 19В, токе заряда АКБ 4А, конфигурации 4s1p:
CellCS — ток через него равен току заряда, сопротивление 5мОм, потери:
CHGRCS — ток через него равен току заряда, сопротивление 10мОм, потери:
CHGFET и DSGFET — ток через них равен току заряда, сопротивление 5мОм, суммарные потери:
ACFET — ток через него равен входному току(возьмем максимально возможный ток входа 3,5А это максимум того, что может выдать штатное ЗУ ноутбука), сопротивление 5мОм, потери:
Сюда же можно прибавить потери на сопротивлении проводов ячейки-плата, а также дорожек самой платы. Я вычислил их путем измерения падения напряжения при токе в цепи АКБ равном 4А, оно составило 36мВ, что соответствует мощности:
BuckInductor — потери в дросселе можно разделить на 2 составляющие:
- потери на активном сопротивлении обмотки (DCR — dc winding resistance). Для выбранного дросселя IHLP2525CZER2R2M01 типовое значение DCR = 18мОм, что при среднем токе 4А даст потери:
- потери в сердечнике достаточно тяжело посчитать имея только данные из документации, поэтому верим заверениям Vishay что их материалы супер крутые, к тому же пульсации тока у нас в районе 20%, поэтому принимаем потери в сердечнике нулевыми.
Итого суммарные потери при заряде на статических компонентах составляют:
Для того, чтобы получить суммарные потери при заряде необходимо оценить потери на транзисторах HighSideFET и LowSideFET. В этом мне помогал апнот AN-6005 от fairchildsemi. Если кратко, то на вкладке ControllerDriver добавляем в базу наш контроллер и вписываем требуемые параметры в таблицу:
Данные берем из документации на BQ40Z60. Далее заполняем таблицу с параметрами транзисторов HighSideFET и LowSideFET на вкладке MOSFETDatabase:
Данные также берем из документации на транзисторы. Я экспериментировал со многими транзисторами(видно по базе) потому как частота преобразования в 1МГц это довольно высоко. Из всех транзисторов, которые я мог быстро достать самыми лучшими оказались CSD17308 от TI. Впрочем это как раз рекомендованные транзисторы с кита BQ40Z60EVM. Самыми лучшими по расчетам оказались eGaN транзисторы от EPC (Efficient Power Conversion), но цена 500р, месяц ожидания и специфический корпус сыграли против него. Еще пара комментариев вкладки MOSFETDatabase:
Правый столбец — Fig.Merit (Figure of merit — показатель качества) это произведение Rds_on на заряд затвора Qgsw. В общем чем ниже Fig.Merit, тем лучше транзистор, но нужно понимать, что это довольно эмпирический показатель.
На вкладке EfficiencySummary выбираем контроллер, используемые транзисторы и их количество, задаем параметры источника и нажимаем кнопку Run.
Для тока заряда 4А и входного напряжения 19В потери составят 1,17Вт. Общие потери:
После сборки макета я измерил схемы заряда при параметрах таких же как при оценочных расчетах:
КПД схемы 97,1%, при этом мощность потерь составила 1,908Вт при расчетных 2,07Вт. Что ж очень близко получилось прикинуть потери. Термограмма работающего устройства показана на рисунке.
Окружающая температура 23 градуса, плата без корпуса. 58 градусов в самой горячей точке (перегрев получается 58-23=35 градусов) при фольге в 18мкм это очень хороший показатель. Дроссель при этом нагрелся до 40 — скорее всего его подогревают транзисторы. Сам контроллер разогрелся до 52 градусов.
Теперь перейдем к оценке КПД системы при разряде. C начала оценим потери в самом преобразователе. Для этого составим перечень элементов непосредственно влияющих на КПД:
A — верхний транзистор понижающего плеча преобразователя LTC3780.
B — нижний транзистор понижающего плеча.
C — нижний транзистор повышающего плеча.
D — верхний транзистор повышающего плеча.
L — дроссель.
RS — резистор датчика тока.
И конечно потребление самого контроллера LTC3780. Подробно не буду останавливаться на работе микросхемы, скажу только, что она фактически представляет собой понижающий преобразователь стоящий после повышающего с общим дросселем. В зависимости от входного и выходного напряжений работает либо одна часть, либо вторая, либо обе(при примерном равенстве входного и выходного напряжений).
Для расчета КПД преобразователя будем использовать следующие параметры:
Условимся, что ноутбук потребляет всегда по максимуму. В реальности это близко к истине, поскольку при подключении внешнего источника он помимо энергии на работу потребляет еще и энергию на заряд внутренней АКБ, да и вообще при наличии внешнего питания в потреблении себе не отказывает. Напряжения соответствуют номинальному напряжению ячеек — 3,7В и пониженному — 3,3В. Важно отметить, что преобразователь в текущем устройстве всегда работает в повышающем режиме (входное напряжение никогда не превосходит выходного), однако это не значит, что транзисторы A и B не переключаются. Для зарядки конденсатора вольтдобавки(bootstrap) необходимо кратковременно выключать транзистор A и включать B(тоже самое будет происходить при работе в понижающем режиме для транзисторов С и D). У LTC3780 это происходит с частотой 40кГц.
Для оценки потерь воспользуемся xls файлом для LTC3780 из пакета LTpowerCAD2. Принцип работы похож на предыдущую работу с xls для BQ40Z60. Вводим все значения выходных напряжения и тока, входного напряжения, желаемую частоту преобразования, параметры ключевых транзисторов(я решил использовать CSD17308 как и в ЗУ). Дроссель был выбран IHLP5050EZER3R3M01 у которого типовое DCR = 7,7мОм. Для 3,5А индуктивность маловата, так случилось потому, что при закупке комплектующих я рассчитывал на выходной ток 4,5А. Для текущей конфигурации идеальным вариантом будет IHLP5050EZER4R7M01 с типовым DCR = 12,8мОм. Датчик тока — резистор типоразмера 2512 сопротивлением 5мОм.
После введения всех данных в полях MOSFETs Power Loss Break Down и Estimated Efficiency будут круговые диаграммы распределения потерь по компонентам и оценка КПД для указанного входного/выходного напряжений и тока нагрузки.
Оценка КПД очень оптимистичная — 98,79% при входном напряжении 14,8В и 98,51% при 13,2В (цифры без учета потерь в сердечнике дросселя). Основные элементы на которых происходят потери это дроссель/датчик тока(23%), транзистор A(25%) и D(38% от общих потерь).
Пришло время измерить реальный КПД.
Измеренный КПД — 96,93% при входном напряжении 14,8В и 96,35% при 13,2В. Проведем анализ полученных данных. Для этого переведем проценты КПД в мощность потерь:
В данном случае расхождения более существенны по сравнению с оценкой потерь в преобразователе ЗУ и составляют до 1,48Вт. Но если учитывать потери в сердечнике дросселя (которыми при не оптимально выбранной индуктивности нельзя пренебречь) картина не будет уже столь удручающей.
Оценим средний(при напряжении 13,2В) КПД PowerBank при разряде. Он складывается из КПД самого преобразователя, а также:
CellCS — ток через него равен входному току преобразователя, сопротивление 5мОм, потери:
CHGFET и DSGFET — ток через них равен входному току преобразователя, сопротивление 5мОм, суммарные потери:
Тогда КПД PowerBank при разряде:
Термограмма преобразователя при входном напряжении 14,4В и выходном токе 3,5А показана ниже:
Самой горячей точкой оказался транзистор С, но его нагрев (при окружающей 21 градус) составил всего 41,1 градус после 30 минут работы. Понятно, что в корпусе эти цифры будут выше, но запас по перегреву огромный.
И в заключение первой части статьи хочется сказать, что работа была проделана очень большая, а во второй части статьи нас ждет разбор аппаратных и программных грабель при запуске макета, конфигурирование BQ40Z60 и ПО для STM32F0. Надеюсь было интересно.
P.S.: Архив с проектом платы и исходники будут выложены в следующих частях статьи.
P.P.S. заметил, что забыл почти самое важное для этой части статьи — фото макета. Исправляю
На плате можно видеть следы исправлений, а также следы ношения в открытом виде в рюкзаке(сгоревшие дорожки в районе подключения АКБ). Макет конечно не самый элегантный, но даже в таком виде его можно использовать.
ВНЕШНИЙ АККУМУЛЯТОР POWER BANK СВОИМИ РУКАМИ
Все знают, что внешние аккумуляторы (Power bank) используются для зарядки, или подзарядки портативных устройств, в походах или где не представляется возможности зарядить устройство от сети. Предлагаемое для самостоятельной сборки устройство может работать в двух режимах: Основное и Резерв. Детали для изготовления Пауэр Банк не дорогие, и их можно найди даже дома. Итак, что-бы сделать Power bank нам понадобятся:
1. Литий-ионные аккумуляторы 8 штук 18650 2200 мАч 3,6 В.
2. Автомобильная зарядка для телефона.
3. Корпус от блока реле авто.
4. USB вход от компьютера.
Процесс сборки и схема
В корпусе вырезаем отверстия под включатель, и USB вход.
Спаиваем аккумуляторы по схеме, в две батареи по 4 штуки, и устанавливаем в корпус.
Дальше припаиваем батареи к включателю, а от включателя, припаиваем к плате, как на схеме, а от платы припаиваем к USB входу. Фото готового устройства смотрите далее.
Видео работы
Полного заряда устройства хватает для заряда двух телефонов в одном режиме. В общем несмотря на простоту — для зарядки телефонов в походе или на отдыхе подобного автономного БП будет как раз. Более усовершенствованная схема с применением специальных контроллеров находится здесь. Автор статьи 4ei3 e-mail [email protected]
Форум
Обсудить статью ВНЕШНИЙ АККУМУЛЯТОР POWER BANK СВОИМИ РУКАМИ
Собираем Power Bank своими руками.
Сегодня устройства типа Power bank (автономное зарядное устройство) прочно вошли в нашу повседневную жизнь. Они значительно облегчают использование всевозможных современных энергоемких гаджетов, таких как планшеты и смартфоны, так как позволяют быстро подзарядиться практически в любых условиях, когда вы находитесь вдали от розетки.
У самых простых Power bank имеется только один тип выхода- USB, который является наиболее популярным. В более продвинутых зарядных устройствах можно найти выходы с напряжением, ставшим стандартным напряжением питания для низковольтных устройств,- 12В. Это значительно расширяет область применения таких Power bank`ов, так как от 12В работает практически любая автомобильная электроника и множество других электрических потребителей. А при использовании инвертора можно получить и 220В при желании.
Краеугольным камнем в таких Power bank`ах становится вопрос емкости. Применение современных высокоёмких Li-ion аккумуляторов позволяет создать в компактном размере источник питания достаточной емкости для того, чтобы запитать какое-либо 12 вольтовое устройство в течении нескольких часов.
К сожалению, производители зачастую экономят именно на качестве встраиваемых литиевых элементов питания для уменьшения общей стоимости зарядного устройства, что негативно сказывается на времени работы Power bank. Поэтому мы хотим рассказать вам как самому изготовить Power Bank используя комплект, состоящий из многофункционального DC-DC преобразователя, платы защиты и корпуса и высококачественные литиевые аккумуляторы распространенного типоразмера 18650.
Нам понадобятся:
Комплект для сборки Power Bank модели HCX-284 состоящий из непосредственно многофункционального DC-DC преобразователя, платы защиты (PCM) для Li-ion аккумуляторов и металлического корпуса для 4ех Li-Ion аккумуляторов 18650. В качестве литиевых элементов возьмем 4 Li-ion аккумулятора Panasonic модели NCR18650B 3,6В емкостью 3400мАч
Преобразователь HCX-284 имеет стабилизированный 12В выход с максимальным током нагрузки 4А и 5ти вольтовый USB разъем с максимальным током 1А. В качестве зарядки для нашего Power Bank можно использовать любой 12В блок питания с штыревым разъемом размера 5,5 х 2,5 мм и максимальным током не менее 1,5А. Можно, конечно, использовать и менее мощный блок питания, но процесс заряда в этом случае может занять достаточно продолжительное время.
Принцип работы нашего Power Bank следующий:
С аккумуляторной сборки из 4ех последовательно-соединенных (4S) Li-Ion аккумуляторов мы получаем номинальное напряжение 14,8В. Точнее, это напряжение, в процессе работы, будет меняться от 16,8В (полностью заряженная батарея) до 12В (полностью разряженная). Непосредственно к аккумуляторам подключается плата защиты PCM. Она будет контролировать эти верхние и нижние напряжения, не позволяя им выйти за крайние значения и оберегая литиевые ячейки от перезаряда и переразряда.
С платы защиты напряжение подается на вход понижающего DC-DC преобразователя, который и превращает наши 16,8 — 12В с аккумуляторов в стабилизированные 12В и 5В на соответствующих разъемах.
При зарядке аккумуляторов 12 вольт с входа «DC In» стабилизатора преобразуются в 16,8В необходимые для заряда 4S Li-Ion аккумуляторной батареи. Максимальный ток, подающийся на аккумуляторы, составляет 1А и не зависит от мощности вашего блока питания. Это позволяет использовать в комплекте с HCX-284 литиевые аккумуляторы с минимальной емкостью около 2000мач, у которых ток заряда не должен превышать половины значения от емкости, т.е. примерно 1А.
Процесс сборки:
1. Склеиваем при помощи термоклея батарею из четырех Li-Ion аккумуляторов Panasonic модели NCR18650B.
Термоклей лучше использовать с низкой температурой плавления для исключения локального перегрева аккумуляторов. Обращаем внимание на качество клеевых швов- они не должны выступать за габариты батареи иначе она просто не влезет в корпус.
2. Мы используем специальные электрические изоляторы для исключения контакта никелевой сварочной ленты и корпуса аккумуляторов.
3. Свариваем Li-Ion ячейки в 4S батарею при помощи никелевой ленты 5х0,127мм и сварочного станка для контактной сварки. Паять Li-Ion аккумуляторы не рекомендуется из-за того, что они боятся перегрева, что может сильно уменьшить их ресурс. Так как токи в нашей батареи будут в пределах 3-4 ампер такой толщины ленты будет более чем достаточно.
Сразу формируем выводы всех напряжений для последующей пайки проводами к контрольным контактам на плате PCM.
4. Устанавливаем PCM на батарею. Силовые контакты формируем используя только ленту. Это более надежно и компактнее. Контрольные напряжения подключаем к плате проводами самого минимального сечения. Мы применили МГШВ 0,2мм, но можно использовать провод и, к примеру, МГТФ 0,14мм.
Подключать контакты контроллера надо в последовательности от «минимального» к «максимальному», т.е сначала «B-«, затем +3,7В, 7,4В, 11,1В и последним «В+»
5. Выводы с PCM делаем проводом ПУГВ 0,5мм. Длина выводов должна быть не более 2 см. Закрываем торцы батареи изоляционным картоном и упаковываем аккумуляторы в тонкую термоусадочную пленку.
На этом этапе у нас получилась защищенная батарея, которую можно использовать без опаски перезарядить или переразрядить. Но на выходах, пока, мы имеем нестабилизированное напряжение, которое будет меняться в процессе разряда от 16,8В до 12В.
6. Подключаем батарею к плате стабилизатора. Для этого подсоединяем черный «минусовой» провод к контакту «P-«, а красный «плюсовой» провод к контакту «P+» При этом, стабилизатор однократно моргнёт всеми тремя светодиодами.
7. Устанавливаем батарею с припаянным стабилизатором в корпус. Начинаем установку именно с батареи, затем стабилизатор. Плата стабилизатора устанавливается в специальные пазы корпуса.
8. Закрываем торцы корпуса специальными заглушками, идущими в комплекте и наклеиваем декоративные наклейки.
Все. Наш собственноручно изготовленный PowerBank готов. Проверяем работу, нажимая на единственную кнопочку, которая, при неподключенных разъемах, включает индикацию уровня заряда, которая показывает, что сейчас наши аккумуляторы полностью заряжены.
При использовании Power Bank HCX-284 надо учитывать один нюанс: выход 12В осуществлен при помощи розетки для штыревого разъема питания размером 4х1,7мм. Надо отметить, что такой типоразмер является малораспространенным и в свободной продаже его найти проблематично. Именно поэтому мы прилагаем провод с припаянным штыревым разъемом в комплект к набору HCX-284.
Давайте посчитаем итоговую емкость нашего Power Bank`а:
Мы использовали 4 аккумулятора Panasonic модели NCR18650B 3,6В емкостью 3400мач. Итого мы получаем 3,4А/ч при напряжении 14,8В.
Но у нас на выходе 2 напряжения 5В и 12В. Также надо учитывать, что КПД преобразователя составляет около 90%.
Соответственно, при 5В емкость нашего
аккумулятора составит ((14,8*3,4)*0,9)/5 = 9,05Ач Это означает, что при пяти-вольтовой нагрузке током 1А наш Power Bank проработает около 9 часов!При 12В емкость составит: ((14,8*3,4)*0,9)/12 = 3,77Ач
Вот, в принципе, и весь процесс. По времени, при наличии опыта и инструмента, он занимает около 1 часа.
Удачи.
Как устроен повер банк для зарядки телефона
Использован материал с канала блогера Ака Касьяна. Смартфон – девайс, который стал для всех людей незаменимым устройством для общения. Их используют для выхода в интернет и часто на долгое время. Но у смарфтонов есть один недостаток – это время автономной работы. В лучшем случае аккумулятор будет работать без подзарядки в течение одного дня, а если активно им пользоваться, то несколько часов. В этой статье и прилагаемом видео показано, как изготовить мощный самодельный Powerbank, который может заряжать даже одновременно для смартфона или планшета или их сочетания.
Купить радионяню, о которой рассказано в начале ролика, и все комплектующие повербанка можно в этом китайском магазине. О том, как получать кэшбэк (возврат стоимости)в размере 7% от цены всех покупок есть на нашем сайте статья. Скачать схему, плату и другие файлы проекта здесь.
Почему выгодно сделать повербанк самому?
Для того, чтобы улучшить параметры работы аккумуляторных батарей мобильного телефона, были заказаны портативные зарядные устройства, которые носят простонародное название повербанк. Но в единичном виде такое устройство даже наполовину не способно зарядить аккумулятор телефона. И даже три таких устройства не дают выход из ситуации. Покупка мощного пауэрбанка – довольно дорогое удовольствие. Нормальный powerbank, скажем, с емкостью 10000 миллиампер стоит 25-30 долларов. Учитывая это и долгое время ожидания посылки, проще сделать свой вариант.
Описание схемы повербанка
Схема powerbank состоит из трех основных частей. Это контроллер заряда литиевых аккумуляторов с функцией авто-отключения при полной зарядке; отсек батарей с параллельно соединенными литий-ионными аккумуляторами стандарта 18650; выключатель питания на 5-10 ампер от компьютерного блока питания; повышающий преобразователь, для того чтобы повышать напряжение с аккумулятора до желаемых значений в 5 вольт, которые нужны для зарядки телефона или планшета; юсб-разъем, к которому подключается заряжаемое устройство.
Кроме простоты и дешевизны, представленная схема высокие значения выходного тока, который может доходить до 4 ампер и зависит от номинала таких компонентов, как полевой транзистор, диод Шоттки на выходе и индуктивность. Китайские аналоги способны обеспечивать выходной ток не более 2,1 ампер. Этого достаточно для того, чтобы зарядить одновременно пару смартфонов, а наш пауэрбанк может справиться с 4-5 смартфонами.
Рассмотрим отдельные узлы конструкции. В качестве источника питания 5 параллельно соединенных аккумуляторов стандарта 18650 от ноутбука. Емкость каждого аккумулятора 2600 миллиампер в час. Использован корпус от адаптера или инвертора, но можно использовать другой подходящий корпус. В качестве контроллера для заряда будем использовать плату для заряда, купленную тут. Ток заряда порядка 1 ампера. Инвертор, который будет повышать напряжение от аккумулятора до нужных 5 вольт, можно взять также готовый. Он стоит очень дешево. Максимальный выходной ток до 2 ампер.
Сборка схемы
На первом этапе фиксируем аккумуляторы, скрепляем друг с другом с помощью клеевого пистолета. Далее нужно подключить к аккумуляторной батарее контроллер, чтобы проверить как происходит процесс заряда. Нужно также узнать время заряда батареи и понять работает ли авто-отключение при полной зарядке. На плате все детально подписано.
Заряжать можно от любого юсб порта. Индикатор должен показать, что идет зарядка. Через 5 часов загорелся второй индикатор, что означает, что процесс заряда завершен. Если используется металлический корпус, следует дополнительно изолировать батарейки с помощью широкого скотча.
Одним из основных узлов схемы является повышающий dc-dc конвертор, инвертор – преобразователь напряжения. Он предназначен для того, чтобы поднимать напряжение с аккумуляторов до 5 Вольт, нужные для заряда телефона. Напряжение одного аккумулятора составляет 3,7 вольт. Здесь они соединены параллельно, поэтому инвертор необходим.
Система построена на таймере 555 – полевой транзистор и стабилизация выходного напряжения, который задается с помощью стабилитрона vd2. Стабилитрон, возможно придется подобрать. Подойдет любой маломощный стабилитрон. Резисторы на 0,25 или даже 0,125 ватт. Дроссель L1 можно вынуть из компьютерного блока питания. Диаметр провода не менее 0,8, лучше всего сделать 1 миллиметр. Количество витков 10-15.
В цепи собран частотозадающий узел, который задает рабочую частоту таймера. Последний подключен в качестве генератора прямоугольных импульсов. С таким подбором компонентов рабочая частота таймера около 48-50 кГц. Затворный ограничительный резистор R3 для полевого транзистора 4,7 Ом. Сопротивление может быть от 1 до 10 Ом. Можно этот резистор заменить перемычкой. Полевой транзистор любой средней мощности с током 7 ампер. Подойдут полевики от материнских плат. Небольшой транзистор обратной проводимости vt1. Подойдет kt315 или другой маломощный транзистор обратной проводимости. Диод выпрямительный – желательно использовать диод Шоттки с минимальным падением напряжения на переходе. Две емкости стоят в качестве фильтра питания.
Данный инвертор импульсный, он обеспечивает высокий КПД, высокую стабилизацию выходного напряжения, не нагревается в ходе работы. Поэтому силовые компоненты устанавливать на теплоотвод не нужно. Если будут затруднения с диодами Шоттки, то можно использовать диоды, которые стоят в компьютерных блоках питания. Сдвоенные диоды to-220 встречаются в них.
На фото ниже инвертор в собранном состоянии.
Можно сделать печатную плату. В описании есть ссылка.
Тестирование инвертора на 5 вольт
Проверяем инвертор на работоспособность. Заряжается смартфон, как видно, идет процесс заряда. Выходное напряжение держится на уровне 5,3 вольта, что полностью соответствует нормативам. Инвертор при этом не нагревается.
Окончательная сборка в корпус
Из куска пластика нам нужно вырезать боковые стенки. На контроллере заряда два светодиодных индикатора, которые показывают процент заряда. Их нужно заменить более яркими и вывести на переднюю панель. В боковой стенке вырезаны два отверстия под микро юсби разъемы, то есть одновременно можно заряжать два устройства. Также есть отверстия для светодиодов. Отверстие для контроллера, то есть для зарядки встроенных акб. Будет сделано также небольшое отверстие под выключатель питания.
Все разъемы, светодиоды и выключатель фиксируются с помощью клеевого пистолета. Осталось все запаковать в корпус.
На выход устройства подключен USB-тестер. Видно, что на выходе твердо держится напряжение 5 вольт. Подключим мобильные телефоны и попробуем зарядить их с самодельного Power банка. Будут заряжаться сразу два смартфона. Ток заряда скачет до 1,2 Ампера, напряжение тоже в норме. Идет успешно процесс заряда. Инвертор работает безотказно. Получилось компактно и, главное, стабильно. Схема проста в сборке, использованы всем знакомые комплектующие.
Ваш смартфон всегда так не вовремя разряжается, вы задумались о покупке Power bank? Не спешите, сейчас мы расскажем, как сделать внешний аккумулятор своими руками! 4 интереснейших методов изготовления портативного зарядного устройства — выбирайте любой.
Далеко не всегда выпадает возможность зарядить гаджет от электросети. В таком случае портативная зарядка просто необходим. Но поскольку это довольно популярная вещь, на рынке много некачественного хлама. Ошибиться в выборе просто. Но не будем ошибаться — лучше просто сделаем свой Power bank.
Способ 1. Старый аккум — новые возможности
Как сделать Повер банк (Power bank) из устаревших телефонных батареек? — просто. Пошаговое описание метода поможет вам не допустить ошибок.
- Батарейка из старого телефона
- Провода
- Контроллер
- USB-вход
- Изолента, скотч, термоклей.
- Берём старый мобильник, достаём из него аккумулятор. Таких батарей нам понадобится 3, 6 или 9. Чем больше, тем на дольше хватит устройства.
- Складываем 3 накопителя друг к другу, вдоль фиксируем скотчем, а поперёк обматываем изолентой. При этом клеммы остаются открытыми.
- Находим подходящий корпус. Эту роль может выполнить даже простая мыльница, всё зависит от размеров.
- С помощью 2 проводков объединяем 3 штуки вместе: один провод — «+», второй провод — «-». Центральные клеммы АКБ не соединяем. Они служат температурным датчиком и вся их суть в демонстрации остатка заряда для конкретного устройства.
- Размечаем местоположение контроллера и делаем отверстие, чтобы вставить вход.
- Крепим все детали на термоклей и готово!
Повер банк из устаревших телефонных батареек
Вот так, всего в 6 шагов мы получили портативный аккумулятор.
В принципе манипуляции несложные. Единственное, что может вас остановить — не у всех есть такое количество устаревших аккумов.
Способ 2. Фонарь путь осветит, телефон «накормит»
У вас есть фонарик? Сейчас вы узнаете, как преобразовать фонарь, чтобы он не только путь-дорогу освещал, а ещё помогал оставаться на связи.
Зарядное устройство из фонаря
- Фонарь с накопителем на 3,7 В
- Преобразователь напряжения со встроенным USB-выходом
- Контроллер энергозаряда.
- Разбираем фонарик.
- Резистор с подпаянным светодиодом необходимо убрать. Это даёт возможность сменить один из режимов свечения на другой режим — зарядку.
- На то место, где ранее находилась вилочка с целью зарядки фонарика, ставим преобразователь с выходом.
- К контроллеру заряда батареи припаиваем «+» и «-» от батареи. Уже после этого к контактам OUT+/OUT- предоставленного контроллера подпаиваем преобразователь 5 V.
- Проверяем работоспособность. Если нужно — перепаиваем.
- Крепим преобразователь и контроллер. Готово!
Вот такой модерн фонаря даст двойное преимущество в походе. И свет есть, и не страшно остаться без связи в любой момент.
Тут главное, всё сделать правильно, фонарик у вас точно найдётся, а дальше — дело техники.
Способ 3. Как сделать портативное зарядное устройство из батареек
Этот способ чем-то похож на первый, но тут мы будем использовать обычные литий-ионные накопители 18650 2200 мАч 3,6 В
- Литий-ионные батареи 18650 2200 мАч 3,6 В. — 8 штук
- Зарядка автомобильная
- USB-вход
- Блок-корпус с реле автомобиля
Схема портативного устройства
Всего в несколько шагов мы вновь добьёмся желаемого — изготовим свой Повер банк.
- В корпусе нужно вырезать 2 отверстия: под выключатель и вход.
- Накопительные батареи спаиваем вместе по 4 штуки. Схему вы можете увидеть на изображении. Устанавливаем их в корпус.
- Объединённые блоки припаиваем к выключателю, потом от выключателя к плате, от платы к USB-входу. Этот процесс тоже показан на схеме.
Вот, пожалуй, самый быстрый способ. Такое устройство будет работать даже у любителя в силу своей простоты. Всего 3 шага и внешний аккумулятор для телефона своими руками готов.
Способ 4. Внешний энергонакопитель с солнечной батареей
Ещё один интересный вариант. Поскольку световой день начинает увеличиваться, актуально обсудить преимущества энергонакопителей солнечной энергии. Вы увидите, как изготовить переносное зарядное приспособление с возможностью заряда от панелей-накопителей солнечной энергии.
- Литий-ионный энергонакопитель формата 18650,
- Футляр от этих же накопителей
- Модуль повышения напряжения 5 В 1 А.
- Плата заряда для аккумулятора.
- Солнечная панелька 5,5 V 160 mA (любого размера)
- Проводки для соединения
- 2 диода 1N4007 (можно и другие)
- Липучка или двусторонний скотч для фиксации
- Термоклей
- Резистор 47 Ом
- Контакты для энергонакопителя (пластинки тонкой стали)
- Пара тумблеров
Базисная схема внешнего аккумулятора
- Изучим базисную схему внешнего аккума.
На схеме видно 2 соединительных проводка разных цветов. Красный подсоединяется к «+», чёрный к «-».
- Контакты к литий-ионной батарее паять не рекомендуется, поэтому поставим в корпусе клеммы и зафиксируем их с помощью термоклея.
- Следующая задача — разместить модуль увеличения напряжения и плату зарядки для аккумулятора. Для этого делаем отверстия для USB-входа и USB-выхода 5 В 1 А, тумблера и проводков к солнечной панели.
- Резистор (сопротивление 47 Ом) впаиваем к USB-выходу, с оборотной стороны модуля, увеличивающего напряжения. Это имеет смысл для зарядки IPhone. Резистор решит проблему с тем самым управляющим сигналом, который запускает процесс зарядки.
- Чтобы панели было удобно переносить, можно осуществить прикрепление контактов панели с помощью 2 маленьких контактов типа «мама-папа». Как вариант, можно соединить основной корпус и панельки с помощью липучек.
- Ставим диод между 1 контактом панели и платой заряда энергонакопителя. Диод стоит ставить стрелкой в сторону платы заряда. Это предотвратит разряжение накопительной батареи через солнечную панель.
На сколько зарядов хватит такого Повер банка? Всё зависит от ёмкости вашего аккумулятора и ёмкости гаджета. Помните, что разряжать литиевые накопителей ниже 2,7 В крайне нежелательно.
Что касается заряда самого устройства. В нашем случае мы использовали солнечные панели с общей ёмкостью в 160 mAh, а ёмкость аккумулятора — 2600 mAh. Следовательно, при условии прямых лучей батарея зарядится за 16,3 часа. При обычных условиях — около 20–25 часов. Но пусть эти числа вас не пугают. Через миниUSB зарядится за 2–3 часа. Скорей всего, солнечной панелью вы будете пользоваться в условиях путешествий, походов, дальних поездок.
В заключение
Выбирайте наиболее приемлемый для вас метод и сооружайте собственный портативный аккумулятор. Такая вещь точно пригодится в дороге или в путешествии. Преимуществ сделанного устройства масса: это уникальный внешний вид, а ещё способ получить ту мощность, которая удовлетворит именно ваши потребности. С помощью портативного аккумулятора можно заряжать не только телефоны, а и планшеты, беспроводные наушники и прочие мелкие гаджеты.
Все знают, что внешние аккумуляторы (Power bank) используются для зарядки, или подзарядки портативных устройств, в походах или где не представляется возможности зарядить устройство от сети. Предлагаемое для самостоятельной сборки устройство может работать в двух режимах: Основное и Резерв. Детали для изготовления Пауэр Банк не дорогие, и их можно найди даже дома. Итак, что-бы сделать Power bank нам понадобятся:
1. Литий-ионные аккумуляторы 8 штук 18650 2200 мАч 3,6 В.
2. Автомобильная зарядка для телефона.
3. Корпус от блока реле авто.
4. USB вход от компьютера.
Процесс сборки и схема
В корпусе вырезаем отверстия под включатель, и USB вход.
Спаиваем аккумуляторы по схеме, в две батареи по 4 штуки, и устанавливаем в корпус.
Дальше припаиваем батареи к включателю, а от включателя, припаиваем к плате, как на схеме, а от платы припаиваем к USB входу. Фото готового устройства смотрите далее.
Видео работы
Полного заряда устройства хватает для заряда двух телефонов в одном режиме. В общем несмотря на простоту — для зарядки телефонов в походе или на отдыхе подобного автономного БП будет как раз. Более усовершенствованная схема с применением специальных контроллеров находится здесь. Автор статьи 4ei3 e-mail [email protected]
Обсудить статью ВНЕШНИЙ АККУМУЛЯТОР POWER BANK СВОИМИ РУКАМИ
Сделайте мощный самодельный повербанк
Использован материал с канала блогера Ака Касьяна. Смартфон – девайс, который стал для всех людей незаменимым устройством для общения. Их используют для выхода в интернет и часто на долгое время. Но у смарфтонов есть один недостаток – это время автономной работы. В лучшем случае аккумулятор будет работать без подзарядки в течение одного дня, а если активно им пользоваться, то несколько часов. В этой статье и прилагаемом видео показано, как изготовить мощный самодельный Powerbank, который может заряжать даже одновременно для смартфона или планшета или их сочетания.
Купить радионяню, о которой рассказано в начале ролика, и все комплектующие повербанка можно в этом китайском магазине. О том, как получать кэшбэк (возврат стоимости)в размере 7% от цены всех покупок есть на нашем сайте статья. Скачать схему, плату и другие файлы проекта здесь.
Почему выгодно сделать повербанк самому?
Для того, чтобы улучшить параметры работы аккумуляторных батарей мобильного телефона, были заказаны портативные зарядные устройства, которые носят простонародное название повербанк. Но в единичном виде такое устройство даже наполовину не способно зарядить аккумулятор телефона. И даже три таких устройства не дают выход из ситуации. Покупка мощного пауэрбанка – довольно дорогое удовольствие. Нормальный powerbank, скажем, с емкостью 10000 миллиампер стоит 25-30 долларов. Учитывая это и долгое время ожидания посылки, проще сделать свой вариант.
Описание схемы повербанка
Схема powerbank состоит из трех основных частей. Это контроллер заряда литиевых аккумуляторов с функцией авто-отключения при полной зарядке; отсек батарей с параллельно соединенными литий-ионными аккумуляторами стандарта 18650; выключатель питания на 5-10 ампер от компьютерного блока питания; повышающий преобразователь, для того чтобы повышать напряжение с аккумулятора до желаемых значений в 5 вольт, которые нужны для зарядки телефона или планшета; юсб-разъем, к которому подключается заряжаемое устройство.
Кроме простоты и дешевизны, представленная схема высокие значения выходного тока, который может доходить до 4 ампер и зависит от номинала таких компонентов, как полевой транзистор, диод Шоттки на выходе и индуктивность. Китайские аналоги способны обеспечивать выходной ток не более 2,1 ампер. Этого достаточно для того, чтобы зарядить одновременно пару смартфонов, а наш пауэрбанк может справиться с 4-5 смартфонами.
Рассмотрим отдельные узлы конструкции. В качестве источника питания 5 параллельно соединенных аккумуляторов стандарта 18650 от ноутбука. Емкость каждого аккумулятора 2600 миллиампер в час. Использован корпус от адаптера или инвертора, но можно использовать другой подходящий корпус. В качестве контроллера для заряда будем использовать плату для заряда, купленную тут. Ток заряда порядка 1 ампера. Инвертор, который будет повышать напряжение от аккумулятора до нужных 5 вольт, можно взять также готовый. Он стоит очень дешево. Максимальный выходной ток до 2 ампер.
Сборка схемы
На первом этапе фиксируем аккумуляторы, скрепляем друг с другом с помощью клеевого пистолета. Далее нужно подключить к аккумуляторной батарее контроллер, чтобы проверить как происходит процесс заряда. Нужно также узнать время заряда батареи и понять работает ли авто-отключение при полной зарядке. На плате все детально подписано.
Заряжать можно от любого юсб порта. Индикатор должен показать, что идет зарядка. Через 5 часов загорелся второй индикатор, что означает, что процесс заряда завершен. Если используется металлический корпус, следует дополнительно изолировать батарейки с помощью широкого скотча.
Одним из основных узлов схемы является повышающий dc-dc конвертор, инвертор – преобразователь напряжения. Он предназначен для того, чтобы поднимать напряжение с аккумуляторов до 5 Вольт, нужные для заряда телефона. Напряжение одного аккумулятора составляет 3,7 вольт. Здесь они соединены параллельно, поэтому инвертор необходим.
Система построена на таймере 555 – полевой транзистор и стабилизация выходного напряжения, который задается с помощью стабилитрона vd2. Стабилитрон, возможно придется подобрать. Подойдет любой маломощный стабилитрон. Резисторы на 0,25 или даже 0,125 ватт. Дроссель L1 можно вынуть из компьютерного блока питания. Диаметр провода не менее 0,8, лучше всего сделать 1 миллиметр. Количество витков 10-15.
В цепи собран частотозадающий узел, который задает рабочую частоту таймера. Последний подключен в качестве генератора прямоугольных импульсов. С таким подбором компонентов рабочая частота таймера около 48-50 кГц. Затворный ограничительный резистор R3 для полевого транзистора 4,7 Ом. Сопротивление может быть от 1 до 10 Ом. Можно этот резистор заменить перемычкой. Полевой транзистор любой средней мощности с током 7 ампер. Подойдут полевики от материнских плат. Небольшой транзистор обратной проводимости vt1. Подойдет kt315 или другой маломощный транзистор обратной проводимости. Диод выпрямительный – желательно использовать диод Шоттки с минимальным падением напряжения на переходе. Две емкости стоят в качестве фильтра питания.
Данный инвертор импульсный, он обеспечивает высокий КПД, высокую стабилизацию выходного напряжения, не нагревается в ходе работы. Поэтому силовые компоненты устанавливать на теплоотвод не нужно. Если будут затруднения с диодами Шоттки, то можно использовать диоды, которые стоят в компьютерных блоках питания. Сдвоенные диоды to-220 встречаются в них.
На фото ниже инвертор в собранном состоянии.
Можно сделать печатную плату. В описании есть ссылка.
Тестирование инвертора на 5 вольт
Проверяем инвертор на работоспособность. Заряжается смартфон, как видно, идет процесс заряда. Выходное напряжение держится на уровне 5,3 вольта, что полностью соответствует нормативам. Инвертор при этом не нагревается.
Окончательная сборка в корпус
Из куска пластика нам нужно вырезать боковые стенки. На контроллере заряда два светодиодных индикатора, которые показывают процент заряда. Их нужно заменить более яркими и вывести на переднюю панель. В боковой стенке вырезаны два отверстия под микро юсби разъемы, то есть одновременно можно заряжать два устройства. Также есть отверстия для светодиодов. Отверстие для контроллера, то есть для зарядки встроенных акб. Будет сделано также небольшое отверстие под выключатель питания.
Все разъемы, светодиоды и выключатель фиксируются с помощью клеевого пистолета. Осталось все запаковать в корпус.
На выход устройства подключен USB-тестер. Видно, что на выходе твердо держится напряжение 5 вольт. Подключим мобильные телефоны и попробуем зарядить их с самодельного Power банка. Будут заряжаться сразу два смартфона. Ток заряда скачет до 1,2 Ампера, напряжение тоже в норме. Идет успешно процесс заряда. Инвертор работает безотказно. Получилось компактно и, главное, стабильно. Схема проста в сборке, использованы всем знакомые комплектующие.
cxema.org — Простейший POWERBANK своими руками
Самодельные повербанки довольно актуальны, несмотря на то, что их можно купить в Китае. Можно найти варианты любой мощности в широком ценовом диапазоне, начиная с1$. Но для радиолюбителей всегда интереснее собрать своими руками.
Рассмотрим схему из интернета, представляющую собой DC-DC преобразователь или step-up converter автогенераторного типа. Несмотря на простоту в ней есть стабилизация выходного напряжения, малая утечка при холостом ходе, большой ток на выходе и высокий КПД. Схема реализована на основе простого автогенератора и является универсальным решением в качестве повышающего преобразователя для зарядки портативной цифровой техники. Универсальность заключается в том, что инвертор можно питать и от 1 батарейки с напряжением 1.5В, и от литиевого аккумулятора с напряжением 3.7В.
Принцип работы.
Автогенератор выполнен на базе полевого транзистора, хотя можно использовать и биполярный. Трансформатор на самом деле является дросселем с 2 обмотками, силовой и задающей. Преобразование энергии происходит также как в любом аналогичном инверторе. В момент закрытия полевого транзистора всплески самоиндукции с дросселя выпрямляются диодом и сглаживаются электролитическим конденсатором. При этом ЭДС самоиндукции может быть гораздо выше напряжения питания, в зависимости от индуктивности дросселя. Стабилизация выходного напряжения осуществляется просто и эффективно.
Если напряжение на выходе превышает напряжения стабилизации открывается стабилитрон, а за ним и маломощный транзистор VT2. Через его открытый переход затвор полевого транзистора закорачивается на землю и он закрывается на время, пока выходное напряжение не снизится до нужного уровня. Тогда стабилитрон закроется, и полевой транзистор продолжит работу. Этот процесс в реальности происходит 1000 раз в секунду.
Элементная база.
Диод – любой быстродействующий, лучше диод Шоттки с током от 1А. У меня поставлен UF4007. Маломощный транзистор любой, обратной проводимости, можно и КТ315.
Дроссель можно мотать на ферритовом кольце, стержне или гантельке. В идеале должно быть определенное соотношение витков. Я намотал на гантельке одновременно обе обмотки с одинаковым количеством витков – 25. Силовая обмотка состоит из 3-х проводов диаметром 0.3мм, а задающая из 1 такого хе провода. Фазируется дроссель так же как в 2-хтактном инверторе, хотя наш вариант таковым не является. После намотки мультиметром находим концы обмоток, затем начало задающей соединяем с концом силовой. Образуется средняя точка куда подключается «+» источника питания.
Полевой транзистор подбирают с минимальным напряжением срабатывания. Чем оно ниже, тем ниже может быть напряжение питания. Я использовал полевик с материнской платы в корпусе TO252 и напряжением срабатывания 1,25В.
При питании от 1,5-2В ток ХХ в пределах 5-8мА. При питании от литиевого аккумулятора он возрастает до 15-20мА, но растет и КПД, корректнее работает стабилизация. Я взял стабилитрон на 3,3В. С ним выходное напряжение варьируется от 5 до 5,5В. Это достаточно для зарядки практически всей современной портативной техники.
Используемые литиевые батареи должны быть с защитой от снижения напряжения, т.к. конвертор будет выкачивать из него все, пока напряжение не упадет до 1-2В. Литиевый аккумулятор уйдет в глубокий разряд, что не рекомендуется.
При сборке использованы обычные детали и элементы поверхностного монтажа, поэтому плата получилась компактной и удобной.