Site Loader

Содержание

Схема электрическая стабилизатора напряжения 220в. Схема стабилизатора напряжения

Содержание:

В электрических цепях постоянно возникает необходимость в стабилизации тех или иных параметров. С этой целью применяются специальные схемы управления и слежения за ними. Точность стабилизирующих действий зависит от так называемого эталона, с которым и сравнивается конкретный параметр, например, напряжение. То есть, когда значение параметра будет ниже эталона, схема стабилизатора напряжения включит управление и отдаст команду на его увеличение. В случае необходимости выполняется обратное действие — на уменьшение.

Данный принцип работы лежит в основе автоматического управления всеми известными устройствами и системами. Точно так же действуют и стабилизаторы напряжения, несмотря на разнообразие схем и элементов, используемых для их создания.

Схема стабилизатора напряжения 220в своими руками

При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.

Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.

За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.

Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.

Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.

Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см2 и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков — 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.

Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм2. За счет этого предотвращается нагрев трансформатора во время работы.

Все остальные комплектующие рекомендуется приобретать в готовом виде, в специализированных магазинах. Основой сборки является принципиальная схема стабилизатора напряжения, заводского изготовления. Вначале устанавливается микросхема, выполняющая функцию контроллера для теплоотвода. Для ее изготовления используется алюминиевая пластина площадью свыше 15 см2. На эту же плату производится монтаж симисторов. Теплоотвод, предназначенный для монтажа, должен быть с охлаждающей поверхностью. После этого сюда же устанавливаются светодиоды в соответствии со схемой или со стороны печатных проводников. Собранная таким образом конструкция, не может сравниваться с заводскими моделями ни по надежности, ни по качеству работы. Такие стабилизаторы используются с бытовыми приборами, не требующими точных параметров тока и напряжения.

(adsbygoogle = window.adsbygoogle || []).push({});

Схемы стабилизаторов напряжения на транзисторах

Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе — уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.

В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу . Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.

Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.

Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы — К50-35, резисторы — МЛТ-0,5.

Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому — КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.

Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами — стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) — полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 — 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.

Схема симисторного стабилизатора напряжения 220в

Симисторные стабилизаторы работают по аналогии с релейными устройствами. Существенным отличием является наличие узла, переключающего обмотки трансформатора. Вместо реле используются мощные симисторы, работающие под управлением контроллеров.

Управление обмотками с помощью симисторов — бесконтактное, поэтому при переключениях нет характерных щелчков. Для намотки автотрансформатора используется медный провод. Симисторные стабилизаторы могут работать при пониженном напряжении от 90 вольт и высоком — до 300 вольт. Регулировка напряжения осуществляется с точностью до 2%, отчего лампы совершенно не моргают. Однако во время переключений возникает ЭДС самоиндукции, как и в релейных устройствах.

Симисторные ключи обладают повышенной чувствительностью к перегрузкам, в связи с чем они должны иметь запас по мощности. Данный тип стабилизаторов отличается очень сложным температурным режимом. Поэтому установка симисторов осуществляется на радиаторы с принудительным вентиляторным охлаждением. Точно так же работает схема тиристорного стабилизатора напряжения 220В своими руками.

Существуют устройства с повышенной точностью, работающие по двухступенчатой системе. На первой ступени выполняется грубая регулировка выходного напряжения, а на второй ступени этот процесс осуществляется значительно точнее. Таким образом, управление двумя ступенями выполняется с помощью одного контроллера, что фактически означает наличие двух стабилизаторов в едином корпусе. Обе ступени имеют обмотки, намотанные в общем трансформаторе. При наличии 12 ключей, эти две ступени позволяют регулировать выходное напряжение в 36 уровнях, чем и обеспечивается его высокая точность.

Стабилизатор напряжения с защитой по току схема

Данные устройства обеспечивают питание преимущественно для низковольтных устройств. Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита.
Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.

Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается. Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения. В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току. Для того чтобы установить точный порог срабатывания токовой защиты, применяется подстроечный резистор R3, включаемый параллельно с резистором R2. Красный цвет светодиода LED1 указывает на срабатывание защиты, а зеленый LED2 — на выходное напряжение.

После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2. Например, при R2 равном 0,1 Ом, минимальный ток срабатывания защиты будет составлять около 8А. Если же нужно, наоборот, увеличить ток нагрузки, следует параллельно включить два и более транзисторов, в эмиттерах которых имеются выравнивающие резисторы.

Схема релейного стабилизатора напряжения 220

С помощью релейного стабилизатора обеспечивается надежная защита приборов и других электронных устройств, для которых стандартный уровень напряжения составляет 220В. Данный стабилизатор напряжения 220В, схема которого всем известна. Пользуется широкой популярностью, благодаря простоте своей конструкции.

Для того чтобы правильно эксплуатировать это устройство, необходимо изучить его устройство и принцип действия. Каждый релейный стабилизатор состоит из автоматического трансформатора и электронной схемы, управляющей его работой. Кроме того, имеется реле, помещенное в надежный корпус. Данный прибор относится к категории вольтодобавочных, то есть с его помощью лишь добавляется ток в случае низкого напряжения.

Добавление необходимого количества вольт осуществляется путем подключения обмотки трансформатора. Обычно для работы используется 4 обмотки. В случае слишком высокого тока в электрической сети, трансформатор автоматически уменьшает напряжение до нужного значения. Конструкция может быть дополнена и другими элементами, например, дисплеем.

Таким образом, релейный стабилизатор напряжения имеет очень простой принцип работы. Ток измеряется электронной схемой, затем, после получения результатов, он сравнивается с выходным током. Полученная разница в напряжении регулируется самостоятельно путем подбора необходимой обмотки. Далее, подключается реле и напряжение выходит на необходимый уровень.

Стабилизатор напряжения и тока на LM2576


В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Идея

Встретил в интернете рекламу на сайте ООО «Прибор», г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.
Приведены картинки переключений (слева «Селен», справа — с обычными характеристиками)


Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке «Украина» тоже было безразрывное переключение напряжения – там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением №2356082 я не смог.

Мне удалось найти статью «Типы стабилизаторов напряжения», где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги – контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.


На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

Принципиальная схема



Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10 .
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1 . Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 – усилители для реле.
Реле Р1 и Р2 – основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный – низкое, зеленый – норма, синий – высокое.

Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676 .
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on , R2off , R1on и R1off .
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1 , а вспомогательные LIMING JZC — 22F .
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).



Прибор повешен на стене и закрыт кожухом из жести


Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР»а через лампу накаливания мощностью 100 – 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки . Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).

Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле – вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

Использованы источники

1. на сайте “Энергосбережение в Украине”
2. Официальный web-сайт предприятия ООО «Прибор», г. Челябинск
3. Даташиты на детали

Файлы

Схема, чертеж печатной платы и программа с прошивкой
▼ 🕗 12/08/12 ⚖️ 211,09 Kb ⇣ 165 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи — помоги мне!

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками. Часть схем рассматривают стабилизатор без защиты от КЗ в нагрузке, в других заложена возможность плавного регулирования напряжения от 0 до 20 Вольт. Ну а отличительной чертой отдельных схемы является возможность защиты от короткого замыкания в нагрузке.


5 очень простых схем в основном собранных на транзисторах, одна из них, с защитой от КЗ

Очень часто бывает когда для питания вашей новодельной электронной самоделки требуется стабильное напряжение, которое не меняется от нагрузки, например, 5 Вольт или 12 Вольт для питания автомагнитолы. И чтобы сильно не заморачиваться с конструированием самодельного блока питания на транзисторах, используются так называемые микросхемы стабилизаторы напряжения. На выходе такого элемента мы получим напряжение, на которое спроектирован этот прибор

Многие радиолюбители уже неоднократно собирали схемы стабилизаторов напряжения на специализированных микросхемах серий 78хх, 78Мхх, 78Lxx. Например, на микросхеме KIA7805 можно собрать самодельную схему рассчитаную на выходное напряжение +5 В и максимальный ток нагрузки 1 А. Но мало кто знает, что имеются узко специализированный микросхемы серии 78Rxx, которые сочитают в себе стабилизаторы напряжения положительной полярности с малым напряжением насыщения, которое не превышает 0, 5 В при токе нагрузки 1 А. Одну из этих схем мы и рассмотрим более подробно.

Регулируемый трехвыводной стабилизатор положительного напряжения LM317 обеспечивает ток нагрузки 100 мА в диапазоне выходного напряжения от 1.2 до 37 В. Стабилизатор очень удобен в применении и требуют только два внешних резистора для обеспечения выходного напряжения. Кроме того, нестабильность по напряжению и току нагрузки у стабилизатора LM317L имеет лучшие показателями, чем у традиционных стабилизаторов с фиксированным значением выходного напряжения.

Для стабилизации напряжения постоянного тока достаточно большой мощности в числе других применяются компенсационные стабилизаторы непрерывного действия. Принцип действия такого стабилизатора заключается в поддержании выходного напряжения на заданном уровне за счет изменения падения напряжения на регулирующем элементе. При этом величина управляющего сигнала, поступающего на регулирующий элемент, зависит от разницы между заданным и выходным напряжениями стабилизатора.

При стационарной эксплуатации аппаратуры, CD и аудиоплейеров возникают проблемы с БП. Большинство блоков питания, выпускаемых серийно отечественным производителем, (если быть точным) практически все не могут удовлетворить потребителя, так как содержат упрощенные схемы. Если говорить об импортных китайских и им подобных блоках питания, то они, вообще, представляют интересный набор деталей «купи и выброси». Эти и многие другие проблемы заставляют радиолюбителейно изготовлять блоки питания. Но и на этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Данная радиолюбительская разработка представлена как вариант нетрадиционного включения операционного усиителя, ранее опубликованного и вскоре забытого

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша конструкция работает от напряженияпять вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Стабилизатор напряжения на 220 вольт

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Устройства используются в составе бытовой аппаратуры, не более того.

Мы расскажем, как сделать мощный стабилизатор напряжения своими руками. В предложенной нами статье описан процесс изготовления устройства для работы с напряжением сети 220 вольт. С учетом наших советов вы без проблем самостоятельно справитесь со сборкой.

Стремления обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве. Да и в целом, фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Для бытовых целей чаще всего приобретают , автоматика которого требует подключения к электропитанию, насосного оборудования, сплит систем и подобных потребителей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами. Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 – феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка – феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 – автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.


Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Схемы подобного рода выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения. Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 – электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.


Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно, лучше . В этом деле без опыта и знаний в сфере электротехники не обойтись.

Под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Подробные инструкции по сборке

Рассматриваемая под самостоятельное изготовление схема, скорее является гибридным вариантом, так как предполагает использование силового трансформатора совместно с электроникой. Трансформатор в данном случае применяется из числа тех, что устанавливались в телевизорах старых моделей.

Вот такой примерно силовой трансформатор потребуется под изготовление самодельной конструкции стабилизатора. Однако не исключается подбор других вариантов или же намотка своими руками

Правда в ТВ приёмниках, как правило, ставились трансформаторы ТС-180, тогда как для стабилизатора требуется как минимум ТС-320 чтобы обеспечить выходную нагрузку до 2 кВт.

Шаг #1 – изготовление корпуса стабилизатора

Для изготовления корпуса аппарата подойдёт любой подходящий короб на основе изолирующего материала – пластмассы, текстолита и т.п. Главный критерий – достаточность места под размещение силового трансформатора, электронной платы и других компонентов.

Также корпус допустимо изготовить из листового стеклотекстолита, скрепив отдельные листы с помощью уголков или иным способом.

Допустимо подобрать корпус от любой электроники, подходящий под размещение всех рабочих компонентов схемы самодельного стабилизатора. Также корпус можно собрать своими руками, к примеру, из листов стеклотекстолита

Короб стабилизатора необходимо оснастить пазами под установку выключателя, входного и выходного интерфейсов, а также других аксессуаров, предусмотренных схемой в качестве контрольных или коммутационных элементов.

Под изготовленный корпус нужна плита-основание, на которую «ляжет» электронная плата и будет закреплён трансформатор. Плиту можно сделать из алюминия, но следует предусмотреть изоляторы под крепёж электронной платы.

Шаг #2 – изготовление печатной платы

Здесь потребуется изначально спроектировать макет на размещение и связку всех электронных деталей согласно принципиальной схеме, кроме трансформатора. Затем по макету размечают лист фольгированного текстолита и рисуют (отпечатывают) на стороне фольги созданную трассировку.

Изготовить печатную плату стабилизатора вполне доступными способами можно непосредственно в домашних условиях. Для этого нужно приготовить трафарет и набор средств для травления на фольгированном текстолите

Полученный таким способом печатный экземпляр разводки зачищают, облуживают оловом и производят монтаж всех радиодеталей схемы с последующей пайкой. Так выполняется изготовление электронной платы мощного стабилизатора напряжения.

В принципе, можно воспользоваться сторонними услугами по травлению печатных плат. Этот сервис вполне приемлем по цене, а качество изготовления «печатки» существенно выше, чем в домашнем варианте.

Шаг #3 – сборка стабилизатора напряжения

Укомплектованная радиодеталями плата подготавливается для внешней обвязки. В частности, от платы выводятся линии внешней связи (проводники) с другими элементами – трансформатором, выключателем, интерфейсами и т.д.

На опорную плиту корпуса устанавливают трансформатор, соединяют с трансформатором цепи электронной платы, закрепляют плату на изоляторах.

Пример самодельного стабилизатора напряжения релейного типа, изготовленного в домашней обстановке, помещённого в корпус от пришедшего в негодность промышленного измерительного прибора

Останется только подключить к схеме внешние элементы, смонтированные на корпусе, установить ключевой транзистор на радиатор, после чего корпусом закрывают собранную электронную конструкцию. Стабилизатор напряжения готов. Можно приступать к настройке с дальнейшими испытаниями.

Принцип работы и тест самоделки

Регулирующим элементом электронной схемы стабилизации выступает мощный полевой транзистор типа IRF840. Напряжение для обработки (220-250В) проходит первичную обмотку силового трансформатора, выпрямляется диодным мостом VD1 и поступает на сток транзистора IRF840. Исток этого же компонента соединен с минусовым потенциалом диодного моста.


Схема принципиальная стабилизирующего блока высокой мощности (до 2 кВт), на основе которой были собраны и успешно используются несколько аппаратов. Схема показала оптимальный уровень стабилизации при указанной нагрузке, но не выше

Часть схемы, в которую включена одна из двух вторичных обмоток трансформатора, образуется диодным выпрямителем (VD2), потенциометром (R5) и другими элементами электронного регулятора. Этой частью схемы формируется управляющий сигнал, который поступает на затвор полевого транзистора IRF840.

На случай повышения напряжения питающей сети управляющим сигналом понижается напряжение затвора полевого транзистора, что приводит к закрытию ключа. Соответственно, на контактах подключения нагрузки (XT3, XT4) возможное повышение напряжения ограничивается. Обратным вариантом работает схема на случай понижения сетевого напряжения.

Настройка прибора особой сложностью не отличается. Здесь потребуется обычная лампа накаливания (200-250 Вт), которую следует включить на клеммы выхода прибора (X3, X4). Далее вращением потенциометра (R5) напряжение на отмеченных клеммах доводят до уровня 220-225 вольт.

Выключают стабилизатор, отключают лампу накаливания и включают прибор уже с полноценной нагрузкой (не выше 2 кВт).

После 15-20 минут работы вновь отключают аппарат и производят контроль температуры радиатора ключевого транзистора (IRF840). Если нагрев радиатора существенный (более 75º), следует подобрать более мощный теплоотводящий радиатор.

Если процесс изготовления стабилизатора показался вам слишком сложным и нерациональным с практической точки зрения, без особых проблем можно найти и приобрести устройство заводского исполнения. Правила и критерии приведены в рекомендуемой нами статье.

Выводы и полезное видео по теме

В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

Трудностей с приобретением деталей для изготовления стабилизатора-самоделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, публикуйте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как собрали стабилизатор напряжения собственными руками. Поделитесь полезной информацией, которая может пригодиться посещающим сайт начинающим электротехникам.

Оптимальным способом работы электрических сетей считается изменение функций тока, а также требуемого напряжения на 10% от 220В. Однако так как скачки изменяются достаточно часто, соответственно электрическим устройствам, которые напрямую подсоединены к сети, угрожает поломка.

Чтобы исключить такие неприятности, необходимо установить определённое оборудование. А так как магазинное устройство имеет достаточно высокую стоимость, естественно многие собирают стабилизатор собственноручно.

Оправдано ли подобное решение и что требуется для воплощения его в реальность?

Принцип функционирования стабилизатора

Приняв решение создать самодельный стабилизатор, как на фото, нужно посмотреть во внутреннюю часть корпуса, которая состоит из определённых деталей. Принцип работы обычного прибора основан непосредственно на функционировании реостата, который увеличивает либо уменьшает сопротивление.

Кроме этого, предложенные модели имеют разнообразие функций, а также полностью могут обеспечить защиту технике от нежелательных перепадов скачущего напряжения в сети.

Оборудование классифицируется в зависимости от способов, применяемых для урегулирования тока. Так как величина является направленным продвижением частичек, соответственно влиять на неё можно механическим, либо импульсным методом.

Первый работает по закону Ома. Устройства, функционирование которых основано на нём, носят название линейные. В них включено несколько колен, совмещаемых посредством реостата.

Напряжение, которое подаётся на одну деталь, проходит посредством реостата, оказываясь подобным способом на другую, с которого передаётся потребителю.

Данного вида устройства дают возможность выставлять требуемые параметры тока максимально точно и вполне могут подвергнуться модернизации специальными узлами.

Однако недопустимо применять подобные стабилизаторы в сетях, где между током разница большая, поскольку они не обезопасят в полной мере от КЗ технику при перегрузках.

Варианты импульсные функционируют по методу амплитудной токовой модуляции. В цепи применяется выключатель, который её разрывает через необходимый период времени. Подобный подход даёт возможность накапливать необходимый ток в конденсаторе максимально равномерно, а по окончанию зарядки и затем на устройства.


Начинаем сборку

Так как к самому эффективному относится симисторный прибор, то поговорим, как собственными руками сделать непосредственно подобный стабилизатор.

Важно подчеркнуть, что данного типа модель сможет выравнивать подаваемый ток при таком условии, что напряжение в диапазоне 130-270 В. Потребуются также комплектующие элементы. Из инструментов нужен пинцет, а также паяльник.

Поэтапность изготовления

Согласно подробной инструкции, как смонтировать стабилизатор, прежде всего, следует подготовить требуемого размера плату печатную. Создаётся она из стеклотекстолита специального фольгированного. Микросхема расположения элементов может быть в напечатанном формате, либо перенесённой на плату посредством утюга.

Затем схемой создания простого стабилизатора предусмотрена непосредственно сборка прибора. Для данного элемента понадобится магнитопровод, несколько кабелей. Один провод диаметром в 0,064 мм применяется для изготовления обмотки. Количество требуемых витков достигает 8669.

Остальные два провода используют для создания оставшихся обмоток, характеризующиеся в сравнении с первым вариантом диаметром в 0,185 мм. Число обустраиваемых витков для данных обмоток равно не менее 522.

При необходимости упростить поставленную задачу предпочтительно воспользоваться последовательно соединяющимися трансформаторами марки ТПК-2-2 12В.

При самостоятельном производстве данных деталей по окончанию создания одной из них переходят к производству другой. В этих целях потребуется магнитопровод троидальный. В качестве обмотки подходит тоже ПЭВ-2 с числом витков 455.

К тому же пошаговым собственноручным изготовлением стабилизатора во втором приборе следует произвести 7 отводов. При этом для нескольких трёх применяется провод 3 мм в диаметре, для других используются шины 18 мм2 сечением. Это даст возможность исключить нежелательное нагревание устройства во время рабочего процесса.

Остальные элементы следует покупать в специализированной торговой точке. Как только всё нужное закуплено, следует собрать прибор.

Работы следует начинать с установки необходимой микросхемы, которая выступает в качестве контроллёра на обустраиваемый теплоотвод, производимый из платины. Помимо этого на него устанавливаются симисторы. Затем на плату монтируются светодиоды мигающие.

Если создание приборов симисторного для вас является сложной задачей, то рекомендуется остановиться на линейном варианте, характеризующемся подобными свойствами.

Фото стабилизаторов своими руками

Стабилизаторы напряжения — Теоретические материалы — Теория

Стабилизатором напряжения (СТН) называют устройство, поддерживающее с определенной точностью неизменным напряжение на нагрузке. Другими словами, стабилизатор напряжения — это устройство, на выходе которого напряжение остается неизменным при воздействии дестабилизирующих факторов.

Стабилизаторы бывают параметрические (ПСН) и компенсационные (КСН). Параметрический стабилизатор наиболее простой. Его работа основана на свойствах полупроводникового диода, а точнее на одной из его разновидностей — стабилитрона. Типичная наипростейшая схема параметрического стабилизатора приведена на рисунке 1.

Рис. 1 — Параметрический стабилизатор напряжения

В стабилитронах используется явление электрического лавинного пробоя. При этом в широком диапазоне изменения тока через диод напряжение изменяется на нем очень незначительно. Входное напряжение через ограничительный резик Rбал подводится к параллельно включенным стабилитрону и сопротивлению нагрузки. Поскольку напряжение на стабилитроне меняется незначительно, то и на нагрузке оно будет иметь тот же характер. При увеличении входного напряжения практически все изменение Uвх передается на Rбал, что приводит к увеличению тока в нем. Увеличение этого тока происходит за счет увеличения тока стабилизации при почти неизменном токе нагрузки. Другими словами, все изменение входного напряжения поглощается в ограничительном (балластном) резике.

Часто стабилитрон работает в таком режиме, когда напряжение источника гуляет (т. е. нестабильно), а сопротивление нагрузки постоянно. Для нормального режима стабилизации сопротивление резика Rогр должно иметь определенное значение. Если напряжение Uвх гуляет от Umin до Umax, то для расчета Rогр можно воспользоваться формулой:

Rогр = (Uвх.ср — Uст)/(Iср + Iн),

где Uвх.ср = 0.5(Uвх.min + Uвх.max) — среднее значение напряжения источника, Iср. = 0.5(Imin + Imax) — средний ток стабилитрона, Iн = Uн/Rн — ток нагрузки. При изменении входного напряжения в ту или иную сторону будет изменяться ток стабилитрона, на напряжение на нем, следовательно и на нагрузке будет оставаться постоянным.

Коли все изменения напряжения источника гасятся в Rогр, то наибольшее изменение напряжения (Uвх. max — Uвх.min = ΔUвх) должно соответствовать наибольшему возможному изменению тока, при котором еще сохраняется стабилизация (Imax — Imin = ΔIст). Отсюда следует, что стабилизация будет осуществляться только при соблюдении условия:

ΔUвх ≦ ΔIстRогр

Бывает режим стабилизации, когда входное напряжение постоянно, а сопротивление нагрузки изменяется, т. е. гуляет от Rн.min до Rн.max. Для такого режима Rогр определяется по формуле:

Rогр = (Uвх — Uст)/(Iср + Iн.ср),

где Iн.ср = 0.5(Iн.min + Iн.max), причем Iн.min = Uст/Rн.max, а Iн.max = Uст/Rн.min.

Иногда необходимо получить такое напряжение, на которое стабилитрон не рассчитан. В этом случае применяют последовательное соединение стабилитронов. Тогда напряжение стабилизации будет соответствовать сумме напряжений стабилизаций последовательно включенных стабилитронов.

Помимо рассмотренной схемы применяют каскадное включение стабилитронов. Говоря проще, берут несколько вышерассмотренных схем и включают одну за другой. При этом напряжение стабилизации предыдущего стабилитрона должно быть больше, чем следующего. Такие схемы применяют для увеличения коэффициента стабилизации. Бывает еще и мостовая схема, называемая мостовой параметрический стабилизатор. Теоретически у такой схемы коэффициент стабилизации стремится к бесконечности (хотя в это верится с трудом).

К сожалению большой мощи с вышерассмотренной схемы не снять. Поэтому придумали ниже приведенную схемку, которая проста до безобразия.


Рис. 2 — Параметрический стабилизатор напряжения с усилителем мощности

Как видим, ничего сложного. Просто нагрузку воткнули через транзистор, включенный по схеме ОК, выполняющего роль усилителя мощности.

Ахтунг: Как-то один препод втулял на полном серьезе, что схема на рисунке 2 — компенсационный стабилизатор напряжения. Тогда меня чуть не вывернуло. Не ведитесь на такую фигню. Про КСН чуть ниже. Там и будет понятно отличие ПСН от КСН.

Такая схема при малых и средних токах нагрузки работает как стабилизатор, а при больших токах нагрузки — как транзисторный фильтр (если параллельно стабилитрону влепить кондер). Если параллельно стабилитрону влепить переменный (подстроечный) резик, то выходное напряжение становиться регулируемым. Можно также влепить параллельно нагрузке кондер. Кондеров вообще можно повтыкать несколько штук, не повредит. Для уменьшения высокочастотной (ВЧ) составляющей выходного напряжения параллельно нагрузке втыкают кондер емкостью 0,01…1 мкФ. Это касается любых источников питания. В умных книжках пишут, что кондер должен быть керамический, хотя и бумажные, слюдяные, пленочные и прочие работают ничтяково.

Тип транзистора в схеме на рисунке 2 выбирается из учета мощности нагрузки. Например, для питания усилка (особенно большой мощности), когда ток нагрузки велик, втыкают составной транзистор. Составной транзистор — это когда берут два (или больше) транзистора и коллектор или эмиттер одного подключают к базе другого, а оставшийся вывод первого транзистора соединяют с оставшимся выводом следующего. На рисунке ниже это намного понятнее:


Это составной транзистор

И это составной транзистор

Теперь ясно? Вся фишка в том, что у составного транзистора коэффициент передачи равен произведению коэффициентов передачи каждого транзистора. То есть берем два говяненьких транзистора с коэффициентом усиления, скажем, 100, делаем составной и получаем транзистор с коэффициентом передачи 10 000. Суть ясна?

Итак, для больших токов используют составные транзисторы, ну а для питания парочки микросхем подойдет транзистор средней и малой мощности. Даже 315-е работают вполне удовлетворительно.

Бывает ешчё куча всяких схем ПСН, но наиболее употребительные две вышерассмотренные. Ну понятно, наверное, чтобы получить напряжение обратной полярности, просто переворачиваем стабилитрон вверх ногами (на рис.1), а транзистор втыкаем другого типа проводимости (рис.2; был n-p-n, ставим p-n-p). Полярность кондеров тоже необходимо поменять, не забывая при этом поменять полярность входного напряжения.

Компенсационные стабилизаторы напряжения

Компенсационный стабилизатор напряжения (КСН) работает по иному принципу, нежели ПСН. Из названия видно, что КСН чего-то там компенсирует. В общем-то принцип действия КСН основан на изменении сопротивления регулирующего элемента в зависимости от управляющего сигнала. А вот и определение из книжки — КСН относятся к стабилизаторам непрерывного действия и представляют собой устройства автоматического регулирования, которые с заданной точностью поддерживают напряжение на нагрузке независимо от изменения входного напряжения и тока нагрузки. КСН бывают последовательного и параллельного типа. Для рывка рассмотрим структурную схему типичного КСН последовательного типа.

Рис. 3 — КСН последовательного типа

РЭ — это регулирующий элемент, в качестве которого чаще всего используется транзистор ( биполярный или полевой), СУ — схема управления — собственно управляет работой РЭ. Иногда вместо СУ изображают усилитель постоянного тока (УПТ). Его задача — усилить сигнал рассогласования и подать его на РЭ. Д — делитель напряжения, ИОН — источник опорного напряжения. В качестве ИОН применяют схему параметрического стабилизатора. Источник опорного напряжения и делитель объединяют в так называемый измерительный элемент (ИЭ). Из-за включения РЭ последовательно с нагрузкой схема так и называется — последовательная.

Итак, источник опорного напряжения (ИОН) задает опорное напряжение, поступающее на вход СУ. С делителя часть выходного напряжения (соизмеримого с напряжением ИОН) также подается на вход схемы управления (СУ). В результате сравнения выходного напряжения (или его части) с опорным СУ управляет РЭ, сопротивление которого меняется в ту или иную сторону. Короче, если, к примеру, напряжение на входе скакнуло, эта фигня, естественно, передается на выход. Сигнал с делителя напряжения подается на схему управления и та, в свою очередь, сравнивая напряжение с ИОН, дает команду РЭ увеличить (уменьшить) сопротивление. В результате на нагрузке напряжение остается постоянным. Кроме того, измерительный элемент выделяет пульсации выпрямленного напряжения, поступающие на РЭ, который достаточно хорошо сглаживает их. При рассмотрении принципиальной схемы все станет ясней.

Параллельную схему КСН рассмотрим только в структуре. Ее изображение приведено на рисунке 4.

Рис.4 — КСН параллельного типа

Принцип действия такого стабилизатора основан на изменении проводимости РЭ (опять же, в соответствии с управляющим сигналом), вызывающее изменение падения напряжения на балластом резике. Эта схема хорошо работает при небольшом импульсном изменении тока нагрузки. Её основное достоинство — при импульсном изменении тока нагрузки не происходит изменения тока, потребляемого от сети.

Ну а теперь перейдем к самому главному: к схемам. Очень простая и понятная, так сказать, типичная схема приведена на рисунке 5.

Рис.5 — Принципиальная схема КСН.

Итак, разберем все деталюшки. Функции РЭ выполняет транзистор VT1. ИОН образован резиком R1 и стабилитроном VD1 (как видим, это параметрический стабилизатор). Делитель, соответственно, состоит из резиков R2-R4. На транзисторе VT2 собран усилитель постоянного тока (УПТ). ИОН задает для УПТ образцовое напряжение, которое вводится в цепь эмиттера транзистора VT2. На базу транзистора поступает напряжение с делителя. Если изменяется выходное напряжение, а соответственно, и напряжение на базе транзистора VT2, который сравнивая это напряжение с напряжением на эмиттере, задает РЭ такой режим работы, что сопротивление его перехода изменяется, и напряжение на нагрузке остается постоянным. С помощью резика R3 можно регулировать выходное напряжение.

В качестве регулирующего элемента при малом токе нагрузки (не больше 0,1-0,2 А) используются одиночные транзисторы. При больших токах нагрузки ставят составные и так называемые тройные составные транзисторы.

Такая схема обладает защитой от короткого замыкания (КЗ). При КЗ обесточивается стабилитрон VD1 и транзисторы VT1, VT2 закрываются. Правда злоупотреблять этим не следует (т. е. ради интереса замыкать плюс с минусом). Защита от КЗ кратковременная. Но работает!

На практике один из вариантов такой схемы можно встретить с резиком между коллектором и эмиттером РЭ. Он необходим для нормальной работы стабилизатора при отрицательных температурах. Иногда пишут, что резик, шунтирующий переход коллектор-эмиттер РЭ, служит для запуска стабилизатора. Ну в принципе, наверное, понятно, что для смены полярности необходимо поменять тип транзисторов, направление включения стабилитрона и, соответственно, полярность включения кондеров (на схеме не показаны).

Итак, практическая схема вышеописанного стабилизатора приведена ниже:

Рис. 6 — КСН

Эта схема содрана с блока питания магнитофона приставки «Карат МП-201С» и, как видно, отличие состоит лишь в кондерах и резике R1. Резиком R4 подстраивают выходное напряжение. Подбирая стабилитрон VD1 можно изменять выходное напряжение ( при изменении входного, соответственно). При этом надо менять сопротивление резика R1. Две черточки на его корпусе обозначают мощность, т. е. 2 Вт. При больших токах нагрузки резик R1 греется. Естественно, транзистор VT1 необходимо установить на радиатор, площадью хотя бы 50 см2, т. к. и он может «пыхнуть».

Одной из разновидностей схем такого рода является так называемая схема с «холодным» коллектором. Её отличием является то, что регулирующий транзистор включается в цепь общего провода, а не «горячего». А это значит, что изолировать транзистор от радиатора или радиатор от корпуса устройства не надо, чего не скажешь о схемах на рисунках 5 и 6. В этих схемах транзисторы вылетают, как с добрым утром, если забыли изолировать коллектор (для тех, кто в танке, коллектор мощных транзисторов электрически соединен с корпусом транзистора или его частью для лучшего теплового контакта). На рисунке 7 эта схема и показана. Схема слизана с журнала Радио аж за 1984 год (Радио №12/1984).

Рис. 7 — КСН с «холодным» коллектором

Как видно, практически никаких отличий от предыдущей схемы. В качестве регулирующего использован составной транзистор КТ827А. Его можно легко заменить двумя — КТ815 и КТ819. Недостаток схемы — меньший ток нагрузки, нежели у схемы на рисунке 6. Да к тому же для такого стабилизатора необходим отдельный выпрямитель . Другими словами, если нужно несколько стабилизаторов, то для каждого придется забабахать свой выпрямитель. Зато все регулирующие транзисторы можно поставить на один теплоотвод, не изолируя их.

Стабилизаторы напряжения и тока — Справочник химика 21

    Кривые спектральной чувствительности глаза и селенового фотоэлемента очень сходны. Это позволяет разработанные для визуальной колориметрии методики применять при работе с фотоэлектрическими колориметрами. Каждый фотоколориметр состоит из осветителя, линзы, светофильтров, фотоэлементов и гальванометра. Для получения постоянства света осветитель включают через стабилизатор напряжения тока. [c.469]
    Стабилизатором напряжения (тока) называется устройство, поддерживающее в нагрузке заданный режим по напряжению (току) при изменении сопротивления нагрузки и напряжения источника питания (сети) в известных пределах. Качество работы стабилизатора определяется коэффициентом стабилизации, равным отношению относительного изменения напряжения (тока) на входе к относительному изменению напряжения (тока) на выходе стабилизатора  [c.80]

    Как транзисторные, так и ламповые стабилизаторы напряжения выполняются не только с последовательным включением регулирующего элемента по отношению к нагрузке, но и с параллельным. Значение коэффициента стабилизации для простых схем лежит в пределах 50— 100, а для более слолэлектронных стабилизаторов напряжения (тока) является возможность плавного [c.85]

    Дальнейшее качественное улучшение и расширение пределов стабилизации может быть достигнуто в результате перехода на стабилизаторы импульсного действия. Характерным представителем такого типа стабилизаторов является стабилизатор напряжения (тока) ключевого типа. В стабилизаторе ключевого типа регулирующий 86 [c.86]

    Стабилизатор тока состоит из выпрямителя тока (переменного тока на постоянный) и собственно стабилизатора. Напряжение тока должно быть изменяемым от О до 500 в. Измеряется напряжение >по шкале с делениями до 5 в, а сила тока — по шкале с делениями до 0,5 ма. [c.33]

    При изготовлении фотоэлемента слой полупроводника, например селена, закиси меди, сульфида серебра, наносят на металлическую (железную) подкладку. Внешняя поверхность полупроводника подвергается специальной обработке, и на нее наносят хорошо проводящую пленку золота, серебра или меди. При освещении такой поверхности в электрической цепи, составленной из фотоэлемента и гальванометра, возникает ток. В селеновом фотоэлементе верхний проводящий слой металла заряжается отрицательно. Если применять гальванометр с малым внутренним сопротивлением, то почти весь фототок проходит через гальванометр. Кривые спектральной чувствительности селенового фотоэлемента и глаза очень близки, что позволяет разработанные для визуальной колориметрии методики применять при работе с фотоэлектрическими колориметрами. Каждый фотоколориметр состоит из осветителя, линзы, светофильтров, фотоэлементов и гальванометра. Для получения постоянства света осветитель включается через стабилизатор напряжения тока. [c.589]


    Основными частями фотоколориметра являются источник света, кюветы, один или два фотоэлемента, чувствительный гальванометр, стабилизатор напряжения тока, светофильтры. Последние применяются для увеличения чувствительности и точности фотометрических измерений. [c.116]

    Кроме того, применяют электрические горелки, в которых теплоноситель нагревается при прохождении по змеевику, сделанному из высокоомного металла и нагреваемому электротоком. Электрические горелки надо включать в сеть через стабилизатор напряжения тока, чтобы избежать колебаний температуры теплоносителя, вызванных колебаниями напряжения в сети. [c.370]

    Источник света. Обычно в качестве источника света применяют электрические лампочки автомобильного типа на 6—12 в. Лампочку питают либо от аккумуляторной батареи, либо от сети (110 в) через понижающий трансформатор. Необходимо, чтобы лампочка давала свет постоянной интенсивности, поэтому для выравнивания колебаний напряжения сети применяют специальный стабилизатор напряжения тока, подаваемого на лампу, а кроме того — реостат для регулирования этого напряжения и вольтметр для измерения его. [c.473]

    Переключателем 10 включают в сеть переменного тока (220 В) стабилизатор напряжения / и, вращая ручку потенциометра 12, устанавливают пределы регулировки (15 В). Затем с помощью потенциометров 13, 14, 15 устанавливают первое заданное напряжение. Включают в сеть переменного тока (220 В) реле времени и устанавливают заданное время осаждения [c.108]

    Питается измерительный мост катарометра от полупроводникового компенсационного стабилизатора напряжения. Плавно регулируют ток питания моста детектора потенциометром, ручка которого выведена на переднюю панель управления (ручка установка тока — плавно ). Грубо изменяют ток питания моста включением добавочных сопротивлений на панели управления ручки грубо . Кроме того, на панель выведены ручки установки нуля самописца грубо и плавно и переключатель множитель шкалы . Для точной установки и контроля величины тока моста на передней панели блока установлен миллиамперметр. [c.181]

    Рентгеновские аппараты. Рентгеновские аппараты представляют собой устройства для питания рентгеновских трубок и включают в себя высоковольтный генератор, стабилизаторы напряжения и тока трубки, дополнительные устройства, предназначенные для регулирования и измерения напряжения и тока, систему блокировок, обеспечивающих защиту от высокого напряжения, и г, д. [c.75]

    Лампу микрофотометра питают от сети переменного тока через феррорезонансный стабилизатор напряжения, который дает на выходе стабилизированное напряжение 12 в. При постоянной частоте сети напряжение на выходе стабилизатора остается достаточно стабильным даже при значительном изменении напряжения на его входе. Постоянный режим горения лампы устанавливается примерно через 15 мин после ее включения. Затем можно приступать к измерению. [c.173]

    Обычно применяют лампы с прямой вертикальной нитью. Питание ламп осуществляют от сети переменного тока через понижающий трансформатор. При необходимости стабилизировать интенсивность свечения используют стабилизаторы напряжения. [c.300]

    Тепловое значение калориметрической системы определяют, вводя в систему точно известное количество теплоты с помощью электрического тока. Для этого используют нагреватель 3, который питается током от стабилизатора напряжения У-1136 или аккумулятора. Нагреватель включают через два ключа К1 и Кг первый К1 служит для переключения стабилизатора на нагрузочное сопротивление или на цепь нагревателей калориметров, а второй служит для переключения питающего напряжения последовательно на одну или другую работающую установку. В цепь нагревателя 3 включен миллиамперметр для измерения силы тока, параллельно включен вольтметр для измерения напряжения на зажимах нагревателя. [c.397]

    Выпрямители, работающие в режиме стабилизации тока, находят применение в силовых дренажах, при зарядке аккумуляторных батарей. Зона регулирования для стабилизатора тока, как и для стабилизатора напряжения, ограничена минимальным и номинальным значениями тока. [c.117]

    Чувствительные элементы детектора включены в схему измерительного моста, питаемую от стабилизатора постоянного тока. Питается прибор от сети переменного тока напряжением 220 б 10%, частотой 50 гц потребляемая мощность — 25 вт. Хроматограф может устанавливаться в рабочих помещениях с температурой воздуха от -Ь5 до 50°С при относительной влажности не более 80%1 Давление газа-носителя на входе в хроматограф— [c.164]

    Функцию Ф E t) в электрическом виде можно воспроизвести с помощью типового дифференциально-усилительного каскада (ДУК) на трех л-/>-л-транзисторах два из них создают противофаз-но симметричные цепи усиления с общим эмиттером, а третий транзистор используется в качестве стабилизатора суммарного тока эмиттеров двух первых транзисторов. При подаче разностного напряжения Up = Ей — Е на вход такого каскада (рис. 8.5) ток коллектора в инвертирующем плече ( ки) равен [c.309]


    Для поддержания в электрических печах постоянной температуры выше 350°С обычно пользуются регуляторами, описанными в разд. 12. При этом не обязательно, но тем не менее желательно поддерживать постоянными напряжение, питающее печь, и комнатную температуру. В определенных пределах колебания напряжения сети можно уменьшить при помощи стабилизаторов напряжения. Они либо работают на принципе дросселя переменного тока с магнитным насыщением, либо имеют электронную регулировку. Чем больше колебания напряжения, тем с меньшей точностью происходит их выравнивание при стабилизации. [c.68]

    Источники постоянного тока для питания электрических цепей поддержания и регулирования температуры в кристаллизаторах. Можно применить такие приборы в паре со стабилизатором напряжения мощностью от 0,09 до 0,9 кВт в зависимости от числа и мощности используемых кристаллизаторов. Пределы стабилизированного напряжения 6—25 В. [c.160]

    Режим изготовления одинаков для всех пяти типов][излучате-лей время электролиза 3,5 мин, сила тока 2 ма. Температура электролитической ванны 18—22° С. Толщина активного слоя металлического кобальта не более 50 мкг см . Вследствие различного осаждения тонких слоев кобальта (в зависимости от различной предварительной обработки поверхности данной партии мишеней) и вследствие возможных небольших погрешностей в приготовлении раствора и в процессе работы, активность изготовленного излучателя может несколько отличаться от заданного номинала. В этом случае можно соответственно изменить режим электролиза (силу тока или время электролиза) и активность довести до требуемой величины. Установка для электролиза включает стабилизатор напряжения, выпрямитель, автотрансформатор, миллиамперметр и электролитическую ванну на 250 мл. Анодное и катодное пространство разделено диафрагмой в виде стаканчика с фильтрующим дном из пористого стекла. В качестве анода используется платиновая проволока, Впаянная в стеклянную трубку. [c.295]

    Более широкое применение находят источники постоянного тока с применением схем электронных стабилизаторов, в принципе аналогичных стабилизатору напряжения, приведенному на рис. 22.31. [c.304]

    Питание лампы фотометра осуществляется от сети переменного тока через стабилизатор напряжения (для устранения влияния колебаний напряжения сети) и переменный автотрансформатор (рис. 2). При использовании низковольтной лампы необходимо применение понижающего трансформатора. Для контролирования величины напряжения применяется вольтметр переменного тока. В некоторых случаях [c.345]

    Размельчение ткани вели в специальном размельчителе в стеклянном стакане [(6000 об/мин) со стабилизатором напряжения тока 200 Кв]. Металлическая ось с насажденными н 1 нее ножами должна опускаться в стакан сверху. Размель-чители с осью, проходящей через дно стакана, непригодны, гак как неконтролируемое количество смазки, содержащей органические перекиси, переходит из сальника в бутаноловый раствор. [c.45]

    СОСТОИТ из 4-х взаимосвязанных блоков, работающих в комплексе с электрохимической ячейкой, самопишущим прибором — потенциометром и миллиамперметром. Схема приведена на рис. 2.39. БЗН — блок задающих напряжений—вырабатывает задающие начальные постоянные напряжения, БУ —блок усиления— обеспечивает необходимое напряжение и ток поляризации рабочего электрода, БП-1-25 — блок питания, БВВ — блок высокоомного вольтметра — обеспечивает возможность регистрации потенциала рабочего электрода. КСП-4 — электронный автоматический самопишущий потенциометр — предназначен для регистрации тока поляризации или потенциала рабочего электрода. Электромагнитный стабилизатор напряжения предназна - [c.176]

    Стабилизатор напряжения постоянного тока У1136. Прибор питается от сети 220 В. На передней панели прибора размещены сигнальная лампа, тумблер включения прибора сеть , тумблер включения высокого напряжения анод , вольтметр, переключатель пределы регулирования , ручки регулировки выходного напряжения грубо , средне и тонко . Выходные гнезда прибора с указанием полярности и земля расположены на задней стенке прибора. Электрическую цепь кулонометрической установки подсоединяют к выходным гнездам с соблюдением полярности. [c.151]

    На боковой поверхности калориметрического стакана имеется также нагреватель, представляющий собой изолированную константаноаую или манганиновую проволоку. Нагреватель соединен с источником постоянного тока, в качестве которого используется батарея аккумуляторов или стабилизатор напряжения постоянного тока. [c.66]

    Действие всех стабилитронов основано на нелинейности их вольт-амнерных характеристик при определенных условиях работы, иначе говоря, их сопротивление зависит от величины тока или напряжения. Все стабилизаторы напряжения вместе с ограничивающим ток сопротивлением подключают параллельно выходу выпрямителя, а все стабилизаторы тока — последовательно с потребителем (рис. А.2.1). Электронные стабилизирующие схемы отличаются тем преимуществом, что позволяют осуществлять непрерывное регулирование выходных параметров, сочетающееся с повышенной эффективностью. Отдаваемая мощность не ограничивается максимально допустимой мощностью рассеивания стабилитронов (например, опорного диода), вследствие чего эффективность стабилизаторов не зависит от нагрузки. Используя простые стабилитроны, достигают коэффициентов стабилизации Больших коэффициентов стабилизации Аз применении электронных регулирующих стабилизирующих схем. Трудна и часто проблематична стабилизация больших постоянных токов. В этих случаях используют трансдукторы (регулирование посредством различной намагниченности железного сердечника) или тиристоры (регулирование изменением длительности включения вентиля в момент прохождения полуволны). [c.441]

    Электродвигатель постоянного тока типа ПБСТ-22 питается от сети 220 В через стабилизатор напряжения (9) и выпрямительный, мост. Число оборотов двигателя регулируется ЛАТРом (10). Количество циклов отсчитывается счетчиком циклов (11). Образец после разрушения под действием груза (6) падает на микровыключатель (12) и отключает электродвигатель. [c.63]

    Электролизер-калибратор предназначен для генерирования водорода (путем электролиза анализируемой воды), используемого для градуировки водородомера по приращению концентрации водорода (номограмма расход пробы — ток электролизера -концентрация водорода прилагается к инструкции по эксплуатации водородомера АВ-201). Электролизер питается от блока питания -стабилизатора напряжения постоянного тока. Ток, проходящий через электролизер, измеряется узкопрофильным микроамперметром М-1730А. [c.26]

    Ламповый потенциометр ЛП-58 предназначен для определения величин pH (концентрация водородных ионов растворов), измерения окислительно-восстановительных и других потенциалов. Прибор обеспечивает возможность определения pH со стеклянными, хин-гидронными, а также с другими электродами. Питание прибора — от сети переменного тока 127/220 в. Потенциометр снабжен стабилизатором напряжения, благодаря чему показания не зависят от колебаний напряжения сети. [c.115]

    Постоянный ТОК К угольным электродам поступает от выпрямителя через стабилизатор. К источнику питания для контроля напряжения и силы тока присоединяют вольтметр и амперметр. Для равномерной плотности тока на бумаге прибор в процессе работы охлаждают. Неравномерная плотность тока нагревает бумагу. Электрофорез проводят при силе тока 0,4 мА на 1 см ширины полосы, напряжении тока 180—240 В, pH = 8,6. Электрофорез продолжают 12—15 ч, после чего электрофореграмму вынимают, сушат при 100° С в течение 5 мин и окрашивают 1 -ным раствором бромфенолблау. Затем краситель удаляют с бумаги многократным промыванием 5%-ным раствором СН3СООН. После промывки электрофореграмму высушивают. [c.46]

    Кристаллизационная электропечь питается трехфазным током напряжением 220 В. Электрическая схема состоит из шести автотрансформаторов АОСК 250/10, включенных в цепи каждого из нагревателей, трех комплектов высокоточных регуляторов температуры ВРТ-3, снабженных механизмами для плавного изменения температуры, стабилизатора напряжения СТС-100. Использованы регулирующие вольфрам-рениевые термопары типа ВАР 5/20. Механизм плавного изменения температуры состоит из мотора и редуктора с коэффициентом редукции, меняющимся в широком интервале значений. С помощью шкива вал на выходе редуктора соединен с плавным регулятором задатчика измерительного блока И-Ю2. Контрольные термопары подведены через термостат и переключатель к потенциометру КСП-4. [c.72]

    Одно из основных условий выращивания высококачественных кристаллов — прецизионное управление температурой в зоне роста. Существуют активные (прямой контроль) и пассивные (косвенный контроль) системы контроля температуры. К первым относятся системы с термопарами и пирометрами, ко вторым — системы контроля по напряжению, току или мощности электропитания, подаваемого на нагреватель. В настоящее время не известно примеров реализации систем прямого контроля температуры в зоне роста на промышленном оборудовании по выращиванию высокотемпературных монокристаллов методом ГНК. На установках Протон-1 , СГВК, а также Сапфир-2М контроль и стабилизация температуры осуществляются по напряжению. Источник питания нагревателя в автоматическом режиме представляет собой стабилизатор напряжения. Недостаток этой схемы заключается в том, что при коротком замыкании нагревателя на корпус установки ток на выходе стабилизатора неконтролируемо возра- [c.169]

    Регистратор имеет бумажную ленту 1 для записи кривой, лента протягивается электродвигателем пропорционально изменению э. д. с. электродов (pH раствора). Величина перемещения ленты, т. е. масштаб записи по вертикали, может быть установлена равной одной из следующих величин 0,1 0,2 и 0,5 pH/6 JИ (или 10 20 и 50 мв1см). Каретка регистратора 2 перемещается электродвигателем, от которого через гибкий вал 4 осуществляется и привод поршня бюретки. Таким образом перо регистратора дублирует перемещение поршня бюретки, и положение пера характеризует расход титранта. В регистраторе имеется измерительная схема, компенсирующая э. д. с. электродов при снятии кривой титрования. Схема питается от сети переменного тока через выпрямитель с электронным стабилизатором напряжения. [c.179]

    Питание электродиализатора осуществлялось от газотронового выпрямителя, включенного в сеть через стабилизатор напряжения. Сила тока, подаваемого на ячейку, регулировалась реостатом. [c.92]

    Схема стабилизатора напряжения последовательного типа, рассчитанного на большие токи, показана на рис. 22.31. В качестве регулирующей лампы обычно используются мощные триоды, например 6АС7,. [c.303]

    Приборы. Двухлучевой фотометр, использующий фотоэлементы-с запирающим слоем (например, фотометр Клетта—Саммерсона), переделанный таким образом, что выводы от каждого фотоэлемента, гальванометра и реохорда присоединены к отдельным клеммам на специальной панели. При необходимости механические части фотометра могут быть собраны отдельно. Фотометр должен быть снабжен средством для ослабления интенсивпости пучка света, падающего на фотоэлемент сравнения (см., например, рис. 3.15 и 3.16). Для работы необходимы стабилизатор напряжения и переменный автотрансформатор (латр) на ток 10 а при напряжении ПО в. [c.345]

    Приемником для измерения интенсивности рассеянного света служит 11-ступенчатый фотоумножитель 8. Каждая ступень фотоумножителя присоединена к стабилизатору напряжения. Выходящий с фотоумножителя ток измеряется многоступенчатым гальванометром с точностью 4,2-10- а. Для измерения абсолютного значения мутности раствора кювету с исследуемым раствором заменяют аналогичной юветой с эталонной жидкостью. В качестве эталона мутности были использованы сероуглерод, толуол, а также растворы узких фракций исследуемого полимера с известным молекулярным весом. [c.102]


Схема стабилизатора напряжения SMPS — Проекты самодельных схем

В статье описывается схема твердотельного импульсного стабилизатора сетевого напряжения без реле, с использованием повышающего преобразователя с ферритовым сердечником и пары полумостовых схем драйвера MOSFET. Идею предложил г-н МакЭнтони Бернард.

Технические характеристики

В последнее время я начал рассматривать стабилизаторы напряжения, используемые в домашнем хозяйстве для регулирования энергоснабжения, повышения напряжения при понижении напряжения и понижения напряжения при повышении напряжения.

Он построен на сетевом трансформаторе (с железным сердечником), намотанным по типу автотрансформатора, с множеством отводов 180 В, 200 В, 220 В, 240 В, 260 В и т. д.

схема управления с помощью реле выбирает правильный нажмите для вывода. Я думаю, вы знакомы с этим устройством.

Я начал думать реализовать функцию этого устройства с SMPS. Преимущество этого заключается в выдаче постоянного напряжения 220 В переменного тока и стабильной частоты 50 Гц без использования реле.

К этому письму я приложил блок-схему концепции.

Пожалуйста, дайте мне знать, что вы думаете, есть ли смысл идти по этому пути.

Будет ли он действительно работать и служить той же цели? .

Также мне понадобится ваша помощь в разделе высоковольтного преобразователя постоянного тока в постоянный.

С уважением
McAnthony Bernard

Конструкция

Предложенная схема стабилизатора сетевого напряжения на твердотельном ферритовом сердечнике без реле может быть понята при обращении к следующей схеме и последующему объяснению.

RVCC = 1 кОм,1 Вт, CVCC = 0,1 мкФ/400 В, CBOOT = 1 мкФ/400 В

На приведенном выше рисунке показана фактическая конфигурация для реализации стабилизированного выхода 220 В или 120 В независимо от входных колебаний или перегрузки с использованием пары неизолированных каскадов повышающего преобразователя.

Здесь две микросхемы полумостовых драйверов МОП-транзисторов становятся ключевыми элементами всей конструкции. Используемые микросхемы — это универсальный IRS2153, который был разработан специально для управления MOSFET в полумостовом режиме без необходимости использования сложных внешних схем.

Мы можем видеть два идентичных каскада драйвера полумоста, где левый драйвер используется в качестве каскада повышающего драйвера, а правый сконфигурирован для преобразования повышающего напряжения в выходной синусоидальный сигнал с частотой 50 Гц или 60 Гц в сочетании с внешним цепь управления напряжением.

ИС внутренне запрограммированы на создание фиксированного 50% рабочего цикла для выходных выводов через топологию тотемного полюса. Эти выводы связаны с силовыми МОП-транзисторами для осуществления предполагаемых преобразований.ИС также оснащены внутренним генератором для обеспечения требуемой частоты на выходе, уровень частоты определяется внешней подключенной цепью Rt/Ct.

Использование функции отключения

Микросхема также имеет функцию отключения, которую можно использовать для остановки выхода в случае перегрузки по току, перенапряжения или любой внезапной катастрофической ситуации.

Для получения дополнительной информации об микросхемах драйвера полумоста и вы можете сослаться на в этой статье: Драйвер полумоста Mosfet IC IRS2153(1)D — разводка выводов, пояснение примечаний по применению

Выходы этих микросхем чрезвычайно сбалансированы благодаря очень сложной внутренней загрузке и обработке мертвого времени, которые обеспечивают идеальную и безопасную работу подключенных устройств.

В обсуждаемой схеме стабилизатора сетевого напряжения SMPS левый боковой каскад используется для генерирования около 400 В из входного напряжения 310 В, полученного путем выпрямления входного сетевого напряжения 220 В.

Для входного напряжения 120 В ступень может быть настроена на генерацию около 200 В через показанную катушку индуктивности.

Катушка индуктивности может быть намотана на любую стандартную сборку сердечника/катушки EE, используя 3 параллельных (бифилярных) жилы из суперэмалированной медной проволоки диаметром 0,3 мм и приблизительно 400 витков.

Выбор частоты

Частота должна быть установлена ​​путем правильного выбора значений Rt/Ct таким образом, чтобы была достигнута высокая частота около 70 кГц для левого каскада повышающего преобразователя на показанном дросселе.

Правосторонняя микросхема драйвера предназначена для работы с вышеуказанным напряжением 400 В постоянного тока от повышающего преобразователя после соответствующего выпрямления и фильтрации, как показано на схеме.

Здесь значения Rt и Ct выбраны для получения приблизительно 50 Гц или 60 Гц (в соответствии со спецификациями страны) на подключенном выходе MOSFET

Однако выход правого каскада драйвера может достигать 550 В, и это необходимо отрегулировать до желаемого безопасного уровня, около 220 В или 120 В

Для этого включена простая конфигурация усилителя ошибки на операционных усилителях, как показано на следующей диаграмме.

Схема коррекции перенапряжения

Как показано на приведенной выше диаграмме, ступень коррекции напряжения использует простой компаратор на операционных усилителях для обнаружения условий перенапряжения.

Цепь должна быть настроена только один раз, чтобы обеспечить постоянное стабилизированное напряжение на заданном уровне, независимо от входных колебаний или перегрузки, однако они не могут быть превышены за пределами допустимого предела, указанного в конструкции.

Как показано, питание усилителя ошибки поступает с выхода после соответствующего выпрямления переменного тока в чистое стабилизированное слаботочное напряжение 12 В постоянного тока для цепи.

контакт № 2 назначен как вход датчика для ИС, в то время как неинвертирующий контакт № 3 привязан к фиксированному напряжению 4,7 В через сеть с фиксирующим стабилитроном.

Вход датчика извлекается из нестабилизированной точки схемы, а выход ИС подключается к выводу Ct правой стороны драйвера ИС.

Этот вывод функционирует как вывод выключения для IC, и как только он достигает минимума ниже 1/6 своего Vcc, он мгновенно гасит выходные каналы на MOSFET, останавливая процесс.

Предустановка, связанная с выводом № 2 операционного усилителя, соответствующим образом отрегулирована таким образом, чтобы выходное сетевое напряжение переменного тока стабилизировалось до 220 В от доступного выхода 450 В или 500 В или до 120 В от выхода 250 В.

До тех пор, пока на вывод № 2 подается более высокое напряжение по сравнению с выводом № 3, он продолжает поддерживать низкий уровень выходного сигнала, что, в свою очередь, дает команду драйверу на отключение, однако «отключение» мгновенно корректирует вход операционного усилителя, заставляя его отозвать свой выходной низкий сигнал, и цикл продолжает самокорректировать выходной сигнал до точных уровней, как определено предустановленной настройкой контакта № 2.

Схема усилителя ошибки продолжает стабилизировать этот выход, и, поскольку схема имеет преимущество в виде значительного 100%-го запаса между входным напряжением источника и регулируемыми значениями напряжения, даже в условиях чрезвычайно низкого напряжения выходы обеспечивают фиксированное стабилизированное напряжение для нагрузку независимо от напряжения, то же самое становится в случае, когда на выходе подключена несогласованная нагрузка или перегрузка.

Улучшение вышеуказанной конструкции:

Тщательное исследование показывает, что приведенную выше конструкцию можно значительно изменить и улучшить, чтобы повысить ее эффективность и качество выходного сигнала:

  1. Катушка индуктивности фактически не требуется и может быть удалена модернизирован до полной мостовой схемы, чтобы мощность была оптимальной для нагрузки
  2. На выходе должна быть чистая синусоида, а не модифицированная, как можно ожидать в приведенной выше конструкции

Все эти функции были учтены и учтены в следующей модернизированной версии схемы твердотельного стабилизатора:

Работа схемы

  1. IC1 работает как обычная схема нестабильного мультивибратора, частота которого может регулироваться путем соответствующего изменения значения резистора R1.Это определяет количество «столбов» или «разбивки» для вывода SPWM.
  2. Частота от IC 1 на выводе № 3 подается на вывод № 2 IC2, который подключен как генератор ШИМ.
  3. Эта частота преобразуется в треугольные волны на выводе № 6 микросхемы IC2, которые сравниваются с образцом напряжения на выводе № 5 микросхемы IC2. , после соответствующего понижения напряжения сети до 12В.
  4. Эти выборки синусоиды сравниваются с треугольными волнами на выводе № 7 IC2, что приводит к пропорционально распределенному ШИМ на выводе № 3 IC2.
  5. Теперь ширина импульса этого SPWM зависит от амплитуды выборки синусоиды от мостового выпрямителя. Другими словами, когда напряжение сети переменного тока выше, создаются более широкие ШИМ, а когда напряжение сети переменного тока ниже, ширина ШИМ уменьшается и пропорционально становится уже.
  6. Вышеупомянутый SPWM инвертирован транзистором BC547 и применен к затворам MOSFET нижнего плеча полной мостовой сети драйверов.
  7. Это означает, что при падении уровня сети переменного тока отклик затворов MOSFET будет в форме пропорционально более широких ШИМ, а когда напряжение сети переменного тока увеличивается, ШИМ затворов будет пропорционально ухудшаться.
  8. Вышеупомянутое приложение приведет к пропорциональному повышению напряжения на нагрузке, подключенной между сетью H-моста, всякий раз, когда входная сеть переменного тока падает, и, наоборот, нагрузка будет подвергаться пропорциональному падению напряжения, если переменный ток имеет тенденцию подниматься выше опасного уровня. .

Как настроить схему

Определите приблизительную центральную точку перехода, в которой отклик SPWM может быть точно таким же, как уровень сетевого переменного тока.

Предположим, вы выбрали значение 220 В, а затем настроили предустановку 1K таким образом, чтобы нагрузка, подключенная к Н-мосту, получала примерно 220 В.

Вот и все, настройка завершена, все остальное будет сделано автоматически.

В качестве альтернативы, вы можете таким же образом зафиксировать указанную выше настройку в сторону более низкого порогового уровня напряжения.

Предположим, что нижний порог равен 170 В, в этом случае подайте 170 В в цепь и отрегулируйте предустановку 1K, пока не найдете примерно 210 В на нагрузке или между плечами H-моста.

Эти шаги завершают процедуру настройки, а остальные автоматически настраиваются в соответствии с изменениями входного уровня переменного тока.

Важно : Подсоедините конденсатор большой емкости порядка 500 мкФ/400 В к выпрямленной линии переменного тока, подаваемой в сеть H-моста, чтобы выпрямленный постоянный ток мог достигать до 310 В постоянного тока на шине H-моста. линии.

Конструкция стабилизатора опорного напряжения 1,2 В на CMOS 180 нм

Боргрив, Д. (2010) Проект стабилизатора опорного напряжения 1,2 вольта в 180Нм КМОП.

Abstract: В этой магистерской диссертации описывается конструкция стабилизатора опорного напряжения на основе 180-нм КМОП-процесса.Источник опорного напряжения — это блок аналоговой схемы, который генерирует напряжение известной величины с небольшой зависимостью от изменений в питании или процессе и с хорошо выраженной зависимостью от температуры. Колебания питания могут быть вызваны многочисленными внутренними и внешними источниками и в широком диапазоне частот: от медленно снижающегося уровня заряда батареи до быстрых переходных процессов коммутация цифровых цепей. Схема стабилизатора опорного напряжения направлена ​​на минимизацию чувствительности опорного напряжения к этим флуктуациям.Схема может применяться, например, для смещения других цепей или стабилизации питания других цепей как часть регулятора напряжения. Задача состояла в том, чтобы спроектировать и реализовать схему стабилизации напряжения, конкурентоспособную по отношению к устройствам опорного напряжения, представленным в настоящее время на рынке. Этот дизайн задание было предоставлено Axiom IC Twente. Для этого задания был проведен анализ продуктов, доступных в настоящее время на рынке, и были поставлены цели проектирования для конкурентоспособных спецификаций.Схема разработана и рассчитан на поддержание выходного напряжения 1,2 В в широком диапазоне входного тока. Устойчивость к изменениям процесса и колебаниям температуры была оценена с помощью моделирования. Наконец, планировка чипа была создана для возможного будущего изготовления и измерений
Тип предмета: Essay (Master)
Факультет: EEMC: Электротехника, Математика и компьютерные науки
Тема: 53 электротехника
Программа: Электротехника MSc (60353)
Ссылка на этот пункт: http://purl.utwente.nl/essays/59735
Экспортировать этот элемент как: BibTeX
EndNote
HTML Citation
Менеджер ссылок

 

Только для сотрудников репозитория: страница управления товарами

Все о стабилизаторах напряжения: необходимая защита для ваших устройств

Система стабилизации напряжения — это электрический прибор, который используется для постоянной подачи напряжения на различные электрические устройства и предотвращения колебаний напряжения в этих устройствах. .Электропитание может быть нестабильным в большинстве мест, с колебаниями напряжения в обоих направлениях вверх и вниз. Эти колебания напряжения могут повредить приборы. Когда напряжение падает, электрический ток в приборе увеличивается, что может привести к возгоранию прибора.

Ожидается, что системы стабилизатора напряжения

будут в основном использоваться в автоматизации зданий, системах отопления, вентиляции и кондиционирования воздуха и системах связи. Стабилизаторы напряжения переменного тока подразделяются на различные типы, такие как регуляторы напряжения переменного тока с вращением катушки, электромеханические регуляторы и трансформаторы постоянного напряжения.

Существует заметная разница между стабилизатором напряжения и регулятором напряжения. Стабилизатор напряжения — это устройство или схема, предназначенная для подачи постоянного напряжения на выход без изменений входного напряжения, в то время как регулятор напряжения — это устройство или схема, предназначенная для подачи постоянного напряжения на выход без изменения тока нагрузки.

Стабилизаторы напряжения также потребляют энергию. Потребление электроэнергии стабилизаторами напряжения зависит от КПД стабилизатора.Обычно они имеют КПД 95-98%. Это означает, что они потребляют около 2-5% от максимальной нагрузки. Таким образом, если у вас есть стабилизатор на 1 кВА (или 1000 ВА), он будет потреблять около 50 Вт (при пиковой нагрузке).

Иногда на ум приходит частый вопрос: увеличивают ли стабилизаторы напряжения счет за электроэнергию? Ответ: нет. Потребляемая мощность = мощность + потери. Если потери растут при том же выходе, нам требуется больше входной мощности для нашего оборудования, так что в конечном итоге мы тратим больше на потери.

Мы сталкиваемся с термином автоматический стабилизатор напряжения, также известный как автоматический регулятор напряжения (AVR) или регулятор напряжения (VR).Автоматический стабилизатор напряжения (AVS) стабилизирует напряжение питания от сети до нагрузки. Это функция источников бесперебойного питания Line Interactive, обеспечивающая защиту от проблем с питанием, таких как просадки, отключения и скачки напряжения.

Стабилизатор напряжения Рынок систем: В 2020 году объем мирового рынка систем стабилизации напряжения составил 14820 миллионов долларов США, и ожидается, что к концу 2027 года он достигнет 19820 миллионов долларов США, при среднегодовом темпе роста в 3,8% в период с 2021 по 2027 год.Согласно «Индийскому рынку стабилизаторов напряжения», к 2023 году рынок стабилизаторов напряжения, по прогнозам, превысит 550 миллионов долларов. Ожидаемый рост рынка можно объяснить растущим вниманием правительства к развитию умных городов и увеличением инвестиций в рамках «Сделай в Индии» и Инициативы «Инвестируй в Индию», наряду с растущими продажами потребительских товаров длительного пользования, таких как кондиционеры, холодильники, телевизоры и т. д.

Колебания напряжения — это изменения напряжения, поступающего в ваш дом, из-за которых свет светится тусклее или ярче, чем обычно.Они могут повредить технику. Колебания напряжения происходят из-за плохой проводки, перегрузки, будь то вы используете больше мощности, чем разрешенная нагрузка, или ваши соседи используют больше, внезапное включение мощных приборов (таких как кондиционеры, двигатели), плохое заземление или короткие замыкания.

Как стабилизаторы напряжения устраняют колебания напряжения: Стабилизаторы напряжения стабилизируют напряжение, что означает, что если напряжение питания колеблется или изменяется, он приводит его в нужный диапазон. Это достигается за счет использования электромагнитных регуляторов, в которых используются переключатели ответвлений с автотрансформаторами.Если выходное напряжение выходит за пределы допустимого диапазона, механизм переключает кран, чтобы заменить трансформатор, чтобы переместить напряжение в допустимый диапазон.

Как выбрать стабилизатор подходящего размера : Размер стабилизатора очень похож на размер ИБП или инвертора. Самое главное — знать нагрузку, подключенную к стабилизатору. Сначала запишите мощность или ватты для всех приборов, которые будут подключены к стабилизатору. Сумма потребляемой мощности даст вам нагрузку на стабилизатор в ваттах.Но большинство размеров стабилизаторов указаны в ВА (вольт-ампер) или кВА (киловольт-ампер, что равно 1000 вольт-ампер). Хотя, чтобы получить фактические ВА (или Вольт-ампер) из ватт (Вт), вам придется провести некоторые измерения, но для грубого приближения вы можете увеличить значение ватт на 20%, чтобы получить приблизительный размер ВА, который вам может понадобиться. . Так, например, если сумма ватт, подключенных к вашему стабилизатору, составляет 1000, вы можете взять стабилизатор на 1200 ВА или 1,2 кВА. Здесь следует отметить, что 20% подходит для бытовых систем и может не работать в промышленности, если у вас плохой коэффициент мощности.

Важные моменты, на которые следует обратить внимание при покупке стабилизатора напряжения: Перед покупкой стабилизатора напряжения самое важное, на что вы должны обратить внимание, это диапазон входного напряжения, который вы получаете в своем доме. Это важно, потому что каждый стабилизатор имеет минимальное и максимальное входное напряжение, до которого он может стабилизировать выходное напряжение. Если стабилизатор напряжения имеет диапазон входного напряжения 150 В (мин.) – 260 В (макс.), то если напряжение в вашем доме упадет ниже 150 В или выше 260 В, то стабилизатор просто отключит питание вашего прибор.Но если оно 160 В или 250 В (в пределах рабочего диапазона), то попытается стабилизировать его до нужного диапазона выходного напряжения.

Защита от перенапряжения: (или защита от шипов) — еще одна полезная функция стабилизаторов напряжения. Эта функция защищает ваш прибор от внезапных скачков напряжения, например, во время удара молнии или короткого замыкания. Убедитесь, что вы покупаете стабилизатор с такими характеристиками, чтобы ваша техника была в безопасности во время резких скачков напряжения.

Однофазные и трехфазные стабилизаторы напряжения: Трехфазный стабилизатор напряжения требуется только в том случае, если требуется стабилизация напряжения для трехфазного двигателя или для стабилизации напряжения для полной трехфазной установки.

Все бытовые приборы могут работать от однофазных стабилизаторов напряжения, а трехфазный стабилизатор напряжения может не потребоваться для бытового использования, если только не пытаются стабилизировать напряжение всего дома на трехфазном соединении.

Требуется ли стабилизатор напряжения для светодиодных телевизоров: Не совсем. Большинство современных светодиодных телевизоров могут работать от 110 В до 290 В, поэтому низкое и высокое напряжение не повреждает их. Для защиты телевизора от скачков напряжения вам понадобится сетевой фильтр.

Нужен ли стабилизатор для холодильников: Большинство современных холодильников рассчитаны на большие диапазоны напряжения. Они могут работать от 110 В до 290 В, поскольку используют SMPS (импульсный источник питания).

ATO.com — универсальный интернет-магазин, где можно купить оборудование для промышленной автоматизации, электронику и компоненты. ATO производит ряд стабилизаторов напряжения. Современные однофазные автоматические стабилизаторы напряжения переменного тока с номинальной мощностью от 500 ВА до 50 кВА, диапазоном входного напряжения от 140 В до 260 В, высокой производительностью и компактными размерами, идеально подходят для домашнего использования до 3-фазных автоматических стабилизаторов переменного напряжения с номинальной мощностью. от 8кВА до 300кВА, 175В-265В (фазное напряжение)/304В-456В (линейное напряжение) Диапазон входного напряжения переменного тока, выход 380В.Они поставляются с полностью автоматическими компенсированными стабилизаторами напряжения с воздушным охлаждением, предназначенными для различных промышленных применений.

Однофазный автоматический стабилизатор напряжения переменного тока мощностью 500 ВА выполнен на основе релейной системы управления и автоматизированной технологии программного управления для бытовых нужд.

1-фазный стабилизатор напряжения мощностью 50 кВА, автоматически стабилизирует входное напряжение в диапазоне 95-125 В/ 190-250 В переменного тока до 110 В ± 6 % / 220 В ± 3 % на выходе с небольшим искажением формы сигнала, с высоким КПД, высоким коэффициентом мощности, без эффект или изменение частоты питания.

https://www.ato.com/50-kva-однофазный-стабилизатор напряжения

Полностью автоматический стабилизатор напряжения мощностью 15 кВА , по умолчанию 3-фазное выходное напряжение 380 В, диапазон входного напряжения составляет 380 В ± 20% допуска, высокая точность выходного сигнала до ± 1%. Входное/выходное напряжение настраивается.

Промышленный стабилизатор напряжения переменного тока номинальной мощностью 300 кВА , с воздушным охлаждением, 3-фазный, 4-линейный, с диапазоном входного напряжения 175–265 В (фазное напряжение)/304–456 В (фазное напряжение), выходное напряжение 380 В.Эта серия автоматических стабилизаторов напряжения с компенсацией специально разработана для более требовательных промышленных приложений, где требуется более надежное и практически не требующее обслуживания решение.

Автомобиль со стабилизатором напряжения

: полное руководство для начинающих

 

Автомобильный стабилизатор напряжения

Pixabay

Вы ищете идеальную схему для управления колебаниями напряжения в автомобиле и другом оборудовании? Если да, то вам нужен стабилизатор напряжения.

Стабилизаторы напряжения могут постоянно справляться с колебаниями, поэтому ваше оборудование или транспортное средство не столкнется с проблемами, когда вы меняете скорость или нажимаете на тормоз.

Однако разработка стабилизатора напряжения может быть сложной задачей, и есть много вещей, которые следует учитывать, если вы хотите сделать все правильно. Но именно поэтому мы здесь.

В этой статье вы узнаете все о стабилизаторах напряжения и о том, как сделать их для своего автомобиля.

Что такое стабилизатор напряжения?

 

Стабилизаторы напряжения представляют собой электрические устройства, способные подавать стабильное напряжение на нагрузку, подключенную к ее выходным клеммам.Кроме того, напряжение, которое он обеспечивает, остается постоянным независимо от того, какие изменения происходят с его входными напряжениями.

Стабилизатор напряжения

Источник: Wikimedia Commons

Кроме того, стабилизаторы напряжения защищают автомобили и электрические компоненты от всех видов скачков напряжения, включая перенапряжение и пониженное напряжение.

Большинство людей используют стабилизаторы напряжения для защиты дорогостоящего электрооборудования от опасных колебаний напряжения.К такому оборудованию относятся транспортные средства, медицинское оборудование, кондиционеры и многое другое.

Кроме того, стабилизаторы напряжения подобны фильтрам, которые регулируют колебания напряжения до того, как оно достигнет нагрузки, поврежденной из-за колебаний напряжения. Кроме того, стабилизатор напряжения поддерживает напряжение в диапазоне от 220 В до 230 В, если вы используете однофазное питание. Для трехфазных источников питания оно остается между 380 В и 400 В.

Интересно, что на рынке можно найти большое разнообразие однофазных и трехфазных автоматических стабилизаторов.Кроме того, вы всегда можете найти нужный для вашего приложения. Кроме того, вы можете найти два типа трехфазных стабилизаторов, включая модели с несбалансированной нагрузкой и модели со сбалансированной нагрузкой.

Почему вашему автомобилю нужен стабилизатор напряжения

 

Автомобильный аккумулятор является источником напряжения и тока, а иногда и стабилизатором напряжения. Но это не все. Генератор переменного тока — это то, что вам нужно, чтобы ваш автомобиль вырабатывал электричество; может быть перелив электричества, в зависимости от того, что требуется транспортному средству.Таким образом, мы можем иметь низкие требования к электроэнергии и высокие требования к электроэнергии.

Автомобильный генератор

Источник: Wikimedia Commons  

Если автомобилю не требуется много электроэнергии, он будет потреблять только необходимое количество энергии от генератора. Интересно, что это приводит к подаче избыточного тока, что приводит к скачку напряжения. Но батарея останавливает это, используя избыточное электричество в качестве источника зарядки. Другими словами, генератор переменного тока передает дополнительный ток на аккумулятор для зарядки.Вот пример ситуации, когда батарея действует как стабилизатор напряжения.

В качестве альтернативы, если автомобилю требуется большое количество электроэнергии, обычно это больше, чем может выдержать генератор. Таким образом, чтобы не отставать от спроса, автомобиль также будет потреблять ток от аккумулятора.

В таких случаях аккумулятор не может легко переключаться из режима зарядки в режим разрядки достаточно быстро, чтобы справиться с колебаниями напряжения. Таким образом, вы получаете низкую производительность и, возможно, поврежденный автомобиль.

Однако здесь вступает в действие стабилизатор напряжения. Он поможет вам контролировать подачу напряжения и защитит ваш автомобиль от скачков высокого или низкого напряжения. Есть и другие преимущества использования регулятора напряжения, такие как снижение расхода топлива и более высокий крутящий момент.

Как это работает?

 

Стабилизатор напряжения корректирует повышенное и пониженное напряжение с помощью двух операций: понижающей и повышающей.

Вы можете выполнять эти операции вручную или автоматически.Для ручных процессов вы будете использовать переключатели. Для автоматических функций вы будете использовать электронные схемы.

Вот лучшая часть. Когда ваше транспортное средство или оборудование находятся в условиях пониженного напряжения, сработают операции повышения напряжения и повысят напряжение до требуемого уровня.

С другой стороны, в случае перенапряжения активируется операция понижения напряжения для снижения напряжения до приемлемого уровня.

Таким образом, вся концепция стабилизации вращается вокруг сложения и вычитания.Стабилизатор напряжения будет либо добавлять, либо вычитать напряжение из сетевого напряжения.

Для такой задачи требуется трансформатор, подключенный в нескольких конфигурациях с переключающими реле. В то время как некоторые стабилизаторы напряжения используют трансформаторы обмоток для поддержания различных условий напряжения, другие используют автотрансформаторы для самых разных корректировок.

Цепь стабилизатора напряжения

 

Принципиальная схема

 

Здесь у нас есть простая схема стабилизатора напряжения, которую вы можете выполнить за несколько простых шагов.Кроме того, вам понадобятся следующие компоненты, если вы хотите построить эту схему.

  • Плата общего назначения размером три на 3 дюйма

 

Плата общего назначения

Источник: Викисклад  

  • 1N4007 Диод (2) (D1, D2)

 

1N4007 Диод

Источник: Викисклад

  • 10k линейная предустановка (P1)
  • Стабилитрон 3 В/400 мВт (Z1)
  • Конденсатор 220 мкФ/25 В

Конденсатор

 

 

Резистор

Источник: Wikimedia Commons

 

BC547 Транзистор

Источник: Pixabay  

  • Трансформатор (T1): 12–0–12 В / 5 А
  • Трансформатор (T2): 0–12 В/500 мА
  • Реле (RL1): 12 В / DPDT mini

 

Реле DPDT

Источник: Wikimedia Commons

Описание цепи

 

Глядя на принципиальную схему, вы можете видеть, что транзистор (T1) служит основным активным компонентом схемы.

D1 и C1 схемы служат выпрямителем. Кроме того, он соответственно фильтрует напряжение, поступающее от меньшего трансформатора.

Этот процесс позволяет трансформатору генерировать достаточную мощность, необходимую для схемы, состоящей из транзистора, предустановки, реле DPDT и стабилитрона.

Напряжение также служит в качестве напряжения считывания, поскольку оно будет изменяться пропорционально в зависимости от изменений напряжения, подаваемого на вход.

Например, предположим, что стандартное рабочее напряжение постоянного тока составляет 15 В.Если вы увеличите или уменьшите входное напряжение сети переменного тока на 28 В, вы либо увеличите напряжение постоянного тока до 17 В, либо уменьшите его до 13 В.

Кроме того, вы можете запрограммировать P1 таким образом, чтобы транзистор работал. Например, провести реле, когда входное напряжение сети переменного тока отклоняется от стандартного напряжения.

Несмотря на то, что существующая конструкция имеет важное значение и может не обеспечивать точной стабилизации, она способна поддерживать выходное напряжение в диапазоне от 200 до 250 В или от 100 до 125 В.

Как построить

 

Как мы упоминали ранее, вы можете быстро построить эту схему, выполнив несколько простых шагов.

Вам нужно будет разместить транзистор на плате общего назначения, а затем припаять и обрезать его выводы.

Затем соберите и припаяйте к плате остальные компоненты, перечисленные выше.

Затем, следуя схеме, соедините все припаянные компоненты и вторичные провода формирователя с контактами реле.

Как проверить автомобильный стабилизатор напряжения

 

Когда у вас будет готовая схема, вот как вы можете ее протестировать.

Во-первых, для этого теста вам понадобится универсальный переменный источник питания постоянного тока 0–12 В.

Вы можете начать проверку, подключив клеммы питания вашей схемы к источнику питания. Но, во-первых, убедитесь, что напряжение питания остается в верхнем положении 12 В.

Затем плавно изменяйте предустановку, пока не сработает реле.Поэтому, когда вы уменьшите питание на 1 В, оно должно отключиться, и у вас будет полная и рабочая схема стабилизатора напряжения.

Подведение итогов

 

Установка цепей стабилизатора напряжения на ваши транспортные средства и оборудование потенциально может защитить их от опасных скачков и колебаний напряжения.

Кроме того, это защитит производительность вашего оборудования и сделает ее оптимальной. Кроме того, вы можете либо купить стабилизатор напряжения на рынке, либо создать его в соответствии с вашими потребностями и вкусами.

Если у вас есть дополнительные вопросы о том, какой тип стабилизатора напряжения не строить, не стесняйтесь обращаться к нам.

Схемы стабилизаторов напряжения

Это аналогичный блок питания, который я использовал для питания своего FM-передатчика. После длительных проблем с фоном сети, в этой конструкции используется подход C-L-C с пи-фильтром. Эта схема обеспечивает превосходное подавление пульсаций. Подробнее…

Схема преобразователя постоянного тока, принимающая один единственный вход постоянного тока и преобразующая в параллельные несколько выходов постоянного тока.Подробнее…

Модификация блока питания 12В 30А. В этой версии используется LM317 для обеспечения регулируемого выходного напряжения от 1,5 до 37 В с током до 30 А. Макс встроил свой блок питания в старый компьютерный корпус, и его можно увидеть на YouTube в рамках Project Icarus. Подробнее…

Регулятор переменного напряжения Подробнее…

Характеристики: 1,3-12,2 В, 1 А, защита от перегрузки по току. Это простое, но надежное устройство основано на одном из старейших интегральных стабилизаторов напряжения — LM723.Подробнее…

Эта схема представляет собой простую форму коммерческого ИБП, схема обеспечивает постоянное регулируемое выходное напряжение 5 В и нерегулируемое питание 12 Вольт. В случае сбоя в линии электроснабжения питание берет на себя батарея, при этом в регулируемом питании отсутствуют скачки напряжения. Подробнее…

Блок питания на 12 вольт 20 ампер. Выходное напряжение варьируется от 12,2 В до 14,4 В, поэтому может быть установлено для любого устройства, требующего напряжения и тока в этом диапазоне.Этот блок питания использует LM723 в качестве стабилизатора, 4 параллельно соединенных внешних проходных транзистора и имеет ограничение тока выше 25 ампер. Подробнее…

Это регулируемый источник питания постоянного тока с защитой от короткого замыкания и ограничителем тока. Подробнее…

Базовый регулируемый блок питания 12 В Подробнее…

Блок питания с переменным напряжением и фиксированной регулировкой тока, выполненный с помощью вездесущего регулятора L200C.Подробнее…

Стабилизатор/регулятор напряжения_XIAN JERRYSTAR INSTRUMENT CO.,LTD

Емкость   90 178 Однофазный выход: 1 кВА, 2 кВА, 3 кВА, 5 кВА, 10 кВА, 15 кВА, 20 кВА, 30 кВА, 45 кВА, 60 кВА, 100 кВА, 150 кВА, 200 кВА
Трехфазная мощность: 1 кВА, 3 кВА, 6 кВА, 10 кВА, 15 кВА, 20 кВА, 30 кВА, 45 кВА, 60 кВА, 75 кВА, 100 кВА, 150 кВА, 200 кВА, 300 кВА, 400 кВА, 500 кВА, 600 кВА, 800 кВА, 790 кВА, 10, 1000 кВА, 1000 кВА, 8
Введите Однофазный: 220 В переменного тока (фаза-нейтраль) ±25 %, допустимое индивидуальное напряжение 90 178
Трехфазный: 380 В переменного тока (фаза-фаза) ± 25 %, допустимое индивидуальное напряжение 90 178
50 Гц/60 Гц
Выход Однофазный: 220 В переменного тока (L-N), принимается индивидуальное напряжение 90 178
Трехфазный: 380 В переменного тока (фаза-фаза), допустимое индивидуальное напряжение 90 178
50 Гц/60 Гц
Регулирование напряжения ±2%.(±1%-5% регулируется по индивидуальному заказу)
Время отклика ≤100 мс
Общая эффективность ≥98%
Регулировать скорость ≥25В/с
Трехфазный дисбаланс Автоматический вес трехфазного напряжения
Дисплей Сенсорный ЖК-экран.Напряжение A, B, C, значение ABC, значение тока A, B, C, значение ABC, рабочее состояние, индикация неисправности
Режим обхода Он может переключаться в режим байпаса при неисправности или повышенном/пониженном напряжении
Защита Защита: повышенное/пониженное напряжение, перегрузка по току, короткое замыкание фазы, короткое замыкание
Охлаждение Принудительный воздух
Шум 60 дБ в пределах одного метра
IP класс ИП20, ИП21, ИП32, ИП54, ИП55, ИП65
Защита Повышенное/пониженное напряжение, перегрузка по току, короткое замыкание фазы, короткое замыкание
Рабочая темп. от -10 до 45 ℃

IRJET-Запрошенная вами страница не найдена на нашем сайте 2 февраля 2022 г. Публикация находится в процессе…

Browse Papers


IRJET Получен «Импакт-фактор научного журнала: 7,529» за 2020 год. для своей системы менеджмента качества.


IRJET приглашает статьи из различных технических и научных дисциплин для тома 9, выпуск 3 (март 2022 г.) Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Подтвердить здесь


IRJET получил сертификат регистрации ISO 9001:2008 для своей системы управления качеством.


IRJET приглашает статьи из различных технических и научных дисциплин для тома 9, выпуск 3 (март 2022 г.) Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Подтвердить здесь


IRJET получил сертификат регистрации ISO 9001:2008 для своей системы управления качеством.


IRJET приглашает статьи из различных технических и научных дисциплин для тома 9, выпуск 3 (март 2022 г.) Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Подтвердить здесь


IRJET получил сертификат регистрации ISO 9001:2008 для своей системы управления качеством.


IRJET приглашает статьи из различных технических и научных дисциплин для тома 9, выпуск 3 (март 2022 г.) Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Подтвердить здесь


IRJET получил сертификат регистрации ISO 9001:2008 для своей системы управления качеством.


IRJET приглашает статьи из различных технических и научных дисциплин для тома 9, выпуск 3 (март 2022 г.) Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Подтвердить здесь


IRJET получил сертификат регистрации ISO 9001:2008 для своей системы управления качеством.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.