Симисторно-трансформаторный стабилизатор переменного напряжения — RadioRadar
В сельской местности, а иногда и в городах нередко случаются значительные понижения сетевого напряжения относительно номинального 230 В. Зачастую это приводит к отказам холодильников. Существенно падает эффективность работы с электроинструментом, тускнеет освещение. Для стабилизации напряжения сети при сохранении его формы автор в своё время применил релейно-трансформаторный стабилизатор [1], но от многолетней эксплуатации износились контакты установленных в нём реле. Было решено переработать стабилизатор, заменив электромагнитные реле симисторными ключами. Нагрузочная способность предлагаемого стабилизатора — 1840 В·А.
Прежде всего, рассмотрим возможные схемы стабилизаторов переменного напряжения на базе автотрансформатора. В устройстве по схеме, изображённой на рис. 1,а, компенсируют снижение сетевого напряжения (недопустимое превышение номинала наблюдается крайне редко), постепенно переводя вниз по схеме подвижный контакт переключателя SA1. При этом напряжение на каждой из обмоток автотрансформатора и на выходе стабилизатора приблизительно сохраняется, колеблясь в ограниченных пределах. В стабилизаторе, собранном по схеме рис. 1 ,б, сетевое напряжение постоянно подают на один из отводов обмотки автотрансформатора, а по мере снижения напряжения в сети подвижный контакт переключателя SA1 переводят вверх.
Рис. 1. Возможные схемы стабилизаторов переменного напряжения на базе автотрансформатора
Рассмотрим основные особенности приведённых вариантов.
В устройстве по схеме, изображённой на рис. 1,а, стабилизировано напряжение на каждой из секций обмотки, что позволяет использовать её секции II-IV в качестве стабильных источников сравнительно небольшого переменного напряжения, например, для питания низковольтных электроинструментов. Переключение отводов автотрансформатора (в реальной конструкции с помощью реле или симисторов) всегда, даже при работе стабилизатора на холостом ходу, происходит под индуктивной или активно-индуктивной нагрузкой, что неблагоприятно для коммутирующих устройств.
В устройстве по схеме рис. 1 ,б напряжение на секциях обмотки не стабилизировано. При отсутствии нагрузки, а это основная ситуация при работе на холодильник, переключение происходит в режиме холостого хода, износ контактов реле чисто механический.
Критерием выбора для автора послужило последнее различие между вариантами.
Отметим, что оба рассмотренных варианта станут пригодными и для компенсации повышения напряжения в сети, если выходной (на рис. 1,а) или входной (на рис. 1 ,б) провод перенести на другой отвод обмотки автотрансформатора. В своей практике автор столкнулся с вариантом стабилизатора, схема которого показана на рис. 1,в. При напряжении в сети меньше или равном номинальному он работает так же, как и в варианте на рис. 1 ,а. При превышении напряжением в сети номинального значения подвижный контакт переключателя SA1 фиксируют в верхнем по схеме положении, а переключатель SA2 переводят в положение 2.
Примем за основу схему, изображённую на рис. 1,б, и определим порядок расчёта коэффициентов трансформации для различных положений движка переключателя SA1. Зададим пределы изменения входного напряжения и допустимые колебания выходного. По результатам наблюдений на даче, для которой строился описываемый стабилизатор, напряжение в сети иногда опускалось до 150 В. Такому входному напряжению должно соответствовать выходное напряжение 200 В, при котором ещё работают все бытовые электроприборы. Поэтому коэффициент повышения напряжения при переключателе SA1 в положении 1 должен быть равен 200/150 = 1,33. Здесь и далее я умышленно не применяю термин «коэффициент трансформации», поскольку под ним понимают отношение числа витков первичной обмотки к числу витков вторичной. В данном случае логичнее использовать обратную величину — коэффициент повышения напряжения.
Число отводов от обмотки автотрансформатора зависит от необходимой точности поддержания выходного напряжения. В результате нескольких пробных расчётов сделан вывод, что для сохранения его в пределах 210…240 В достаточно четырёх ступеней, в числе которых и прямое соединение нагрузки с сетью. Понижение напряжения в сети до 150 В при этом рассматривается, как аварийный случай, при котором напряжение на нагрузке падает до 200 В.
Можно показать, что для получения одинаковых пределов изменения выходного напряжения в каждом положении переключателя SA1 значения коэффициентов повышения в этих положениях должны представлять собой геометрическую прогрессию. Поэтому, если в положении 1 коэффициент повышения равен 1,33, он должен быть равным 1,1 в положении 3 и 1,21 — в положении 2. В положении 4 напряжение на выход поступает непосредственно из сети и коэффициент равен 1.
Построим график зависимости выходного напряжения от входного. Для этого на листе миллиметровки размерами не менее 250×250 мм начертим координатные оси в масштабе 1 мм/В и проведём из начала координат четыре прямые с тангенсами угла наклона 1; 1,1; 1,21 и 1,33. Выделим участки этих прямых, находящиеся между горизонталями, соответствующими выходному напряжению210 и 240 В. Из точек пересечения линий с наклоном 1,33, 1,21 и 1,1с горизонталью 240 В опустим вертикальные прямые до пересечения с ближайшими линиями с наклоном 1,21, 1,1 и 1. От точек пересечения этих наклонных линий с горизонталью 210 В проведём вверх аналогичные прямые.
На рис. 2 приведён фрагмент полученного рисунка. При входном напряжении более 220 В переключатель SA1 находится в положении 4, и выходное напряжение поступает на выход без изменения. При снижении напряжения сети до 210 В переключатель устанавливается в положение 3, коэффициент передачи возрастает до 1,1, а выходное напряжение скачком увеличивается до 231 В. При дальнейшем снижении напряжения сети примерно до 191 В выходное уменьшится до 210 В, переключатель будет установлен в положение 2, выходное напряжение вновь поднимется до 231 В. Аналогичный процесс произойдёт и при снижении входного напряжения до 173 В. При его снижении до 150 В выходное напряжение, как было сказано выше, опустится до 200 В.
Рис. 2. График зависимости выходного напряжения от входного
При повышении входного напряжения переключение происходит при достижении входным напряжением значений 180, 198 и 218 В, при этом выходное каждый раз снижается скачком от 240 до 218 В. Таким образом, при изменении сетевого напряжения от 158 до 240 В выходное поддерживается в пределах от 210 до 240 В.
Чтобы при колебаниях напряжения в сети около порогов переключения скачки не происходили слишком часто, необходим гистерезис. Описанный алгоритм переключения отводов обмотки обеспечивает его в достаточной мере. Нетрудно видеть, что при сохранении числа ступеней даже небольшое повышение точности поддержания выходного напряжения за счёт сужения петель гистерезиса приведёт к существенному уменьшению их ширины, что недопустимо. Поэтому для достижения большей точности необходимо увеличивать число ступеней изменения коэффициента. Отметим также, что рассуждения по выбору его значений справедливы и для устройств по схемам рис. 1,а и рис. 1 ,в.
Принципиальная схема стабилизатора изображена на рис. 3 , а схема его блока управления — на рис. 4. Автотрансформатор составлен из трёх одинаковых трансформаторов T1-T3 — ТПП319-127/220-50 [2], первичные обмотки которых соединены параллельно, а последовательное соединение вторичных обмоток обеспечивает требуемые коэффициенты повышения напряжения.
Рис. 3. Принципиальная схема стабилизатора
Рис. 4. Схема блока упраления стабилизатора
При установке переключателя SA1 (см. рис. 3) в положение «Обход» входное напряжение поступает прямо на выход, и никакие узлы устройства, кроме вольтметра PV1 и помехоподавляющей цепи R2C2, энергии от сети не потребляют. Этот режим соответствует отсутствию стабилизации выходного напряжения. В среднем положении переключателя SA1 все его контакты разомкнуты, поэтому напряжение на выход не поступает.
При установке переключателя SA1 в положение «Стаб.» начинает работать блок управления, получающий питание от трансформатора T4 — ТА1-127/220-50 [2]. Напряжение с двух его обмоток по 6 В, соединённых последовательно, выпрямляет мост VD2 и стабилизирует на уровне 5 В интегральный стабилизатор DA2. Из выходного напряжения стабилизатора резистивный делитель R7-R11 формирует образцовые напряжения для компараторов DA1.2-DA1.4, поступающие на их неинвертирующие входы. Для упрощения расчётов они приняты равными 1/100 напряжений, соответствующих серединам петель гистерезиса на рис. 2 — 2,14, 1,95 и 1,77 В.
Постоянное напряжение, пропорциональное входному, формирует из поступающего с обмотки 11-12 трансформатора T4 выпрямительный мост VD1. Его сглаживает конденсатор C3. На инвертирующие входы всех компараторов поступает часть этого напряжения, определяемая делителем R5R6R15.
Логику работы устройства в целом иллюстрирует таблица. При сетевом напряжении более 218 В значения напряжения на инвертирующих входах всех компараторов выше, чем на неинвертирующих, а на их выходах установлен низкий логический уровень напряжения. Сигнал с выхода компаратора DA1.2 инвертирует элемент DD1.1 и ещё раз инвертирует элемент DD2.1. Через эмиттерный повторитель на транзисторе VT1 он включает светодиод HL1 и одновременно поступает на излучающий диод оптрона U1. Открывается симистор VS1, напряжение сети поступает на выход стабилизатора.
Таблица
Uвx,B | Уровни (Н — высокий, L — низкий) на выходах элементов | Коэффициент повышения | Включён светодиод | Открыт симистор | ||||||
DA1.2 | DA1.3 | DA1.4 | DD1.1 | DD1.2 | DD1.3 | DD1.3 | ||||
>218 | L | L | L | Н | L | L | L | 1 | HL1 | VS1 |
198…210 | H | L | L | L | Н | L | L | 1,1 | HL2 | VS2 |
180…191 | H | Н | L | L | L | Н | L | 1,21 | HL3 | VS3 |
<173 | Н | Н | Н | L | L | L | Н | 1,33 | HL4 | VS4 |
При снижении сетевого напряжения на выходах компараторов DA1.3 и DA1.4 один за другим устанавливаются высокие логические уровни. Выходные сигналы всех компараторов, превращённые простейшим логическим узлом на элементах «Исключающее ИЛИ» DD1.1-DD1.4 в позиционный код, через эмиттерные повторители на транзисторах VT2-VT4 включают излучающие диоды симисторных оптронов U2-U4. Оптроны, в свою очередь, включают соответственно симисторы VS2-VS4, и выходное напряжение остаётся в заданных пределах. С повышением напряжения в сети описанные процессы происходят в обратном порядке.
Между выходами элементов микросхемы DD1 и входами триггеров Шмитта микросхемы DD2 установлены RC-цепи, обеспечивающие задержку открывания очередного симистора относительно момента прекращения сигнала, разрешавшего открывание предыдущего. Это необходимо для предотвращения состояний, в которых одновременно открыты два симистора. Диоды VD4-VD7, включённые параллельно резисторам этих цепей, обеспечивают быстрое снятие разрешающего сигнала с симисторного оптрона в выключаемом канале. Длительность задержки открывания фотодинисторов оптронов U1-U4, которая должна гарантировано превышать половину периода напряжения сети, можно рассчитать по формуле
t3 ≈ R·C·ln(Uпит/(Uпит — Uпор)) = 330·0,047·ln(5/(5 — 3,3)) = 16,7 мс,
где R — сопротивление резистора цепи задержки, кОм; С — ёмкость конденсатора этой цепи, мкФ; Uпит=5 В — напряжение питания; Uпор = 3,3 В — типовое пороговое напряжение триггера Шмитта микросхемы HCF4093B при повышении входного напряжения на объединённых входах. Согласно паспортным данным этой микросхемы, допускается его разброс на ±0,7 В, поэтому при указанных номиналах резисторов и конденсаторов задержка может находиться в пределах от 12 до 24 мс. Если предположить, что реальный разброс вдвое меньше, задержка будет находиться в пределах от 14 до 20 мс, что уже более приемлемо, но требует контроля при налаживании устройства.
Чтобы исключить одновременное включение нескольких симисторов при переходных процессах, следующих за моментом подачи напряжения сети, введён узел задержки на детекторе понижения напряжения DA3. В момент подачи сетевого напряжения конденсатор C10 разряжен, за счёт диода VD3 транзистор VT5 закрыт и напряжение на его эмиттере близко к нулю. Излучающие диоды оптронов U1-U4 выключены.
По достижении напряжением на конденсаторе C10 значения около 1 В начинает работать микросхема DA3, её выходной транзистор открывается, напряжение на выходе становится равным нулю. Оно сохраняется таким до достижения напряжением на конденсаторе C10 значения 4,2 В, на что уходит около 200 мс, которых достаточно для завершения переходных процессов. В этот момент выходной транзистор микросхемы DA3 будет закрыт, а напряжение на базе и эмиттере транзистора VT5 скачком увеличится до близкого к напряжению питания. Оптроны заработают, будет открыт нужный симистор.
Во время сварочных работ в сети возникают сильные колебания напряжения, которые приводят, если не принять специальных мер, к очень частым переключениям симисторов. Для борьбы с этим явлением постоянная времени разрядки конденсатора C3 выбрана довольно большой — около 8 с. В результате при резком снижении входного напряжения переход на следующую ступень происходит примерно через 1 с, а кратковременные провалы во входном напряжении переключений не вызывают. В то же время постоянная времени зарядки конденсатора C3 невелика, и с повышением напряжения сети переключение произойдёт практически мгновенно. Такой способ «борьбы со сваркой» значительно проще применённого в [3] и эффективнее его, поскольку стабилизатор не выключается полностью, а продолжает реагировать на повышение напряжения в сети.
На схеме стабилизатора (см. рис. 3) показано также подключение к обмоткам контактов разъёма XS1, что позволяет использовать его для питания различных низковольтных потребителей. Вторичные обмотки трансформаторов ТПП319-127/220-50 рассчитаны на ток 8 А, чем и определяется указанная во врезке к статье предельная мощность нагрузки стабилизатора. Однако следует отметить, что она зависит и от свойств переключателя SA1, который должен позволять коммутировать указанный ток.
Автотрансформатор для стабилизатора можно изготовить самостоятельно, взяв за основу один или несколько трансформаторов питания от ламповых телевизоров [4-6]. Такие трансформаторы имеют обозначения, состоящие из букв ТС, дефиса и числа, соответствующего его мощности в ваттах.
Такой трансформатор после перемотки вторичных обмоток сможет обеспечить выходной ток стабилизатора, равный частному от деления его мощности на суммарное напряжение всех необходимых вторичных обмоток (23 + 25,3 + 27,6 » 76 В). А по выходному току можно определить максимальную мощность нагрузки стабилизатора.
Например, при использовании двух трансформаторов ТС-200 суммарной мощностью 400 Вт допустим выходной ток до 400/76 = 5,26 А, а максимальная мощность нагрузки (при выходном напряжении, равном номинальному в сети) — 230×5,26 = 1210 Вт. Таким образом, предельная мощность нагрузки стабилизатора в три раза превысит суммарную мощность использованных трансформаторов.
Имеющиеся на трансформаторах вторичные обмотки следует аккуратно смотать (они обычно намотаны поверх половин первичной), подсчитав при этом число витков накальной обмотки Nm намотанной самым толстым проводом. Напряжение этой обмотки под нагрузкой — 6,3 В, поэтому для вторичной обмотки на напряжение U число витков Nu можнонайти по формуле
NU = Nн·U/6,3.
Если магнитопровод трансформатора П-образный (как у трансформатора ТС-200-2), каждую секцию вторичной обмотки следует разделить на две равные части, намотать их на разных кернах магнитопровода трансформатора и соединить половины последовательно согласно. При противофазном соединении суммарное напряжение будет равно нулю, и нужно будет поменять местами выводы любой из половин.
При трёх трансформаторах можно для упрощения намотать на каждом по одной из вторичных обмоток. Если предполагается использовать трансформаторы разной мощности, на наименее мощном из них следует намотать обмотку с наименьшим напряжением, а на наиболее мощном — с наибольшим.
Половины первичных обмоток (на разных кернах) также следует соединить согласно. Обязательно первый раз включайте изготовленный трансформатор в сеть через плавкую вставку. При неправильном соединении половин первичной обмотки она спасёт от возможного пожара.
Диаметр провода вторичных обмоток d в миллиметрах (без изоляции) можно найти по формуле
d = 0,7·√I,
где I — ток вторичной обмотки, А.
Наиболее прочная изоляция у обмоточного провода ПЭВ-2, удобен также провод в шёлковой изоляции ПЭЛШО. Наматывают обмотку аккуратно, виток к витку, слои изолируют между собой прокладками из писчей бумаги. После намотки нужно собрать магнитопровод так, как он был собран ранее, и тщательно его стянуть винтами или обоймой — это уменьшит гудение.
Большинство элементов стабилизатора смонтированы на печатной плате размерами 120×85 мм, чертёж которой и схема расположения элементов на ней приведены на рис. 5. Все отверстия в плате расположены по сетке 2,5×2,5 мм. Для подключения внешних по отношению к плате цепей в неё впаяны контактные штыри от разъёмов серии 2РМ. Диаметр штырей — 1,5 мм для цепей симисторов и 1 мм — для остальных. К присоединяемым к ним проводам припаяны гнёзда от таких же разъёмов. Цвет проводов соответствует указанному на схемах рис. 3 и рис. 4, а контактные штыри для них промаркированы надетыми отрезками термоусаживаемой трубки соответствующего цвета.
Рис. 5. Чертёж печатной платы и схема расположения элементов на ней
На плате установлены импортные оксидные конденсаторы — аналоги К50-35. Конденсаторы C15-C18 (а также C1 и C2 на рис. 3) — металлоплёночные К73-17. Конденсаторы C11 — C14 нежелательно применять керамические, особенно если предполагается пользоваться стабилизатором при минусовой температуре. Здесь также подойдут конденсаторы К73-17, которые значительно термостабильнее керамических конденсаторов равной ёмкости.
Микросхему HCF4093BEY можно заменить другой 4093, 4093B в корпусе DIP14 или микросхемой К561ТЛ1, а счетверённый ОУ LM324N — на К1446УД3 или К1401УД2. В последнем случае нужно иметь в виду, что выводы питания микросхемы К1401УД2 расположены зеркально по отношению к микросхеме LM324N. Поэтому при установке на плату микросхемы К1401УД2 следует развернуть на 180о, не меняя рисунка печатных проводников. При использовании микросхемы К1446УД3 сопротивление резисторов R12-R14 следует уменьшить приблизительно на 20 % для сохранения ширины петель гистерезиса. Дело в том, что ОУ микросхемы К1446УД3 относятся к классу rail-to-rail, где максимальный и минимальный уровни выходного напряжения равны потенциалам соответственно плюсового и минусового выводов питания. В результате размах выходного напряжения несколько больше, чем у ОУ микросхем LM324N и К1401УД2.
Детектор понижения напряжения КР1171СП42 можно заменить на МСР100-450, МСР100-460 или МСР100-475 [7]. Вместо транзистора КТ3102ГМ допустимо установить КТ3102ЕМ. Выпрямительные мосты VD1, VD2, диоды VD3-VD7 — любые кремниевые малогабаритные. Резисторы R12-R18 следует использовать с допуском не хуже ±5 %.
Интересно, что в рассматриваемой конструкции набор элементов «Исключающее ИЛИ» К561ЛП2 можно заменить дешифратором К561ИД1. Входы 1, 2, 4 дешифратора следует подключить к выходам компараторов, а выходы 0, 1, 3, 7 — к цепям задержки.
Симисторы BTA16-600BW заменять другими нежелательно. Индекс W в их обозначении означает, что эти симисто-ры допускают увеличенную скорость нарастания напряжения между основными электродами, не выходя из закрытого состояния. Кроме того, симисторы этой серии имеют полностью изолированный от всех электродов металлический теплоотводящий фланец, что позволяет устанавливать их на не изолированный от корпуса стабилизатора теплоотвод. Если же использовать симисторы, фланец которых соединён с электродом 2, следует изолировать их общий теплоотвод от корпуса стабилизатора.
Тринисторные оптроны МОС3043M заменяются аналогичными, имеющими встроенный узел, гарантирующий открывание симистора в момент перехода мгновенного значения приложенного к нему напряжения через ноль [8]. Если используемые оптроны открываются большим, чем 5 мА, током управления, необходимо обратно пропорционально требуемому току изменить сопротивление резисторов R29-R32.
Как показал опыт, установка демпфирующих RC-цепей (например, R41C15) требуется больше для оптронов, чем для симисторов. Рекомендации по выбору параметров этих цепей приведены в [8] и [9].
Цифровой вольтметр переменного напряжения PV1 — готовый импортный, приобретён в интернет-магазине. Измеряемое напряжение частотой 50 Гц — от 70 до 500 В, погрешность — ± 1 %, габариты — 48x22x29 мм.
Трансформатор Т4 можно исключить, если использовать вместо него, выпрямителя на диодном мосте VD2 и стабилизатора напряжения DA2 готовый стабилизированный преобразователь напряжения сети в постоянное 5 В. Здесь может подойти зарядное устройство для сотового телефона. Следует, однако, иметь в виду, что стабильность выходного напряжения зарядных устройств обычно невысока, а само оно незначительно превышает 5 В. Необходимо убедиться, что это напряжение практически не изменяется при подключении к выходу зарядного устройства резистора сопротивлением 50…100 Ом и при изменении напряжения в сети от 120 до 250 В. Если это не так, на выход зарядного устройства следует установить микросхемустабилизатор напряжения 5 В с низким падением напряжения между входом и выходом (так называемый low drop стабилизатор), например, LM2931Z-5.0 или КР1158ЕН5 с любым буквенным индексом.
При исключении трансформатора T4 вместо напряжения 28 В на мост VD1 нужно подать напряжение сети, а сопротивление резисторов R3, R5, R6 увеличить приблизительно в восемь раз. Конденсатор C3 установить ёмкостью 3,3 мкФ на напряжение 400 В. Следует иметь в виду, что в результате этих переделок все элементы стабилизатора будут находиться под напряжением сети.
Трансформаторы T1 -T3 закреплены между двумя металлическими поддонами размерами 387x177x20 мм от разобранных устройств ЕС ЭВМ. На переднем, согласно рис. 6, поддоне смонтированы переключатель SA1, вольтметр PV1, держатель предохранителя FU1, светодиоды HL1-HL4, две пары выходных гнёзд XS2, XS3 и 12-контактный разъём XS1 ШР32П12НГ3 для подключения низковольтных потребителей. На заднем поддоне закреплён трансформатор T4.
Рис. 6. Монтаж устойства
В качестве теплоотвода для симисторов использован алюминиевый брусок сечением 10×25 мм, служащий распоркой, соединяющей поддоны. По нему тепло от симисторов отводится на корпус. К этой же стойке и другой аналогичной прикреплена печатная плата. Выводы симисторов следует припаивать к контактным площадкам на печатной плате лишь после установки симис-торов на теплоотвод, к которому прикреплена и печатная плата.
При налаживании стабилизатора сначала следует подключить к сети только трансформатор T4 и установить на движках подстроечных резисторов R8-R10 напряжения соответственно 2,14; 1,95 и 1,77 В относительно общего провода, а на резисторе R15 — 1/100 текущего значения напряжения в сети. Используя лабораторный автотрансформатор (ЛАТР), проверить порядок включения светодиодов HL1-HL4 в соответствии с приведённой ранее таблицей. Пороги переключения коэффициентов повышения напряжения должны соответствовать указанным при описании рис. 2. При необходимости можно поточнее отрегулировать подстроечными резисторами R8-R10 пороги переключения, а для изменения ширины петли гистерезиса какого-либо компаратора подобрать его входной резистор (R12-R14). Ширина этой петли прямо пропорциональна сопротивлению соответствующего резистора.
Целесообразно проверить исправность цепей задержки открывания симисторов (элементы R20-R23, C11 — C14, VD4-VD7), отключив мост VD1 от трансформатора T4 и подключив к точке соединения резисторов R6 и R15 цепь, схема которой приведена на рис. 7. При замкнутом выключателе SA2 напряжение на конденсаторе C19 плавно нарастает от нуля до 2,5 В, при разомкнутом — спадает до нуля. Следует проверить осциллографом со ждущей развёрткой наличие задержки спадающего перепада импульса на выходе каждого триггера Шмитта (DD2.1 — DD2.4) относительно нарастающего перепада импульса на выходе соответствующего элемента «Исключающее ИЛИ» (DD1.1-DD1.4). На осциллограмме рис. 8, где скорость развёртки 2 мс/дел., эта задержка равна 15,5 мс при допустимых пределах 14…20 мс.
Рис. 7. Схема цепи
Рис. 8. Осциллограмма
После этого можно восстановить подключение симисторов к трансформаторам (перед первым включением установив в цепь электрода 2 каждого симистора плавкую вставку на 5 А), подключить нагрузку мощностью 100…200 Вт и проверить показанную на рис. 2 зависимость выходного напряжения от входного. При эксплуатации стабилизатора можно оперативно регулировать подстроечным резистором R6 интервал изменения выходного напряжения, например, установить его 200…230 В.
Полезные советы по конструктивному оформлению стабилизатора, обеспечивающему его пожарную безопасность, можно найти в [3].
Как при налаживании, так и во время эксплуатации стабилизатора следует помнить, что при резком уменьшении напряжения в сети переключение стабилизатора происходит с весьма заметной задержкой — около секунды на каждую ступень.
Литература
1. Бирюков С. Релейно-трансформаторный стабилизатор переменного напряжения. — Схемотехника, 2003, № 7, с. 26-28.
2. Сидоров И. Н., Мукосеев В. В., Христинин А. А. Малогабаритные трансформаторы и дроссели. Справочник. — М.: Радио и связь, 1985.
3. Майоров М. Стабилизатор сетевого напряжения для холодильника. — Схемотехника, 2002, № 2, с. 53-59.
4. Кузинец Л. М., Соколов В. С. Узлы телевизионных приёмников. — М.: Радио и связь, 1987.
5. Сидоров И. Н., Биннатов М. Ф., Васильев Е. А. Устройства электропитания бытовой РЭА. — М.: Радио и связь, 1991.
6. Сидоров И. Н., Скорняков С. В. Трансформаторы бытовой радиоэлектронной аппаратуры. Справочник. — М.: Радио и связь, 1994.
7. Потапчук М. Супервизоры серии MCP10X фирмы Microchip. — Схемотехника, 2006, № 1, с. 10, 11.
8. MOC3031M, MOC3032M, MOC3033M, MOC3041M, MOC3042M, MOC3043M 6-Pin DIP Zero-Cross Optoisolators Triac Driver Output (250/400 Volt Peak). — URL: http://www. farnell.com/datasheets/1639837.pdf (12.12.17).
9. Николайчук О. Управление нагрузкой на переменном токе. — Схемотехника, 2003, № 4, с. 25, 26.
Автор: С. Бирюков, г. Москва
Схема стабилизатора напряжения: 12в — 220в своими руками
В электрических цепях постоянно возникает необходимость в стабилизации тех или иных параметров. С этой целью применяются специальные схемы управления и слежения за ними. Точность стабилизирующих действий зависит от так называемого эталона, с которым и сравнивается конкретный параметр, например, напряжение. То есть, когда значение параметра будет ниже эталона, схема стабилизатора напряжения включит управление и отдаст команду на его увеличение. В случае необходимости выполняется обратное действие – на уменьшение.
Данный принцип работы лежит в основе автоматического управления всеми известными устройствами и системами. Точно так же действуют и стабилизаторы напряжения, несмотря на разнообразие схем и элементов, используемых для их создания.
Схема стабилизатора напряжения 220в своими руками
При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.
Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.
За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.
Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.
Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.
Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см² и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков – 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.
Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм². За счет этого предотвращается нагрев трансформатора во время работы.
Все остальные комплектующие рекомендуется приобретать в готовом виде, в специализированных магазинах. Основой сборки является принципиальная схема стабилизатора напряжения, заводского изготовления. Вначале устанавливается микросхема, выполняющая функцию контроллера для теплоотвода. Для ее изготовления используется алюминиевая пластина площадью свыше 15 см². На эту же плату производится монтаж симисторов. Теплоотвод, предназначенный для монтажа, должен быть с охлаждающей поверхностью.
После этого сюда же устанавливаются светодиоды в соответствии со схемой или со стороны печатных проводников. Собранная таким образом конструкция, не может сравниваться с заводскими моделями ни по надежности, ни по качеству работы. Такие стабилизаторы используются с бытовыми приборами, не требующими точных параметров тока и напряжения.
Схемы стабилизаторов напряжения на транзисторах
Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе – уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.
В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу диодного моста. Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.
Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.
Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. Транзистор VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы – К50-35, резисторы – МЛТ-0,5.
Схема линейного стабилизатора напряжения 12в
В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому – КРЕН142.
Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.
Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.
Регулируемый стабилизатор напряжения схема
Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.
В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами – стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) – полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.
Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 – 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.
Схема симисторного стабилизатора напряжения 220в
Симисторные стабилизаторы работают по аналогии с релейными устройствами. Существенным отличием является наличие узла, переключающего обмотки трансформатора. Вместо реле используются мощные симисторы, работающие под управлением контроллеров.
Управление обмотками с помощью симисторов – бесконтактное, поэтому при переключениях нет характерных щелчков. Для намотки автотрансформатора используется медный провод. Симисторные стабилизаторы могут работать при пониженном напряжении от 90 вольт и высоком – до 300 вольт. Регулировка напряжения осуществляется с точностью до 2%, отчего лампы совершенно не моргают. Однако во время переключений возникает ЭДС самоиндукции, как и в релейных устройствах.
Симисторные ключи обладают повышенной чувствительностью к перегрузкам, в связи с чем они должны иметь запас по мощности. Данный тип стабилизаторов отличается очень сложным температурным режимом. Поэтому установка симисторов осуществляется на радиаторы с принудительным вентиляторным охлаждением. Точно так же работает схема тиристорного стабилизатора напряжения 220В своими руками.
Существуют устройства с повышенной точностью, работающие по двухступенчатой системе. На первой ступени выполняется грубая регулировка выходного напряжения, а на второй ступени этот процесс осуществляется значительно точнее. Таким образом, управление двумя ступенями выполняется с помощью одного контроллера, что фактически означает наличие двух стабилизаторов в едином корпусе. Обе ступени имеют обмотки, намотанные в общем трансформаторе. При наличии 12 ключей, эти две ступени позволяют регулировать выходное напряжение в 36 уровнях, чем и обеспечивается его высокая точность.
Стабилизатор напряжения с защитой по току схема
Данные устройства обеспечивают питание преимущественно для низковольтных устройств. Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита. Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также биполярный транзистор с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.
Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается. Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения. В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току. Для того чтобы установить точный порог срабатывания токовой защиты, применяется подстроечный резистор R3, включаемый параллельно с резистором R2. Красный цвет светодиода LED1 указывает на срабатывание защиты, а зеленый LED2 – на выходное напряжение.
После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2. Например, при R2 равном 0,1 Ом, минимальный ток срабатывания защиты будет составлять около 8А. Если же нужно, наоборот, увеличить ток нагрузки, следует параллельно включить два и более транзисторов, в эмиттерах которых имеются выравнивающие резисторы.
Схема релейного стабилизатора напряжения 220
С помощью релейного стабилизатора обеспечивается надежная защита приборов и других электронных устройств, для которых стандартный уровень напряжения составляет 220В. Данный стабилизатор напряжения 220В, схема которого всем известна. Пользуется широкой популярностью, благодаря простоте своей конструкции.
Для того чтобы правильно эксплуатировать это устройство, необходимо изучить его устройство и принцип действия. Каждый релейный стабилизатор состоит из автоматического трансформатора и электронной схемы, управляющей его работой. Кроме того, имеется реле, помещенное в надежный корпус. Данный прибор относится к категории вольтодобавочных, то есть с его помощью лишь добавляется ток в случае низкого напряжения.
Добавление необходимого количества вольт осуществляется путем подключения обмотки трансформатора. Обычно для работы используется 4 обмотки. В случае слишком высокого тока в электрической сети, трансформатор автоматически уменьшает напряжение до нужного значения. Конструкция может быть дополнена и другими элементами, например, дисплеем.
Таким образом, релейный стабилизатор напряжения имеет очень простой принцип работы. Ток измеряется электронной схемой, затем, после получения результатов, он сравнивается с выходным током. Полученная разница в напряжении регулируется самостоятельно путем подбора необходимой обмотки. Далее, подключается реле и напряжение выходит на необходимый уровень.
Стабилизатор напряжения и тока на LM2576
Стабилизатор переменного тока
Стабилизаторы переменного тока, гораздо реже применяются радиолюбителями, чем стабилизаторы напряжения и регуляторы мощности. Во многом это связано с более сложной схемотехникой традиционных источников тока. Однако объективный анализ показывает, что в ряде случаев предпочтительнее применение именно источников тока. Главное достоинство источника тока — нечувствительность к короткому замыканию нагрузки.
Достаточно часто встречаются случаи, когда надо поддерживать постоянное значение переменного тока, например, при включении мощных ламп накаливания. Такая мера в несколько раз продлевает срок их службы. Регулируемый стабилизатор может оказать неоценимую помощь при проверке и налаживании устройств токовой защиты.
Вниманию читателей предлагается несложная схема стабилизатора переменного тока, с возможностью плавной регулировкой его величины. Ток можно регулировать от нескольких миллиампер до 8 Ампер. При соответствующем выборе элементов схемы максимальный стабилизируемый ток можно увеличить до 70-80 А.
В основу схемы положен токо-стабилизирующий двухполюсник, данное схемотехническое решение известно довольно давно, однако долгое время было чисто теоретическим (вспомните, что представляли собой МОП-транзисторы лет 10-15 назад). Ситуация изменилась с появлением в продаже мощных МОП-транзисторов (MOSFET). Их применение позволяет создавать источники тока с хорошими характеристиками и предельно простыми.
Собственно стабилизатор тока собран на операционном усилителе (ОУ) DA1, транзисторе VT1 и резисторах R1, R2, R4. Делитель R1-R2 представляет собой «задатчик» тока. В данном случае ток в амперах численно равен напряжению на движке R2, умноженному на 10. Это позволяет выбрать напряжение датчика тока R4 весьма малым. Для работы с переменным током в схему введен диодный мост, в одну из диагоналей которого включен токостабилизирующий двухполюсник. Такое включение эквивалентно последовательному соединению нагрузки и двухполюсника, и, следовательно, обеспечивает одинаковый ток через них.
Рассмотрим процесс стабилизации тока более подробно. Так как выпрямленное напряжение не фильтруется, напряжение на стоке транзистора VT1 — однополярное, пульсирующее. Когда напряжение на стоке (рисунок 2А) равно нулю, ток через VT1 не протекает, и падение напряжения на резисторе датчика R4 также равно нулю. Транзистор VT1 при этом полностью открыт. По мере роста напряжения в сети, напряжение, снимаемое с датчика, также увеличивается (пропорционально протекающему току), приближаясь к напряжению «задатчика». Транзистор VT1 начинает закрываться. При совпадении напряжений на датчике R4 и на «задатчике» R1-R2 происходит ограничение дальнейшего роста тока. ОУ DA1 поддерживает одинаковое напряжение на своих входах, изменяя сопротивление канала VT1. Тем самым обеспечивается стабилизация тока. Форма тока через VT1 совпадает с напряжением на «задатчике» и имеет трапецеидальную форму (рисунок 2Б). Такой же по форме, только переменный, ток протекает через нагрузку (рисунок 2В). Элементы VD1, R3, C1, C2 образуют параметрический стабилизатор для питания ОУ.
Если надо изменить диапазон стабилизируемых токов, следует соответствующим образом выбрать тип транзистора VT1 и диодов VD2-VD5, а также скорректировать напряжение «задатчика» тока или сопротивление датчика R4.
Ток стабилизации определяется по формуле:
Iст.=Uзад./R4
Налаживание схемы сводится к контролю напряжения «задатчика» (чтобы ток не вышел за пределы 7…8 А) и градуировке органа управления (резистора R2). Для визуального контроля в цепь тока можно включить амперметр.
ОУ DA1 подойдет любой широкого применения (К140УД6, К140УД7, mA741 и т.п.). От применения быстродействующих ОУ с полевыми транзисторами лучше воздержаться, поскольку с ними стабилизатор может самовозбудиться, что неминуемо выведет из строя ОУ, транзистор VT1 и диоды моста (именно так отреагировала схема у автора на установку К544УД2). Транзистор VT1 следует выбирать ориентируясь на максимально допустимые ток стока и напряжение сток-исток. Стабилитрон VD1 — любой прецизионный, с напряжением стабилизации 9…15 В. От его стабильности зависит стабильность напряжения «задатчика» и, как следствие стабилизируемого тока.
Транзистор VT1 следует укрепить на массивном радиаторе. К остальным деталям особых требований не предъявляется. Резистор R4 удобно изготовить из промышленного шунта для измерительных приборов. Это обеспечит требуемую точность и термостабильность. При его монтаже следует уделить особое внимание надежности соединения инверсного выхода ОУ и R4. Обрыв этого соединения вызывает выход стабилизатора из строя.
скачать архив
Каталог радиолюбительских схем. Стабилизатор напряжения переменного тока
Каталог радиолюбительских схем. Стабилизатор напряжения переменного токаСтабилизатор напряжения переменного тока
При питании радиоэлектронной аппаратуры от сети нередко приходится стабилизировать напряжение переменного тока.- Большую сложность при проектировании таких стабилизаторов представляет получение синусоидального выходного напряжения с малыми нелинейными искажениями.С точки зрения практической реализации этого требования, а также повышения быстродействия и коэффициента стабилизации наиболее предпочтительны стабилизаторы с транзисторным регулирующим элементом.
Структурная схема подобного стабилизатора напряжения переменного тока показана на рис. 1. Автотрансформатор Т1 повышает напряжение сети, а регулирующий элемент РЭ, включенный последовательно с нагрузкой, гасит излишек напряжения. Управляющий элемент УЭ, представляющий собой цепь отрицательной обратной связи, вырабатывает сигнал, несущий информацию об уровне выходного напряжения. Автотрансформатор позволяет получить более высокий КПД и cos j стабилизатора по сравнению с использованием в нем трансформатора.
Поскольку транзистор — прибор полярный, регулирующий элемент включен в диагональ выпрямительного диодного моста. Из-за нелинейности характеристик транзисторов и диодов форма напряжения и тока в нагрузке все же несколько отличается от правильной синусоиды — она имеет незначительное уплощение вершин.
В описываемом стабилизаторе (рис. 2) регулирующий элемент составлен из транзисторов VT1 и VT2, диодов VD2, VD3 и резисторов R1 — R4.
При изменении значения постоянного тока, протекающего через диагональ выпрямительного моста VDI, изменяется значение неременного тока, текущего через . секцию 1.1 обмотки автотрансформатора. В результате изменяется значение переменного напряжения на секции 1.2 обмотки. Такое включение регулирующего элемента уменьшает его влияние на форму синусоиды выходного напряжения.
Резисторы R1-R4, шунтирующие регулирующий элемент, уменьшают мощность, рассеиваемую транзисторами VT1, VT2.
Основные технические характеристики стабилизатора
Напряжение питающей сети, В | 220±22 |
Выходное напряжение переменного тока, В | 220 |
Мощность нагрузки, Вт | 130..220 |
Нестабильность выходного напряжения при указанных изменениях напряжения сети и мощности нагрузки, %, не более | 0,5 |
Коэффициент нелинейных искажений, %, не более | 6 |
Трансформатор Т2 служит для питания усилителя постоянного тока и одновременно входит в цепь отрицательной обратной связи. Напряжение обмотки II, выпрямленное диодным мостом VD5, поступает на делитель R12—R14. При повышении напряжения сети или уменьшении тока нагрузки, подключенной к выходу стабилизатора, увеличивается напряжение на базе транзистора VT5, а значит, и его коллекторный ток. Примерно в той же мере уменьшается и ток коллектора транзистора VT4. Падение напряжения же на резисторе R10 остается практически неизменным, поскольку напряжение на базе транзистора VT4 стабилизировано. При этом напряжение на резисторе R9 увеличивается и ток, текущий через транзистор VT3, уменьшается.
Вследствие уменьшения напряжения на базе транзистора VT2 он начинает закрываться, напряжение на его коллекторе увеличивается. Это приводит к закрыванию и транзистора VT1, так как напряжение на его базе фиксировано делителем R1R2R3R4VD2R5. Диод VD3 исключает влияние делителя на базу транзистора VT2. В результате увеличения сопротивления транзисторов VT1, VT2 регулирующего элемента уменьшается постоянный ток в диагонали выпрямительного моста VD1 и, следовательно переменный ток в секции 1.1 обмотки автотрансформатора Т1, что эквивалентно увеличению падения напряжения на секции 1.2. Поэтому выходное напряжение сохраняет свое первоначальное значение.
При минимальном значении напряжения сети или увеличении тока нагрузки ток через транзистор VT13 увеличивается и транзисторы VTI и VT2, наоборот, еще более открываются. Диод VD2 в этом случае закрывается напряжением с резистора R7. Диод VD3 обеспечивает полное открывание транзистора VT1.
Транзистор VT6, резистор RU и конденсатор С2 образуют электронный фильтр, задерживающий подачу напряжения питания на усилитель постоянного тока. Задержка необходима для устранения броска выходного напряжения в момент включения стабилизатора.
Ограничение минимальной мощности нагрузки значением 130 Вт обусловлено тем, что при меньшей мощности и сетевом напряжении более 220…225 В выходное напряжение повышается сверх установленного допуска из-за уменьшения падения напряжения на индуктивном сопротивлении секции 1.2 сетевого трансформатора.
Внешний вид описываемого стабилизатора показан в заголовке статьи, а его конструкция и графики, характеризующие его основные параметры,— показаны ниже.
Выпрямитель КЦ405А (VD1) можно заменить четырьмя диодами с обратным напряжением не менее 600 В и выпрямленным током 1 А; КД906А (VD5) — диодами с прямым током не менее 30 мА: транзисторы КТ809А (VT1, VT2) — аналогичными им мощными, например, КТ812А, КТ812Б. Транзисторы VT3 и VT6 могут быть любыми маломощными соответствующей структуры.
Резисторы Rl—R4 (С5-5-10 Вт) смонтированы на отдельной плате, которая размещена под выключателем SB 1. Подстроечный резистор R13 может быть любого типа. Конденсаторы С2 и СЗ — К50-6, С1 — КМ-6, выключатель питания SB1 — ПК.Н-41.
Мощность, рассеиваемая каждым из транзисторов VT1.VT2, равна 8 Вт, поэтому они установлены на отдельные теплоотводы с площадью поверхности по 500 см2.
Габаритная мощность автотрансформатора Т1 — около 220 Вт. Можно использовать автотрансформатор от магнитофона “Маяк-202” (магнитопровод ШЛ20Х20, секция 1.1 обмотки содержит 1364 витка провода ПЭВ-2 0,31, секция 1.2 — 193 витка провода ПЭВ-2 0,63).
Трансформатор Т2 выполнен на магнитопроводе ШЛ16Х16. Обмотка I содержит 2560 витков провода ПЭВ-2 0,1, обмотка II — 350 витков провода ПЭВ-2 0,2 с отводом от 70-го витка (для питания индикаторной лампы HL1).
Кожух стабилизатора лучше всего изготовить из изоляционного материала. В панелях кожуха надо предусмотреть вентиляционные отверстия. Если кожух металлический, необходимо позаботиться о надежной изоляции от него всех токоведущих деталей и проводов.
При налаживании сначала подборкой резистора R11 устанавливают напряжение 12 В на эмиттере транзистора VT6 (общим проводом устройства служит отрицательный вывод диодного моста VD5). При этом на базе транзистора VT4 должно установиться напряжение около 8 В.
К выходу стабилизатора подключают нагрузку. Ею может служить лампа накаливания мощностью 150…200 Вт. С лабораторного автотрансформатора РНО-250 на вход стабилизатора подают напряжение 220 В и резистором R13 устанавливают на выходе номинальное сетевое напряжение 220 В. Падение напряжения на каждом из транзисторов регулирующего элемента должно быть 80… 100 В. При изменении входного напряжения на +22 В напряжение на выходе стабилизатора должно оставаться практически неизменным. Отсутствие стабилизации свидетельствует об ошибке в монтаже или неисправности той или иной детали.
Возбуждение стабилизатора устраняют подборкой конденсатора С1.
Мощность стабилизатора можно увеличить до 450 Вт, если его регулирующий элемент смонтировать по схеме, показанной на рис. 3.
Для этого случая автотрансформатор Т1 нужно выполнить на магнитопроводе ШЛ20Х Х25. Секция 1.1 обмотки должна содержать 1300 витков провода ПЭВ-2 0,36, секция 1.2 — 180 витков провода ПЭВ-2 0,9.
Наиболее важные преимущества описанного стабилизатора по сравнению с феррорезонансным — малые нелинейные искажения выходного напряжения и почти полное отсутствие магнитного поля, отрицательно влияющего на работу цветных телевизоров.
г. Брянск
Ю. ЖУРАВЛЕВ
РАДИО № 6, 1986 г., с. 57-58
Простые выпрямители, фильтры, стабилизаторы
Источники питания были и остаются важнейшей и незаменимой составляющей любой радиоэлектронной схемы. Для обеспечения схем необходимыми напряжениями используют либо автономные источники питания — батареи, аккумуляторы, либо, при питании радиоаппаратуры от сети переменного тока, — сетевые источники. Для того, чтобы понизить напряжение сети с 220 В до приемлемых для питания транзисторных схем значений и обеспечить надежную защиту пользователя от поражения электрическим током, используют понижающий трансформатор (рис. 35.1, 35.16). В исключительно редких случаях используют бестрансформаторные питающие устройства, однако в этом случае все управляющие элементы устройства (ручки, выключатели и пр.) и корпус должны быть надежно изолированы от сети. При пользовании такими устройствами необходимо строжайшее соблюдение правил техники безопасности!
Ниже будут рассмотрены основные варианты схем питания радиоэлектронной аппаратуры.
Рис. 35.1
Простейший выпрямитель — преобразователь переменного тока в постоянный — показан на рис. 35.1, 35.6. К вторичной (понижающей) обмотке трансформатора подключен один полупроводниковый диод VD1. Этот диод пропускает только одну полуволну переменного напряжения (однополупериодное выпрямление), поэтому для сглаживания пульсаций тока на выходе выпрямителя необходимо включать электролитический конденсатор С1 большой емкости. Параллельно ему подключается сопротивление нагрузки. Недостатки такого выпрямителя очевидны: повышенные пульсации выпрямленного напряжения, невысокий КПД. Величина пульсаций будет тем выше, чем меньше емкость сглаживающего пульсации напряжения конденсатора С1 и чем меньше величина сопротивления нагрузки. Величина выходного напряжения такого выпрямителя при работе без нагрузки составляет 1 ,41xUab.
На рис. 35.2 показана схема простейшего выпрямителя — формирователя двуполярного выходного напряжения. Коэффициент полезного действия такого выпрямителя выше, а все приводимые ранее рассуждения полностью распространяются и на эту схему.
Рис. 35.2
Рис. 35.3
Мостовая схема выпрямителя содержит четыре диода и представлена на рис. 35.3. Такая схема подключается к источнику переменного тока, например, к точкам А и В разделительного трансформатора (рис. 35.1). Выпрямитель имеет более высокий КПД, токи в ветвях моста распределяются равномерно. Недостатком схемы являются удвоенные потери на последовательно включенных диодах выпрямителя (за счет «прямого» напряжения). Выходное напряжение мостовой схемы выпрямителя при работе без нагрузки также составляет 1,41 xUAB.
Для выпрямления и умножения выходного напряжения применяют схемы, показанные на рис. 35.4 и 35.5. Часто подобные схемы используют в преобразователях напряжения, в том числе бестрансформаторных, а также в схемах получения высокого напряжения (до десятков киловольт) в телевизионных приемниках, озонаторах, уловителях пыли.
Рис. 35.4
Рис. 35.5
Рис. 35.6
В большинстве случаев выпрямленное напряжение надлежит тщательным образом отфильтровать от пульсаций сети переменного тока. При плохой фильтрации в динамиках будет слышна не радующая душу музыка или речь, а низкочастотный гул или рокот, так называемый «фон» переменного тока. Чем выше качество питающего напряжения, тем лучше будет работать радиоаппаратура. Нефильтрованное питание допустимо использовать лишь для электродвигателей постоянного тока, осветительных и нагревательных приборов.
Для сглаживания выходного напряжения выпрямителей предназначены LC- и RC-фильтры. Простейший из них (L=0, R=0) — емкостный — показан на рис. 35.1 и 35.6. Схема эта, действительно, крайне проста. Однако увеличивать до бесконечности емкость фильтрующего конденсатора невозможно: растут габариты и стоимость конденсатора, снижается надежность устройства в целом. Существует опасность того, что в момент включения устройства в сеть произойдет повреждение диода VD1 либо обмотки трансформатора: ведь незаряженный конденсатор представляет в момент включения короткозамкнутыи элемент. Через обмотку трансформатора и диод в этот момент протекает ток короткого замыкания, многократно превышающий допустимые значения и вызывающий их повреждение.
Рис. 35.7
Рис. 35.8
Рис. 35.9
Для уменьшения переменной составляющей на выходе выпрямителя используют индуктивные (дроссельные) и резистив-но-емкостные Г- и П-образные фильтры (рис. 35.7 — 35.9), а также их последовательное соединение. Напомним, если активное сопротивление (резистор) представляет собой одинаковое сопротивление как для постоянного, так и для переменного тока, то конденсатор для постоянного тока является разрывом цепи, а для переменного тока, в идеале, служит коротким замыканием (см. также главу 3). В свою очередь, индуктивность (дроссель), также в идеале, представляет собой бесконечно малое сопротивление постоянному току и бесконечно большое сопротивление переменному току. Следовательно, использование в качестве элемента фильтра дросселей вместо резисторов предпочтительнее. Однако дроссели имеют значительные габариты, массу и цену, являются более дефицитными и менее надежными элементами по сравнению с обычными резисторами.
В радиоаппаратуре используют и транзисторные фильтры (рис. 35.10). Радиолюбителю предлагается самостоятельно испытать и сравнить различные виды выпрямителей и фильтров при разных параметрах входящих в них элементов. Для контроля «качества» выходного напряжения может быть использован УНЧ или осциллограф, на вход которых через разделительный конденсатор подается выпрямленное напряжение. Питание усилитель должен получать от батарей (аккумулятора) либо от иного источника питания с хорошей фильтрацией выходного напряжения. В качестве простейшего тестера качества фильтрации можно использовать и телефонный капсюль, также подключаемый к выходу выпрямителя или фильтра через разделительный конденсатор.
Рис. 35.10
Рис. 35.11
Рис. 35.12
Далее будут рассмотрены простые стабилизаторы тока (рис. 35.11 — 35.15) и напряжения (рис. 35.16 — 35.20). Схемы стабилизации тока зачастую используют в генераторах импульсов для заряда постоянным током времязадающих конденсаторов, а также в измерительной технике, например, при измерении сопротивлений. На рис. 35.11 и 35.12 показаны схемы стабилизаторов тока [МК 5/86-XVI], При увеличении напряжения на таком двухполюснике (рис. 35.11) происходит самоограничение тока через него. Величину резисторов R1 и R2 можно определить как:
Рис. 35.13
На рис. 35.12 и 35.13 представлены другие схемы ограничения и стабилизации тока. При возрастании тока через датчик тока R2 (рис. 35.12) или R1 и включенный ему параллельно потенциометр R3 (рис. 35.13) [F 1/76-21] уменьшается смещение на базе транзистора VT2 (рис. 35.12) или VT1 (рис. 35.13), соответственно. Транзисторы плавно, пропорционально протекающему через резисторы току, запираются, и ток стабилизируется. В определенных пределах ток ограничения (рис. 35.13) плавно регулируется потенциометром R3.
На рис. 35.14 показана схема стабилизатора тока на основе полевого транзистора. При увеличении тока через резистор R1 меняется смещение на управляющем (3 — И) переходе транзистора, он плавно запирается, ограничивая ток нагрузки.
Стабилизатор тока на основе микросхемы, в состав которой входит несколько десятков элементов (рис. 35.15), может обеспечить широкий диапазон токов нагрузки [Дж. Уитсон]. Популярная микросхема стабилизатора напряжения может стабилизировать еще и ток. Величина стабилизируемого тока в нагрузке рассчиты вается следующим образом: lH=(UBb|X/R1)+10 мА, где lH — в мА 11вых — в В; R1 — в кОм.
Рис. 35.14
Рис. 35.15
Рис. 35.16
На рис. 35.16 представлена схема несложного стабилизированного источника питания. Он содержит понижающий трансформатор, мостовой выпрямитель, конденсаторный фильтр и полупроводниковый стабилизатор напряжения. Схема стабилизатора напряжения позволяет плавно регулировать выходное напряжение в пределах от 0 до 12 В и защищена от коротких замыканий на выходе. Для питания низковольтного паяльника, а также для экспериментов с переменным электрическим током предусмотрена дополнительная обмотка трансформатора. Имеется индикация постоянного напряжения (светодиод HL2) и переменного (светодиод HL1). Для включения всего устройства используется тумблер SA1, а паяльника — SA2. Нагрузку отключает SA3. Для защиты цепей переменного тока от перегрузок предусмотрены предохранители FU1 и FU2. На ручке регулятора выходного напряжения (потенциометр R4) нанесены значения выходных напряжений.
Рис. 35.17
Рис. 35.18
Рис. 35.19
На рис. 35.17 показан фрагмент схемы модифицированного стабилизатора (рис. 35.16) с индикацией короткого замыкания в нагрузке. В нормальном режиме светится зеленый светодиод, при замыкании нагрузки — красный.
Рис. 35.20
Очень простой и высококачественный стабилизатор на специализированной микросхеме серии К142ЕН изображен на рис. 35.18. Транзисторные стабилизаторы показаны на рис. 35.19 и 35.20 [Р 4/81-61]. При значительных токах нагрузки транзистор VT4 (рис. 35.20) следует закрепить на теплоотводящей пластине из цветного металла.
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год
Радиосхемы. — Стабилизатор переменного напряжения
категория
Схемы источников питания
материалы в категории
Стабилизатор переменного напряжения предназначен для питания от сети электронной бытовой аппаратуры, потребляемая мощность которой не превышает 500 Вт при сетевом напряжении 220 В и 270 Вт при 127 В. Стабилизатор не только автоматически поддерживает выходное напряжение в пределах установленных допусков (+5… -10 %) от номинального при изменении напряжения сети от 175 до 255 В, но и автоматически включается при включении и выключается при выключении нагрузки. Стабилизатор не искажает формы кривой выходного напряжения, почти не создает помех и шума и не нагревается при работе на номинальную нагрузку. КПД стабилизатора 96 %, т. е. почти такой же, как у обычного трансформатора.
Схема стабилизатора переменного напряжения
Основой стабилизатора является трансформатор вольтдобавки Т1, одна из обмоток которого постоянно включена последовательно с нагрузкой, а две другие автоматически переклкнаются в зависимости от напряжения сети.
Автомат включения и выключения собран на трансформаторе Т1 и герконовом реле К1. Реле питается от вторичной обмотки трансформатора через выпрямитель на диодах VI и V2. При включении нагрузки мощностью более 50 Вт появляется ток через трансформатор Т1, реле К1 включается и своими контактами K1.1 подключает к сети трансформатор Т2, который питает через выпрямители V3-V6 и V7-V10 два реле-регулятора, собранных на электромагнитных реле К2, К4 и КЗ, К5. Подстроечные резисторы R2-R5 необходимы для настройки реле-регуляторов на срабатывание в определенных допусках изменяющегося напряжения сети. Контакты К2.1 и К4.2 переключают обмотки трансформатора вольтдобавки Т1, контакты реле КЗ и К5 служат для переключения питания на реле К2 и К4.
Стабилизатор помещен в металлический кожух с отверстиями для доступа к шлицам подстроечных резисторов. Отверстий для вентиляции не требуется. На кожухе устанавливают розетку для включения нагрузки, колодки предохранителей и переключатель напряжения сети.
Данные трансформаторов приведены в таблице.
Обозначение | Магнитопровод | Обмотка | Число витков | Диаметр провода ПЭВ-2, мм |
Т1 | Ш8х8 | I | 20 | 1,2 |
II | 2х350 | 0,18 | ||
Т2 | Ш16х18 | Iа | 2050 | 0,07 |
Iб | 2100 | 0,07 | ||
II | 820 | 0,25 | ||
III | 210 | 0,15 | ||
Т3 | Ш32х40 | I | 116 | 1,2 |
II | 220 | 0,31 | ||
III | 800 | 0,31 |
Трансформатор Т1 — выходной от приемника «Спидола»; первичная обмотка с отводом использована как вторичная. Межобмоточная изоляция — четыре слоя лакоткани. У трансформатора Т1 обмотку I наматывают последней. Реле КЗ, К5 — типа РЭС-49 ( паспорт РС4 569.423), К2, К4 — РЭН-32 (паспорт РФ4.519.024), К1 — РЭС-55А (паспорт РС4.559 610).
Перед включением стабилизатора в сеть следует проверить его следующим образом: при разомкнутых выводах нагрузки сопротивление со стороны включения в сеть должно быть 2 Мом. При коротком замьгкании на выходе стабилизатора сопротивление между штырьками сетевой вилки стабилизатора должно быть 1…2 Ом.
Налаживание стабилизатора сводится к установке построечных резисторов R2- R5 на требуемый диапазон стабилизации. Настройку следует производить при включенной нагрузке не менее 300 Вт.
Схема вторая
Данный стабилизатор переменного напряжения предназначен в основном для питания телевизоров с потребляемой мощностью 150… 180 Вт
При нажатии на кнопку S1 на выходе появится переменное напряжение, зарядится конденсатор С1, и сработает реле К1, контакты которого блокируют кнопку S1. При положительной полуволне сетевого напряжения ток потечет через диод VI, стабилитрон V5, резистор R1 и диод V4. Параллельно с этим ток пойдет по верхней (по схеме) секции первичной обмотки трансформатора Т1, диод V6, регулирующий составной транзистор V10, V11, диод V9, нижней секции первичной обмотки трансформатора Т1.
Напряжение на верхней секции и обмотки не может быть больше значения, определяемого напряжением стабилизации стабилитрона V5, так как он под ключен параллельно переходу эмиттер — база регулирующего транзистора и этой секции обмотки. Таким образом повышение сетевого напряжения вызовет только увеличение падения напряжения на регулирующем транзисторе, напряжение же на секциях первичной обмотки трансформатора не изменится.
При смене полярности сетевого напряжения изменится направление токов в обмотках и будут включены другие диоды. Сумма же напряжений от двух секций останется постоянной, во вторичной обмотке напряжение не изменится, и на выходе устройства останется стабильным. При изменении сетевого напряжения от 185 до 235 В на нагрузке останется напряжение 220 В.
Выходная мощность стабилизатора в основном определяется I возможностями трансформатора Т1. При I увеличении напряжения сети до недопустимых значений, напряжение на конденсаторе С1 тоже увеличивается, стабилитрон V17 входит в режим насыщения и открывается тринистор V18, реле шунтируется и отпускает якорь, отключая стабилизатор от сети
В схеме использован стандартный трансформатор ТС-180-2, стабилитрон V5 — на напряжение 130 В (может быть собран из нескольких диодов, включенных последовательно). Сердечник трансформатора стержневой ленточный, магнитопровод СП 21 X 45. Намоточные данные приведены в табл VIII 3.
Выводы обмоток | Число витков | Диаметр провода ПЭВ-1, мм |
1-2 | 375 | 0,69 |
2-3 | 58 | 0,69 |
5-9 | 214 | 0,51 |
7-8 | 157 | 0,41 |
9-10 | 23 | 0,45 |
11-12 | 23 | 0,64 |
Обмотки, обозначенные штрихами, аналогичны основным (без штрихов).
Тринистор V18 можно заменить на КУ201 с любым буквенным индексом. Транзисторы следует установить на общий радиатор площадью 200 см2.
Налаживание сводится к установке напряжения срабатывания защитного устройства подбором резистора R3*.
⚡️Самодельный стабилизатор напряжения 220в | radiochipi.ru
На чтение 3 мин Опубликовано Обновлено
Электронный стабилизатор напряжения — это промежуточное устройство между бытовой электросети и электропотребителем (нагрузкой). Такое устройство предназначено для поддержания напряжения на определенном уровне, а в частности 220В.
Нередко случается в квартирах, а часто в своих домах, напряжения в розетке далеко от идеала 220В, оно или сильно занижено, либо завышено, а порой просто резко скачет. В таких ситуациях включенные бытовые приборы в розетку ведут себя как-то странно, освещение тускло горит, холодильник начинает гудеть, вода в электрочайнике медленно закипает. На помощь нам приходит стабилизатор сетевого напряжения.
[info]Стабилизаторы бывают промышленные и бытовые. Промышленные стабилизаторы напряжения работают от трех фазного напряжения 380В, бытовые от однофазного и делятся на электронные, феррорезонансные, релейные, электромеханические, инверторные.[/info]
Рассмотрим принципиальную схему упрощенного электронного стабилизатора напряжения. В диодном мосту VD2 по диагонали расположен полевой транзистор VT2, когда он закрыт, то первичная обмотка вольтодобавочного трансформатора Т1 отключена от сети. Выходное U на холостом ходу, равно сетевому за исключением, малого падения напряжения на вторичной обмотке трансформатора Т1.
По схеме начало первичной обмотки L1-1 трансформатора Т1 соединен непосредственно к сети 220В. Для того чтобы подключить второй конец первичной обмотки L2-1’ трансформатора Т1 к сети 220В, необходимо открыть полевой транзистор VT2 (IRF840), после чего к нагрузке приложится сумма напряжений на вторичной обмотке L1 1-2, L2 2’-1’ и напряжения сети.
На биполярный транзистор VT1 структуры n-p-n перехода подается напряжение, через нагрузку, трансформатор Т2 и диодный мост VD1. Потенциометром R1 выставляется выходное U=220В порог срабатывания устройства на нагрузке, биполярный транзистор VT1 открывается, при этом транзистор VT2 закрывается. Если напряжение в сети упадет и станет ниже 220В, то закроется транзистор VT1, откроется транзистор VT2.
Диодный мост VD1 КЦ405В выпрямляет переменное U=12В на вторичной обмотке трансформатора Т2, после постоянное напряжение подается на стабилизатор DA1 КР142ЕН8А и запитывает коллекторную цепь транзистора VT1 КТ972А. Конденсатор С5 и резистор R6 соединены параллельно истоку стоку транзистора VT2 и образуют гасящую цепочку от нежелательных скачков напряжения. С1 выполняет роль фильтрующего конденсатора от сетевых помех, тем самым улучшает процесс работы устройства.
Подбирая номиналы сопротивлений резисторов R3, R5 добиваются наилучшей и устойчивой работы стабилизации напряжения. Включение/выключение устройства и нагрузки осуществляется выключателем SA1. В стабилизаторе напряжения предусмотрено отключение стабилизирующего напряжения на нагрузке выключателем SA2. Собранный по схеме стабилизатор включают в сеть 220В и переменным резистором R1 выставляют U=220В на нагрузке.
С каталогом масляных трансформаторов можно ознакомиться по ссылке.
Вольтодобавочный трансформатор Т1 собран на основе готового трансформатора марки СТ-320, ранее использовавшегося в БП-1 блоках питания телевизоров УЛПЦТ-59. Трансформатор необходимо разобрать полностью, снять магнитосердечник, после чего смотать все вторичные обмотки, необходимо оставить только сетевую (первичную обмотку). Заново намотать поровну вторичные обмотки эмалированным медным проводом ПЭВ, ПЭЛ.
Одинаковые две катушки имеют следующие намоточные данные:
Полевой транзистор VT2 необходимо закрепить на радиаторе!
Ac Voltage — обзор
Инверторный привод SPWM
Когда асинхронный двигатель приводится в действие от идеального источника переменного напряжения, его нормальная рабочая скорость менее чем на 5% ниже синхронной скорости, которая определяется частотой источника переменного тока и количество полюсов двигателя. С помощью инвертора с синусоидальной модуляцией (SPWM), показанного на рис. 30.17, частоту питания двигателя можно легко отрегулировать для переменной скорости. Уравнение (30.18) подразумевает, что, если номинальный поток в воздушном зазоре должен поддерживаться на его номинальном значении на всех скоростях, напряжение питания двигателя В 1 должно изменяться пропорционально частоте f 1 , когда падение напряжения на сопротивлении статора можно считать незначительным.Блок-схема на рис. 30.18A показывает, как частота f 1 и выходное напряжение В 1 инвертора SPWM пропорционально регулируются с заданием скорости. Сигнал задания скорости обычно проходит через фильтр, который позволяет только постепенное изменение частоты f 1 . Этот тип управления широко известен как инверторный привод V-f . Управление входным напряжением статора В 1 в зависимости от частоты f 1 легко осуществляется внутри инвертора путем модуляции переключателей T1-T6.Однако на низкой скорости, когда входное напряжение В 1 низкое, большая часть входного напряжения может падать на импедансе статора, что приводит к уменьшению магнитного потока в воздушном зазоре и потере крутящего момента.
Рис. 30.17. Привод V-f с инвертором SPWM.
Рис.30.18. (A) Входной опорный фильтр и генерация опорного напряжения и частоты для инверторного привода V-f и (B) компенсация напряжения на низкой скорости.
Компенсация падения сопротивления статора, как показано на рис.30.18B, часто используется. Однако, если двигатель становится слегка нагруженным на низкой скорости, магнитный поток в воздушном зазоре может превысить номинальное значение, что приведет к перегреву двигателя.
Из эквивалентной схемы на рис. 30.13 и без учета индуктивности рассеяния ротора развиваемый крутящий момент T и ток ротора I ′ 2 даются как
(30,24) I2 = E1sω1R2′ω1 = λmR2 ′ sω1A
и
(30,25) T = 3pR2′ωrI2′2Nm
, где s ω 1 — частота скольжения, которая также является частотой напряжений и токов в роторе.Уравнение (30.24) подразумевает, что, ограничивая скольжение с , ток ротора может быть ограничен, что, в свою очередь, ограничивает развиваемый крутящий момент Eq. (30,25). Следовательно, привод с ограничением скольжения также является приводом с ограничением крутящего момента. Обратите внимание, что это верно только в устойчивом состоянии. Система регулирования скорости с таким ограничителем скольжения показана на рис. 30.19. В этой схеме скорость двигателя измеряется и добавляется к ошибке ограниченной скорости (или скорости ограниченного скольжения) для получения частоты (или задания скорости для привода V-f ).
Рис. 30.19. Замкнутый регулятор скорости с внутренним контуром скольжения.
Однако многие приложения контроллера Vf представляют собой схемы с разомкнутым контуром, в которых любое требуемое изменение В 1 проходит через ограничитель (или фильтр) рампы, так что внезапные изменения скорости скольжения ω r исключаются, что позволяет двигателю следить за изменением частоты питания без превышения предельных значений тока и крутящего момента ротора.
Из приведенного выше анализа очевидно, что инверторный привод V-f по существу работает во всех четырех квадрантах, при этом скорость ротора немного падает с нагрузкой и развивает полный крутящий момент при той же скорости скольжения на всех скоростях. Это предполагает, что входное напряжение статора правильно скомпенсировано, так что двигатель работает с постоянным (или номинальным) магнитным потоком в воздушном зазоре на всех скоростях. Двигатель может работать со скоростью выше базовой, поддерживая постоянным входное напряжение В 1 , увеличивая при этом частоту статора выше базовой, чтобы двигатель работал на скоростях, превышающих базовую скорость.Поток в воздушном зазоре и, следовательно, максимальный развиваемый крутящий момент теперь падают со скоростью, что приводит к характеристике с постоянной мощностью. На рис. 30.20 показаны T-ω характеристики такого частотно-регулируемого привода для различных рабочих частот. На этом рисунке полностью изображена характеристика T-ω для базовой скорости с указанием максимального развиваемого крутящего момента T max и номинального крутящего момента. Ниже базовой скорости сохраняется отношение V1-f1, чтобы поток в воздушном зазоре оставался постоянным.Выше базовой скорости V 1 остается постоянной, а f 1 увеличивается с увеличением скорости, тем самым ослабляя поток в воздушном зазоре. Прямое движение в квадранте 1 происходит с последовательностью выходных напряжений инвертора a-b-c, тогда как обратное движение в квадранте 3 происходит с последовательностью a-b-c. Рекуперативное торможение при движении вперед происходит путем регулировки входной частоты f 1 таким образом, чтобы двигатель работал в квадранте 2 (квадрант 4 для обратного торможения) с желаемой характеристикой торможения.
Рис. 30.20. Типичные характеристики T − ω привода V-f с входной частотой f 1 и напряжением В 1 ниже и выше базовой скорости.
Обратите внимание, что характеристики на рис. 30.20 основаны на модели двигателя за счет эквивалентной схемы в установившемся режиме. Такой привод страдает плохой реакцией крутящего момента во время переходного режима из-за зависящих от времени взаимодействий между потоками статора и ротора. На рис. 30.21 показан поток в воздушном зазоре машины во время разгона с контролем V-f , полученный из динамической модели.Ясно, что поток в воздушном зазоре не остается постоянным во время динамической работы.
Рис. 30.21. Переходная характеристика крутящего момента, скорости, тока и магнитного потока в воздушном зазоре при ускорении из состояния покоя с использованием инверторного привода V-f .
Можно ли использовать регулятор переменного напряжения для регулирования постоянного напряжения?
Можно ли использовать регулятор напряжения переменного тока для регулирования постоянного напряжения? Конечно, нет. Принцип работы регулятора напряжения переменного тока аналогичен автотрансформатору.Напряжение на входе не меняется, а затем часть напряжения снимается с входной катушки в качестве выхода. Когда количество витков этой катушки изменяется из-за движения скользящего рычага на входной катушке, выходное напряжение также следует за изменением, чтобы регулировать выход. Входная клемма регулятора напряжения переменного тока подключена к источнику питания, а выходная клемма подключена к нагрузке. После того, как напряжение на выходной клемме понижено, выходной ток нагрузки должен быть больше, чем ток источника питания входной клеммы.
Принцип регулятора напряжения постоянного тока заключается в том, что однофазная мощность переменного тока преобразуется в стабильный источник питания постоянного тока через силовой трансформатор, схему выпрямителя, схему фильтра и схему стабилизации напряжения, а также весь процесс ввода и вывода от Электросеть переменного тока включает:
1. Входной фильтр: его функция состоит в том, чтобы фильтровать помехи, существующие в электросети, а также предотвращать попадание помех, создаваемых машиной, обратно в общественную электросеть.
2. Выпрямление и фильтрация: Регулируемый источник постоянного тока переменного тока электросети напрямую выпрямляется в более плавную мощность постоянного тока для следующего уровня преобразования.
3. Инвертор: Превратите выпрямленный источник постоянного тока в высокочастотный переменный ток. Это основная часть регулируемого источника постоянного тока с высокочастотным переключателем. Чем выше частота, тем меньше соотношение объема, веса и выходной мощности.
4. Выпрямление и фильтрация выходного сигнала: В соответствии с потребностями нагрузки обеспечьте стабильный и надежный регулируемый источник постоянного тока постоянного тока.
Таким образом, регулятор напряжения переменного тока отличается от регулятора напряжения постоянного тока. Перед тем, как выбрать регулятор напряжения, следует уточнить цель покупки.
Как подключить регулятор напряжения / модуль регулирования напряжения MGR? | HUIMULTD
ВВЕДЕНИЕ:
Функция выпрямителя или твердотельного реле / модуля выпрямителя заключается в преобразовании мощности переменного тока в мощность постоянного тока. Выпрямленное твердотельное реле / модуль со встроенным управляемым транзистором может также использоваться в качестве электронного переключателя в дополнение к функции выпрямления.
Из этой статьи вы узнаете, как подключить регулятор напряжения MGR / Mager или модуль регулирования напряжения.
Вы можете быстро перейти к интересующим вас главам с помощью Справочника ниже и быстрого навигатора в правой части браузера.
СОДЕРЖАНИЕ
§1. Как подключить однофазный регулятор напряжения переменного тока
1.1 Тип потенциометра
MGR-R40A
или серия SSVRВ однофазных регуляторах напряжения переменного тока такого типа используется стандартный корпус (прямоугольной формы) с четырьмя выводами.Порты 1 и 2 — это выходные клеммы, соединяющие однофазный источник питания переменного тока и нагрузку; Порты 3 и 4 представляют собой клеммы входного сигнала, к которым подключается потенциометр. Угол проводимости тиристора можно изменить, регулируя потенциометр, чтобы отрегулировать выходное напряжение для достижения цели регулирования и управления напряжением нагрузки.
Примечание: Перед установкой и использованием убедитесь, что технические характеристики (например, входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.)) регулятора напряжения соответствуют требованиям приложения.
MGR-HVR120A
, MGR-HVR200AВ этом виде регулятора напряжения переменного тока однофазного типа с потенциометром используется промышленный корпус (длинная полоска) с четырьмя клеммами, подходящий для сложных приложений, таких как промышленное и коммерческое применение. Выходные клеммы подключаются к однофазному источнику питания переменного тока и нагрузке; клеммы входного сигнала подключены к потенциометру.Угол проводимости тиристора можно изменить, регулируя потенциометр, чтобы отрегулировать выходное напряжение для достижения цели регулирования и управления напряжением нагрузки.
Примечание. Перед установкой и использованием убедитесь, что характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) Регулятора напряжения соответствуют требованиям приложения.
1.2 Тип аналогового сигнала (тип непрерывного напряжения)
MGR-1VD2440G
или серия SSVDЭтот тип однофазного регулятора напряжения переменного тока аналогового типа использует стандартный корпус (прямоугольной формы) с четырьмя выводами.Порты 1 и 2 — это выходные клеммы, соединяющие однофазный источник питания переменного тока и нагрузку; Порты 3 и 4 представляют собой клеммы входного сигнала, которые подключают устройство аналогового сигнала управления. Управляющий сигнал представляет собой аналоговое постоянное напряжение, разделенное на три типа: тип E: 0 ~ 5 В постоянного тока, тип F: 0 ~ 10 В постоянного тока, тип G: 4 ~ 20 В постоянного тока. Угол проводимости тиристора можно изменить, регулируя аналоговый сигнал, чтобы отрегулировать выходное напряжение для достижения цели регулирования и управления напряжением нагрузки.
Примечание: Перед установкой и использованием убедитесь, что технические характеристики (например, входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.)) регулятора напряжения соответствуют требованиям приложения.
1.3 Тип цифрового сигнала (тип импульсного напряжения)
MGR-25DV
Этот тип однофазного регулятора напряжения переменного тока с цифровым сигналом использует стандартный корпус (прямоугольной формы) с четырьмя выводами. Порты 1 и 2 — это выходные клеммы, соединяющие однофазный источник питания переменного тока и нагрузку; Порты 3 и 4 представляют собой клеммы входных сигналов, которые подключают цифровое управляющее сигнальное устройство, такое как ПЛК и регулятор напряжения.Управляющий сигнал — импульсное напряжение (мутантное и прерывистое). Угол проводимости тиристора можно изменить, регулируя импульсный сигнал, чтобы отрегулировать выходное напряжение для достижения цели регулирования и управления напряжением нагрузки.
Примечание. Перед установкой и использованием убедитесь, что характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) Регулятора напряжения соответствуют требованиям приложения.
1.4 Внешний трансформатор, тип
MGR-EUV25A05E
Этот тип однофазного регулятора напряжения переменного тока с внешним трансформатором имеет стандартный корпус (прямоугольной формы). Порты 1 и 2 — это выходные клеммы, соединяющие однофазный источник питания переменного тока и нагрузку; коричневый и красный кабели подключены к внешнему трансформатору 18 В переменного тока. Управляющий сигнал можно разделить на сигнал автоматического управления (тип E: 0 ~ 5 В постоянного тока, тип F: 0 ~ 10 В постоянного тока, тип H: 1 ~ 5 В постоянного тока, тип G: 4 ~ 20 мА) и сигнал ручного управления (потенциометр).Типы E, F, H имеют функцию ручного управления, а тип G — нет. Угол проводимости тиристора можно изменить, регулируя входной управляющий сигнал, чтобы отрегулировать выходное напряжение для достижения цели регулирования и управления напряжением нагрузки.
Примечание. Перед установкой и использованием убедитесь, что характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) Регулятора напряжения соответствуют требованиям приложения.
§ 2.Как подключить трехфазный регулятор напряжения переменного тока
2.1 Простой тип
MGR-SCR3-120LA
Этот тип трехфазного регулятора напряжения переменного тока простого типа использует простой корпус (или легкую сборку) с базовой функцией регулирования напряжения, и дешевле обычного типа. Порты A1, B1, C1 подключаются к трехфазному источнику питания переменного тока; Порты A2, B2, C2 подключены к нагрузке. CON и COM подключены к сигнальному устройству управления. Управляющий сигнал можно разделить на тип E: 0 ~ 5 В постоянного тока, тип F: 0 ~ 10 В постоянного тока и тип G: 4 ~ 20 мА.+ 5VDC — это внутренний источник питания, который генерируется самим регулятором. Угол проводимости тиристора можно изменить, регулируя входной управляющий сигнал, чтобы отрегулировать выходное напряжение для достижения цели регулирования и управления напряжением нагрузки.
Примечание. Перед установкой и использованием убедитесь, что характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) Регулятора напряжения соответствуют требованиям приложения.
2.2 Нормальный тип
MGR-SCR-100LA-H
, MGR-SCR-300LA-HЭтот тип трехфазного регулятора напряжения переменного тока нормального типа использует обычный корпус (или расширенную сборку) с возможностью адаптации требовательных рабочих сред, и у него больше функций, чем у простого типа. Порты R, S, T подключаются к трехфазному источнику переменного тока; К нагрузке подключаются порты U, V, W. CON и COM подключены к сигнальному устройству управления. Управляющий сигнал можно разделить на тип E: 0 ~ 5 В постоянного тока, тип F: 0 ~ 10 В постоянного тока и тип G: 4 ~ 20 мА.+ 5VDC — это внутренний источник питания, который генерируется самим регулятором. Угол проводимости тиристора можно изменить, регулируя входной управляющий сигнал, чтобы отрегулировать выходное напряжение для достижения цели регулирования и управления напряжением нагрузки.
И следующая дополнительная функция:
1) Регулируемый диапазон выходного напряжения: максимальное выходное значение и минимальное выходное значение выходного напряжения можно регулировать с помощью смещения смещения.
2) Многофункциональный светодиодный индикатор состояния: PL загорится, когда регулятор напряжения подключен к трехфазному источнику питания 380 В переменного тока и включен; IN загорается, когда сигнал контроля температуры передается от регулятора температуры; OUT загорится, когда регулятор напряжения подключен к нагрузке и работает стабильно; FB загорится при сгорании быстродействующего предохранителя.
Примечание. Перед установкой и использованием убедитесь, что характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) Регулятора напряжения соответствуют требованиям приложения.
§ 3. Как подключить модуль управления напряжением переменного тока
3.1 Модуль однофазного стабилизатора напряжения переменного тока со сдвигом фаз
MGR-DTY-F-22-70A-EG
Этот модуль однофазного стабилизатора напряжения переменного тока со сдвигом фаз имеет замкнутая система регулирования напряжения (отрицательная обратная связь), которая может эффективно стабилизировать напряжение нагрузки.1 и 2 порта подключены к однофазному источнику переменного тока; К нагрузке подключены 3 и 4 порта. Клеммная колодка подключается к сигнальному устройству управления. Управляющий сигнал можно разделить на сигнал автоматического управления (тип E: 0 ~ 5 В постоянного тока, тип G: 4 ~ 20 мА) и сигнал ручного управления (потенциометр). Угол проводимости тиристора можно изменить, регулируя входной управляющий сигнал, чтобы отрегулировать выходное напряжение для достижения цели регулирования и управления напряжением нагрузки.
Примечание: Перед установкой и использованием убедитесь, что технические характеристики (например, входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.)) регулятора напряжения соответствуют требованиям приложения.
3.2 Модуль однофазного регулятора напряжения переменного тока с полной изоляцией
MGR-DTY2240EG
Этот модуль однофазного регулятора напряжения переменного тока с полной изоляцией имеет светодиодный индикатор состояния. 3 и 4 порта подключены к однофазному источнику переменного тока; 1 и 2 порта подключены к нагрузке. Входные клеммы подключены к устройству управляющей сигнализации. Управляющий сигнал можно разделить на сигнал автоматического управления (тип E: 0 ~ 5 В постоянного тока, тип F: 0 ~ 10 В постоянного тока, тип H: 1 ~ 5 В постоянного тока, тип G: 4 ~ 20 мА) и сигнал ручного управления (потенциометр).Типы E, F, H имеют функцию ручного управления, а тип G — нет. Угол проводимости тиристора можно изменить, регулируя входной управляющий сигнал, чтобы отрегулировать выходное напряжение для достижения цели регулирования и управления напряжением нагрузки.
Примечание. Перед установкой и использованием убедитесь, что характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) Регулятора напряжения соответствуют требованиям приложения.
Рисунок 3.2A: принципиальная схема модуля регулятора напряжения переменного тока типа 220 В переменного тока, номинальное рабочее напряжение 220 В переменного тока
Рисунок 3.2B: Принципиальная схема модуля регулятора напряжения переменного тока типа 380 В переменного тока, номинальное рабочее напряжение 380 В переменного тока
Рисунок 3.2C: Модуль регулятора напряжения переменного тока полуволнового типа принципиальная схема, номинальное рабочее напряжение 220 или 380 В переменного тока, форма выходного сигнала полуволновая
Рисунок 3.2D: Принципиальная электрическая схема модуля регулятора напряжения переменного тока ручного типа, типы E, F, H могут управляться вручную, а тип G не может
3 .3 Модуль трехфазного регулятора напряжения переменного тока с полной изоляцией
MGR-STY380D40E
Этот модуль трехфазного регулятора напряжения переменного тока с полной изоляцией использует TB-3 в качестве источника синхронного напряжения 18 В переменного тока. Порты N, R, S, T синхронного трансформатора TB-3 подключены к трехфазному источнику питания переменного тока; Порты r1, r2, s1, s2, t1, t2 ТВ-3 подключены к портам r1, r2, s1, s2, t1, t2 модуля регулятора. Клеммная колодка подключается к сигнальному устройству управления.Управляющий сигнал можно разделить на сигнал автоматического управления (тип E: 0 ~ 5 В постоянного тока, тип F: 0 ~ 10 В постоянного тока, тип H: 1 ~ 5 В постоянного тока, тип G: 4 ~ 20 мА) и сигнал ручного управления (потенциометр). Типы E, F, H имеют функцию ручного управления, а тип G — нет. Угол проводимости тиристора можно изменить, регулируя входной управляющий сигнал, чтобы отрегулировать выходное напряжение для достижения цели регулирования и управления напряжением нагрузки.
Примечание: Перед установкой и использованием убедитесь, что технические характеристики (например, входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.)) регулятора напряжения соответствуют требованиям приложения.
Рисунок 3.3A: Сигнал автоматического управления
Рисунок 3.3B: Сигнал ручного управления, типы E, F, H могут управляться вручную, а тип G — нельзя
Типы регуляторов напряжения
В этом руководстве мы узнаем об одном из наиболее важных компонентов конструкции системы: регуляторах напряжения. Они являются неотъемлемой частью системы или, в частности, частью системы электропитания. Мы узнаем о регуляторах напряжения, о различных типах регуляторов напряжения, о принципе работы некоторых важных регуляторов напряжения.
Роль источника питания
Прежде чем вдаваться в подробности регулятора напряжения и различных типов регуляторов напряжения, мы сначала рассмотрим важность источника питания в конструкции системы.
Возьмите любую работающую систему: электронные наручные часы, современный смартфон или портативный компьютер. Что вы думаете о самом большом предприятии в целом? Это блок питания.
Роль источника питания заключается в обеспечении системы надежным, постоянным и повторяемым питанием для ее компонентов.В контексте электронных устройств источник питания должен обеспечивать постоянную, стабильную и регулируемую мощность для правильной работы цепей.
Итак, каковы источники питания?
Двумя основными источниками питания являются: 1. Источник переменного тока от наших сетевых розеток и 2. Источник постоянного тока от батарей.
ПРИМЕЧАНИЕ: Приведенный выше список основан на доступных источниках энергии и источниках энергии.
Несмотря на то, что источник питания доступен, он еще не «готов к работе».Что это значит? Давайте разберемся в этом на примере компьютерной системы.
Обычно компьютерная система или, скорее, электроника компьютерной системы требует регулируемого напряжения постоянного тока. ЦП работает от 1,2 В до 1,8 В постоянного тока (зависит от ЦП), порты USB работают от 5 В постоянного тока, механическим жестким дискам требуется как 5 В, так и 12 В постоянного тока и так далее.
Если напряжение выше или ниже требуемой величины, компонент может не работать или, в худшем случае, он может выйти из строя и не подлежит ремонту.Поэтому важно «отрегулировать» напряжение до допустимого диапазона.
Вот где на сцену выходят регуляторы напряжения. Источником может быть переменный ток от сетевой розетки или постоянный ток от батарей, требования для любой электронной системы одинаковы: регулируемое постоянное напряжение.
Регуляторы напряжения
Регулятор напряжения — это устройство или схема, которая отвечает за обеспечение постоянного напряжения постоянного тока для электронной нагрузки. На следующем изображении показан типичный блок питания с регулятором напряжения.
Как упоминалось ранее, задача источника питания постоянного тока состоит в том, чтобы получать питание переменного тока от сетевых розеток (обычно 240 В при 50 Гц) и преобразовывать его в постоянный выход постоянного тока. В этом процессе переменное напряжение из сети сначала выпрямляется с помощью схемы выпрямителя, чтобы получить пульсирующее постоянное напряжение.
Затем этот пульсирующий постоянный ток фильтруется для получения относительно плавного напряжения. Наконец, регулятор напряжения обеспечивает постоянное выходное напряжение.
Компоненты регулятора напряжения
Вообще говоря, каскад регулятора напряжения источника питания обычно состоит из трех компонентов:
- Цепь обратной связи
- Стабильное опорное напряжение
- Цепь управления проходным элементом
Процесс регулирования напряжения прост.Схема обратной связи помогает обнаруживать изменения выходного постоянного напряжения. В зависимости от обратной связи и опорного напряжения затем вырабатывается управляющий сигнал для управления проходным элементом для компенсации отклонений.
Говоря о проходном элементе, это твердотельное полупроводниковое устройство, такое как диод с PN переходом, транзистор BJT или полевой МОП-транзистор. Теперь выходное напряжение D остается почти постоянным.
Различные типы регуляторов напряжения
Регуляторы напряжениямогут быть реализованы с использованием дискретных компонентных схем или ИС.В зависимости от исполнения регуляторы напряжения можно разделить на два типа:
- Линейные регуляторы напряжения
- Импульсные регуляторы напряжения
Принимая во внимание приведенное выше обсуждение компонентов регулятора напряжения и его основных функций, предположим, что проходным элементом в цепи регулятора напряжения является транзистор.
Этот транзистор может работать как в активной области, так и в качестве переключателя для регулирования выходного напряжения.Если во время регулирования напряжения транзистор остается в активной или омической области или линейной области своей работы, то регулятор называется линейным регулятором напряжения.
Когда транзистор работает в состоянии отсечки и состояния насыщения, то есть он переключается между состоянием выключения и состоянием насыщения, тогда регулятор называется регулятором напряжения переключения.
Теперь давайте углубимся в оба этих регулятора напряжения и подробнее рассмотрим их работу и типы.
Линейные регуляторы напряжения
Первоначальной формой регуляторов в регулирующих источниках питания являются линейные регуляторы напряжения. В линейном регуляторе напряжения переменная проводимость активного проходного элемента (обычно BJT или MOSFET) отвечает за регулирование выходного напряжения.
Когда нагрузка подключена, изменения входа или нагрузки приведут к изменению тока через транзистор, так что выходной сигнал будет оставаться постоянным. Чтобы транзистор мог изменять свой ток (ток коллектор-эмиттер в случае BJT), он должен работать в активной или омической области (также известной как линейная область).
Во время этого процесса линейный регулятор напряжения тратит много энергии, так как сетевое напряжение, то есть разница между входом и выходом падает в транзисторе и рассеивается в виде тепла.
Обычно линейные регуляторы напряжения делятся на пять категорий. Их:
- Положительные регулируемые регуляторы
- Регулируемые отрицательные регуляторы
- Регуляторы с фиксированным выходом
- Регуляторы слежения
- Плавающие регуляторы
Примером положительных регулируемых линейных регуляторов напряжения является знаменитая микросхема регулятора LM317.Выходное напряжение LM317 можно регулировать в пределах от 1,2 В до 37 В.
Переходя к линейным регуляторам напряжения с фиксированным выходом, знаменитая серия ИС регуляторов напряжения 78XX попадает в эту категорию. 7805 — это обычно используемый стабилизатор постоянного напряжения с выходным напряжением 5 В.
Преимущества линейных регуляторов напряжения
Преимущества линейных регуляторов напряжения следующие:
- Реализация линейных регуляторов напряжения очень проста и удобна в использовании.
- Несмотря на рассеиваемую мощность, линейные регуляторы напряжения обладают надежной защитой от перегрузки по току и тепловой защитой. Для работы регуляторов регулируемого напряжения
- требуется очень мало внешних компонентов. Стабилизаторы постоянного напряжения практически не требуют внешних компонентов (может быть пара байпасных конденсаторов).
- При невысокой стоимости у вас есть широкий выбор напряжения и тока.
Недостатки линейных регуляторов напряжения
Недостатки линейных регуляторов напряжения следующие:
- Обычно линейные регуляторы напряжения понижают только i.е. выходное напряжение всегда меньше входного.
- При работе от сети переменного тока требуется понижающий трансформатор для доведения напряжения до рабочего уровня. Следовательно, они обычно громоздкие.
- Поскольку регулирование осуществляется путем рассеивания избыточной мощности в виде тепла, они имеют тенденцию сильно нагреваться, и использование радиатора неизбежно.
- Кроме того, у линейных регуляторов обычно очень низкий КПД, где-то от 20% до 60%.
Кроме того, линейные регуляторы напряжения снова классифицируются в зависимости от того, как подключена нагрузка.Их:
- Регуляторы напряжения серии
- Шунтирующие регуляторы напряжения
Давайте теперь кратко рассмотрим оба этих типа линейных регуляторов напряжения.
Регулятор напряжения серииВ линейных регуляторах напряжения, если активный проходной элемент, то есть, например, транзистор, подключен последовательно с нагрузкой, то он известен как последовательные регуляторы напряжения.
На следующей схеме показан типичный линейный последовательный регулятор напряжения.
В этой схеме выходное напряжение регулятора измеряется через сеть делителей напряжения R1 и R2. Это напряжение сравнивается с опорным напряжением V REF . Результирующий сигнал ошибки будет контролировать проводимость проходного транзистора.
В результате напряжение на транзисторе изменяется, а выходное напряжение на нагрузке, по существу, поддерживается постоянным.
Тип последовательного регулятора напряжения — стабилизатор напряжения на стабилитроне, который может поддерживать постоянное напряжение на нагрузке.
Этот тип регулятора напряжения может уменьшить пульсации в источнике питания и улучшить регулирование. Но из-за ненулевого сопротивления стабилитрона эффективность невысока. Это можно улучшить, ограничив ток Зенера.
Шунтирующий регулятор напряжения
Шунтирующий регулятор напряжения отличается от последовательного регулятора напряжения. Если проходной транзистор в линейном регуляторе напряжения подключен параллельно нагрузке, то регулятор известен как шунтирующий регулятор напряжения.
Дополнительно имеется резистор ограничения напряжения, подключенный последовательно к нагрузке. На следующем изображении показан типичный шунтирующий стабилизатор напряжения.
В этой схеме проводимость транзистора регулируется на основе обратной связи и опорного напряжения, так что ток через последовательный резистор остается постоянным. При изменении тока через транзистор напряжение на нагрузке остается практически постоянным.
По сравнению с последовательными регуляторами, шунтирующие регуляторы немного менее эффективны, но имеют более простую реализацию.
Импульсные регуляторы напряжения
В обоих линейных регуляторах напряжения, то есть последовательном регуляторе и шунтирующем регуляторе, активный проходной элемент, то есть транзистор, работает в своей линейной области. Изменяя проводимость транзистора, выходное напряжение поддерживается на желаемом уровне.
Напротив, импульсный регулятор работает несколько иначе, чем линейный регулятор, в том смысле, что проходной транзистор действует как переключатель, то есть он либо остается в выключенном состоянии (область отсечки), либо во включенном состоянии (область насыщения).
Регулируя время включения проходного транзистора, выходное напряжение поддерживается на постоянном уровне.
Блок-схема типичного импульсного источника питания показана ниже.
На самом деле, есть отдельное руководство по импульсному источнику питания или SMPS с рабочими, типами и их работой. Для получения дополнительной информации прочтите « Импульсный источник питания ».
Преимущества импульсного регулятора напряжения
- Основным преимуществом импульсных источников питания или импульсных регуляторов напряжения является эффективность.Обычно с лучшей конструкцией можно достичь КПД до 95%.
- Поскольку транзистор колеблется между состояниями ВКЛ и ВЫКЛ, и время, в течение которого он остается в активной области, очень мало, количество потраченной энергии очень меньше.
- Выходное напряжение может быть выше или ниже входного.
- Не требуется понижающий или повышающий трансформатор, но требуется крошечный высокочастотный переключающий трансформатор.
Недостатки импульсных регуляторов напряжения
- Сложность конструкции импульсного блока питания очень высока.
- Из-за частого переключения транзистора и, как следствие, тока транзистора, возникают высокие помехи и шум.
По конструкции схемы импульсные регуляторы напряжения можно разделить на две топологии.
- Преобразователи без изоляции
- Изолированные преобразователи
В неизолированных преобразователях также есть несколько типов, но наиболее важными из них являются:
- Понижающий регулятор напряжения (понижающий преобразователь)
- Повышающий регулятор напряжения (повышающий преобразователь)
- Понижающий / повышающий преобразователь
В изолированных преобразователях есть два основных типа.Их:
- Обратные преобразователи
- Прямые преобразователи
Все эти типы обсуждаются в разделе «Импульсный источник питания». Так что обратитесь к этому документу для получения дополнительной информации.
Понижающий регулятор напряжения (понижающий преобразователь)
В понижающем регуляторе напряжения или понижающем преобразователе выходное напряжение меньше входного. На следующем изображении показан типичный понижающий преобразователь.
Повышающий регулятор напряжения (повышающий преобразователь)
В отличие от понижающего преобразователя, повышающий преобразователь или регулятор повышающего напряжения обеспечивает напряжение на выходе выше, чем на входе.
На следующем изображении показан типичный повышающий преобразователь.
Существует множество других топологий импульсных регуляторов напряжения, таких как непрерывный, прерывистый, полумостовой, полный мост и т. Д.
Что такое контроллер напряжения переменного тока? — Определение, работа и применение
Определение: Контроллер переменного напряженияпредставляет собой тиристорное устройство, которое преобразует фиксированное переменное напряжение напрямую в переменное переменное напряжение без изменения частоты.
Контроллер напряжения переменного токапредставляет собой устройство с фазовым управлением, поэтому схемы силовой коммутации не требуются. Используется естественная или линейная коммутация. Фазовое управление означает, что фазовое соотношение между пусковым током нагрузки и напряжением питания регулируется путем изменения угла включения тиристора, используемого в цепи контроллера переменного напряжения.
Принцип работы контроллера переменного напряжения:Принцип работы контроллера переменного напряжения основан на одном из двух методов: фазового управления или интегрального управления циклом.
В методе управления фазой соотношение фаз между пусковым током нагрузки и входным напряжением питания регулируется путем управления углом включения тиристора.
В интегральном управлении циклом источник питания переменного тока включается для некоторых интегральных циклов и выключается для следующего количества интегральных циклов. Интегральное управление циклом в основном используется в приложениях, где механическая постоянная времени или тепловая постоянная времени довольно высока, порядка нескольких секунд.Например, механическая постоянная времени для многих приводов с регулировкой скорости или тепловая постоянная времени нагревательных нагрузок обычно довольно высоки. Для таких приложений почти не будет замечено никаких изменений скорости или температуры, если управление достигается путем подключения нагрузки к источнику для некоторых циклов включения, а затем отключения нагрузки для некоторых циклов отключения. Эта форма управления мощностью представляет собой управление интегральным циклом.
На рисунке ниже показана принципиальная схема однофазного двухполупериодного контроллера переменного напряжения:
Схема состоит из двух тиристоров, соединенных встречно параллельно.Противопараллельное соединение выполняется таким образом, что тиристор (T1) смещен в прямом направлении для положительной половины входного напряжения питания, тогда как тиристор (T2) смещен в прямом направлении для отрицательного полупериода входного напряжения питания переменного тока. Для управления выходным напряжением используется метод фазового регулирования.
Когда T1 смещен в прямом направлении, он может быть активирован, чтобы включить его. Угол включения тиристора может быть выбран в зависимости от требуемого выходного напряжения. Если требования к выходному напряжению больше, угол открытия (α) должен быть меньше.
См. Рисунок ниже. На этом рисунке показан способ управления напряжением в этом контроллере.
Предположим, T1 стреляет под углом α. Как только T1 срабатывает, он подключает нагрузку к источнику для получения положительного полупериода входа. Если нагрузка является резистивной по своей природе, выходное напряжение нагрузки соответствует огибающей входного напряжения переменного тока. Ток нагрузки сразу становится равным (V m sinα / R) и находится в фазе с напряжением нагрузки.
При ωt = π напряжение нагрузки становится равным нулю, а ток также становится равным нулю.Поскольку тиристор T1 смещен в обратном направлении после ωt = π и ток через него равен нулю, он естественно коммутируется.
При ωt = (π + α) тиристор T2 с прямым смещением закрывается. Следовательно, он проводит и подключает нагрузку к источнику. Напряжение нагрузки теперь соответствует отрицательной огибающей входного источника переменного тока, а ток нагрузки — то же самое.
Таким образом, среднеквадратичным напряжением можно управлять, управляя углом зажигания. Таким образом, управление напряжением достигается в контроллере переменного напряжения.
Применение контроллера переменного напряжения:Некоторые из основных приложений контроллера переменного напряжения:
Ранее устройства использовались для вышеупомянутых приложений, таких как автотрансформатор, трансформаторы с переключением ответвлений, магнитные усилители, насыщаемые реакторы и т. Д. Но теперь эти устройства заменены тиристорами и контроллерами напряжения переменного тока на основе симистора из-за их высокой эффективности и гибкости в управлении. , компактный размер и меньшая потребность в обслуживании.Контроллеры переменного напряжения также могут быть адаптированы для системы управления с обратной связью.
Основным недостатком контроллера переменного напряжения является появление нежелательных гармоник в форме волны тока питания и напряжения нагрузки, особенно при пониженном уровне выходного напряжения.
Сравнение понижающего преобразователя и регулятора напряжения
Конфигурации понижающего преобразователя.
Обработка электрических колебаний — важная часть современной электроники.Некоторые типы понижающих преобразователей или регуляторов напряжения присутствуют почти в каждом электронном устройстве, которое люди используют ежедневно. Понижающий преобразователь, также известный как понижающий преобразователь, преобразует высокое напряжение в низкое, обычно преобразуя переменный ток в постоянный. Стабилизатор напряжения поддерживает постоянное выходное напряжение для цепи независимо от любых изменений в подключенных устройствах или электрической нагрузке.
Сравнение понижающего преобразователя и регулятора напряжения требует понимания их сходства и различий.Эти два компонента имеют сходство как по структуре, так и по функциям. Однако у них есть некоторые ключевые отличия, позволяющие им выполнять разные работы в электронных компонентах. Для проекта электроники важно выбрать подходящий компонент, потому что компоненты с аналогичными функциями не всегда взаимозаменяемы.
Чем похожи понижающие преобразователи и регуляторы напряжения?
Понижающие преобразователи и регуляторы напряжения регулируют напряжение через электрическую цепь.Подключение к различным источникам питания или смена устройств в цепи может изменить ток, потребляемый схемой. Если схема потребляет больше или меньше энергии, чем должно работать устройство, может произойти много нежелательных результатов. Схема может быть повреждена, устройство может перестать работать или аппаратный сбой. Понижающие преобразователи и регуляторы напряжения жизненно важны для безопасной работы электроники. Без них машины могут выйти из строя или вызвать пожары.
Интегральная схема — важная часть понижающих преобразователей и регуляторов напряжения.Современные регуляторы напряжения возможны только благодаря интегральным схемам на основе полупроводников. Интегральная схема контролирует ток через электронное устройство с петлей обратной связи. В обоих компонентах интегральная схема соединена с конденсатором, который сдерживает электрические колебания. Этот конденсатор также может обеспечить дополнительную мощность во время непредвиденных перебоев.
Понижающий преобразователь на самом деле является подклассом регуляторов напряжения, поэтому между ними так много общего.Некоторые типы понижающих преобразователей могут работать в двунаправленном режиме, что делает их также повышающими преобразователями. Эта функция подчеркивает общие возможности понижающих преобразователей и регуляторов напряжения.
Применение понижающего преобразователя и регулятора напряжения
Понижающие преобразователи и регуляторы напряженияможно найти во многих бытовых предметах, например, в портативных зарядных устройствах. Портативные зарядные устройства включают зарядные устройства для сотовых телефонов для подключения к розеткам, кабели для зарядки компьютеров с трансформаторными коробками и зарядные устройства для питания мобильных устройств от автомобильного аккумулятора.Многим людям приходится иметь несколько зарядных устройств для поддержки различных устройств, и многие хотят, чтобы можно было разработать универсальное портативное зарядное устройство. К сожалению, разные напряжения требуют разных компонентов для работы с электрической нагрузкой. С точки зрения оборудования, универсальные зарядные устройства создать значительно сложнее, чем можно предположить из-за повсеместного распространения портативных зарядных устройств.
Еще одним распространенным применением понижающих преобразователей и регуляторов напряжения являются USB-соединения. USB-устройства всех типов (традиционные, микро или другие) полагаются на способность преобразовывать различные напряжения в поток энергии, который они могут использовать.Порт USB требует двунаправленного преобразователя между устройством, которое содержит порт, и подключенным устройством. Независимо от типа USB, преобразователь позволяет устройствам передавать мощность в обоих направлениях. Этот постоянный поток энергии имеет решающее значение для устройств при передаче файлов, зарядке друг друга, обработке звука или выполнении любого количества других функций через USB.
Понижающие преобразователи и регуляторы напряжениятакже жизненно важны для бытовой техники, электрических систем внутри автомобилей и медицинского оборудования.Люди обычно слышат понижающие преобразователи и регуляторы напряжения, называемые в этом контексте «трансформаторами». Везде, где требуется эффективное преобразование высокого напряжения в низкое, без понижающего преобразователя не обойтись. При изменении напряжения между устройствами и внутри цепей регулятор напряжения поддерживает безопасное протекание тока.
Стабилизатор напряжения на интегральной схеме.
Как развиваются понижающие преобразователи и регуляторы напряжения?
Понижающие преобразователи и регуляторы напряжениясуществуют более 100 лет, и их основная концепция осталась прежней.Однако за последний год ученые и инженеры разработали новые идеи, которые могут изменить внешний вид понижающих преобразователей и регуляторов напряжения в будущем. Предлагаемые новые прототипы более эффективно справляются с электрическими нагрузками, используют новые типы внутренних компонентов и снижают физическую нагрузку на основе напряжения. Компьютерное моделирование показывает, что предлагаемые конструкции могут быть более эффективными, чем существующие модели, что может привести к повышению производительности будущей электроники.
Принципиальная схема регулятора напряжения.
Пытаетесь выбрать между понижающим преобразователем и стабилизатором напряжения? У Ultra Librarian есть и то, и другое, а также многие другие конструкции печатных плат. Наше партнерство с дистрибьюторами по всему миру гарантирует высококачественные компоненты для каждого проекта. Работа с Ultra Librarian избавит вас от лишних догадок при подготовке к следующему отличному устройству и направит ваши идеи на путь успеха. Зарегистрируйтесь сегодня бесплатно!
Регуляторы напряжения генератора переменного тока— Inst Tools
Поскольку напряжение от генератора переменного тока изменяется при изменении выходной нагрузки и коэффициента мощности, необходима схема регулятора напряжения, чтобы обеспечить непрерывность желаемого выходного напряжения.
Назначение
Назначение регулятора напряжения — поддерживать выходное напряжение генератора на желаемом уровне. При изменении нагрузки на генератор переменного тока напряжение также будет меняться. Основная причина такого изменения напряжения — это изменение падения напряжения на обмотке якоря, вызванное изменением тока нагрузки. В генераторе переменного тока есть падение IR и падение IX L , вызванное переменным током, протекающим через сопротивление и индуктивность обмоток.
Падение IR зависит только от величины изменения нагрузки. Падение IX L зависит не только от изменения нагрузки, но и от коэффициента мощности схемы. Следовательно, выходное напряжение генератора переменного тока изменяется как при изменении нагрузки (т. Е. Тока), так и при изменении коэффициента мощности. Из-за изменений напряжения, из-за изменений нагрузки и изменения коэффициента мощности, генераторам переменного тока требуются некоторые вспомогательные средства регулирования выходного напряжения.
Описание блок-схемы
На рисунке ниже показана типичная блок-схема регулятора напряжения генератора переменного тока.Этот регулятор состоит из шести основных цепей, которые вместе регулируют выходное напряжение генератора переменного тока от холостого хода до полной нагрузки.
Рисунок: Блок-схема регулятора напряжения
Цепь датчика
Чувствительная цепь определяет выходное напряжение генератора переменного тока. Когда генератор нагружен или разгружен, выходное напряжение изменяется, и чувствительная схема выдает сигнал об этих изменениях напряжения. Этот сигнал пропорционален выходному напряжению и отправляется в схему сравнения.
Ссылочная цепь
Контрольная схема поддерживает постоянный выходной сигнал для справки. Это задание является желаемым выходным напряжением генератора переменного тока.
Схема сравнения
Схема сравнения электрически сравнивает опорное напряжение с измеренным напряжением и выдает сигнал ошибки. Этот сигнал ошибки представляет собой увеличение или уменьшение выходного напряжения. Сигнал отправляется в схему усиления.
Цепь усиления
Схема усиления, которая может быть магнитным усилителем или транзисторным усилителем, принимает сигнал от схемы сравнения и усиливает входной миллиампер на выходе усилителя, который затем отправляется на выход сигнала или схему поля.
Цепь выходного сигнала
Схема вывода сигнала, которая управляет возбуждением поля генератора переменного тока, увеличивает или уменьшает возбуждение поля для повышения или понижения выходного напряжения переменного тока.
Цепь обратной связи
Цепь обратной связи принимает часть выходного сигнала схемы вывода сигнала и подает ее обратно в схему усиления. Это делается для предотвращения перерегулирования или занижения желаемого напряжения за счет замедления отклика схемы.
Изменение выходного напряжения
Рассмотрим увеличение нагрузки генератора и, как следствие, падение выходного напряжения. Сначала чувствительная схема определяет уменьшение выходного напряжения по сравнению с опорным и понижает его входной сигнал в схему сравнения. Поскольку опорная схема всегда постоянна, схема сравнения вырабатывает сигнал ошибки из-за разницы между измеренным напряжением и опорным напряжением.
Разрабатываемый сигнал ошибки будет иметь положительное значение, величина которого зависит от разницы между измеренным и опорным напряжением.Этот выходной сигнал схемы сравнения будет затем усилен схемой усилителя и отправлен в схему вывода сигнала. Затем схема вывода сигнала увеличивает возбуждение поля в генераторе переменного тока. Это увеличение возбуждения поля приводит к увеличению генерируемого напряжения до желаемого уровня.
Если бы нагрузка на генератор была уменьшена, выходное напряжение машины увеличилось бы. Тогда действие регулятора напряжения будет противоположным действию при понижении выходного напряжения.В этом случае схема сравнения вырабатывает отрицательный сигнал ошибки, величина которого снова зависит от разницы между измеренным напряжением и опорным напряжением. В результате схема вывода сигнала будет уменьшать возбуждение поля в генераторе переменного тока, вызывая снижение генерируемого напряжения до желаемого значения.
.