Site Loader

принцип работы, схема и т.д.

Стабилитрон — специальный диод, который способен работать в условиях обратного смещения в зоне пробоя без какого-либо ущерба для себя.

Схема стабилитрона
Обратите внимание на основы электричества и на приборы электроники.

Принцип действия стабилитрона

График напряжение-ток для стабилитрона похож на график напряжение-ток для P-N перехода обычного диода.

Когда стабилитрон имеет прямое смещение, то, также, как и в любом обычном диоде, ток, проходящий через него, возрастает при увеличении подаваемого напряжения. Когда же стабилитрон имеет обратное смещение, то ток бывает минимальным до того момента, пока подаваемое напряжение не достигнет значения напряжения пробоя для данного диода. Когда такое напряжение достигается, то происходит значительное увеличение протекающего тока. Однако, в отличие от обычного диода, стабилитрон предназначен для работы в условиях обратного смещения в зоне пробоя.

График напряжение-ток для стабилитрона

Напряжение стабилитрона

Необходимое напряжение стабилитрона — это то напряжение, при котором происходит пробой. В процессе изготовления стабилитрона, к основным исходным материалам добавляют определенное количество других материалов, присадок, так что во время работы данного прибора пробой происходит при совершенно конкретном значении напряжения.

Если подаваемое на стабилитрон напряжение превышает установленное для него напряжение пробоя на достаточно большую величину, то тепло, которое сопровождает прохождение через стабилитрон чрезмерного тока, может вызывать серьезные повреждения. Для того, чтобы предотвратить подобные неприятности, цепи со стабилитроном обычно имеют установленный последовательно резистор, который должен ограничивать величину тока, протекающего через стабилитрон. Если выбрано правильное значение сопротивления, то ток в цепи не будет превышать максимальное значение тока для стабилитрона.

Если же подаваемое напряжение меньше, того, на которое рассчитан стабилитрон, то сопротивление протеканию тока будет значительным и этот диод будет оставаться в основном в разомкнутом состоянии, однако, когда подаваемое напряжение станет равно или превысит расчетное напряжение стабилитрона, то сопротивление тока окажется преодоленным, и ток потечет через стабилитрон и по цепи.

При различных значениях напряжения выше напряжения стабилитрона, изменение внутреннего сопротивления возникает в результате изменений обедненной области прибора. В результате этого падение напряжения на стабилитроне будет относительно постоянным. Падение напряжения должно поддерживаться на уровне, близком к значению напряжения стабилитрона. Остальное напряжение источника электропитания понижается на последовательно подключенном резисторе.

Поскольку напряжение на стабилитроне значительно превышает напряжения стабилитрона, то цепь, которую мы только что описали, может быть использована для обеспечения подачи регулируемого напряжения на нагрузку. Если нагрузка включена параллельно со стабилитроном, то падение напряжение на нагрузке будет равно падению напряжения на стабилитроне.

Простая цепь с нагрузкой, соединенной параллельно с стабилитроном

Светодиоды диод с простым P-N переходом, испускающий свет, когда через него проходит ток

Туннельный диод диод, характеристики которого отличаются от характеристик обычного диода

Фотодиод светочувствительный диод, который использует энергию света для создания напряжения

Тетрод диод с четырьмя элементами: катод, анод, управляющая сетка и сетка-экран

Триод электронная лампа с тремя элементами: катод, анод и управляющая сетка

1.

10.1. Схемы включения стабилитронов

Простейшая схема включения стабилитрона в режиме стабилизации напряжения представлена на рис. 18. В этом режиме напряжение на стабилитроне

Рис. 18

остается практически постоянным, поэтому и напряжение на нагрузке постоянно UН = Uст – const. При этом уравнение для всей цепи имеет вид: E = U

ст + Rст (Iст – IН).

Наиболее часто стабилитрон работает в режиме, когда напряжение Е не стабильно, а RН – const. Для поддержания режима стабилизации следует правильно выбрать RСТ. Обычно RСТ рассчитывают для средней точки А характеристики стабилитрона (рис. 19). Если предположить, что Emin  E  Emax, то

Если напряжение Е изменяется в какую либо сторону, то будет, и изменятся ток стабилитрона, но напряжение на нем UCT, а, следовательно, и на нагрузке остается практически неизменным.

Рис. 19

Все изменения напряжения поглощаются RCT, поэтому должно выполнится условие:

Второй режим стабилизации: входное напряжение постоянно, а RН изменяется в пределах от RНmin до RНmax, в этом случае: ,;.

Так как RCT постоянно, то падение напряжения на нем равное Е−UCT также постоянно, то и ток через RCT ICP+IНCP должен быть постоянным. Это возможно, когда ток стабилизации ICP и IН изменяются в одинаковой степени, но в противоположны стороны (т.е. сумма постоянна).

Из приведенных выражений следует, что для стабилизации в более широком диапазоне изменений входного напряжения Е, RCT нужно увеличивать, а для стабилизации в режиме изменения тока нагрузки, RCTнеобходимо уменьшать (уменьшать RCT– не выгодно, тратится лишняя энергия источника).

Если необходимо получить стабильное напряжение более низкое, чем дает стабилитрон, возможно включение добавочного сопротивления последовательно с нагрузкой (рис. 20). Значение R

доб рассчитывают по закону Ома. Однако, в этом случае сопротивление нагрузки RCTдолжно быть постоянным.

UН=UCT─IНRдоб

Рис. 20

Для получения более высоких стабильных напряжений применяется последовательное включение стабилитронов, с одинаковыми токами стабилизации (рис. 21).

UCT=UCT1+UCT2

Рис. 21

Для компенсации температурного дрейфа UCT последовательно со стабилитроном возможно включение термозависимого сопротивления R

T, имеющее ТКRТ обратный по закону ТКUCT.

Рис. 22

Для стабилитронов с ТКUCT>0 в качестве RT можно использовать p-n-переход дополнительного диода, включенного в прямом направлении.

Для стабилизации с термокомпенсацией выпускаются специальные двух-анодные стабилитроны, которые включаются в цепь произвольно, причем один диод включен в обратном направлении – обеспечивает режим стабилизации, а другой в прямом – режим термокомпенсации (рис. 22).

ВАХ стабистора мало отличается от ВАХ выпрямительных диодов.

Однако для того чтобы обеспечить наибольшую крутизну прямой ветви ВАХ, стабисторы изготавливаются из высоколегированных полупроводников. Это обеспечивает малое rб и малое значение Rдиф. Слабая зависимость UПР от IПР на

Рис. 23

рабочем участке (рис. 23) позволяет использовать стабисторы для стабилизации малых напряжений порядка 0,7В.

Последовательным включением стабисторов можно подобрать требуемое напряжение стабилизации.

Стабилитрон — Инженеры в последнюю минуту

Обычные кремниевые диоды блокируют любой ток через них, когда они смещены в обратном направлении, и повреждаются при слишком высоком обратном напряжении. Поэтому эти диоды никогда не эксплуатируются преднамеренно в области пробоя.

Зенеровские диоды, однако, отличаются. Они специально разработаны для безотказной работы в зоне пробоя. По этой причине стабилитроны иногда называют пробивными диодами .

Стабилитроны являются основой регуляторов напряжения и цепей, поддерживающих напряжение нагрузки почти постоянным, несмотря на большие изменения сетевого напряжения и сопротивления нагрузки.

На следующих рисунках показаны схематические обозначения стабилитрона. В любом символе линии напоминают « Z », что означает « Zener ».

Работа стабилитрона

Стабилитрон может работать в любом из трех режимов: прямое, утечка и пробой. Давайте разберемся с этим на графике ВАХ стабилитрона.

Область прямого смещения

При прямом смещении стабилитроны ведут себя почти так же, как обычные кремниевые диоды, и начинают проводить ток при напряжении около 0,7 В.

Область утечки

Область утечки существует между нулевым током и пробоем.

В области утечки через диод протекает небольшой обратный ток. Этот обратный ток вызван термически произведенными неосновными носителями.

Область пробоя

Если вы продолжите увеличивать обратное напряжение, вы в конечном итоге достигнете так называемого Напряжение стабилитрона В Z диода.

В этот момент в обедненном полупроводниковом слое происходит процесс, называемый лавинным пробоем, и диод начинает активно проводить ток в обратном направлении.

Из графика видно, что пробой имеет очень резкое излом, за которым следует почти вертикальное увеличение тока. Отметим, что напряжение на стабилитроне практически постоянно и примерно равно V Z на большей части области пробоя.

На графике также показан максимальный обратный ток I Z(Max) . Пока обратный ток меньше I Z(Max) , диод работает в безопасном диапазоне. Если ток превысит I Z(Max) , диод выйдет из строя.

Регулятор напряжения Зенера

Стабилитрон поддерживает постоянное выходное напряжение в области пробоя, даже если ток через него изменяется. Это важная особенность стабилитрона, которую можно использовать в регуляторах напряжения. Поэтому стабилитрон иногда называют диодом 9.0005 Диод регулятора напряжения .

Например, выходной сигнал однополупериодного, двухполупериодного или мостового выпрямителя состоит из пульсаций, наложенных на постоянное напряжение. Подключив простой стабилитрон к выходу выпрямителя, мы можем получить более стабильное выходное напряжение постоянного тока.

На следующем рисунке показан простой стабилитрон (также известный как стабилитрон).

Для работы стабилитрона в состоянии пробоя стабилитрон смещается в обратном направлении путем подключения его катода к положительной клемме входного источника питания.

Последовательный (токоограничивающий) резистор R S включен последовательно со стабилитроном так, чтобы ток, протекающий через диод, был меньше его максимального номинального тока. В противном случае стабилитрон сгорит, как и любой прибор из-за слишком большой рассеиваемой мощности.

Источник напряжения В S подключается через комбинацию. Также, чтобы диод оставался в состоянии пробоя, напряжение источника V S должно быть больше, чем напряжение пробоя стабилитрона V З .

Стабилизированное выходное напряжение V out снимается со стабилитрона.

Операция пробоя

Чтобы проверить, работает ли стабилитрон в области пробоя, нам нужно рассчитать, с каким напряжением сталкивается диод.

Напряжение венина — это напряжение, которое существует, когда стабилитрон отключен от цепи.

Из-за делителя напряжения можно написать:

Когда это напряжение превышает напряжение стабилитрона, происходит пробой.

Серийный ток

Напряжение на последовательном резисторе равно разнице между напряжением источника и напряжением стабилитрона. Следовательно, согласно закону Ома, ток через последовательный резистор равен:

Последовательный ток остается одним и тем же независимо от наличия нагрузочного резистора. Это означает, что даже если вы отключите нагрузочный резистор, ток через последовательный резистор будет равен напряжению на резисторе, деленному на сопротивление.

Напряжение нагрузки и ток нагрузки

Поскольку нагрузочный резистор подключен параллельно стабилитрону, напряжение нагрузки совпадает с напряжением стабилитрона.

Используя закон Ома, мы можем рассчитать ток нагрузки:

Ток Зенера

Стабилитрон и нагрузочный резистор включены параллельно. Общий ток равен сумме их токов, что равно току через последовательный резистор.

Это говорит нам о том, что ток стабилитрона равен последовательному току минус ток нагрузки.

Общие напряжения стабилитронов

Стабилитроны производятся со стандартными номиналами напряжения, указанными в таблице ниже. В таблице перечислены общие напряжения для деталей 0,3 Вт и 1,3 Вт .

2.7V 3.0V 3.3V 3.6V 3.9V 4.3V 4.7V
5.1V 5.6V 6.2V 6.8V 7,5 В 8,2 В 9.1V
10V 11V 12V 13V 15V 16V 18V
20V 24V 27V 30V

DISTATE

01010134 DISATE

010134 DISATE

0134 DISATE

0134 DISATE

010134

10134.

Zener Applications

До сих пор мы видели, как можно использовать стабилитроны для регулирования постоянного источника постоянного тока. Кроме того, диоды Зенера также используются в различных приложениях. Вот некоторые из них.

Предварительный регулятор

Основная идея предварительного регулятора состоит в том, чтобы обеспечить хорошо регулируемый входной сигнал стабилитрона, чтобы конечный выходной сигнал был очень хорошо регулируемым.

Ниже приведен пример предварительного регулятора (первый стабилитрон), управляющего стабилитроном (второй стабилитрон).

Формирование сигнала

В большинстве приложений стабилитроны остаются в области пробоя. Но есть исключения, такие как схемы формирования волны.

В приведенной выше схеме формирования сигнала два стабилитрона соединены встречно-параллельно для создания прямоугольной волны. Эту схему также в шутку называют « Генератор прямоугольных импульсов бедняка ».

В положительный полупериод верхний диод Z1 открыт, а нижний диод Z2 пробивается. Поэтому вывод обрезается.

В отрицательный полупериод действие меняется на противоположное. Нижний диод Z2 проводит, а верхний диод Z1 пробивается. Таким образом, на выходе получается примерно прямоугольная волна.

Уровень ограничения равен напряжению стабилитрона (пробой диода) плюс 0,7 В (диод с прямым смещением).

Создание нестандартных выходных напряжений

Комбинируя стабилитроны с обычными кремниевыми диодами, мы можем получить несколько нестандартных выходных напряжений постоянного тока, например:

Управление реле

Как вы, возможно, знаете, подключение реле 6 В к системе 12 В может привести к повреждению реле. Вам нужно сбросить часть напряжения. На рисунке ниже показан один из способов сделать это.

В этой схеме стабилитрон 5,6 В подключен последовательно с реле, так что на реле появляется только 6,4 В, что находится в пределах допуска номинального напряжения реле.

Зенеровский диод – что это такое, как он работает и его история

Зенеровский диод – что это такое, как он работает и его история

Что такое диод и как он работает?

Диод — это компонент схемы, который позволяет току течь только в одном направлении. Диоды бывают разных размеров и обычно имеют черный цилиндрический корпус с двумя выводами, выходящими по бокам (анод и катод), и полосой на конце катода. Диоды — это улицы с односторонним движением. Ток может двигаться только от конца катода к концу анода через диод. Это происходит потому, что диод предотвращает протекание тока в противоположном направлении со стороны анода. Диод смещен в обратном направлении, когда он действует как изолятор, и смещен в прямом направлении, когда он пропускает ток. Анод и катод диода — это две его клеммы. Диоды используются в цепях для ограничения напряжения и преобразования переменного тока в постоянный. Полупроводники, такие как кремний и германий, используются для получения максимальной отдачи от диодов. Несмотря на то, что они оба передают власть в одном и том же направлении, то, как они это делают, различаются. Диоды бывают разных форм и размеров, каждый из которых имеет свой собственный набор приложений, например диоды Зенера. Переключатели, модуляторы сигналов, смесители сигналов, выпрямители, ограничители сигналов, регуляторы напряжения и т. д. — все это примеры применения диодов.

Чем стабилитрон отличается от обычного диода?

Зенеровские диоды являются одними из диодов, используемых для определенных целей. За исключением одного ключевого отличия, стабилитроны работают так же, как обычные диоды. Напряжение обратного пробоя стабилитронов известно как «напряжение стабилитрона». Это означает, что стабилитроны могут остановить протекание тока по цепи только до определенного напряжения. Если обратное напряжение пробоя стабилитрона составляет 10 В, а протекающий ток составляет всего 5 В, стабилитрон блокирует протекание тока. В другом сценарии, если ток в цепи составляет 11 В, стабилитрон будет пропускать ток.

Какой смысл в диоде, который проводит в обоих направлениях? Вы можете задаться вопросом. Зенеровский диод пригодится при создании регуляторов напряжения, схем защиты от перенапряжения и других схем. Его можно использовать для управления течением частичного тока в другом направлении в цепи. Конструкция стабилитронов также отличается от конструкции обычных диодов. Эти диоды изготавливаются из сильно легированных полупроводников N- и P-типа с различным количеством легирования для достижения различных напряжений пробоя. В результате разные уровни напряжения стабилитронов имеют разную емкость по напряжению.

Таким образом, стабилитроны предназначены для использования в режиме обратного смещения с низким постоянным напряжением пробоя или напряжением Зенера. Они начинают проводить значительные обратные токи. Зенеровский диод может работать как регулятор напряжения, выступая в качестве вспомогательной нагрузки, вытягивая больший ток из источника, когда напряжение слишком высокое, и меньший ток, когда напряжение слишком низкое.

Ранняя история диода Зенера

Кларенс Мелвин Зинер первым описал преимущества этого диода. Кларенс Зинер был профессором физического факультета Университета Карнеги-Меллона. Его исследовательские интересы были связаны с физикой твердого тела. Окончил Стэнфордский университет в 1926 и получил докторскую степень в том же учреждении в 1929 году. В 1950 году он изобрел диод Зенера, который теперь используется в современных компьютерных схемах. В 1934 году Кларенс Зинер опубликовал статью о пробое электрического изолятора. Он был известен во всем мире как пионер в области науки под названием «внутреннее трение», которая была в центре внимания большинства его исследований.

Как защитить схему от повреждения перенапряжением с помощью стабилитрона?

Вы можете столкнуться с неизвестными или загадочными сбоями в своих проектах при использовании двигателей, чувствительных к напряжению, или других компонентов в цепи. Компоненты, чувствительные к напряжению, иногда могут сгореть, потому что они просто не могут справиться с количеством напряжения в токе. Давайте посмотрим на схемы схемы. Схема 1 имеет источник питания 12 В со стабилитроном с обратным смещением. Напряжение стабилитрона 10 Вольт; следовательно, напряжение пробоя было превышено источником питания 12 Вольт и не допускает более 10 Вольт к вольтметру. Если мы увеличим напряжение блока питания до 9 В.0 вольт, как показано на схемах схемы 2, тогда стабилитрон по-прежнему будет пропускать ток через него. Однако ток, который идет на вольтметр, по-прежнему составляет около 10 вольт. Следовательно, стабилитрон можно использовать для создания регулятора напряжения с использованием этой логики в схеме.

Атрибуты стабилитронов

Номинальное напряжение, рассеиваемая мощность, прямой ток возбуждения, прямое напряжение, тип упаковки и максимальный обратный ток — это атрибуты, которые используются для классификации различных стабилитронов. Давайте познакомимся с некоторыми из этих атрибутов.

Номинальное напряжение

Напряжение пробоя стабилитрона также называется номинальным рабочим напряжением. Это один из важных параметров при выборе стабилитрона.

Рассеиваемая мощность

Наибольшее количество энергии, которое ток Зенера может разрядить, представлено этим значением. Превышение этой номинальной мощности приводит к перегреву стабилитрона, что может привести к его повреждению и выходу из строя компонентов, подключенных к нему в цепи. В результате при выборе диода для конкретного применения следует учитывать этот элемент.

Максимальный ток Зенера   

При напряжении Зенера это максимальный ток, который можно пропустить через диод Зенера без его разрушения.

Минимальный ток стабилитрона

Это минимальный ток, необходимый для входа стабилитрона в зону пробоя и начала работы.

Другие параметры, которые действуют как технические характеристики диода, должны быть тщательно изучены, прежде чем принимать решение о типе стабилитрона, необходимого для какой-либо конкретной конструкции.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

4.7V 5.1V 5.6V 6.2V 6.8V 7.5V 8.2V
9.1V 10V 11V 12V 13V 15V 16V
18V 20V 22V 24V 27V 30V 33V
36V 39V 43V 47V 51V 56V 62V
68V 100V 200V 200V 200V