Site Loader

Содержание

Схема тиристорного регулятора больших выпрямленных токов

Испытанная временем схема регулирования тока мощных потребителей отличается простотой в наладке, надежностью в эксплуатации и широкими потребительскими возможностями. Она хорошо подходит для управления режимом сварки, для пуско-зарядных устройств и для мощных узлов автоматики.

Принципиальная схема

При питании мощных нагрузок постоянным током часто применяется схема (рис.1) выпрямителя на четырех силовых вентилях. Переменное напряжение подводится к одной диагонали «моста», выходное постоянное (пульсирующее) напряжение снимается с другой диагонали. В каждом полупериоде работает одна пара диодов (VD1-VD4 или VD2-VD3).

Это свойство выпрямительного «моста» существенно: суммарная величина выпрямленного тока может достигать удвоенной величины предельного тока для каждого диода. Предельное напряжение диода не должно быть ниже амплитудного входного напряжения.

Поскольку класс напряжения силовых вентилей доходит до четырнадцатого (1400 В), с этим для бытовой электросети проблем нет. Существующий запас по обратному напряжению позволяет использовать вентили с некоторым перегревом, с малыми радиаторами (не злоупотреблять!).

Рис. 1. Схема выпрямителя на четырех силовых вентилях.

Внимание! Силовые диоды с маркировкой «В» проводят ток, «подобно» диодам Д226 (от гибкого вывода к корпусу), диоды с маркировкой «ВЛ» — от корпуса к гибкому выводу.

Использование вентилей различной проводимости позволяет выполнить монтаж всего на двух двойных радиаторах. Если же с корпусом устройства соединить «корпуса» вентилей «ВЛ» (выход «минус»), то останется изолировать всего один радиатор, на котором установлены диоды с маркировкой «В». Такая схема проста в монтаже и «наладке», но возникают трудности, если приходится регулировать ток нагрузки.

Если со сварочным процессом все понятно (присоединять «балласт»), то с пусковым устройством возникают огромные проблемы. После пуска двигателя огромный ток не нужен и вреден, поэтому необходимо его быстро отключить, так как каждое промедление укорачивает срок службы батареи (нередко батареи взрываются!).

Очень удобна для практического исполнения схема, показанная на рис.2, в которой функции регулирования тока выполняют тиристоры VS1, VS2, в этот же выпрямительный мост включены силовые вентили VD1, VD2. Монтаж облегчается тем, что каждая пара «диод-тиристор» крепится на своем радиаторе. Радиаторы можно применить стандартные (промышленного изготовления).

Другой путь — самостоятельное изготовление радиаторов из меди, алюминия толщиной свыше 10 мм. Для подбора размеров радиаторов необходимо собрать макет устройства и «погонять» его в тяжелом режиме. Неплохо, если после 15-минутной нагрузки корпуса тиристоров и диодов не будут «обжигать» руку (напряжение в этот момент отключить!).

Корпус устройства необходимо выполнить так, чтобы обеспечивалась хорошая циркуляция нагретого устройством воздуха. Не помешает установка вентилятора, который «помогает» прогонять воздух снизу вверх. Удобны вентиляторы, устанавливаемые в стойках с компьютерными платами либо в «советских» игровых автоматах.

Рис. 2. Схема регулятора тока на тиристорах.

Возможно выполнение схемы регулируемого выпрямителя полностью на тиристорах (рис.3). Нижняя (по схеме) пара тиристоров VS3, VS4 запускается импульсами от блока управления.

Импульсы приходят одновременно на управляющие электроды обоих тиристоров. Такое построение схемы «диссонирует» с принципами надежности, но время подтвердило работоспособность схемы («сжечь» тиристоры бытовая электросеть не может, поскольку они выдерживают импульсный ток 1600 А).

Тиристор VS1 (VS2) включен как диод — при положительном напряжении на аноде тиристора через диод VD1 (или VD2) и резистор R1 (или R2) на управляющий электрод тиристора будет подан отпирающий ток. Уже при напряжении в несколько вольт тиристор откроется и до окончания полуволны тока будет проводить ток.

Второй тиристор, на аноде которого было отрицательное напряжение, не будет запускаться (это и не нужно). На тиристоры VS3 и VS4 из схемы управления приходит импульс тока. Величина среднего тока в нагрузке зависит от моментов открывания тиристоров — чем раньше приходит открывающий импульс, тем большую часть периода соответствующий тиристор будет открыт.

Рис. 3. Схемы регулируемого выпрямителя полностью на тиристорах.

Открывание тиристоров VS1, VS2 через резисторы несколько «притупляет» схему: при низких входных напряжениях угол открытого состояния тиристоров оказывается малым — в нагрузку проходит заметно меньший ток, чем в схеме с диодами (рис.2).

Таким образом, данная схема вполне пригодна для регулировки сварочного тока по «вторичке» и выпрямления сетевого напряжения, где потеря нескольких вольт несущественна.

Эффективно использовать тиристорный мост для регулирования тока в широком диапазоне питающих напряжений позволяет схема, показанная на рис.4,

Устройство состоит из трех блоков:

  1. силового;
  2. схемы фазоимпульсного регулирования;
  3. двухпредельного вольтметра.

Трансформатор Т1 мощностью 20 Вт обеспечивает питание блока управления тиристорами VS3 и VS4 и открывание «диодов» VS1 и VS2.

Открывание тиристоров внешним блоком питания эффективно при низком (автомобильном) напряжении в силовой цепи, а также при питании индуктивной нагрузки.

Рис. 4. Тиристорный мост для регулировки тока в широком диапазоне.

Рис. 5. Принципиальная схема блока управления тиристорами.

Открывающие импульсы тока с 5-вольтовых обмоток трансформатора подводятся в противофазе к управляющим электродам VS1, VS2. Диоды VD1, VD2 пропускают к управляющим электродам только положительные полуволны тока.

Если фазировка открывающих импульсов «подходит», то тиристорный выпрямительный мост будет работать, иначе тока в нагрузке не будет.

Этот недостаток схемы легко устраним: достаточно повернуть наоборот сетевую вилку питания Т1 (и пометить краской, как нужно подключать вилки и клеммы устройств в сеть переменного тока). При использовании схемы в пуско-зарядном устройстве заметно увеличение отдаваемого тока по сравнению со схемой рис.3.

Очень выгодно наличие слаботочной цепи (сетевого трансформатора Т1). Разрывание тока выключателем S1 полностью обесточивает нагрузку. Таким образом, прервать пусковой ток можно маленьким концевым выключателем, автоматическим выключателем или слаботочным реле (добавив узел автоматического отключения).

Это очень существенный момент, поскольку разрывать сильноточные цепи, требующие для прохождения тока хорошего контакта, намного труднее. Мы не случайно вспомнили о фазировке трансформатора Т1. Если бы регулятор тока был «встроен» в зарядно-пусковое устройство или в схему сварочного аппарата, то проблема фазировки была бы решена в момент наладки основного устройства.

Наше устройство специально выполнено широкопрофильным (как пользование пусковым устройством определяется сезоном года, так и сварочные работы приходится вести нерегулярно). Приходится управлять режимом работы мощной электродрели и питать нихромовые обогреватели.

На рис.5 показана схема блока управления тиристорами. Выпрямительный мостик VD1 подает в схему пульсирующее напряжение от 0 до 20 В.

Это напряжение через диод VD2 подводится к конденсатору С1, обеспечивается постоянное напряжение питания мощного транзисторного «ключа» на VT2, VT3.

Пульсирующее напряжение через резистор R1 подводится к параллельно соединенным резистору R2 и стабилитрону VD6. Резистор «привязывает» потенциал точки «А» (рис.6) к нулевому, а стабилитрон ограничивает вершины импульсов на уровне порога стабилизации. Ограниченные импульсы напряжения заряжают конденсатор С2 для питания микросхемы DD1.

Эти же импульсы напряжения воздействуют на вход логического элемента. При некотором пороге напряжения логический элемент переключается. С учетом инвертирования сигнала на выходе логического элемента (точка «В») импульсы напряжения будут кратковременными -около момента нулевого входного напряжения.

Рис. 6. Диаграмма импульсов.

Следующий элемент логики инвертирует напряжение «В», поэтому импульсы напряжения «С» имеют значительно большую длительность. Пока действует импульс напряжения «С», через резисторы R3 и R4 происходит заряд конденсатора C3.

Экспоненциально нарастающее напряжение в точке «Е», в момент перехода через логический порог, «переключает» логический элемент. После инвертирования вторым логическим элементом высокому входному напряжению точки «Е» соответствует высокое логическое напряжение в точке «F».

Двум различным величинам сопротивления R4 соответствуют две осциллограммы в точке «Е»:

  • меньшее сопротивление R4 — большая крутизна — Е1;
  • большее сопротивление R4 — меньшая крутизна — Е2.

Следует обратить внимание также на питание базы транзистора VT1 сигналом «В», во время снижения входного напряжения до нуля транзистор VT1 открывается до насыщения, коллекторный переход транзистора разряжает конденсатор С3 (происходит подготовка к зарядке в следующем полупериоде напряжения). Таким образом, логический высокий уровень появляется в точке «F» раньше или позже, в зависимости от сопротивления R4:

  • меньшее сопротивление R4 — раньше появляется импульс — F1;
  • большее сопротивление R4 — позже появляется импульс — F2.

Усилитель на транзисторах VT2 и VT3 «повторяет» логические сигналы -точка «G». Осциллограммы в этой точке повторяют F1 и F2, но величина напряжения достигает 20 В.

Через разделительные диоды VD4, VD5 и ограничительные резисторы R9 R10 импульсы тока воздействуют на управляющие электроды тиристоров VS3 VS4 (рис.4). Один из тиристоров открывается, и на выход блока проходит импульс выпрямленного напряжения.

Меньшему значению сопротивления R4 соответствует большая часть полупериода синусоиды — h2, большему — меньшая часть полупериода синусоиды — h3 (рис.4). В конце полупериода ток прекращается, и все тиристоры закрываются.

Рис. 7. Схема автоматического двухпредельного вольтметра.

Таким образом, различным величинам сопротивления R4 соответствует различная длительность «отрезков» синусоидального напряжения на нагрузке. Выходную мощность можно регулировать практически от 0 до 100%. Стабильность работы устройства определяется применением «логики» — пороги переключения элементов стабильны.

Конструкция и налаживание

Если ошибок в монтаже нет, то устройство работает стабильно. При замене конденсатора С3 потребуется подбор резисторов R3 и R4. Замена тиристоров в силовом блоке может потребовать подбора R9, R10 (бывает, даже силовые тиристоры одного типа резко отличаются по токам включения — приходится менее чувствительный отбраковывать).

Измерять напряжение на нагрузке можно каждый раз «подходящим» вольтметром. Исходя из мобильности и универсальности блока регулирования, мы применили автоматический двухпредельный вольтметр (рис.7).

Измерение напряжения до 30 В производится головкой PV1 типа М269 с добавочным сопротивлением R2 (регулируется отклонение на всю шкалу при 30 В входного напряжения). Конденсатор С1 необходим для сглаживания напряжения, подводимого к вольтметру.

Для «загрубления» шкалы в 10 раз служит остальная часть схемы. Через лампу накаливания (бареттер) HL3 и подстроечный резистор R3 запитывается лампа накаливания оптопары U1, стабилитрон VD1 защищает вход оптрона.

Большое входное напряжение приводит к снижению сопротивления резистора оптопары от мегаом до ки-лоом, транзистор VT1 открывается, реле К1 срабатывает. Контакты реле при этом выполняют две функции:

  • размыкают подстроечное сопротивление R1 — схема вольтметра переключается на высоковольтный предел;
  • вместо зеленого светодиода HL2 включается красный светодиод HL1.

Красный, более заметный, цвет специально выбран для шкалы больших напряжений.

Внимание! Подстройка R1(шкала 0…300) производится после подстройки R2.

Питание к схеме вольтметра взято из блока управления тиристорами. Развязка от измеряемого напряжения осуществлена с помощью оптрона. Порог переключения оптрона можно установить немного выше 30 В, что облегчит подстройку шкал.

Диод VD2 необходим для защиты транзистора от всплесков напряжения в момент обесточивания реле. Автоматическое переключение шкал вольтметра оправдано при использовании блока для питания различных нагрузок. Нумерация выводов оптрона не дана: с помощью тестера нетрудно различить входные и выходные выводы.

Сопротивление лампы оптрона равно сотням ом, а фоторезистора — мегаом (в момент измерения лампа не запитана). На рис.8 показан вид устройства сверху (крышка снята). VS1 и VS2 установлены на общем радиаторе, VS3 и VS4 — на отдельных радиаторах.

Резьбу на радиаторах пришлось нарезать под тиристоры. Гибкие выводы силовых тиристоров обрезаны, монтаж осуществлен более тонким проводом.

Рис. 8. Вид устройства сверху.

На рис.9 показан вид на лицевую панель устройства. Слева расположена ручка регулирования тока нагрузки, справа — шкала вольтметра. Около шкалы закреплены светодиоды, верхний (красный) расположен около надписи «300 В».

Клеммы устройства не очень мощные, так как применяется оно для сварки тонких деталей, где очень важна точность поддержания режима. Время пуска двигателя небольшое, поэтому ресурса клеммных соединений хватает.

Рис. 9. Вид на лицевую панель устройства.

Верхняя крышка крепится к нижней с зазором в пару сантиметров для обеспечения лучшей циркуляции воздуха.

Устройство легко поддается модернизации. Так, для автоматизации режима запуска двигателя автомобиля не нужны дополнительные детали (рис.10).

Необходимо между точками «D» и «E» блока управления включить нормально замкнутую контактную группу реле К1 из схемы двухпредельного вольтметра. Если перестройкой R3 не удастся довести порог переключения вольтметра до 12…13 В, то придется заменить лампу HL3 более мощной (вместо 10 установить 15 Вт).

Пусковые устройства промышленного изготовления настраиваются на порог включения даже 9 В. Мы рекомендуем настраивать порог переключения устройства на более высокое напряжение, так как еще до включения стартера аккумулятор немного подпитывается током (до уровня переключения). Теперь пуск производится немного «подзаряженным» аккумулятором вместе с автоматическим пусковым устройством.

Рис. 10 . Автоматизация режима запуска двигателя автомобиля.

По мере увеличения бортового напряжения автоматика «закрывает» подачу тока от пускового устройства, при повторных пусках в нужные моменты подпитка возобновляется. Имеющийся в устройстве регулятор тока (скважности выпрямленных импульсов) позволяет ограничить величину пускового тока.

Н.П. Горейко, В.С. Стовпец. г. Ладыжин. Винницкая обл. Электрик-2004-08.

Схема управления мощными тиристорами

В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные. Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке подробнее об этом методе будет рассказано ниже. Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода. На графике показано время, когда тиристор закрыт t1 фаза управляющего сигнала , как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной близкой к минимальной.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Полупроводниковые выпрямители — Системы управления преобразователями на тиристорах
  • Тиристоры и схемы коммутации мощной нагрузки
  • Схемы управления тиристорами
  • Драйверы SEMIKRON для управления тиристорными модулями
  • Регулятор мощности тиристорный, напряжение и схемы своими руками
  • Primary Menu
  • Схема тиристорного регулятора больших выпрямленных токов

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Тиристорный регулятор напряжения на одном тиристоре

Полупроводниковые выпрямители — Системы управления преобразователями на тиристорах


В самом деле, реле это же сплошной гемор. Во первых они дорогие, во вторых, чтобы запитать обмотку реле нужен усиливающий транзистор, так как слабая ножка микроконтроллера не способна на такой подвиг. Ну, а в третьих, любое реле это весьма громоздкая конструкция, особенно если это силовое реле, расчитанное на большой ток.

Если речь идет о переменном токе, то лучше использовать симисторы или тиристоры. Что это такое? А сейчас расскажу. Если на пальцах, то тиристор похож на диод , даже обозначение сходное. Пропускает ток в одну сторону и не пускает в другую. Но есть у него одна особенность, отличающая его от диода кардинально — управляющий вход.

Если на управляющий вход не подать ток открытия , то тиристор не пропустит ток даже в прямом направлении. Но стоит подать хоть краткий импульс, как он тотчас открывается и остается открытым до тех пор, пока есть прямое напряжение.

Если напряжение снять или поменять полярность, то тиристор закроется. Полярность управляющего напряжения предпочтительно должна совпадать с полярностью напряжения на аноде. Если соединить встречно параллельно два тиристора , то получится симистор — отличная штука для коммутации нагрузки на переменном токе. На положительной полуволне синусоиды пропускает один, на отрицательной другой.

Причем пропускают только при наличии управляющего сигнала. Если сигнал управления снять, то на следующем же периоде оба тиристора заткнутся и цепь оборвется. Крастота да и только. Вот ее и надо использовать для управления бытовой нагрузкой.

Но тут есть одна тонкость — коммутируем мы силовую высоковольтную цепь, вольт. А контроллер у нас низковольтный , работает на пять вольт.

Поэтому во избежание эксцессов нужно произвести потенциальную развязку. То есть сделать так, чтобы между высоковольтной и низковольтной частью не было прямого электрического соединения.

Например, сделать оптическое разделение. Для этого существует специальная сборка — симисторный оптодрайвер MOC Замечательная вещь! Смотри на схему подключения — всего несколько дополнительных деталек и у тебя силовая и управляющая часть разделены между собой. Главное, чтобы напряжение на которое расчитан конденсатор было раза в полтора два выше напряжения в розетке.

Можно не боятся помех по питанию при включении и выключении симистора. В самом оптодрайвере сигнал подается светодиодом, а значит можно смело зажигать его от ножки микроконтроллера без всяких дополнительных ухищрений. Вообще, можно и без развязки и тоже будет работать, но за хороший тон считается всегда делать потенциальную развязку между силовой и управляющей частью. Это и надежность и безопасность всей системы. Промышленные решения так просто набиты оптопарами или всякими изолирующими усилителями.

Ну, а в качестве симистора рекомендую BT — с хорошим радиатором данная фиговина легко протащит через себя ток в 16А Post navigation Previous Post Евстифеев А. Вопрос такой: а можно ли плавно управлять нагрузкой? Я как-то лет 6 назад собрал себе простой регулятор для лампы, паяльника, там, как щас помню, стояло 4 тиристора, только вот убей не помню, как такая связка работает?

Для этого тиристор надо открывать не абы как, а импульсами в нужное время. Управляемый тиристорный выпрямитель называется. Если откроешь сразу, в начале прихода синусоиды — то пройдет вся полуволна. Если на угле 90градусов, то только половина полуволны, следовательно, по аналогии с ШИМом, интеграл напряжения будет меньше. Ну и открывать можно на любом угле от 0 до Хотел об этом написать чуть позже, как никак прям по моей специальности все эти заморочки, но раз народ спрашивает не могу молчать!

Тока учти, что тут, несмотря на готовую схему, нет опторазвязки, а это большое западло. Не делай так :. А можно ли не меняя схему сделать управление мощьностью например обычной лампы накаливания с помошью ШИМ непосредственно на ноге микроконтроллера? Невнимательно читал. Это случается 50 раз в секунду. Ну и толку то от того, что ты туда загонишь ШИМ?

Он от первого импульса откроется, а на остальные ему наплевать. Тут яркость регулируется пропуском периодов или открыванием на неполном периоде, но надо ноль ловить. Если я не ошибаюсь, то только тем, что тиристор — однонаправленный как диод , а симистор — двунаправленный, нормально пропускает переменный ток видно из схемы.

DI HALT это Вы как я понимаю хозяин этих угодий , давно искал подобный ресурс, молодца так держать, респект и уважуха!!! Хотелось бы знать Вас поимени. Ток очень большой, поэтому тумблер должен быть расчитан на большой ток, плюс к панели управления нужно подводить провода большого сечения, рассчитанные на такой ток. Стартер же тоже от реле включается. Да чтобы стартер запустить достаточно придавить ногой кнопку, я это помню. А на втягивающее реле провода идут не хилые. В результате всё стало покрыто релюшками и перешли на электронную педаль вместо троса и пружины.

Получили геморой с проблемами но зато есть о чём поговорить. Спасибо за статью. Есть пара вопросов. При закрытом симисторе получается, что идет ток через R3 C1, он же переменный, так? Кстати, зачем эта цепочка нужна? Так же не понял назначение R2. Идет, но небольшой.

Вообще эта цепь нужна для более надежного закрывания. Дело в том, что если наростание напряжения на тиристоре будет слишком резким, то он может самопроизовольно открыться, а это западло. Для снижения скорости наростания напруги ставят этот кондер — он на себя часть броска возьмет и сгладит напряжение. Это особенно значимо когда идет коммутация индуктивной нагрузки, вроде двигателя или катушки какой.

По поводу R2 Для открытия тиристора нужен открывающий ток. Ток этот возникает при открытии оптосимистора. Это тоже нежелательно, резистор R2 отберет на себя часть этого тока, повышая управляющий порог. Добрый день. Как быть если данную схему использовать от розетки те вилку можно воткнуть по разному.

Это не имеет значения пока схема находится сама в себе. Имеет значения только с точки зрения безопасности, если у устройства могут быть какие-то торчащие части которые могут оказаться фазой при неправильном втыкании. Кстати, как это в закрытом пространстве нет тепловыделения. А куда оно денется то? Переходные сопротивления остались в любом случае. Будет грется еще как. С большим током и радиатор должен быть солидным…. Я BT покупал в Челябинской промэлектронике гдет за 20р.

Оптопара порядка 10р, сравнимо со стоимостью транзистора. По обвязке то же на тоже выходит. Транзистору тоже нужна пара резисторов на смещение. По поводу большого тока и радиатора. У меня BT гнал через себя ток нагревателя мощностью в ВТ без радиатора вообще.

В целом да, то же на тоже по деньгам. Есть еще пара плюсов — в данном случае надо только триак выбрать по току. В случае с реле нужно еще выбрать транз, который бы открыл реле, нужно еще где то взять повышенное напряжение на открытие реле.

Они как правило все от вольт работают, ни одного реле работающего с большими токами и с катушкой на 5 вольт я не знаю. Вот твое вообще требует 24 вольта. Где его взять? Городить БП с кучей выводов под разные напряжения? Делать DC-DC? Или чтобы с БП лезло 24 вольта, а потом дропать его до питания контроллера? Может проще все же триак поставить с оптикой и не мучаться :. Так я про порядок цен, не думаю что они относительно должны отличаться.

Даже по опту дешевле выходит….


Тиристоры и схемы коммутации мощной нагрузки

Это объясняется, в первую очередь, большими значениями достижимой плотности мощности, компактностью и высокой эффективностью построенных на их основе преобразователей. Кроме того, эти компоненты позволяют разрабатывать импульсные преобразовательные устройства, удовлетворяющие жестким требованиям по электромагнитной совместимости. Однако тиристоры и симисторы еще долго будут оставаться элементами, привлекательными для разработчиков, благодаря своей дешевизне, простоте управления и надежности. Именно поэтому они выпускаются практически всеми крупнейшими изготовителями силовых полупроводников.

Однако схема имеет также недостаток. быть достаточно мощным — соответствовать мощности всей схемы. Тиристорная схема управления 2 .

Схемы управления тиристорами

Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т. Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У. Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода K, с точки зрения регенеративной фиксации. Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд. Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.

Драйверы SEMIKRON для управления тиристорными модулями

В различных электронных устройствах в цепях переменного тока в качестве силовых ключей широко применяют тринисторы и симисторы. Данная статья призвана помочь в выборе схемы управления подобными приборами. Самый простой способ управления тиристорами — это подача на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения рис. Ключ SA1 на рис. Этот способ прост и удобен, но обладает существенным недостатком — требуется довольно большая мощность управляющего сигнала.

Забыли пароль? Изменен п.

Регулятор мощности тиристорный, напряжение и схемы своими руками

Мощные тиристоры VS4 и VS5, входящие в состав регулирующего элемента устройства, включены по схеме двухполупериодно-го выпрямителя. Работа регулятора основана на фазовом методе управления тиристорами. Главным узлом блока управления является импульсный генератор, собранный на полевом транзисторе VT3 и синхронизируемый от сети. Эти диоды открываются током, протекающим через лампу. Мощные тиристоры выпускаются сериями. В нее входит несколько типов приборов на различные токи нагрузки.

Primary Menu

Здесь можно немножко помяукать :. Что бы еще такого сделать? Обсудим все!!! Как управлять мощными тиристорами? Подскажите пожалуйста хорошую схему для управления мощными тиристорами серии Т и им подобных. Имеются в наличии эти тиристоры и мощный трансформатор, киловатта на ,5.

Схемы преобразователей на тиристорах требуют управления мощным сигналом, изолированным от схемы управления. Модули ИЛТ и ИЛТ.

Схема тиристорного регулятора больших выпрямленных токов

Принцип действия тиристора. Тиристор является силовым электронным не полностью управляемым ключом. Поэтому иногда в технической литературе его называют однооперационным тиристором, который может сигналом управления переводиться только в проводящее состояние, т.

Применение современной схемотехники с использованием простых оригинальных решений на традиционной элементной базе и на новых малогабаритных микросхемах позволяет изготовить компактные и удобные в эксплуатации регуляторы большой мощности. В данной статье описано несколько простых конструкций регуляторов мощности нагрузки до 5 кВт, которые легко изготовить из доступных деталей. Электронные регуляторы мощности нагрузки в настоящее время широко используются в промышленности и быту для плавного регулирования скорости вращения электродвигателей , температуры нагревательных приборов, интенсивности освещения помещений электрическими лампами, установки необходимого сварочного тока, регулировки зарядного тока аккумуляторных батарей и т. Раньше для этого использовались громоздкие трансформаторы и автотрансформаторы со ступенчатым или плавным переключением витков их обмоток, работающих на нагрузку. Электронные регуляторы более компактны, удобны в эксплуатации и имеют малый вес при значительно большей мощности. В основном, исполнительными элементами электронных регуляторов мощности переменного тока являются: тиристор, симистор и оптотиристор, управление последним осуществляется через встроенную в него оптопару, устраняющую гальваническую связь между схемой управления и питающей электросетью.

Просмотр полной версии : БУСТ2. Блок управления симисторами и тиристорами.

Новокузнецк, Кемеровская обл. Логин: Пароль Забыли? Простое управление тиристором. Случилось это, когда искал возможность плавно регулировать через тиристор яркость ламп накаливания. При простой схеме ведёт себя как довольно сложные с фазоимпульсным управлением тиристором. Позже, уже имея осцилограф, понял как примерно она работает. Естественно, делюсь мнением.

Основные требования к системам управления тиристорами. Надежное включение тиристоров в схемах преобразователей переменного тока происходит в том случае, если ток и напряжение управления соответствуют входным характеристикам применяемых вентилей. Открывание тиристоров в многофазных управляемых схемах выпрямления, например в трехфазной нулевой схеме по рис. Изменением фазы переднего фронта управляющего импульса относительно переменного анодного напряжения можно осуществить регулирование выходного напряжения преобразователя.


Схемы управления тиристорами на постоянном токе

Для включения и отключения нагрузки (ламп накаливания, обмоток реле, электродвигателей и т. п.) зачастую используют тиристоры. Особенность этого вида полупроводниковых приборов и основное их отличие от транзисторов заключается в том, что они обладают двумя устойчивыми состояниями, без каких-либо промежуточных.

Это состояние «включено», когда сопротивление полупроводникового прибора минимально, и состояние «выключено», когда сопротивление тиристора максимально. В идеале эти сопротивления приближаются к нулю или бесконечности.

Для включения тиристора на его управляющий электрод достаточно хотя бы кратковременно подать управляющее напряжение. Отключить тиристор (запереть) можно кратковременным выключением питания тиристора, сменой полярности питающего напряжения либо уменьшением тока в нагрузке ниже тока удержания тиристора.

Обычно включают и отключают тиристорные коммутаторы двумя кнопками. Значительно меньшее распространение получили однокнопочные схемы управления тиристорами.

Здесь подробно рассмотрены методы однокнопочного управления тиристорными коммутаторами. Принцип работы тиристорных однокнопочных управляющих устройств основан на динамических зарядно-разрядных процессах в цепи управления тиристора [EW 4/01-299].

Схема однокнопочного управления тиристором

На рисунке 1 показана одна из простейших схем однокнопочного управления тиристорным коммутатором. В схеме (здесь и далее) используют кнопки без фиксации положения. В исходном состоянии нормально замкнутые контакты кнопки шунтируют цепь управления тиристором.

Сопротивление тиристора максимально, ток через нагрузку не протекает. Диаграммы основных процессов, протекающих в схеме на рис. 1, рассмотрены на рис. 2.

Для включения тиристора (ON) нажимают на кнопку SB1. При этом нагрузка оказывается подключенной к источнику питания через контакты кнопки SB1, а конденсатор С1 заряжается через резистор R1 от источника питания.

Скорость заряда конденсатора определяется постоянной времени цепи R1C1 (см. диаграмму). После того как кнопку отпустят, конденсатор С1 разряжается на управляющий электрод тиристора. Если напряжение на нем равно или превышает напряжение включения тиристора, тиристор отпирается.

Рис. 1. Принципиальная схема управления тиристором с помощью одной кнопки.

Рис. 2. Диаграммы основных процессов, протекающих в схеме с тиристором.

Отключить нагрузку (OFF) можно кратковременным нажатием на кнопку SB1. При этом конденсатор С1 не успевает зарядиться. Поскольку контакты кнопки шунтируют электроды тиристора (анод — катод), это равноценно отключению источника питания тиристора. В результате нагрузка будет отключена.

Следовательно, для включения нагрузки необходимо с большей продолжительностью нажать на управляющую кнопку, для отключения — еще раз кратковременно нажать ту же кнопку.

Простые силовые ключи на тиристорах

На рис. 3 и 4 показаны варианты схемной идеи, представленной на рис. 1. На рис. 3 использована цепочка последовательно соединенных диодов VD1 и VD2 для ограничения максимального напряжения заряда конденсатора.

Рис. 3. Вариант схемы управления тиристором одной кнопкой.

Это позволило заметно снизить рабочее напряжение (до 1,5. 3 В) и емкость конденсатора С1. В следующей схеме (рис. 4) резистор R1 включен последовательно с нагрузкой, что позволяет создать двухполюсный коммутатор нагрузки. Сопротивление нагрузки должно быть намного ниже, чем сопротивление R1.

Рис. 4. Схема электронного ключа на тиристоре с последовательным подключением нагрузки.

Тиристорный коммутатор с двумя кнопками

Тиристорное устройство управления нагрузкой (рис. 5) может быть использовано для включения и выключения нагрузки любой из нескольких последовательно включенных кнопок, работающих на разрыв цепи. Принцип действия тиристорного коммутатора заключается в следующем.

При включении устройства напряжение, подаваемое на управляющий электрод тиристора, недостаточно для его включения. Тиристор, и, соответственно, нагрузка отключены. При нажатии на любую из кнопок SB1 — SBn (и удержании ее нажатой) конденсатор С1 заряжается через резистор R1 от источника питания. Цепь управления тиристора и сам тиристор при этом отключены.

Рис. 5. Схема простого тиристорного коммутатора нагрузки с двумя кнопками.

После отпускания кнопки и восстановления цепи питания тиристора накопленная конденсатором С1 энергия оказывается приложенной к управляющему электроду тиристора. В результате разряда конденсатора через управляющий электрод тиристор включается, подсоединяя тем самым нагрузку к цепи питания.

Для отключения тиристора (и нагрузки) кратковременно нажимают на любую из кнопок SB1 — SBn. При этом конденсатор С1 не успевает зарядиться. В то же время цепь питания тиристора размыкается, тиристор запирается.

Величина резистора R2 зависит от напряжения питания устройства: при напряжении 15 В его сопротивление — 10 кОм при 9 В — 3,3 кОм при 5 6-1,2 кОм.

Схема с эквивалентом тиристора на транзисторах

При использовании вместо тиристора его транзисторного аналога (рис. 6) величина этого резистора меняется, соответственно, от 240 кОм (15 В) до 16 кОм (9 В) и до 4,7 кОм (5 В).

Рис. 6. Схема электронного коммутатора нагрузки с транзисторным эквивалентом тиристора.

Тиристорное устройство, позволяющее создать аналог многокнопочного переключателя с зависимой фиксацией положения и использующее для управления кнопочные элементы, работающие без фиксации, показано на рис. 7. В схеме может быть использовано несколько тиристоров, однако, для упрощения схемы, на рисунке показано лишь два канала. Другие каналы коммутации могут быть подключены аналогично предыдущим.

Рис. 7. Принципиальная схема аналога многокнопочного переключателя с использованием тиристоров.

В исходном состоянии тиристоры заперты. При нажатии на кнопку управления, например, кнопку SB1, конденсатор С1 относительно большой емкости оказывается подключенным к источнику питания через диоды VD1 — VDm и сопротивления нагрузки всех каналов.

В результате заряда конденсатора возникает импульс тока, приводящий к кратковременному замыканию анодов всех тиристоров через соответствующие диоды VD1 — VDm на общую шину.

Любой из тиристоров, если он был включен, отключается. В то же время конденсатор накапливает энергию. После отпускания кнопки конденсатор разряжается на управляющий электрод тиристора, отпирая его.

Для включения любого другого канала нажимают соответствующую кнопку. Происходит отключение (сброс) ранее задействованной нагрузки и включение новой нагрузки. В схеме предусмотрена кнопка SB0 общего отключения всех нагрузок.

Многокнопочный переключатель с транзисторным аналогом тиристоров

Вариант схемы, выполненный на транзисторных аналогах тиристоров и диодно-емкостных зарядных цепочках с использованием малогабаритных конденсаторов, показан на рис. 8, 9.

Рис. 8. Схема эквивалентной замены тиристора транзисторами.

В схеме предусмотрена светодиодная индикация включенного канала. В этой связи максимальный ток нагрузки каждого из каналов ограничен значением 20 мА.

Рис. 9. Схема многокнопочного переключателя с транзисторным аналогом тиристоров.

Устройства, аналогичные представленным на рис. 7 – 9, а также на рис. 10 – 12, можно использовать для систем выбора программ радио- и телеприемников.

Недостатком схемных решений (рис. 7 – 9) является то, что в момент нажатия на любую из кнопок все нагрузки оказываются хотя бы на мгновение подключенными к источнику питания.

Схемы многопозиционных переключателей

На рис. 10 и 11 показан тиристорный коммутатор разрывного типа с неограниченным количеством последовательно включенных элементов.

При нажатии на одну из кнопок управления цепь питания аналогов тиристоров размыкается по постоянному току. Конденсатор С1 оказывается включенным последовательно с аналогом тиристора.

Рис. 10. Схема базового элемента для самодельного многопозиционного коммутатора нагрузки.

Рис. 11. Принципиальная схема самодельного многопозиционного коммутатора нагрузки.

Одновременно управляющее напряжение (нулевого уровня) через задействованную кнопку и резистор R2 (рис. 10) подается на управляющий электрод аналога тиристора.

Поскольку в первые мгновения при нажатии кнопки последовательно с аналогом тиристора оказывается включенным полностью разряженный конденсатор, такое включение равносильно короткому замыканию в цепи питания соответствующего тиристора. Следовательно, тиристор отпирается, включая тем самым соответствующую нагрузку.

При нажатии на любую другую кнопку ранее задействованный канал отключается, и включается другой канал. При длительном (порядка 2 сек) нажатии на любую из кнопок конденсатор С1 заряжается, что равнозначно размыканию цепи и приводит к запиранию всех тиристоров.

Схема усовершенствованного электронного переключателя

Рис. 12. Принципиальная схема тиристорного коммутатора для множества нагрузок.

В ряду тиристорных коммутаторов наиболее совершенной представляется схема, показанная на рис. 12. При нажатии кнопки управления возникает бросок тока, эквивалентный короткому замыканию.

Происходит отключение ранее задействованных тиристоров и включение тиристора, соответствующего нажатой кнопке. В схеме предусмотрена светодиодная индикация задействованного канала, а также кнопка общего сброса.

Вместо конденсаторов большой емкости могут быть использованы диодно-конденсаторные цепочки (рис. 12). Принцип действия схемы сохраняется. В качестве нагрузки можно использовать низковольтные реле, например, РМК 11105 сопротивлением 350 Ом на рабочее напряжение 5 В.

Резистор R1 ограничивает ток короткого замыкания и ток максимального потребления величиной 10. 12 мА. Количество каналов коммутации не ограничено.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Главная страница » Тиристоры и схемы коммутации мощной нагрузки

Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т. п.

Тиристор – краткий обзор полупроводника

Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У.

Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода K, с точки зрения регенеративной фиксации.

Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд. Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.

После переключения и полной проводки, падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения.

Тем не менее, следует помнить: как только полупроводник начинает проводить, этот процесс продолжается даже при отсутствии управляющего сигнала У.

Продолжается такое состояние до момента, когда ток анода уменьшится до величины меньше допустимо минимальной. Лишь на этом уровне и ниже происходит автоматическая блокировка перехода. Иначе работают лишь новые тиристоры структуры MCT.

Инновационная разработка в группе тиристоров. Управляемая структура MCT (MOSFET Controled thyristor): 1 — управление 1; 2 — анод; 3 — управление 2; 4 — катод; 5 — подложка металл; OFF-FET — канал типа n-канал; ON-FET — канал типа p-канал

Этот фактор показывает, что в отличие от биполярных транзисторов и полевых транзисторов, тиристоры, по сути, невозможно использовать для усиления или контролируемого переключения.

Таким образом, напрашивается логичный вывод: тиристоры как полупроводниковые приборы специально разработаны для использования в составе схем коммутации высокой мощности.

Эти полупроводники могут работать только в режиме переключения, где они действуют как открытый или закрытый коммутатор. Как только этот коммутатор срабатывает, он остаётся в состоянии проводника.

Поэтому в цепях постоянного напряжения и некоторых сильно индуктивных цепях переменного напряжения, значение тока необходимо искусственно уменьшать при помощи отдельного переключателя или схемы отключения.

Тиристор в цепи постоянного напряжения

При условии питания схемы постоянным напряжением, тиристор эффективен в качестве переключателя мощной нагрузки. Здесь прибор действует подобно электронной защелке, поскольку после активации остается в состоянии «включено», вплоть до сброса этого состояния вручную. Рассмотрим практическую схему.

Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.

Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1.

Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.

Стоит только нажать кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.

Преимущества и недостатки использования тиристора

Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.

Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.

Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания.

Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».

Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы.

В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.

Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:

  • активация КН2 создаёт «КЗ» между электродами А и К,
  • уменьшается ток фиксации до минимального значения,
  • устройство переходит в состояние «выключено».

Тиристор в цепи переменного тока

При подключении к источнику переменного тока тиристор работает несколько иначе. Это связано с периодическим изменением полярности переменного напряжения.

Поэтому применение в схемах с питанием переменным напряжением автоматически будет приводить к состоянию обратного смещения перехода. То есть в течение половины каждого цикла прибор будет находиться в состоянии «отключено».

Для варианта с переменным напряжением схема тиристорного запуска аналогична схеме с питанием постоянным напряжением. Разница незначительная — отсутствие дополнительного переключателя КН2 и дополнение диода D1.

Благодаря диоду D1, предотвращается обратное смещение по отношению к управляющему электроду У.

Во время положительного полупериода синусоидальной формы сигнала, устройство смещено вперед, но при выключенном переключателе КН1, к тиристору подводится нулевой ток затвора и прибор остается «выключенным».

В отрицательном полупериоде устройство получает обратное смещение и также останется «выключенным», независимо от состояния переключателя КН1.

Схема 3: КН1 — переключатель с фиксацией; D1 — диод любой под высокое напряжение; R1, R2 -резисторы постоянные 180 Ом и 1 кОм, Л1 — лампа накаливания 100 Вт

Если переключатель КН1 замкнуть, вначале каждого положительного полупериода полупроводник останется полностью «выключенным».

Но в результате достижения достаточного положительного триггерного напряжения (возрастания тока управления) на электроде У, тиристор переключится в состояние «включено».

Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается. Очевидно, т.к. здесь ток анода падает ниже текущего значения.

Во время следующего отрицательного полупериода, устройство будет полностью «отключено» до следующего положительного полупериода. Затем процесс вновь повторяется.

Получается, нагрузка имеет только половину доступной мощности источника питания. Тиристор действует как выпрямляющий диод и проводит переменный ток лишь во время положительных полуциклов, когда переход смещен вперед.

Управление половинной волной

Фазовое управление тиристором является наиболее распространенной формой управления мощностью переменного тока.

Пример базовой схемы управления фазой показан ниже. Здесь напряжение затвора тиристора формируется цепочкой R1C1 через триггерный диод D1.

Во время положительного полупериода, когда переход смещен вперед, конденсатор C1 заряжается через резистор R1 от напряжения питания схемы.

Управляющий электрод У активируются только тогда, когда уровень напряжения в точке «x» вызывает срабатывание диода D1. Конденсатор C1 разряжается на управляющий электрод У, устанавливая прибор в состояние «включено».

Длительность времени положительной половины цикла, когда открывается проводимость, контролируется постоянной времени цепочки R1C1, заданной переменным резистором R1.

Схема 4: КН1 — переключатель с фиксацией; R1 — переменный резистор 1 кОм; С1 — конденсатор 0,1 мкф; D1 — диод любой на высокое напряжение; Л1 — лампа накаливания 100 Вт; П — синусоида проводимости

Увеличение значения R1 приводит к задержке запускающего напряжения, подаваемого на тиристорный управляющий электрод, что, в свою очередь, вызывает отставание по времени проводимости устройства.

В результате доля полупериода, когда устройство проводит, может регулироваться в диапазоне 0 -180º. Это означает, что половинная мощность, рассеиваемая нагрузкой (лампой), поддаётся регулировке.

Существует масса способов достижения полноволнового управления тиристорами. Например, можно включить один полупроводник в схему диодного мостового выпрямителя. Этим методом легко преобразовать переменную составляющую в однонаправленный ток тиристора.

Однако более распространенным методом считается вариант использования двух тиристоров, соединенных инверсной параллелью.

Самым практичным подходом видится применение одного симистора. Этот полупроводник допускает переход в обоих направлениях, что делает симисторы более пригодными для схем переключения переменного тока.

Полный технический расклад тиристора

Как работает тиристорная схема » Electronics Notes

Существует множество тиристорных/тиристорных цепей, которые могут управлять как постоянным, так и переменным током – часто в цепях управления переменным током используется разность фаз на затворе для управления уровнем протекающего тока.


Схема тиристора Включает:
Руководство по проектированию схемы тиристора Схема работы Схема запуска/запуска Лом перенапряжения Симисторные схемы


Тиристорные или тиристорные схемы широко используются для управления мощностью систем постоянного и переменного тока. В схемах используется множество различных методов для управления протеканием тока нагрузки, но все они требуют срабатывания затвора и снятия анодно-катодного напряжения, чтобы остановить протекание тока.

Понимание того, как работает схема тиристора/тиристорного тиристора, позволяет упростить проектирование в целом и обеспечить правильную работу схемы.

Многие схемы с тиристорами и тиристорами переменного тока используют переменную разность фаз сигнала, создаваемого на затворе, для управления частью формы волны, которую проводит тиристор. Этот тип схемы относительно прост в проектировании и изготовлении.

Цепь тиристора/тиристора постоянного тока

Во многих приложениях требуется схема SCR для управления работой нагрузки постоянного тока. Это может быть использовано для двигателей постоянного тока, ламп или любой другой нагрузки, требующей переключения.

Базовая схема SCR, приведенная ниже, способна управлять питанием нагрузки с помощью небольшого переключателя, чтобы инициировать подачу питания на нагрузку.

Базовый тиристор постоянного тока / цепь SCR

Первоначально, когда S1 закрыт, а S2 открыт, ток не течет. Только когда S2 закрыт и он запускает затвор, вызывая протекание тока затвора, цепь SCR включится и ток будет течь в нагрузке.

Ток будет течь до тех пор, пока цепь анода не будет разорвана. Это можно сделать с помощью S1. Альтернативный метод заключается в том, чтобы поместить переключатель S1 на тиристор и, мгновенно замкнув его, напряжение на тиристоре исчезнет, ​​и тиристор перестанет проводить ток.

В результате их функций в этой цепи SCR S1 можно назвать выключателем, а S2 — выключателем ON. В этой конфигурации S1 должен выдерживать полный ток нагрузки, а S2 должен выдерживать только ток затвора.

После включения тиристора переключатель можно отпустить и оставить разомкнутым, так как действие тиристора поддерживает ток, протекающий через устройство и, следовательно, нагрузку.

Резистор R1 подключает затвор к источнику питания через переключатель. Когда ключ S2 замкнут, ток проходит через резистор, входит в затвор и включает SCR. Резистор R1 должен быть рассчитан так, чтобы обеспечить достаточный ток затвора для включения цепи SCR.

R2 включен для снижения чувствительности SCR, чтобы он не срабатывал при любом шуме, который может быть уловлен.

Основной тиристор переменного тока / цепь SCR

Когда переменный ток используется с тиристорной схемой, необходимо внести несколько изменений, как показано ниже.

Причина этого заключается в том, что переменный ток меняет полярность в течение цикла. Это означает, что тиристор станет смещен в обратном направлении, эффективно уменьшая анодное напряжение до нуля, заставляя его выключаться в течение одной половины каждого цикла. В результате нет необходимости в выключателе, поскольку это достигается за счет использования источника переменного тока.

Базовая схема тиристора переменного тока / SCR

Работа схемы немного отличается от работы схемы SCR постоянного тока. Когда переключатель включен, схема должна будет ждать, пока не будет достаточно доступного анодного напряжения, поскольку форма волны переменного тока движется по своему пути. Кроме того, схема SCR должна будет ждать, пока напряжение в секции затвора схемы не сможет обеспечить достаточный ток для срабатывания SCR. Для этого переключатель должен находиться в закрытом положении.

После срабатывания SCR остается в проводящем состоянии в течение положительной половины цикла. Когда напряжение падает, наступает момент, когда напряжение анод-катод становится недостаточным для поддержания проводимости. В этот момент SCR перестанет проводить ток.

Затем в течение отрицательной половины цикла SCR не будет работать. Только когда вернется следующая положительная половина цикла, процесс повторится.

В результате эта цепь работает только тогда, когда переключатель ворот находится в закрытом положении.

Одна из проблем, связанных с использованием цепи SCR такого типа, заключается в том, что она не может подавать на нагрузку более 50 % мощности, потому что она не проводит ток во время отрицательной половины периода переменного тока, так как SCR смещен в обратном направлении.

Цепь тиристора переменного тока с управлением фазой затвора

Можно контролировать количество энергии, достигающей нагрузки, изменяя пропорцию полупериода, в течение которого проводит SCR. Этого можно достичь, используя схему SCR, которая включает управление фазой входного стробирующего сигнала.

Осциллограммы цепи тиристора переменного тока

Используя схему тиристора с управлением фазой, можно увидеть, что сигнал затвора тиристора получается из RC-цепи, состоящей из R1, VR1 и C1 перед диодом D1.

Как и в базовой схеме SCR переменного тока, интерес представляет только положительный полупериод сигнала, поскольку SCR смещен в прямом направлении. В течение этого полупериода конденсатор C1 заряжается через сеть резисторов, состоящую из R1 и VR1, от напряжения питания переменного тока.

Видно, что форма сигнала на положительном конце C1 отстает от формы входного сигнала, и вентиль срабатывает только тогда, когда напряжение на верхнем конце конденсатора возрастает достаточно, чтобы запустить SCR через D1

. В результате момент включения SCR задерживается по сравнению с тем, что обычно происходит, если сеть RC отсутствует.

Установка значения VR1 изменяет задержку и, следовательно, долю цикла, в течение которого работает SCR. Таким образом можно регулировать мощность нагрузки.

Цепь тиристора переменного тока с управлением фазой затвора

Последовательный резистор R1 был включен для ограничения минимального значения резисторной сети значением, которое обеспечивает приемлемый уровень тока затвора для SCR.

Как правило, чтобы обеспечить полный контроль над 50% цикла, доступного для проводимости с SCR, фазовый угол стробирующего сигнала должен варьироваться от 0° до 180°.

Эти схемы дают некоторые из основных концепций, лежащих в основе проектирования цепей SCR / тиристоров. Они демонстрируют основные операции того, как они работают и как их можно использовать.

Одной из основных проблем, о которой следует помнить при проектировании тиристорных цепей, является рассеиваемая мощность. Поскольку эти схемы часто работают с высокими напряжениями и высокими уровнями мощности, рассеивание мощности может быть основным фактором при проектировании и работе схемы.

Дополнительные схемы и схемы:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Транзисторная конструкция Транзистор Дарлингтона Транзисторные схемы схемы полевых транзисторов Символы цепи
    Вернитесь в меню проектирования схем . . .

Управление мощностью с помощью SCR (тиристора) – другие полупроводниковые устройства

Другие полупроводниковые устройства

Устройством, широко используемым для управления питанием как переменного, так и постоянного тока, является кремниевый управляемый выпрямитель (SCR). Он имеет множество промышленных электронных приложений, такие как реверс и управление скоростью для двигателей постоянного тока.

В дополнение к аноду и катоду SCR имеет затвор. Контролируя фаза сигнала затвора по отношению к фазе напряжения питания, угол срабатывания (задержки) ворот можно удерживать в любой точке цикла примерно до 180°. Благодаря управлению углом обстрела, Таким образом, можно контролировать среднюю мощность, подаваемую на нагрузку.

С источником переменного напряжения SCR действует как управляемый однополупериодный выпрямитель, поскольку он будет блокировать как положительные, так и отрицательные полупериоды до тех пор, пока на затвор подается положительный управляющий сигнал. Пока управляющий сигнал присутствует, SCR будет проводить в течение положительного полупериода и блокировать в отрицательный полупериод. При снятии управляющего сигнала SCR снова заблокирует оба полупериода, так как он автоматически поворачивает отключается в конце каждого положительного полупериода. При правильном выборе времени приложенный управляющий сигнал, SCR можно заставить проводить для всех или часть положительного полупериода. Таким образом, пропорциональный контроль выход, а также включение-выключение возможно.

Выключатель питания постоянного тока

Входные характеристики тринистора, затвор-катод, аналогичны входу база-эмиттер кремниевого транзистора NPN. Срабатывание происходит при определенных значениях входного тока и напряжения. Таким образом, устройство можно использовать как статический переключатель с Источник переменного или постоянного тока.

Схема ниже имеет источник постоянного тока, а SCR действует как защелка. выключатель. После включения управляющим сигналом он остается включенным. К выключите его, анодный ток должен быть снижен ниже значения дропаута уровень. Резистор R 1 обеспечивает смещение отрицательного затвора тока и обеспечивает стабильное состояние «выключено».

Простой переключатель с фиксацией.

SCR сработает при любом токе нагрузки, превышающем отсев. уровень. Он будет работать и с небольшими нагрузками (например, 10 мА), как и при более высокие токи нагрузки. Схема может использоваться как одноконтактная. переключатель с фиксацией для прямого управления данной нагрузкой, и полезен для управления катушками реле или аналогичными электромагнитными нагрузками. С SCR, обычное реле постоянного тока можно преобразовать в высокочувствительное фиксирующее реле. Для индуктивных нагрузок может потребоваться шунтирующий диод, для устранения скачков напряжения при отключении питания.

Для простой схемы фиксации можно выполнить отключение. снятием напряжения источника. SCR также можно отключить. с помощью емкостного шунта, как показано на схеме ниже. SCR выключен пока входной управляющий сигнал не включит его. Во включенном состоянии напряжение на аноде около одного вольта. C 1 сборы через Р 3 примерно на стоимость поставки Напряжение. Замыкание ключа вызывает заряд на конденсаторе управлять отрицательным анодом SCR по отношению к земле. Ток нагрузки питается уже не от SCR, а от разряжающегося конденсатора. Этот метод достижения отсечки тиристора известен как отключение шунтирующего конденсатора. Конденсатор должен быть достаточно большим, чтобы удерживать отрицательный анод SCR в течение длительного времени. достаточно, чтобы обеспечить выключение.

Отключение шунтирующего конденсатора.

Также может быть включено большое количество энергии и выключение с помощью только небольших механических переключателей. Отношение мощности управления к управляемая мощность настолько высока, что небольшой переключатель для легких режимов работы ( S 1 , на рисунке ниже) можно использовать в цепи, которая может коммутировать несколько киловатт.

На рисунке ниже SCR включен последовательно с входом постоянного тока. (подача) и нагрузка ( R L ). Обычно он обрезан, так что нагрузка не находится под напряжением. Когда S 1 закрыт, однако небольшой ток от положительной входной клеммы, ограниченный высоким сопротивлением R 1 , втекает в затвор и включает SCR, подавая питание Загрузка. После того, как это действие было инициировано, S 1 , можно открыть, но проведение продолжится.

Выключатель питания постоянного тока с контактами.

Отверстие S 1 позволяет заряжать конденсатор C 1 к входному напряжению постоянного тока, через резистор R 1 , с правым сторона положительная. Когда питание должно быть отключено, переключатель S 2 , моментально закрывается. Это соединяет положительную клемму заряженного конденсатор к отрицательной клемме входа постоянного тока (земля) и отрицательной напряжение подается на анод выпрямителя в течение короткого промежутка времени. Это отключает SCR.

Выключатель питания переменного тока

Тиристоры часто используются там, где необходимо коммутировать большое количество энергии, но Контактный ток и напряжение должны быть низкими для простой и надежной работы. SCR обеспечивают решение этой общей проблемы управления. Чувствительные исполнительные контакты должны подавать только мощность открытия затвора, которая может составлять всего 50 микроватт (1 В, 50 мкА). SCR будет непосредственно обеспечивают до 100 Вт и более на выходную нагрузку.

Обратная характеристика тиристора аналогична характеристике нормального кремниевый выпрямительный диод, поскольку оба представляют собой по существу разомкнутые цепи с отрицательным напряжением анод-катод. Прямая характеристика таким образом, что он будет блокировать положительное напряжение между анодом и катодом ниже критическое напряжение пробоя, если на терминал ворот. Однако, преодолев прямой прорыв напряжения или подачи соответствующего сигнала затвора, устройство быстро переходят в проводящее состояние и представляют собой характерные низкое прямое падение напряжения однопереходного выпрямителя.

Серийный переключатель.

На рисунке выше показан простой серийный переключатель S , который применяется сигнал переменного тока на ворота. R 1 ограничивает этот ток затвора безопасным значение, а диод D предотвращает подачу обратного напряжения между затвором и катодом в непроводящем цикле. Нагрузка R L может иметь любое значение в пределах SCR.

Сигналы переключателя переменного тока.

Пока S разомкнут, SCR не сработает при отключении переменного тока. применяемый. Замыкание S позволяет положительному чередованию вызывать проводимость, поскольку затвор запускает SCR, а его анод положительный. Как показано на рисунке выше, SCR срабатывает менее чем на 180° и не срабатывает. на отрицательном чередовании. Таким образом, замыкание S будет управлять стрельбой точка для каждого положительного чередования, и постоянный ток будет течь через нагрузку. Ток нагрузки может быть прерван размыканием S или отрицательным анодное напряжение.

Шунтирующий переключатель.

Можно использовать DC на воротах для управления огневой точкой. Или, как на рисунке выше, цепь можно разомкнуть, разомкнув S , где переключатель от затвора к катоду. Ток нагрузки может быть прерывается замыканием S или отрицательным анодным напряжением.

Ток нагрузки при замкнутом выключателе.

Две другие простые схемы переключения мощности на нагрузку: показано. Схема на рисунке выше будет обеспечивать нагрузку мощность, когда исполнительный контакт замкнут, но не когда он открытым. Схема на рисунке ниже обеспечивает обратное действие; питание подается на нагрузку только при разомкнутом контакте. Если при желании обе схемы можно «зафиксировать», работая с Постоянный ток вместо указанного источника питания переменного тока. На рисунке выше делитель напряжения R 2 , R 3 обеспечивает сигнал стробирования переменного тока. На рисунке ниже замкнутый переключатель приводит к тому, что затвор и катод имеют одинаковый потенциал; следовательно, SCR не сработает.

Ток нагрузки при открытом выключателе.

Питание переменного тока можно переключать с помощью схемы, показанной на рисунке ниже, с помощью два тиристора, соединенные встречно-параллельно, для обработки обоих полупериодов переменного напряжения.

Выключатель переменного тока с двумя тиристорами.

Управляющий ток подается на затворы через резистор R 3 , при коротком замыкании клемм управления внешним переключателем (механическим или электронным).

Переключатель, который позволяет стрелять каждым воротам, может управляться электронный усилитель, работающий от света, тепла, давления, и т.п. Когда контрольный переключатель замыкается, тиристоры срабатывают один раз для каждого чередование. Когда переключатель разомкнут, ни один SCR не срабатывает. В этом Таким образом, мощность переменного тока на нагрузке контролируется.

Полупериодный переключатель

С источником переменного напряжения SCR работает как управляемый однополупериодный выпрямитель, блокирующий как положительный, так и отрицательный полупериодов, пока на затвор не поступит положительный управляющий сигнал. Затем SCR будет проводить во время положительных полупериодов.

Схема ниже представляет собой простой статический переключатель переменного тока, который подает выпрямленный ток. полуволновой постоянный ток на нагрузку. Входной управляющий сигнал может быть переменного тока, постоянного тока или импульса.

Полуволновой переключатель.


Полноволновой переключатель

Полноволновое статическое переключение также возможно с SCR. Как показано на схеме ниже двухполупериодная схема может быть сформирована с использованием двух каскадов SCR. В этой схеме тиристоры включены встречно-параллельно и проводят при противоположных чередованиях. Управляющий сигнал 1 подается, когда SCR-1 имеет положительный анодное напряжение; при следующем чередовании управляющий сигнал 2 положительный в то время как анод SCR-2 положительный.

Двухполупериодный переключатель.


Приложения SCR | Переключатель, управление питанием переменного и постоянного тока, перенапряжение Protec

В этом руководстве мы узнаем о некоторых широко известных приложениях SCR. Приложения SCR: коммутация, управление мощностью в цепях переменного и постоянного тока, защита от перенапряжения и т. д. ток затвора, а также способный переключать высокие напряжения, позволяет использовать SCR или тиристор в различных приложениях.

Эти приложения включают переключение, выпрямление, регулирование, защиту и т. д. SCR используются для управления бытовой техникой, включая освещение, контроль температуры, регулирование скорости вентилятора, обогрев и активацию сигнализации.

В промышленности тиристоры используются для управления скоростью двигателя, зарядкой аккумулятора и преобразованием энергии. Некоторые из них объясняются ниже.

[адсенс1]

SCR как переключатель

Операция переключения является одним из наиболее важных применений SCR. SCR часто используется в качестве твердотельного реле и имеет больше преимуществ, чем электромагнитные реле или переключатели, поскольку в SCR нет движущихся частей.

На приведенном ниже рисунке показано применение тиристора в качестве переключателя для включения и выключения питания, подаваемого на нагрузку. Мощность переменного тока, подаваемая на нагрузку, управляется путем подачи чередующихся импульсов запуска на SCR. Резисторы R1 и R2 защищают диоды D1 и D2 соответственно. Резистор R ограничивает ток затвора.

Во время положительного полупериода входа SCR1 смещен в прямом направлении, а SCR2 смещен в обратном направлении. Если переключатель S замкнут, ток затвора подается на SCR1 через диод D1, и, следовательно, SCR1 включается. Следовательно, ток течет к нагрузке через SCR1.

Аналогично, во время отрицательного полупериода сигнала SCR2 смещен в прямом направлении, а SCR1 смещен в обратном направлении. Если ключ S замкнут, ток затвора течет к SCR2 через диод D2. Следовательно, SCR2 включается, и через него протекает ток нагрузки.

Таким образом, управляя переключателем S, ток нагрузки можно регулировать в любом желаемом положении. Замечено, что этот переключатель обрабатывает ток в несколько миллиампер для управления током в несколько сотен ампер в нагрузке. Так что этот способ переключения более выгоден, чем механическое или электромеханическое переключение.

Вернуться к началу

Управление мощностью с помощью тиристоров

Тиристоры способны управлять мощностью, передаваемой на нагрузку. Часто требуется изменять мощность, подаваемую на нагрузку, в зависимости от требований нагрузки, таких как регулирование скорости двигателя и регуляторы освещенности.

В таких условиях изменение мощности с помощью обычных регулируемых потенциометров не является надежным методом из-за больших потерь мощности. Для уменьшения рассеиваемой мощности в цепях большой мощности тиристоры являются лучшим выбором в качестве устройств управления мощностью.

[адсенс2]

Управление мощностью переменного тока с использованием SCR

В цепях переменного тока фазовое управление является наиболее распространенной формой управления мощностью SCR. При управлении фазой путем изменения угла срабатывания альфа на клемме затвора достигается управление мощностью.

На рисунке ниже показана полная схема управления волной переменного тока, иллюстрирующая метод управления фазой. Учтите, что питание переменного тока подается на два встречно-параллельных тиристора. Во время положительного полупериода сигнала SCR1 проводит, в то время как в отрицательном полупериоде SCR2 проводит, когда к ним применяются соответствующие стробирующие импульсы.

Путем изменения угла включения соответствующих тиристоров время включения меняется. Это приводит к изменению мощности, потребляемой нагрузкой. На приведенном ниже рисунке тиристоры срабатывают при задержанных импульсах (что означает увеличение угла открытия), что приводит к уменьшению мощности, подаваемой на нагрузку.

Основное преимущество фазового управления заключается в том, что тиристоры автоматически выключаются при каждом текущем нулевом положении переменного тока. Следовательно, для выключения тиристора не требуется никаких коммутационных цепей.

 

Вернуться к началу

Управление мощностью постоянного тока с помощью SCR

В случае цепи постоянного тока мощность, подаваемая на нагрузку, изменяется путем изменения продолжительности включения и выключения тиристоров. Этот метод называется прерывателем или управлением ON-OFF. На рисунке ниже показано простое управление нагрузкой ВКЛ-ВЫКЛ с помощью SCR.

Также возможно переключение тиристора с определенной частотой срабатывания, чтобы варьировался ток, протекающий к нагрузке. Примером такой схемы является схема SCR на основе ШИМ для создания переменного выхода на нагрузку.

Можно производить переменную мощность постоянного тока для нагрузки, используя схемы выпрямителя с фазовым управлением. Средняя мощность постоянного тока, подаваемая на нагрузку, контролируется моментом включения тиристора. Некоторые из этих схем выпрямителя приведены ниже.

Однополупериодный выпрямитель

На приведенной ниже схеме показана схема однофазного однополупериодного выпрямителя с использованием SCR. Диод последовательно с переменным резистором подключен к затвору, который отвечает за запуск SCR.

  • Во время отрицательного полупериода входного сигнала переменного тока тиристор смещен в обратном направлении. Следовательно, ток через нагрузку не течет.
  • Во время отрицательного полупериода входа SCR смещен в прямом направлении. Если резистор изменяется таким образом, что на затвор подается минимальный ток срабатывания, то SCR включается. Следовательно, ток начинает течь к нагрузке.
  • Если ток затвора выше, напряжение питания, при котором SCR включается, будет меньше. Угол, при котором SCR начинает проводить ток, называется углом зажигания. Для этой схемы выпрямителя угол открытия можно изменять только в течение положительного полупериода.
  • Таким образом, изменяя угол открытия или ток затвора (путем изменения сопротивления в этой цепи), можно заставить SCR проводить часть или полный положительный полупериод, так что средняя мощность, подаваемая на нагрузку, будет варьироваться.

Двухполупериодный выпрямитель

В двухполупериодном выпрямителе выпрямляются как положительные, так и отрицательные волны входного питания. Следовательно, по сравнению с однополупериодным выпрямителем, среднее значение постоянного напряжения выше, а уровень пульсаций меньше. На приведенном ниже рисунке показана схема двухполупериодного выпрямителя, состоящая из двух тиристоров, соединенных с трансформатором с центральным отводом.

• Во время положительного полупериода входа SCR1 смещен в прямом направлении, а SCR2 смещен в обратном направлении. При подаче соответствующего сигнала затвора SCR1 включается, и, следовательно, через него начинает протекать ток нагрузки.

• Во время отрицательного полупериода входа SCR2 смещен в прямом направлении, а SCR1 смещен в обратном направлении. При срабатывании затвора SCR2 включается, и, следовательно, ток нагрузки протекает через SCR2.

• Таким образом, изменяя ток срабатывания тиристоров, можно изменять среднюю мощность, подаваемую на нагрузку.

Двухполупериодный мостовой выпрямитель

Вместо трансформатора с отводом от середины можно также использовать четыре тиристора в мостовой конфигурации для получения двухполупериодного выпрямления.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *