Управление мощной нагрузкой постоянного тока. Часть 1
О какой нагрузке идет речь? Да о любой — релюшки, лампочки, соленоиды, двигатели, сразу несколько светодиодов или сверхмощный силовой светодиод-прожектор. Короче, все что потребляет больше 15мА и/или требует напряжения питания больше 5 вольт.
Вот взять, например, реле. Пусть это будет BS-115C. Ток обмотки порядка 80мА, напряжение обмотки 12 вольт. Максимальное напряжение контактов 250В и 10А.
Подключение реле к микроконтроллеру это задача которая возникала практически у каждого. Одна проблема — микроконтроллер не может обеспечить мощность необходимую для нормальной работы катушки. Максимальный ток который может пропустить через себя выход контроллера редко превышает 20мА и это еще считается круто — мощный выход. Обычно не более 10мА. Да напряжение у нас тут не выше 5 вольт, а релюшке требуется целых 12. Бывают, конечно, реле и на пять вольт, но тока жрут больше раза в два.
Первое что приходит на ум — поставить транзистор. Верное решение — транзистор можно подобрать на сотни миллиампер, а то и на амперы. Если не хватает одного транзистора, то их можно включать каскадами, когда слабый открывает более сильный.
Поскольку у нас принято, что 1 это включено, а 0 выключено (это логично, хотя и противоречит моей давней привычке, пришедшей еще с архитектуры AT89C51), то 1 у нас будет подавать питание, а 0 снимать нагрузку. Возьмем биполярный транзистор. Реле требуется 80мА, поэтому ищем транзистор с коллекторным током более 80мА. В импортных даташитах этот параметр называется I
Обратите внимание на коллекторный ток — I
Цоколевка нашего КТ315 определяется так
Если смотреть на его лицевую сторону, та что с надписями, и держать ножками вниз, то выводы, слева направо: Эмиттер, Колектор, База.
Берем транзистор и подключаем его по такой схеме:
Коллектор к нагрузке, эмиттер, тот что со стрелочкой, на землю. А базу на выход контроллера.
Транзистор это усилитель тока, то есть если мы пропустим через цепь База-Эмиттер ток, то через цепь Колектор-Эмиттер сможет пройти ток равный входному, помноженному на коэффициент усиления h
hfe для этого транзистора составляет несколько сотен. Что то около 300, точно не помню.
Максимальное напряжение вывода микроконтроллера при подаче в порт единицы = 5 вольт (падением напряжения в 0.7 вольт на База-Эмиттерном переходе тут можно пренебречь). Сопротивление в базовой цепи равно 10000 Ом. Значит ток, по закону Ома, будет равен 5/10000=0.0005А или 0.5мА — совершенно незначительный ток от которого контроллер даже не вспотеет. А на выходе в этот момент времени будет Ic=Ibe*hfe=0.0005*300 = 0.150А. 150мА больше чем чем 100мА, но это всего лишь означает, что транзистор откроется нараспашку и выдаст максимум что может. А значит наша релюха получит питание сполна.
Все счастливы, все довольны? А вот нет, есть тут западло. В реле же в качестве исполнительного элемента используется катушка. А катушка имеет неслабую индуктивность, так что резко оборвать ток в ней невозможно. Если это попытаться сделать, то потенциальная энергия, накопленная в электромагнитом поле, вылезет в другом месте. При нулевом токе обрыва, этим местом будет напряжение — при резком прерывании тока, на катушке будет мощный всплеск напряжения, в сотни вольт. Если ток обрывается механическим контактом, то будет воздушный пробой — искра. А если обрывать транзистором, то его просто напросто угробит.
Надо что то делать, куда то девать энергию катушки. Не проблема, замкнм ее на себя же, поставив диод. При нормальной работе диод включен встречно напряжению и ток через него не идет. А при выключении напряжение на индуктивности будет уже в другую сторону и пройдет через диод.
Правда эти игры с бросками напряжения гадским образом сказываются на стабильности питающей сети устройства, поэтому имеет смысл возле катушек между плюсом и минусом питания вкрутить электролитический конденсатор на сотню другую микрофарад. Он примет на себя большую часть пульсации.
Красота! Но можно сделать еще лучше — снизить потребление. У реле довольно большой ток срывания с места, а вот ток удержания якоря меньше раза в три. Кому как, а меня давит жаба кормить катушку больше чем она того заслуживает. Это ведь и нагрев и энергозатраты и много еще чего. Берем и вставляем в цепь еще и полярный конденсатор на десяток другой микрофарад с резистором. Что теперь получается:
При открытии транзистора конденсатор С2 еще не заряжен, а значит в момент его заряда он представляет собой почти короткое замыкание и ток через катушку идет без ограничений. Недолго, но этого хватает для срыва якоря реле с места. Потом конденсатор зарядится и превратится в обрыв. А реле будет питаться через резистор ограничивающий ток. Резистор и конденсатор следует подбирать таким образом, чтобы реле четко срабатывало.
Добавим еще один апгрейд.
При размыкании реле энергия магнитного поля стравливается через диод, только вот при этом в катушке продолжает течь ток, а значит она продолжает держать якорь. Увеличивается время между снятием сигнала управления и отпаданием контактной группы. Западло. Надо сделать препятствие протеканию тока, но такое, чтобы не убило транзистор. Воткнем стабилитрон с напряжением открывания ниже предельного напряжения пробоя транзистора.
В итоге, мы обеспечиваем бросок напряжения на катушке, но он контроллируемый и ниже критической точки пробоя. Тем самым мы значительно (в разы!) снижаем задержку на выключение.
Вот теперь можно довольно потянуться и начать мучительно чесать репу на предмет того как же весь этот хлам разместить на печатной плате… Приходится искать компромиссы и оставлять только то, что нужно в данной схеме. Но это уже инженерное чутье и приходит с опытом.
Разумеется вместо реле можно воткнуть и лампочку и соленоид и даже моторчик, если по току проходит. Реле взято как пример. Ну и, естественно, для лампочки не потребуется весь диодно-конденсаторный обвес.
Пока хватит. В следующий раз расскажу про Дарлингтоновские сборки и MOSFET ключи.
Меня часто спрашивают, как управлять с помощью микроконтроллера мощными потребителями тока — лампами, питающимися от сети 220 В, мощными тенами. В этой статье собран материал по работе электронных ключей — как они устроены, как работают, как их можно применить в радиолюбительской практике (перевод [1]). Сначала стоит разобраться в том, что же такое электронный ключ? В сущности это просто выключатель (или переключатель) который замыкает/размыкает сильноточную цепь по внешнему электрическому сигналу (тоже входной ток, но намного меньшей мощности). Обычно, когда на вход электронного ключа подается слабый ток управления, ключ замыкается и пропускает через себя мощный ток в силовой цепи. Когда ток управления пропадает, то ключ размыкается и мощный потребитель тока отключается. На фото представлены основные представители электронных ключей — реле и транзисторы. 1 — мощный транзистор IRFP450 MOSFET, который можно применять в ключевых источниках питания, в генераторах развертки ЭЛТ-мониторов. 2 — IRF840B, тоже довольно мощный транзистор, собрат IRFP450. Может безопасно, продолжительное время, без использования радиатора (или охлаждающего вентилятора) коммутировать токи до 8A при напряжении 500V. UPD140601: как верно прокомментировал Ross, на самом деле без радиатора IRF840 долго в таких рабочих условиях не протянет, потому что рассеиваемая мощность превысит 50 Вт. Если взять транзистор с сопротивлением канала на 2 порядка меньше, тогда другое дело. 3 — два простых, дешевых транзистора. Слева транзистор структуры PNP, а справа NPN. Эти транзисторы могут управлять током до 0.15A при напряжении 50 .. 90V. Обычно транзисторы могут коммутировать ток от 0.15A до 14A при напряжении от 50V до 500V (см. даташит на каждый конкретный транзистор), так что транзистор может переключить мощность до 7 киловатт, если на вход транзистора приложить совсем маленькую мощность — несколько милливатт. Приведенные на фото реле могут коммутировать токи от 5A до 15A при напряжении до 240V. Не очень правильно будет сравнивать реле с транзисторами MOSFET, но они почти не генерируют тепло и не нуждаются в радиаторах. 4 — самое простое реле, подходящее для большинства случаев. У этого реле 5 ножек, две подключены к обмотке, а еще три — к контактам на переключение. 5 — мощное реле на 20A, вытащенное из микроволновой печи. 6 — два реле, установленные на приемный радиомодуль (может обучаться на срабатывание от нужного приходящего по радио кода). Сам приемник потребляет меньше 5mA, но может при этом переключить ток до 12A при напряжении 36V, что составит 360 ватт! 7 — два мощных 135-ваттных транзистора 2N3055 от старого усилителя звука, со своим родным радиатором. Это устаревшие биполярные транзисторы, и они не настолько эффективны, как современные транзисторы MOSFET. Однако два таких транзистора в некоторых случаях могут заменить один IRFP450, чтобы коммутировать больше 75 ватт мощности. 8 — приемник кода RC от большой детской радиоуправляемой игрушки — автомобиля. Использует два одинаковых реле для прямого и обратного хода двигателя машинки. Странно, что эти реле системы SPDT, что означает, что у них не используются контакты N/C. 9 — два реле системы DPDT, которые эквивалентны 4 отдельным реле (в каждом из этих реле по 2 контактные группы). Электронные ключи применяются в тех случаях, когда использование простых кнопок и выключателей неудобно или невозможно — например, для запуска автомобильного стартера, или для выключения ядерного реактора, или в электронных проектах, которые по радиосигналу могут управлять включением/выключением освещения или приводом гаражной двери. В этом руководстве будет сделана попытка объяснить самым простым языком, как работают такие электронные ключи. И начнем с самого простого — реле. [Что такое электронное реле] Если коротко, то реле представляет из себя электромагнит, который управляет замыканием контактов. Работает это точно так же, как если бы контакты замыкались механическим нажатием кнопки, но в случае реле усилие для замыкания берется от магнитного поля обмотки реле. Выходные контакты реле могут управлять очень большой электрической мощностью — на порядки большей, чем прикладываемая мощность к обмотке электромагнита реле. При этом входная цепь обмотки (где действует слабый управляющий ток) полностью изолирована от выходной мощной цепи, что очень важно для безопасного управления высоковольтными нагрузками (220, 380 V и выше). Чаще всего у реле есть 5 контактов — вход 1 (на анимационном рисунке помечен +), вход 2 (на рисунке помечен как -), COM (COMmon, общий контакт), N/O (Normally Open, по умолчанию разомкнуто, когда обмотка не получает питание), N/C (Normally Closed, по умолчанию замкнуто, когда обмотка не получает питание). Чтобы лучше понять работу реле, вспомним, что эти контакты означают и для чего нужны: Вход 1: один из концов обмотки электромагнита реле, в нашем примере это вход для положительного полюса входного тока для обмотки. Когда на этот контакт приложен плюс напряжения (достаточного, чтобы реле сработало) относительно контакта Вход 2, то реле переключает контакты в активное состояние. Почти все реле нечувствительны к полярности входного тока, поэтому можно на Вход 1 подать +, а на Вход 2 подать минус, и наоборот, на Вход 1 подать -, а на Вход 2 подать +, и в любом случае реле нормально сработает. Некоторые реле, которые имеют массивный инерционный якорь, могут даже срабатывать от переменного входного напряжения (подробности см. в паспорте на реле). Для улучшения токопроводимости и уменьшения искрения поверхности контактов часто покрывают специальными металлами и сплавами на основе серебра, никеля, ванадия, а иногда для покрытия контактов применяется даже золото или платина (если это реле для коммутации сигналов в качественной аудиоаппаратуре или высокочастотной радиотехнике). Если у Вас есть 9V батарейка (например «Крона») и обычное реле, то попробуйте подключить обмотку реле к + и — батарейки. При подключении Вы услышите щелчок, который происходит из-за притягивания якоря реле к сердечнику электромагнита и переключения контактов. При отключении обмотки от батарейки произойдет также щелчок, но слабее. При отключении контакта обмотки от батареи Вы также увидите искру, которая возникает от ЭДС самоиндукции обмотки реле. Если принцип переключения контактов все еще непонятен для Вас, то его можно представить к виде псевдокода и иллюстрирующей процесс анимационной картинки: Если input = on (Power ON, через обмотку течет ток) [Как использовать реле] Как было уже упомянуто, реле используется для того, чтобы маломощные устройства (электронные компоненты, устройства) могли включать и выключать устройства, которые потребляют намного больше энергии. Самый распространенный пример применения — автомобиль. Теперь Вас не должно удивлять, почему Вы слышите щелчки при включении индикаторной лампочки, потому что Вы знаете — это срабатывает электромагнит реле. Мигания лампочки может создавать маленькая микросхема таймера, например 555 timer (NE555, LM555). Таймер 555 часто используется для создания импульсов (для простого включения и выключения) на любую нужную длительность, однако эта микросхема 555 сгорит, если будет пропускать через себя ток больше 200 ма. Так что невозможно просто так, без реле, подключить индикаторные лампочки к таймеру 555, потому что даже самые маломощные лампочки потребляют 700 ма и более. Теперь, если мы будем использовать таймер 555 для включения реле, то контактами реле можно запитывать мощные индикаторные лампочки. В этом случае через микросхему таймера будет течь ток около 50 .. 100 ма, что вполне безопасно, а в силовой цепи, питающей индикаторные лампочки, могут течь токи до 5А. Если у Вас дорогая, новая машина, то мало шансов, что Вы услышите щелчки при мигании индикаторных ламп, поскольку современная тенденция — применять везде, где можно, мощные транзисторы MOSFET, а в качестве индикаторных ламп ставить экономичные светодиоды. На интерактивной flash-анимации показан простой сценарий, в котором используются оба контакта N/O и N/C, чтобы включать либо красную, либо зеленую лампу (в зависимости от того, запитана обмотка реле, или нет). Наведите курсор мыши на серый выключатель, и нажмите левую кнопку мыши. При этом красная лампа погаснет, а зеленая загорится. На следующем рисунке показан пример использования реле вместе с таймером NE555. Кратковременное замыкание кнопки S1 запускает формирование длительной выдержки времени, в течение которого реле включено, и замыкает контакты NO и C. По окончании времени выдержки схема возвращается в исходное состояние, реле обесточивается, и становятся замкнутыми контакты NC и C. Такое устройство можно использовать для включения освещения на лестнице — по истечении заданного времени свет автоматически выключится. RC-цепочка, подключенная к выводам 6 и 7 таймера NE555, определяет выдержку времени. Диод, подключенный параллельно обмотке реле, защищает микросхему таймера NE555 от опасного выброса ЭДС самоиндукции, которое возникает при обесточивании обмотки реле (обмотка обладает значительной индуктивностью). Чтобы схема работала нормально, выбирайте подходящее реле — с током срабатывания не более 200mA (это максимум, который позволяет выход микросхемы таймера) при напряжении от 4.5 до 11 вольт. Напряжение питания схемы подберите в соответствии с параметрами реле — от 5 до 12 вольт. Вместо микросхемы таймера NE555 можно использовать любой микроконтроллер AVR, например ATmega32A или ATtiny85 [4]. Микроконтроллер точно так же, как и таймер 555, может переключать свой выход с 0 на 1. Однако имейте в виду, что выходной допустимый ток у микроконтроллера существенно меньше, а выходное напряжение может меняться только в пределах от 0 до 5V. Например, для ATmega32A выходной ток не может превышать 40mA на один порт. Поэтому в общем случае для усиления порта микроконтроллера используют транзисторные ключи [2]. Вход транзисторного ключа подключен к микроконтроллеру, а выход — к обмотке реле. [Что такое транзистор] В предыдущем разделе мы упомянули транзисторы в качестве усилителя / буфера сигналов от микроконтроллера. Но не успели разобраться, как транзисторы выглядят и по какому принципу работают. На фото показан внешний вид транзисторов различного назначения. Транзистор на сегодняшний день все еще часто используется в электронных схемах, и он является одним из элементарных компонентов радиоэлектроники (наряду с диодами, резисторами и конденсаторами). Несмотря на то, что принцип работы транзистора для новичка трудно понять с первого раза, транзистор по сути очень прост и очень хорошо работает вместе с реле. Как Вы уже наверное заметили, у транзистора 3 ножки, и простые биполярные транзисторы бывают двух типов: PNP и NPN. Самыми первыми появились транзисторы PNP, и они изготавливались на основе полупроводника германия. Потом освоили изготовление транзисторов из кремния, и более распространенными стали транзисторы структуры NPN. Транзисторы обеих структур (PNP и NPN) работают по одинаковому принципу, отличие только в полярности рабочего напряжения питания, и в некоторых параметрах. В настоящее время чаще используют транзисторы NPN. В ключевых схемах назначение транзистора то же самое, что и у реле. Когда слабый открывающий ток течет через эмиттерный переход (между базой Б и эмиттером Э), то канал между коллектором (К) и эмиттером (Э) открывается, и может пропускать ток больше базового в десятки и сотни раз. Эмиттер в этом случае играет роль общего электрода, и для транзисторов NPN в ключевом режиме эмиттер часто подключен к общему отрицательному проводу питания, к земле GND. Транзисторы иногда используют вместо реле, и они переключают большую мощность, как и реле, от слабого сигнала. Но в отличие от реле, скорость переключения транзисторов может быть очень высокой (время перехода из выключенного состояния во включенное и наоборот очень мало), поэтому их применяют для управления звуковыми динамиками и импульсными трансформаторами в ключевых источниках питания. Большинство самых обычных транзисторов могут переключаться со скоростью 1 миллион раз в секунду. Транзисторы также выгодно отличаются от реле малыми габаритами, поэтому они могут использоваться в тех местах, где реле использовать невозможно или непрактично. Однако транзисторы могут быть повреждены сильными электромагнитными полями, статическим электричеством и перегревом, что накладывает определенные ограничения на области применения транзисторов. [Как работает транзистор] Транзистор работает усилителем мощности. На вход прикладывается маленькая управляемая мощность, а на выходе снимается в десятки и даже сотни раз бОльшая мощность. Это происходит за счет изменения сопротивления между выводами коллектора и эмиттера в зависимости от тока, который протекает между базой и эмиттером. К сожалению, расположение выводов базы, эмиттера и коллектора (цоколевка) может меняться от одного типа транзистора к другому, так что для того, чтобы понять, где база, а где эмиттер и где коллектор, обращайтесь к документации на транзистор. Есть способы, позволяющие с помощью тестера определить цоколевку, но это существенно сложнее, чем просто заглянуть в даташит. Транзисторы, в отличие от реле, могут открываться не полностью (иметь некое сопротивления канала эмиттер — коллектор), что прямо пропорционально току, протекающему через базу. Эту пропорцию называют коэффициент усиления тока транзистора, h21Э. Например, если коэффициент усиления транзистора равен 100, то при токе 1mA, протекающем через базу, ток через канал коллектор — эмиттер может достигать 100mA, что на техническом языке называют усилением. Транзистор, также в отличие от реле, может сильно нагреваться при протекании через него тока. Обычно высокий нагрев получается при большой рассеиваемой мощности на сопротивлении канала коллектор — эмиттер, когда транзистор не полностью открыт. Поэтому нагрев и потери мощности минимальные тогда, когда транзистор либо полностью закрыт, либо полностью открыт. Все транзисторы имеют некий порог входного напряжения, по превышении которого транзистор начинает открываться. Для большинства обычных кремниевых биполярных транзисторов это напряжение составляет 0.5 .. 0.8V. Для германиевых транзисторов это напряжение меньше, и составляет около 0.2 .. 0.4V. Иногда этот порог называют напряжением отсечки. Если входное напряжение ниже напряжения отсечки, то ток через каналы база — эмиттер и коллектор — эмиттер не течет, транзистор полностью закрыт. Также все транзисторы имеют максимальный входной ток, после превышения которого эффект усиления перестает проявляться. Т. е. выше этого порога усиление перестает проявляться, выходной ток перестает расти. При этом напряжение между базой и эмиттером близко и даже выше напряжения между коллектором и эмиттером. Такое состояние транзистора называют насыщением, и при этом считается, что транзистор полностью открыт. В этой статье мы рассматриваем применение транзистора в качестве электронного ключа, поэтому будут использоваться только два состояния транзистора — либо он полностью закрыт (состояние отсечки тока), либо полностью открыт (состояние насыщения). Ниже приведена анимация, упрощенно показывающая общий принцип работы транзистора. Обратите внимание, что ток эмиттера равен сумме токов базы и коллектора, причем ток базы в 100 раз меньше тока коллектора (коэффициент усиления тока равен 100). По этой картинке можно проще понять, почему малого тока базы достаточно, чтобы открыть силовой канал проводимости коллектор — эмиттер (потому что маленький входной ток как бы открывает вентиль основного канала). Также можно условно понять состояние насыщения — поток воды переполняет трубу, и труба не может пропустить через себя воды больше, чем позволяет диаметр трубы. Конечно же, такое представление является упрощенным, очень приблизительно отражающим реальные процессы, которые происходят в транзисторе. [Как использовать транзистор] Очень часто транзистор используется как электронный ключ. Когда управляющий ток течет между базой и эмиттером, открывается силовой канал между эмиттером и коллектором, сопротивление между эмиттером и коллектором резко падает. К примеру, можно включать/выключать светодиоды в зависимости от сигнала тока, приходящего от таймера 555 (как на анимации ниже) или от микроконтроллера. Между управляющим выходом таймера 555 (или выходным портом микроконтроллера) и базой транзистора почти всегда ставят токоограничивающий защитный резистор (на этой анимации для упрощения резистор не показан). Для упрощения также не показаны токоограничительные резисторы, которые должны стоять последовательно с каждым светодиодом. Ранее уже упоминалась возможность управлять реле с помощью микроконтроллера. Для этого обычно также применяются транзисторы. Ниже приведена простая схема на транзисторе KT315 (его можно заменить аналогом на BC547), предназначенная для коммутации сетевой нагрузки 220V с помощью реле (это может быть лампа, или нагреватель, или асинхронный двигатель). Диод VD1 нужен для предотвращения повреждения транзистора высоковольтным импульсом ЭДС самоиндукции, который возникает при обесточивании обмотки реле. [Общие замечания по применению реле и транзисторов] Реле бывают с самыми разными параметрами, определяющими его назначение и область применения. Чем реле мощнее (то есть чем больше ток и напряжение, которое реле может коммутировать), тем больше размеры реле из-за увеличения размеров электромагнита и контактной группы. Чем реле больше по размеру, тем оно будет требовать бОльшей мощности для управления. Поэтому старайтесь подобрать реле, наиболее подходящее Вам по параметрам. Важно также подобрать нужное напряжение источника питания для реле. Если напряжение будет слишком низким, то реле не будет надежно срабатывать (или не будет срабатывать вовсе). Если напряжение будет слишком большим, то на обмотке реле будет рассеиваться слишком большая мощность, обмотка будет перегреваться и реле может выйти из строя. Чтобы правильно выбрать напряжение питания обмотки реле, см. параметры реле в его паспорте или даташите. Для управления реле с помощью микроконтроллера применяйте транзисторы в качестве буферных ключей. Вы могли бы задаться вопросом — в чем разница между мощными, обычными биполярными транзисторами и транзисторами MOSFET. Мощные транзисторы могут выдержать бОльшие токи и напряжения, и имеют специальные корпуса (обычно максимальные токи порядка 10 .. 20A, и напряжения до 600V и более). Корпус мощного транзистора рассчитан на крепление к теплоотводящей поверхности (например, радиатору). Обычные транзисторы имеют простые пластмассовые миниатюрные корпуса, и могут обычно выдерживать напряжения до 150V и токи до 2A. Транзистор MOSFET, несмотря на то, что принцип его работы и параметры абсолютно отличаются от традиционных биполярных транзисторов, применяются для тех же целей, что и биполярные транзисторы. Ниже приведен пример схемы для управления реле на транзисторе MOSFET. Под транзисторами MOSFET часто подразумевают мощные транзисторы. Действительно, параметры у MOSFET значительно превышают параметры биполярных транзисторов по току и напряжению. В закрытом состоянии сопротивление канала сток — исток транзисторов MOSFET близко к бесконечности, а в открытом состоянии падает практически до нуля. Поэтому транзисторы MOSFET могут безопасно работать при переключении очень больших мощностей, выделяя при этом малое количество тепла. Транзисторы MOSFET, как и биполярные, могут плавно изменять сопротивление силового канала, однако это сопротивление зависит от входного напряжения, а не от входного тока. Во многих случаях можно с небольшими модификациями схемы заменить биполярный транзистор на транзистор MOSFET. Обратная замена возможна далеко не всегда. Меня наверное можно назвать «радиоэлектронным старьевщиком». Не могу равнодушно мимо любой выброшенной радиоэлектронной железки — хочется забрать домой, починить или хотя бы разобрать на запчасти. В старой аппаратуре можно найти реле и транзисторы, вполне работоспособные и достойные лучшей участи, чем гниение на свалке. Реле могут стоять в микроволновых печах, кондиционерах, телевизорах, холодильниках, источниках бесперебойного электропитания, музыкальных центрах, радиоуправляемых игрушках. Транзисторы встречаются почти в любой электронной аппаратуре, и последнее время все больше встречаются транзисторы с планарным монтажом на плату (SMD), а транзисторы со штыревыми выводами встречаются реже. [Что обозначают аббревиатуры SPDT, SPST, DPST, DPDT]
[Ссылки] 1. How Electronic Switches Work For Noobs: Relays and Transistors site:instructables.com. |
Оптимизация схем управления электромагнитными реле
Несмотря на стремительный прогресс в области бесконтактных полупроводниковых коммутационных устройств, применение электромагнитных реле в ряде случаев обеспечивает лучшее соотношение цена/надежность устройства.
В данной статье рассматриваются схемотехнические решения, позволяющие значительно уменьшить потребляемую обмотками реле мощность, увеличить их надежность, зачастую избавить от необходимости подбора реле с конкретными параметрами обмотки. Рассмотреныпрактические схемы реализации таких устройств.
Как известно, у реле постоянного тока есть два основных параметра: напряжение срабатывания Ucp и напряжение удержания Uуд. Как правило, Uуд в 1,5-3 раза меньше, чем Ucp. В идеальном случае Ucp нужно подать только на время срабатывания реле, а затем поддерживать Uуд. На практике Ucp подается на реле все время. Нетрудно подсчитать, какой лишний расход мощности.
На рис.1 показана схема, приблизительно обеспечивающая соотношение Ucp=2Uп, Uуд=Uп, где Uп — напряжение питания схемы. Эта схема позволяет организовать управление реле с обмоткой на 24 В при напряжении питания схемы 12 В. Мощность, потребляемая обмоткой при включенном состоянии реле, снижается в 4 раза.
Рис. 1. Схема обеспечивающая нужное соотношение для напряжения срабатывания и отпускания реле.
Конденсатор С3 заряжается через диод VD1 и резистор R3 до напряжения Uс3, примерно равному Uп. Для включения реле на базу транзистора VT1 подается напряжение открывания. Зарядный ток конденсатора С1 открывает транзистор VT2, на обмотку реле подается суммарное напряжение Uп+Uс2 (примерно 23 В), и реле срабатывает.
После разряда С3 на обмотку реле через VT1, VD1 поступает Uп, этого достаточно для удержания реле. При снятии напряжения с базы VT1 реле выключается благодаря наличию диода VD3. С1 быстро разряжается, и схема возвращается в исходное состояние.
Диод VD2 служит, как обычно, для гашения напряжения самоиндукции обмотки реле.
Номиналы конденсаторов С1-С3, параметры диодов и транзисторов, Uп схемы могут варьироваться в зависимости от типа применяемого реле. При достаточной нагрузочной способности источника питания конденсатор С2 можно исключить.
На рис.2 показана схема, позволяющая организовать управление довольно мощным реле РП-21 с обмоткой на 12 В (сопротивление обмотки 80 Ом). При традиционном подходе для этого потребовался бы источник питания с применением дорогого понижающего трансформатора.
Рис. 2. Схема управления мощным реле РП-21 с обмоткой на 12 В.
В исходном состоянии транзисторы VT1 и VT2 открыты током резистора R3. Напряжения на конденсаторе С2 недостаточно для срабатывания реле. При нажатии кнопки SB1 «Пуск» транзистор VT2 закрывается и конденсатор С2 заряжается до напряжения, примерно равного напряжению стабилизации стабилитрона VD6 (примерно 14 В).
При отпускании кнопки SB1 через открытые VT1 и VT2 напряжение с конденсатора С2 прикладывается к обмотке реле и вызывает его срабатывание. Ток перезаряда конденсатора С1 обеспечивает дальнейшее удержание реле во включенном состоянии. При нажатии на кнопку SB2 «Стоп» зарядный ток конденсатора С3 вызывает кратковременное закрытие транзисторов, что приводит к отпусканию реле.
Данная схема позволяет организовать также однокнопочное управление: нажатие в течение более 0,5 с и последующее отпускание кнопки SB1 приводит к срабатыванию реле, последующее кратковременное нажатие этой же кнопки выключает его. Можно заменить кнопку SB1 электронным ключом и управлять реле с помощью электрических сигналов. При необходимости обеспечить гальваническую развязку очень удобно применить диодный или транзисторный оптрон.
Номиналы элементов схемы для конкретного типа реле выбирают из следующих соображений: ток перезарядки конденсатора С1 должен удерживать реле во включенном состоянии и быть недостаточным для его срабатывания; напряжение стабилизации VD6 выбирают равным номинальному напряжению обмотки реле; емкость конденсатора С2 выбирают из условия надежного срабатывания реле, а С3 — его выключения. Параметры элементов VD1-VD5, VT1, VT2 выбирают в зависимости от номинальных значений тока и напряжения обмотки реле.
Хорошие результаты дает использование реле с обмоткой, рассчитанной на переменный ток при питании ее постоянным (пульсирующим) током. При экспериментах с довольно мощным реле РЭН-20, имеющим обмотку на 220 В, для удержания реле во включенном состоянии достаточно было подавать на обмотку постоянное напряжение всего 6…8 В. Примерно такие же результаты были получены с широко распространенным магнитным пускателем ПМЕ-211 с обмоткой на 380 В.
Самый простой способ оптимизации схемы включения магнитного пускателя основан на питании его обмотки пульсирующим напряжением по схеме рис.3. Диод VD1 осуществляет однополупериодное выпрямление сетевого напряжения; через диод VD2 замыкается напряжение самоиндукции обмотки.
Пускатель ПМЕ-211 с обмоткой на 380 В при таком включении надежно срабатывает от напряжения 220 В, практически устраняется гудение, иногда сопровождающее включение пускателей, значительно уменьшается нагрев обмотки. Очень удобно таким образом запитать от сети 220 В реле с обмоткой на более низкое напряжение, например 110 В, подобрав номинал гасящего резистора R1, на котором при данной схеме включения будет рассеиваться мощность в несколько раз меньше, чем при непосредственном включении обмотки в сеть через гасящий резистор.
На рис.4 показан пример оптимизации включения реле РЭН-20 с обмоткой на 220 В. При включении в сеть возникает импульс тока заряда конденсатора С1, его достаточно для срабатывания реле; дальнейшее удержание реле во включенном состоянии обеспечивает протекание тока примерно в 1 мА через резистор R1. Потребляемая мощность и нагрев обмотки при этом во много раз меньше, чем в случае обычного включения, значительно повышается надежность реле.
Рис. 3. Схема включения магнитного пускателя для питания его обмотки пульсирующим напряжением.
Подобным образом можно включать и другие типы реле, подобрав необходимые значения R1 и С1.
Рис. 4. Пример оптимизации включения реле РЭН-20 с обмоткой на 220 В.
В схеме на рис.5 конденсатор С1 заряжается до амплитудного значения напряжения сети и обеспечивает срабатывание реле при замыкании кнопки «Пуск», ток удержания определяется номиналом резистора R1.
Рис. 5. Схема включения реле РЭН-20 и ПМЕ-211.
На рис.6 показана упрощенная схема реализации устройства (например, таймера, терморегулятора), включение которого производится вручную нажатием кнопки «Пуск», а выключение -сигналом от схемы управления (СУ) при достижении заданного значения параметра, который регулируется (время, температура). Схема обеспечивает непосредственное управление магнитным пускателем с обмоткой на 220 (380) В и гальваническую развязку от сети.
Рис. 6. Схема устройства (таймера, терморегулятора), включение которого производится вручную нажатием кнопки, а выключение сигналом от схемы.
При нажатии кнопки B1 «Пуск» конденсатор С1 отключается от катушки магнитного пускателя и подключается через ограничивающий резистор R1 к сети, заряжаясь до амплитудного значения напряжения сети. Импульс разрядного тока конденсатора С1, возникающий при отпускании кнопки, вызывает срабатывание магнитного пускателя КМ1, импульс напряжения с обмотки пускателя кратковременно открывает транзистор VT2, устанавливая СУ в исходное состояние.
На выходе СУ устанавливается низкий уровень напряжения, ключ на транзисторе VT1 через развязывающий диод VD4 подает на обмотку пускателя напряжение 12 В, достаточное для удержания ее во включенном состоянии.
После того как регулируемый параметр достигает заданного значения, меняется уровень сигнала на выходе СУ, обмотка пускателя обесточивается и нагрузка выключается. На рис.7 показан пример модернизации устройства, описанного в [1], позволивший исключить промежуточное маломощное реле, значительно снизить потребляемую мощность и повысить надежность.
Рис. 7. Схема модернизации устройства.
Схема устройства защитного отключения
На рис. 8 показана практическая схема устройства защитного отключения (УЗО), разработанная с использованием вышеизложенных принципов оптимизации включения реле. Применение усилителя на микросхеме DA1 позволило значительно упростить изготовление дифференциального трансформатора (ДТ) Т1.
Рис. 8. Схема устройства защитного отключения (УЗО) питания от сети 220В.
Принцип работы устройства не отличается от традиционного: при отсутствии тока утечки с нагрузки на «землю» токи, протекающие через обмотки I и II, равны и компенсируют друг друга, напряжение на обмотке III практически отсутствует. При возникновении тока утечки на выходе микросхемы DA1 возникает пропорциональное ему усиленное напряжение.
Положительные полуволны этого напряжения вызывают заряд через стабилизатор тока на транзисторе VT2 и конденсаторе С5. Снижение напряжения на нижней по схеме обкладке конденсатора С5 ниже напряжения на базе транзистора VT1 вызывает запирание последнего и выключение реле, нагрузка обесточивается.
Управление реле в основном реализовано по схеме рис.2. При нажатии на кнопку SB2 «Пуск» конденсатор С2 заряжается до напряжения примерно 13 В, которое при отпускании кнопки вызывает срабатывание и самоблокировку (через контакт К1.1) реле К1.
Падение напряжения на резисторе R4 используется для обеспечения двухполярного питания (±7 В) микросхемы DA1; светодиод VD6 — индикатор включения устройства. Времязадающая цепочка C5R9 обеспечивает подавление кратковременных импульсных помех с выхода DA1, возникающих, например, при искрении контактов, соединяющих устройство с нагрузкой.
Кнопка SB1 «Тест» создает искусственную «утечку» и служит для проверки работоспособности и выключения устройства. Устройство может выполнять функцию автоматического выключения при превышении заданного тока нагрузки — необходимо установить в схему резистор R2 такого номинала, чтобы вследствие определяемой им разности токов обмоток I и II ДТ при заданном максимальном токе нагрузки происходило выключение реле К1.
При изготовлении ДТ на ферритовое кольцо с наружным диаметром 20 мм равномерно наматывают обмотку III -100 витков провода 00,1…0,3 мм. Затем приклеивают трансформатор Т1 к плате и устанавливают обмотки I и II — впаивают на плату две П-образные скобки из медного провода 00,5.1 мм, проходящие через отверстие кольца.
На рис.9, 10 показаны соответственно рисунок печатной платы и схема расположения элементов. Удобно выполнить устройство в виде сетевой вилки, использовав корпус малогабаритного блока питания.
Рис. 9. Печатная плата для схемы устройства.
Рис. 10. Расположение деталей на печатной плате.
Схема усовершенствованного варианта устройства защиты
На рис.11 показана принципиальная схема усовершенствованного варианта устройства защиты электродвигателей. В качестве исполнительного устройства используется непосредственно магнитный пускатель. В устройстве применена самая распространенная и дешевая элементная база.
Помимо обычной защиты от пропадания одной из фаз, устройство обеспечивает защиту электродвигателя от перегрева, а также от значительного перекоса фаз, который вызывает перегрев.
При нажатии кнопки SB1 «Пуск» обмотка магнитного пускателя КМ1 через диод VD5 подключается к одной из фаз сети, что вызывает срабатывание пускателя и подачу напряжения на нагрузку (электродвигатель). После отпускания кнопки «Пуск» ток, удерживающий пускатель во включенном состоянии, протекает через блокирующий контакт (БЛК) пускателя, цепочку R5R6C3VD4. Диод VD3 обеспечивает перезарядку конденсатора С3.
В случае отсутствия напряжения одной (двух) фаз пульсирующее напряжение на выходе однополу-периодного трехфазного выпрямителя VD5, VD7, VD8 имеет провалы до нуля, уровень пульсаций на выходе фильтра R7C2 увеличивается настолько, что каскад на элементах R2, VD2, VT2 начинает ограничивать амплитуду пульсирующего напряжения на обмотке пускателя КМ1, вызывая выключение последнего и обесточивание нагрузки.
Рис. 11. Принципиальная схема усовершенствованного варианта устройства защиты электродвигателей.
В случае наличия всех трех фаз, но значительном отличии амплитудного значения их напряжений (перекос фаз) уровень пульсаций на выходе фильтра R7C2 недостаточен для выключения пускателя каскадом R2VD2VT2. Каскад на транзисторе VT3 сравнивает напряжения на выходах фильтра R7C2 и делителя R9R8.
При определенном уровне перекоса фаз (в зависимости от положения движка переменного резистора R14) пульсации напряжения на резисторе R4 начинают открывать транзисторы VT4 и VT1, конденсатор С1 разряжается, каскад на транзисторе VT2 ограничивает амплитуду пульсирующего напряжения на обмотке пускателя, приводя к выключению последнего.
Датчик температуры — германиевый диод VD10 — имеет тепловой контакт с корпусом электродвигателя. При повышении температуры корпуса обратное сопротивление диода уменьшается, что приводит к открыванию транзисторов VT5, VT3, VT2 и выключению пускателя.
Рис. 12. Печатная плата для схемы защиты электродвигателей.
Переменным резистором R12 регулируют температуру срабатывания устройства. Транзистор VT6 используется как стабилитрон на 7 В.
Рис. 13. Расположение деталей на печатной плате.
Рисунок печатной платы устройства и схема установки элементов показаны на рис.12, 13. Устройство защиты можно выполнить в штатном блоке управления, использовав его магнитный пускатель и кнопочный пульт.
В.Н. Каплун. г. Северодонеик. Луганская обл., Украина. Электрик-2004-12.
Литература: 1. Яковлев В.Ф. Устройство для защиты трехфазных потребителей//Электрик. -2001. — №10.
Управление реле через транзистор
В этом эксперименте мы познакомимся с реле, с помощью которого с Arduino можно управлять мощной нагрузкой не только постоянного, но и переменного тока.
Необходимые компоненты:
Реле – это электрически управляемый, механический переключатель, имеет две раздельные цепи: цепь управления, представленная контактами (А1, А2), и управляемая цепь, контакты 1, 2, 3 (см. рис. 12.1).
Цепи никак не связаны между собой. Между контактами А1 и А2 установлен металлический сердечник, при протекании тока по которому к нему притягивается подвижный якорь (2). Контакты же 1 и 3 неподвижны. Стоит отметить, что якорь подпружинен, и пока мы не пропустим ток через сердечник, якорь будет прижатым к контакту 3. При подаче тока, как уже говорилось, сердечник превращается в электромагнит и притягивается к контакту 1. При обесточивании пружина снова возвращает якорь к контакту 3.
При подключении реле к Arduino контакт микроконтроллера не может обеспечить мощность, необходимую для нормальной работы катушки. Поэтому следует усилить ток – поставить транзистор. Для усиления удобнее применять n-p-n-транзистор, включенный по схеме ОЭ (см. рис. 12.2). При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера.
Резистор на базе – ограничительный. Может варьироваться в широких пределах (1–10 кОм), в любом случае, транзистор будет работать в режиме насыщения. В качестве транзистора может быть любой n-p-n-транзистор. Коэффициент усиления практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор–эмиттер (напряжение, которым запитывается нагрузка).
Для включения реле, подключенного по схеме с ОЭ, на вывод Arduino необходимо подать 1, для выключения – 0. Подключим реле к плате Arduino по схеме на рис. 12.3 и напишем скетч управления реле. Каждые 5 секунд реле будет переключаться (включаться/выключаться). При переключении реле раздается характерный щелчок.
Содержимое скетча показано в листинге 12.1.
Порядок подключения:
1. Подключаем элементы к плате Arduino по схеме на рис. 12.3.
2. Загружаем в плату Arduino скетч из листинга 12.1.
3. Каждые 5 секунд происходит щелчок переключения реле если подключить контакты реле, например в разрыв подключенной к сети 220 В патрона с лампой накаливания, то увидим процесс включения/выключения лампы накаливания раз в 5 секунд (рис. 12.3).
В этом эксперименте мы познакомимся с реле, с помощью которого с Arduino можно управлять мощной нагрузкой не только постоянного, но и переменного тока.
Необходимые компоненты:
Реле – это электрически управляемый, механический переключатель, имеет две раздельные цепи: цепь управления, представленная контактами (А1, А2), и управляемая цепь, контакты 1, 2, 3 (см. рис. 12.1).
Цепи никак не связаны между собой. Между контактами А1 и А2 установлен металлический сердечник, при протекании тока по которому к нему притягивается подвижный якорь (2). Контакты же 1 и 3 неподвижны. Стоит отметить, что якорь подпружинен, и пока мы не пропустим ток через сердечник, якорь будет прижатым к контакту 3. При подаче тока, как уже говорилось, сердечник превращается в электромагнит и притягивается к контакту 1. При обесточивании пружина снова возвращает якорь к контакту 3.
При подключении реле к Arduino контакт микроконтроллера не может обеспечить мощность, необходимую для нормальной работы катушки. Поэтому следует усилить ток – поставить транзистор. Для усиления удобнее применять n-p-n-транзистор, включенный по схеме ОЭ (см. рис. 12.2). При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера.
Резистор на базе – ограничительный. Может варьироваться в широких пределах (1–10 кОм), в любом случае, транзистор будет работать в режиме насыщения. В качестве транзистора может быть любой n-p-n-транзистор. Коэффициент усиления практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор–эмиттер (напряжение, которым запитывается нагрузка).
Для включения реле, подключенного по схеме с ОЭ, на вывод Arduino необходимо подать 1, для выключения – 0. Подключим реле к плате Arduino по схеме на рис. 12.3 и напишем скетч управления реле. Каждые 5 секунд реле будет переключаться (включаться/выключаться). При переключении реле раздается характерный щелчок.
Содержимое скетча показано в листинге 12.1.
Порядок подключения:
1. Подключаем элементы к плате Arduino по схеме на рис. 12.3.
2. Загружаем в плату Arduino скетч из листинга 12.1.
3. Каждые 5 секунд происходит щелчок переключения реле если подключить контакты реле, например в разрыв подключенной к сети 220 В патрона с лампой накаливания, то увидим процесс включения/выключения лампы накаливания раз в 5 секунд (рис. 12.3).
Блог о электронике
О какой нагрузке идет речь? Да о любой — релюшки, лампочки, соленоиды, двигатели, сразу несколько светодиодов или сверхмощный силовой светодиод-прожектор. Короче, все что потребляет больше 15мА и/или требует напряжения питания больше 5 вольт.
Вот взять, например, реле. Пусть это будет BS-115C. Ток обмотки порядка 80мА, напряжение обмотки 12 вольт. Максимальное напряжение контактов 250В и 10А.
Подключение реле к микроконтроллеру это задача которая возникала практически у каждого. Одна проблема — микроконтроллер не может обеспечить мощность необходимую для нормальной работы катушки. Максимальный ток который может пропустить через себя выход контроллера редко превышает 20мА и это еще считается круто — мощный выход. Обычно не более 10мА. Да напряжение у нас тут не выше 5 вольт, а релюшке требуется целых 12. Бывают, конечно, реле и на пять вольт, но тока жрут больше раза в два. В общем, куда реле не целуй — везде жопа. Что делать?
Первое что приходит на ум — поставить транзистор. Верное решение — транзистор можно подобрать на сотни миллиампер, а то и на амперы. Если не хватает одного транзистора, то их можно включать каскадами, когда слабый открывает более сильный.
Поскольку у нас принято, что 1 это включено, а 0 выключено (это логично, хотя и противоречит моей давней привычке, пришедшей еще с архитектуры AT89C51), то 1 у нас будет подавать питание, а 0 снимать нагрузку. Возьмем биполярный транзистор. Реле требуется 80мА, поэтому ищем транзистор с коллекторным током более 80мА. В импортных даташитах этот параметр называется Ic, в наших Iк. Первое что пришло на ум — КТ315 — шедевральный совковый транзистор который применялся практически везде 🙂 Оранжевенький такой. Стоит не более одного рубля. Также прокатит КТ3107 с любым буквенным индексом или импортный BC546 (а также BC547, BC548, BC549). У транзистора, в первую очередь, надо определить назначение выводов. Где у него коллектор, где база, а где эмиттер. Сделать это лучше всего по даташиту или справочнику. Вот, например, кусок из даташита:
Обратите внимание на коллекторный ток — Ic = 100мА (Нам подоходит!) и маркировку выводов.
Цоколевка нашего КТ315 определяется так
Если смотреть на его лицевую сторону, та что с надписями, и держать ножками вниз, то выводы, слева направо: Эмиттер, Колектор, База.
Берем транзистор и подключаем его по такой схеме:
Коллектор к нагрузке, эмиттер, тот что со стрелочкой, на землю. А базу на выход контроллера.
Транзистор это усилитель тока, то есть если мы пропустим через цепь База-Эмиттер ток, то через цепь Колектор-Эмиттер сможет пройти ток равный входному, помноженному на коэффициент усиления hfe.
hfe для этого транзистора составляет несколько сотен. Что то около 300, точно не помню.
Максимальное напряжение вывода микроконтроллера при подаче в порт единицы = 5 вольт (падением напряжения в 0.7 вольт на База-Эмиттерном переходе тут можно пренебречь). Сопротивление в базовой цепи равно 10000 Ом. Значит ток, по закону Ома, будет равен 5/10000=0.0005А или 0.5мА — совершенно незначительный ток от которого контроллер даже не вспотеет. А на выходе в этот момент времени будет Ic=Ibe*hfe=0.0005*300 = 0.150А. 150мА больше чем чем 100мА, но это всего лишь означает, что транзистор откроется нараспашку и выдаст максимум что может. А значит наша релюха получит питание сполна.
Все счастливы, все довольны? А вот нет, есть тут западло. В реле же в качестве исполнительного элемента используется катушка. А катушка имеет неслабую индуктивность, так что резко оборвать ток в ней невозможно. Если это попытаться сделать, то потенциальная энергия, накопленная в электромагнитом поле, вылезет в другом месте. При нулевом токе обрыва, этим местом будет напряжение — при резком прерывании тока, на катушке будет мощный всплеск напряжения, в сотни вольт. Если ток обрывается механическим контактом, то будет воздушный пробой — искра. А если обрывать транзистором, то его просто напросто угробит.
Надо что то делать, куда то девать энергию катушки. Не проблема, замкнм ее на себя же, поставив диод. При нормальной работе диод включен встречно напряжению и ток через него не идет. А при выключении напряжение на индуктивности будет уже в другую сторону и пройдет через диод.
Правда эти игры с бросками напряжения гадским образом сказываются на стабильности питающей сети устройства, поэтому имеет смысл возле катушек между плюсом и минусом питания вкрутить электролитический конденсатор на сотню другую микрофарад. Он примет на себя большую часть пульсации.
Красота! Но можно сделать еще лучше — снизить потребление. У реле довольно большой ток срывания с места, а вот ток удержания якоря меньше раза в три. Кому как, а меня давит жаба кормить катушку больше чем она того заслуживает. Это ведь и нагрев и энергозатраты и много еще чего. Берем и вставляем в цепь еще и полярный конденсатор на десяток другой микрофарад с резистором. Что теперь получается:
При открытии транзистора конденсатор С2 еще не заряжен, а значит в момент его заряда он представляет собой почти короткое замыкание и ток через катушку идет без ограничений. Недолго, но этого хватает для срыва якоря реле с места. Потом конденсатор зарядится и превратится в обрыв. А реле будет питаться через резистор ограничивающий ток. Резистор и конденсатор следует подбирать таким образом, чтобы реле четко срабатывало.
После закрытия транзистора конденсатор разряжается через резистор. Из этого следует встречное западло — если сразу же попытаться реле включить, когда конденсатор еще не разрядился, то тока на рывок может и не хватить. Так что тут надо думать с какой скоростью у нас будет щелкать реле. Кондер, конечно, разрядится за доли секунды, но иногда и этого много.
Добавим еще один апгрейд.
При размыкании реле энергия магнитного поля стравливается через диод, только вот при этом в катушке продолжает течь ток, а значит она продолжает держать якорь. Увеличивается время между снятием сигнала управления и отпаданием контактной группы. Западло. Надо сделать препятствие протеканию тока, но такое, чтобы не убило транзистор. Воткнем стабилитрон с напряжением открывания ниже предельного напряжения пробоя транзистора.
Из куска даташита видно, что предельное напряжение Коллектор-База (Collector-Base voltage) для BC549 составляет 30 вольт. Вкручиваем стабилитрон на 27 вольт — Profit!
В итоге, мы обеспечиваем бросок напряжения на катушке, но он контроллируемый и ниже критической точки пробоя. Тем самым мы значительно (в разы!) снижаем задержку на выключение.
Вот теперь можно довольно потянуться и начать мучительно чесать репу на предмет того как же весь этот хлам разместить на печатной плате… Приходится искать компромиссы и оставлять только то, что нужно в данной схеме. Но это уже инженерное чутье и приходит с опытом.
Разумеется вместо реле можно воткнуть и лампочку и соленоид и даже моторчик, если по току проходит. Реле взято как пример. Ну и, естественно, для лампочки не потребуется весь диодно-конденсаторный обвес.
Пока хватит. В следующий раз расскажу про Дарлингтоновские сборки и MOSFET ключи.
182 thoughts on “Управление мощной нагрузкой постоянного тока. Часть 1”
Полевики , щас сам сижу над IRF540 издеваюсь от скуки , блин при частоте 36 кHZ просто работает как электроплита на нём можно яйца варить , и никакой радиатор не помогает, а хотя ток коммутации 0.2 А , а при постоянном состоянии замкнут так до двух ампер гонял и ни фига ему ни делается.
Эм-м-м.. А почему «постоянного тока»? Контактам реле какая разница то? =)
Реле и есть та самая мощная нагрузка 🙂
А.. Точно =) а то я глянул по диагонали =) И решил что ты собрался не меньше как ТЭНами рулить =)
извиняюсь на 1 мег , у мя была частота он грелся , а 36 кило , негрелся
Ну дык. 1мег, что ты хочешь от мосфета. Он на такой частоте не успевал ни открыться ни закрыться толком. Был где то посредине и грелся, т.к. превращался в обычную активную нагрузку с сопротивлением.
третьего дня у меня закончился запас кт315 (протерял остатки в своём бардаке)))
пошёл по паре радиомагазах в округе. мне говорят — «запасы кт315 иссякли, новых не будет, берите кт3102» (
так что ещё одна миниголовная боль по поиску нужного…
Все своими руками Схема управления двумя реле с помощью одного вывода микроконтроллера
Опубликовал admin | Дата 16 ноября, 2017Многие радиолюбители, которые занимаются конструированием схем на микроконтроллерах, сталкиваются с проблемой нехватки выводов у оных. Поэтому приходится изыскивать пути решения этого вопроса путем возложения на один вывод контроллера нескольких функций.
Эта тема уже затрагивалась в статье «Схема управления нагрузкой». Схема нового варианта управления нагрузкой двумя реле и использованием так же одного вывода микроконтроллера показана на рисунке ниже.
Работа схемы
Начнем с программы инициализации контроллера. Вывод GP0 должен быть сконфигурирован на вход. При этом он будет иметь высокоимпедансное состояние. Еще такое состояние вывода называют третьим состоянием. Можно представить, что вывод 7 DD1 висит в воздухе и на состояние оптронов не оказывает никакого влияния. По последовательной цепи управления, состоящей из стабилитрона VD1, резистора R1, светодиодов оптронов U1 и U2, резистора R2 и еще одного стабилитрона VD2, в таком состоянии ток протекать не будет. Потому что суммарное пробивное напряжение стабилитронов (3В+3В=6В), имеющих напряжение стабилизации 3 вольта, больше, чем напряжение, приложенное к этой цепи 5 вольт.
Для включения реле Р1 необходимо в программе микроконтроллера вывод GP0 сконфигурировать на выход и оставить его в нулевом состоянии. Таким образом, напряжение питания 5 вольт будет приложено к верхней половине вышеупомянутой цепи. В данной ситуации пяти вольт уже хватает, чтобы открылся стабилитрон VD1 и через светодиод оптрона U1 стал протекать открывающий его транзистор ток. При величине резистора, указанной на схеме 130 Ом, через светодиод оптрона протекал ток, примерно 5 мА. Для большинства оптронов этого вполне достаточно для полного открывания его транзистора. Через открытый транзистор оптрона и резистор R3 начнет подаваться напряжение на базу транзистора VT1, это приведет к его открыванию и соответственно к срабатыванию реле Р1. Что будут коммутировать реле, думать вам. Для выключения реле следует перевести вывод контроллера опять в третье состояние. Для включения реле Р2 необходимо так же перевести вывод микроконтроллера GP0 в состояние вывода информации и сформировать на нем логическую «1». Теперь транзистор выходного буфера контроллера закоротит верхнюю половину цепи управления, и напряжение питания +5 вольт будет подано на нижнюю половину цепи управления. Далее сработает оптрон U2, а за ним транзистор VT2 с реле Р2. Для выключения реле опять следует перевести вывод контроллера опять в третье состояние.
Тип транзисторов примененных в схеме зависит от выдранного вами реле. По крайней мере, ток коллектора должен быть раза в два… три больше рабочего тока реле. Микросхема DA1 может быть любым подходящим стабилизатором напряжения на пять вольт.
С помощью этой схемы можно, например, реверсировать электродвигатель, используя для этого всего лишь один вывод микроконтроллера.
Успехов и удачи в ваших разработках. К.В.Ю.
Скачать статью
Скачать “sxema-upravleniya-rele” sxema-upravleniya-rele.rar – Загружено 330 раз – 31 КБ
Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:1 555
Включение реле через транзисторный ключ
Микроконтроллерами можно производить управление мощными устройствами – лампами накаливания, нагревательными ТЭНами, даже электроприводами. Для этого используются транзисторные ключи – устройства для коммутации цепи. Это универсальные приборы, которые можно применить буквально в любой сфере деятельности – как в быту, так и в автомобильной технике.
Что такое электронный ключ?
Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:
На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.
Коммутация нагрузки
Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15. 14 А, напряжений 50. 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.
Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.
Электромагнитное реле
Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.
Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.
Выводы электромагнитного реле
Обычно в электромагнитных реле имеется 5 выводов:
- Два контакта, предназначенных для управления. К ним подключается обмотка возбуждения.
- Три контакта, предназначенных для коммутации. Один общий контакт, который нормально замкнут и нормально разомкнут с остальными.
В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом.
Как работает электромагнитное реле
Принцип работы электромагнитного реле довольно простой:
- Обмотка через кнопку соединяется с питанием.
- В разрыв цепи питания потребителя включаются силовые контакты реле.
- При нажатии на кнопку подается питание на обмотку, происходит притягивание пластины и замыкание группы контактов.
- Подается ток на потребителя.
Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника.
Проводимость транзисторов
Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:
- P-N-P.
- N-P-N.
К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.
Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.
Транзистор в режиме ключа
Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:
- От микроконтроллера через переход «база — эмиттер».
- При этом канал «коллектор — эмиттер» открывается.
- Через канал «коллектор — эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.
Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов — около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.
Принцип работы транзистора
Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.
В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер — коллектор» может меняться в больших пределах.
Пример работы транзистора в режиме ключа
Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер — коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор — эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).
При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор — эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.
Режим насыщения
У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база — эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.
Практические конструкции
Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.
Работа с микроконтроллерами
При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.
Применяются несложные конструкции, состоящие из таких элементов:
- Биполярный транзистор.
- Резистор для ограничения входного тока.
- Полупроводниковый диод.
- Электромагнитное реле.
- Источник питания 12 вольт.
Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.
Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор — эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.
Использование транзисторов в конструкциях
Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.
Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.
Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.
В этом эксперименте мы познакомимся с реле, с помощью которого с Arduino можно управлять мощной нагрузкой не только постоянного, но и переменного тока.
Необходимые компоненты:
Реле – это электрически управляемый, механический переключатель, имеет две раздельные цепи: цепь управления, представленная контактами (А1, А2), и управляемая цепь, контакты 1, 2, 3 (см. рис. 12.1).
Цепи никак не связаны между собой. Между контактами А1 и А2 установлен металлический сердечник, при протекании тока по которому к нему притягивается подвижный якорь (2). Контакты же 1 и 3 неподвижны. Стоит отметить, что якорь подпружинен, и пока мы не пропустим ток через сердечник, якорь будет прижатым к контакту 3. При подаче тока, как уже говорилось, сердечник превращается в электромагнит и притягивается к контакту 1. При обесточивании пружина снова возвращает якорь к контакту 3.
При подключении реле к Arduino контакт микроконтроллера не может обеспечить мощность, необходимую для нормальной работы катушки. Поэтому следует усилить ток – поставить транзистор. Для усиления удобнее применять n-p-n-транзистор, включенный по схеме ОЭ (см. рис. 12.2). При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера.
Резистор на базе – ограничительный. Может варьироваться в широких пределах (1–10 кОм), в любом случае, транзистор будет работать в режиме насыщения. В качестве транзистора может быть любой n-p-n-транзистор. Коэффициент усиления практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор–эмиттер (напряжение, которым запитывается нагрузка).
Для включения реле, подключенного по схеме с ОЭ, на вывод Arduino необходимо подать 1, для выключения – 0. Подключим реле к плате Arduino по схеме на рис. 12.3 и напишем скетч управления реле. Каждые 5 секунд реле будет переключаться (включаться/выключаться). При переключении реле раздается характерный щелчок.
Содержимое скетча показано в листинге 12.1.
Порядок подключения:
1. Подключаем элементы к плате Arduino по схеме на рис. 12.3.
2. Загружаем в плату Arduino скетч из листинга 12.1.
3. Каждые 5 секунд происходит щелчок переключения реле если подключить контакты реле, например в разрыв подключенной к сети 220 В патрона с лампой накаливания, то увидим процесс включения/выключения лампы накаливания раз в 5 секунд (рис. 12.3).
Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой.
С чего все начиналось
Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и… пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.
Нажали на черную большую пипочку – ток побежал, отжали – получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку – сигнал есть, отжали пипку – сигнала нет.
Транзисторный ключ
Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между “включено” и “выключено” мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.
Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:
Знакомая схемка не так ли? Здесь все элементарно и просто 😉 Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2—>лампочка—>коллектор—>эмиттер—>к минусовой клемме Bat2. Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор “R” здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.
Условия для работы транзисторного ключа
Итак, давайте вспомним, какие требования должны быть, чтобы полностью “открыть” транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:
1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.
2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется “режимом насыщения“.
Этот рисунок – воображение моего разума. Здесь я нарисовал тот самый режим насыщения.
Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.
Базовая схема транзисторного ключа
А что теперь надо сделать, чтобы лампочка вообще не горела? Отключить ее ручками? Зачем? Ведь у нас есть управляемый резистор: коллектор-эмиттер, сопротивление которого мы можем менять, прогоняя через базу определенную силу тока 😉 Итак, что нужно для того, чтобы лампочка вообще перестала гореть? Возможны два способа:
Первый способ. Полностью отключить питание от резистора базы, как на рисунке ниже
В реальности вывод базы является своего рода маленькой антенной, которая может принимать различные наводки и помехи из окружающего пространства. От этих наводок в базе может начать течь ток малого номинала. А как вы помните, для того, чтобы открыть транзистор много и не надо. И может даже случится так, что лампочка будет даже очень тихонько светится!
Как же выйти из этой ситуации? Да очень легко! Достаточно поставить резистор между базой и эмиттером, то есть сделать так, чтобы при отключении напряжения, на базе напряжение было равно нулю. А какой вывод транзистора у нас находится под нулем? Эмиттер! То есть научным языком, мы должны сделать так, чтобы потенциал на базе был равен потенциалу на эмиттере 😉
И что, теперь каждый раз при отключении заземлять базу? В идеале – да. Но есть более хитрое решение 😉 Достаточно поставить резистор между базой и эмиттером. Его номинал в основном берут примерно в 10 раз выше, чем номинал базового резистора.
Так как в схеме появился еще один резистор, то базовый резистор назовем RБ , а резистор между базой и эмиттером не будем придумывать и назовем RБЭ. Схема примет вот такой вид:
Как же ведет себя резистор RБЭ в схеме? Если ключ S замкнут, то этот резистор не оказывает никакого влияния на работу схемы, так как через него протекает и без того малая сила тока, которая управляет базой. Ну а если ключ S разомкнут, то, как я уже сказал, потенциал на базе будет равняться потенциалу эмиттера, то есть нулю.
Второй способ. Добиться того, чтобы UБЭ
Что в первом, что во втором случае транзистор у нас не пропускает ток через коллектор-эмиттер. В этом случае говорят, что транзистор находится в режиме “отсечки“.
Расчет транзисторного ключа
Как же рассчитать примерно значение резистора базы? Есть нехитрые формулы. Для того, чтобы их разобрать, рассмотрим вот такую схемку:
Для начала можно найти ток базы:
IБ – это базовый ток, в Амперах
kНАС– коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.
IK– коллекторный ток, в Амперах
Ну а дальше дело за малым
Это самый простой расчет без всяких заморочек.
Расчет транзисторного ключа на практике
Ну что же, давайте рассчитаем наш базовый резистор для этой схемы в режиме насыщения. На базу будем подавать распространенное питание в 5 В.
Возьмем транзистор средней мощности КТ819Б и лампочку-нагрузку для нашего транзисторного ключа. Лампочка на 6 В.
Транзистор КТ819Б структуры NPN
А вот и его цоколевка
Почти стандартная распиновка слева-направо: Эмиттер-Коллектор-База.
Лампочка при питании 6 В светит примерно вот так:
А вот такую силу тока потребляет наша подопечная, если ее соединить напрямую к блоку питания.
0,23 Ампера. Именно такую силу тока должна кушать наша лампочка в режиме насыщения, когда транзистор полностью открыт. То есть это у нас будет коллекторный ток Ik . Так как сопротивление нити накала лампочки меняется при подключении ее к источнику питания, то лучше всего сразу же измерить ее силу тока, как мы и сделали.
Теперь дело за малым. Надо замерить коэффициент бета. Для этого случая на моем рабочем столе есть прибор транзисторметр. Итак, у меня получилось значение 148
Итак, находим ток базы по формуле
Чем больше силы тока мы подаем на базу, тем больше мы вводим транзистор в режим глубокого насыщения. Здесь уже вы сами должны выбрать значение коэффициента насыщения. Как я уже писал выше, чем больше коэффициент, тем сильнее уходит транзистор в режим насыщения. Режим глубокого насыщения чреват тем, что он задерживает выключение транзистора, но хорош тогда, когда надо долго держать нагрузку включенной, так как в этом случае транзистор греется меньше всего. Если вы не забыли, мощность, рассеиваемая на транзисторе будет равна P=UКЭ х IН
P – это мощность в Ваттах
UКЭ – напряжение между коллектором и эмиттером, В
IН – сила тока, протекающая через нагрузку и коллектор-эмиттер, А
Из формулы: чем меньше UКЭ , тем меньше будет греться транзистор
Поэтому, берем среднее значение коэффициента насыщения равное 3. Получаем:
Теперь считаем базовый резистор по формуле:
Берем ближайший из ряда, то есть 1 кОм.
Давайте посмотрим, будет ли работать наш транзисторный ключ? Итак, RБ берем рассчитанное значение в 1 кОм.
Собираем схему и смотрим, как она работает
В данном случае синие провода – это питание с Bat2 (MEILI), а другие два провода – это питание с блока питания Bat1 (YaXun)
Как вы помните, лампочка у нас потребляла силу тока в 0,23 Ампер при прямом включении ее к блоку питания. Сейчас же она кажет почти то же самое значение с небольшой погрешностью. Но можно все равно сказать, что при открытом транзисторном ключе сопротивление коллектора-эмиттера очень мало. То есть все напряжение поступает на лампу.
Так как амперметр на YaXun стрелочный и не может измерять очень маленькие значение тока, то воспользуемся мультиметром и посмотрим, сколько же потребляет наш транзистор в режиме полного открытия. Для этого ставим мультиметр в разрыв цепи. Более подробно, как измерять силу тока и напряжение мультиметром, вы можете прочитать в этой статье.
Мы получили 4,5 мА. Очень близко к расчетному 4,7 мА. Не забываем подтянуть базу к земле резистором большим номиналом RБЭ, иначе база может поймать помеху и открыть невзначай транзистор, что приведет к ложному срабатыванию. В нашем случае мы берем резистор от 10 кОм и более.
Ну все, такой транзисторный ключ будет уже защищен от ложных срабатываний и его можно использовать в своих электронных безделушках.
Применение транзисторного ключа в связке с МК
Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:
В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.
Заключение
В настоящее время биполярные транзисторы уже морально устаревают. На смену им приходят мощные полевые транзисторы и твердотельные реле, так как они практически не потребляют ток. Также часто в режиме ключа используют диоды, тиристоры, терморезисторы и даже электронные лампы. Электронные ключи широко применяются в различных автоматических устройствах, в логических схемах и системах управления. Чем же хорош ключ на биполярном транзисторе? Я думаю, скорее всего своей дешевизной, широким распространением и долговечностью самих биполярных транзисторов.
Схема экономичного включения электромагнитных реле » S-Led.Ru
Изобретённые на заре зарождения электротехники электромагнитные реле всё ещё продолжают использоваться как в радиолюбительских конструкциях, так и в промышленных разработках. Сейчас их прочные позиции в стане коммутирующих и переключающих радиоэлементов заметно пошатнулись, но и постепенно вытесняющие их оптоэлектронные приборы не заняли бесспорно доминирующих позиций.
Продолжающаяся разработка новых типов электромагнитных реле -наглядное свидетельство тому, что их прощальный аккорд пока откладывается.
Многие знают, что ток срабатывания реле заметно больше тока удержания контактов в замкнутом/разомкнутом состоянии. Отсюда напрашивается несложный вывод, что нет необходимости подавать на обмотки реле полное напряжение питания в течение всего периода нахождения реле в активном состоянии. Если время включения реле обычно превышает 5…20 секунд, то целесообразно после переключения контактов ограничить протекающий через обмотку реле ток, что не только сделает устройство более экономичным, но и уменьшит нагрев обмотки реле.
Рассмотрим типичное решение, наиболее часто используемое для улучшения экономичности устройств с электромагнитными реле. Когда ток через переход база-эмиттер биполярного транзистора VT1 отсутствует, транзистор закрыт, напряжение на обмотку реле К1 не поступает. Напряжение на конденсаторе С1 равно напряжению питания. Когда на транзистор подаётся управляющее напряжение, он открывается, и накопленной в С1 энергии достаточно для надёжного включения реле.
Благодаря токоограничительному резистору R2, ток через обмотку реле К1, быстро снижается до заданного значения. Сопротивление R2 подбирается так, чтобы обеспечить надёжное удержание контактов реле, а ёмкость С1 должна быть достаточной, чтобы накопленной в нём энергии хватило на уверенное переключение контактов реле. У этого узла есть два недостатка — реле не включится, если управляющее напряжение будет подано одновременно или раньше напряжения питания этого каскада; реле может не включиться, если управляющее напряжение будет отключено на короткое время, (обычно десятые доли секунды), а потом снова появится. Так как С1 за столь короткое время может не успеть зарядиться, то повторного переключения контактов реле не произойдет.
Если у реле имеется незанятая группа свободно-замкнутых контактов, то с её помощью можно реализовать быструю зарядку накопительного конденсатора С1 (рис. 2). В отличие от первой схемы, здесь, для управления реле типа РЭС-22, применён ключ на полевом МДП-транзисторе. Такое решение позволяет свести ток в цепи управления практически к нулю и без оглядки использовать этот узел совместно с любыми управляющими устройствами, работающими в ключевом режиме в диапазоне питающих напряжений 3…10 В, например, с цифровыми микросхемами КМОП, ТТЛШ или с микропроцессорами. Низкоомный резистор R3 уменьшает износ контактов К1.1 от искрения. Резистор R1 предотвращает перегрузку выхода узла управления в случае пробоя изоляции затвора DA1.
Рисунок 2
Конденсатор С2 в большинстве реальных устройств можно не устанавливать, однако, если узел, собранный по схемам рис. 2…рис. 4, будет соединяться с узлом управления длинной, (более 30…50 см), незащищённой от помех линией связи, то его наличие желательно. Узел, собранный по схеме на рис. 2, хоть и более надёжен, но всё же не может гарантировать безупречного переключения контактов, так как нельзя исключать зависание подвижной группы контактов в промежуточном состоянии, например, при излишне низком сопротивлении R2 или малой ёмкости С1. На месте реле К1 использован экземпляр с током переключения 40 мА и током удержания 20 мА.
Если реле не имеет свободной группы переключаемых контактов или вы желаете применить другое схемотехническое решение, то можно обратиться к схеме на рис. 3. При подаче на управляющий вход напряжения высокого уровня, открывается ключ DA1, но максимальный ток через него ограничен резистором R2. Чтобы реле надёжно включилось, установлен вспомогательный ключ на DA2, который открывается на короткое время в момент подачи управляющего напряжения высокого уровня. Время, на которое открывается DA2, зависит от ёмкости конденсатора С3 и сопротивления резистора R3. Для быстродействующих герконовых реле ёмкость С3 можно уменьшить в 2…4 раза.
Рисунок 3
На рис. 4 приводится альтернативный предыдущему, вариант схемы управления реле. Когда напряжение на управляющем входе отсутствует, ключ DA1 закрыт. Конденсатор С2 разряжен, биполярный р-n-р транзистор VT1 закрыт, обмотка реле обесточена. Если затвор ключа DA1 поступит управляющее напряжение, напряжение сток-исток DA1 уменьшится практически до нуля, на выводах С2 появится разность потенциалов, Транзистор VT1 откроется примерно на 0,5 секунды, что достаточно для включения реле К1. После зарядки С2, транзистор VT1 закрывается, ток через катушку реле ограничивается резистором R2. Диод VD2 предназначен для быстрой разрядки С2 после выключения реле. Этот узел обеспечивает быструю готовность к повторному включению реле, но иногда, для надёжного включения реле может потребовать на 1…2 В более высокого напряжения питания, чем для первых трёх узлов.
Рисунок 4
в цифровом формате
Как управлять нагрузкой с помощью цифровой схемы, такой как Arduino? За вас могут ответить схема транзисторного реле.
Выходной импульс цифровой схемы для смещения транзистора включен.
Затем он управляет реле как переключатель ВКЛ-ВЫКЛ. Для питания любых цепей или внешних устройств.
Реле базового применения
Управляющие электронные схемы, электрические устройства в домах или на фабриках. Мы часто сначала используем реле.Хотя они очень древние, реле все еще имеют много применений. Потому что это просто и дешево.
Обычное реле — это механический переключатель. Его контакт замыкается, когда через катушку протекает ток.
На схеме ниже представлена простая базовая схема. Вы поймете, как работает реле.
Меньшее напряжение (V1) — это максимальное напряжение, которое может получить катушка. Через резистор R проходит более низкий ток I1. Он ограничивает ток до безопасного уровня для катушки.
Базовое использование релеТаким образом, когда ток течет через катушку.Затем возникает магнитное поле. Это заставляет контакты реле соединяться вместе, когда переключатель замыкается. Для подключения напряжения -V2 обеспечивает высокий ток (I2) на нагрузку, как нам нужно.
Иногда можно использовать реле с цифровой схемой. Использование выходного импульса микроконтроллера или ИС с цифровым затвором. Контролировать реле на работу.
Но самое главное, его выход малоточный. Итак, вам нужен помощник, используйте транзистор для переключения высокого тока, чтобы управлять катушкой.
Большая часть схемы драйвера транзисторного реле
В приведенной ниже схеме показана большая часть схемы драйвера транзисторного реле.Катушка реле нуждается в токе около 100 мА. И входной ток на выходе нормальной цифровой схемы составляет около 2 мА.
Нормальная транзисторная схема драйвера релеОграничивающие резисторы-R можно рассчитать исходя из входного напряжения и тока. Например, входное напряжение 5 В, ток примерно 2 мА.
Таким образом, R можно рассчитать следующим образом:
R = (Vin-VBE) / Iin
Vin = 5 В, VBE кремниевого транзистора составляет около 0,7 В, Iin = 2 мА
R = (5-0 .7) / (2 мА)
= 2150 Ом
Таким образом, мы должны выбрать R = 2,2 К. Это стандартное значение. Купить его можно в любых магазинах.
VBE — это напряжение на базе эмиттера транзистора.
Какой у транзистора номер?
Вот как в приведенной выше схеме можно выбрать правильный номер. Во-первых, это транзистор типа NPN.
Предположим, что транзистор имеет коэффициент усиления по току (hFE) примерно в 50 раз. Так как входной ток около 2 мА. Таким образом, ток на выходе составляет около 100 мА (2 × 50 = 100).Достаточно на нужды катушки реле.
Есть много транзисторов, у которых коэффициент усиления hFE больше 50. Например, 2N3053, 2N2222 транзистор и т.д. , и ограничивающий резистор тока.
Показывают размер любого значения.
- Vin — входное напряжение
- Iin — выходной ток ICS
- Icoil — ток катушки реле
- R — резистор ограничения тока
Таблица 1 показывает размер входного напряжения различных цифровых ИС и потребность в катушке реле. .У By есть различные резисторы-R, ограничивающие ток цепи.
Катушка реле получается от входного напряжения
На рисунке 3 показана схема реле драйвера, использующая входное напряжение для подачи на катушку реле, но имеющая некоторую базу соединения напряжения и вывод эмиттера транзистора. Что имеет значение около 0,7 вольт.
Например, вход с импульсного выхода цифрового импульса 12 вольт для подачи на транзистор.
Таким образом, напряжение на катушке реле будет около 12В-0.7 В = 11,3 В и т. Д.
Напряжение катушки на входе, драйвер релеРисунок 3
Эта схема не требует резистора-R. Потому что схема как эмиттерный повторитель уже будет иметь высокий входной импеданс.
Так что не беспокойтесь, что шум возник в результате, транзистор работает, входной ток «Iin» рассчитывается как ток, протекающий через катушку реле, деленный на коэффициент усиления транзистора.
Например, сопротивление катушки реле равно 120 Ом.
То, что мы используем транзистор, получило 50-кратное увеличение «Iin» ниже:
Iin = (100 × 10 / -3) / 50
= 2 мА
Таким образом, он рассчитывает, что входной ток равен: 2 мА.
По каждому релейному признаку определяется сопротивление катушки в единицах Ом. Итак, если мы знаем напряжение реле, мы также рассчитаем ток катушки. например напряжение реле 12 вольт.
Сопротивление катушки реле 120 Ом рассчитывает, что ток, протекающий через катушку реле, 12, деленный на 120, равен 0,1 А или 100 мА и т. Д.
Как увеличить коэффициент усиления
На рисунке 4 показана схема драйвера реле, которая имеет увеличивающийся прирост.В случае очень низкого входного тока от цифровой схемы. Мы увидим, что в этой схеме мы используем транзистор как соединение Дарлингтона для замены двух транзисторов.
Повышение коэффициента усиления по току драйвера транзисторного реле
Рис. 4
Если мы используем транзистор, который получил усиление примерно в 50 раз, а один транзистор увеличился до 2500 раз (50 × 50). Таким образом, при очень низком токе около 100 мкА схема драйвера реле может обеспечить ток до 250 мА.
Следовательно, ток катушки 250 мА.
Резистор-R можно рассчитать по входному напряжению, входному току и усилению первого транзистора.
Например, входное напряжение Vin равно 5 вольт,
, входной ток Iin = 100 мкА, а коэффициент усиления первого транзистора равен 50 разам, будет вычислено «R» следующим образом.
Следовательно, резистор-R был рассчитан с использованием вместо него 720 Ом или 750 Ом.
(Значение 1,4 — это падение напряжения на комбинации выводов базы и эмиттера, измеренное в вольтах.)
Драйвер реле обратного состояния
На рисунке 5 показана схема драйвера реле. Что будет работать противоположно всей схеме?
Потому что схема на рисунках 2, 3 и 4 будет работать. Когда выходной сигнал цифровой схемы подается на вход, это высокое состояние или логический «высокий уровень».
Но в случае, показанном на Рисунке 5, достигнутый вход в низкий статус или логический «низкий», чтобы транзисторы работали для управления реле.
Обратите внимание, что на 2 шт. Есть резисторы.Используя резистор-R. Он рассчитывается как схема на Рисунке 2.
Резистор-R1 должен быть достаточно высоким, чтобы быть достойным, прежде чем вызвать насыщение напряжения на коллекторе и эмиттере первого транзистора.
А должно иметь низкое значение, прежде чем это приведет к переходу второго транзистора в состояние насыщения.
Это означает, что несмотря на изменение входного тока не повлияет на выходные токи.
Пример: реле 12 вольт требует протекания тока через катушку реле 100 мА, используя транзистор с усилением в 50 раз, поэтому входной ток рассчитывается следующим образом.
Следовательно, входной ток Iin, подаваемый на вторые транзисторы, равен 2 мА, это ток, который заставляет насыщение первого транзистора происходить при напряжении 12 вольт.
Таким образом, R1 будет меньше расчетного значения. Здесь сопротивление R1 будет меньше 6 кОм (рассчитано делением напряжения 12 вольт на ток 2 мА).
И если первый транзистор увеличился в 50 раз, имеет входной ток — Iin = 100 мкА, следовательно, ток, протекающий через R1, равен 5 мА (рассчитывается как 50, умноженное на 100 мкА).
Это значение тока, при котором вторые транзисторы состояния будут иметь напряжение насыщения 12 вольт.
Следовательно, R1 будет больше, чем значение, рассчитанное в этом R1, будет более 2,4 кОм. (Рассчитано делением напряжения 12 вольт на ток 5 мА).
Резистор-R1 находится в диапазоне от 2,4 до 6 кОм, который подходит для использования — 4,3 кОм, центрирован правильно, чтобы оба транзистора работали до насыщения.
Все вышеперечисленные схемы Обратите внимание, что на катушке реле есть диод.Для предотвращения обратного напряжения от индуцированного магнитного поля реле. Это приводит к повреждению транзистора. Самым большим диодом будет диод, который в общей схеме выпрямителя — 1N4001 и т.д. внешние устройства, которые теперь выбраны в соответствии со схемой.
Как повысить напряжение для реле низкого напряжения
Использование реле в большинстве случаев, чем использование источника питания с напряжением постоянного тока со значением вольт, указанным на реле.
Для работы реле, но, если у нас нет источника питания, который хочет питать, дайте реле. Эта схема помогает реле работать.
Как работает схема
Из схемы используются два источника питания от at, чтобы прийти на работу, дайте реле 12 В.
Блок питания сначала использует 6 Вольт, когда напряжение питания входит в контакт Стабилизатор заряда C1.
Источник питания, который 2 использует напряжение питания более 3 В, мешает входу Q1 работать.
Это заставляет Q2-BC558 работать вместе с тем, чтобы сделать вывод C Q2 иметь источник напряжения 6V, подать реле Ry1, и когда Q1 работа будет сравниваться как что-то через цепь вниз.
Заставляет С1 что-то сделать, разряд 6В на катоде конденсатора С1. Которая построена с полюсом реле RY1 снова рядом с одним, делает реле падения напряжения RY1 равным 12 В.
Тогда заставить реле RY1 работать и работать будет только давно? что от чего-то зависит разряд конденсатора С1.
Заменить деталь : BC558 = BC327 = BC556 = 2N4403 PNP 40 В, 0,6A
2SC458 = 2SC1815 = 2SC828 = 2SC2675 = BC337 = 2N2222
сделать Electronics Learning Easy . Похоже, что большинство людей управляют реле через транзистор, а не напрямую через цифровой выходной контакт на Arduino. Я подключил выходной контакт непосредственно к моему реле, прежде чем осознал это, и он работал нормально. Пока что вам повезло. Для чего нужен транзистор? Порты GPIO обычно имеют высокий выходной импеданс. Это примерно означает, что «внутри ИС имеется множество относительно маломощных транзисторов, которые не могут выдавать большой ток либо потому, что они просто предназначены для этого, либо потому, что ИС не может достаточно быстро рассеивать такое количество тепла.«Также очень мало необходимости в подаче большого тока — зачем это делать (и открывать ящик Пандоры:« Как далеко мне идти? Я выставляю 1 мА? 100 мА? 10 А? 100 А? »), Когда вы можете просто вывести небольшой сигнал для управления внешними усилителями? Это для защиты выходного контакта от превышения максимального тока, если катушка реле имеет слишком низкое сопротивление? Это на правильном пути. Подробнее об этом позже. И, собственно, раньше. Или для экономии энергии за счет усиления с общим эмиттером? Если вы просто / наивно добавите транзистор на выходе, используя те же шины напряжения, это технически фактически потребует больше мощности, поскольку вы будете использовать токовый выход IC, а также ток нагрузки. Возможно, чтобы производить меньше тепла? Для более точного выделения меньшего количества тепла от ИС. На самом деле, выходы GPIO предназначены почти исключительно для сигнализации. В случае с Arduino они ДОЛЖНЫ немного усилить выходы, чтобы вы могли управлять светодиодами и т.п., но в большинстве микроконтроллеров это не так. Транзистор выполняет несколько функций: (1) Он обеспечивает защиту от нагрузок с низким сопротивлением, которые потребуют слишком большого тока.Биполярный транзистор и резистор можно настроить так, чтобы вы всегда знали максимальный ток, потребляемый нагрузкой, как видно на ИС. МОП-транзистор (мой личный фаворит) можно настроить так, чтобы ИС воспринимала нагрузку с чрезвычайно высоким импедансом, что может быть желательно в этом случае. (Примечание: полевые МОП-транзисторы, как правило, медленнее, но Arduino не может работать достаточно быстро, чтобы это было особенно значимым). (2) Обеспечивает минимальную защиту от обратного тока (из-за диодов внутри внешнего транзистора). (3) Позволяет разместить энергоемкие вещи в другом месте.Внутри транзисторов падает напряжение, а значит, они потребляют энергию и нагреваются. Если вы управляете нагрузкой 100 мА, одноступенчатый BJT будет сжигать 70 мВт. Эти 70 мВт довольно значительны для ИС, но действительно незначительны для внешнего транзистора (который может иметь специальный радиатор, если необходимо). В этом случае внешний транзистор может потреблять 1 мА от ИС (при условии, что бета-коэффициент BJT равен 100), поэтому теперь ИС должна рассеивать только 700 мкВт, в то время как внешний транзистор заботится о 70 мВт. (4) Позволяет другой цепи иметь другие шины питания.ИС может работать при 5 В, но вы можете управлять нагрузкой 12 В (например, небольшим двигателем). У двух сторон транзистора не обязательно должны быть одинаковые направляющие, поэтому вы можете использовать их для соединения двух сторон системы. Это не очень хорошая идея при управлении, скажем, 120 В с помощью микроконтроллера 5 В, но 12 В не имеет большого значения. (5) Позволяет преобразовать выход 5 В в источник, управляемый током, если вы хотите. Это особенно важно в некоторых средах. Транзисторы — это волшебные устройства, которые делают МНОГО-МНОГО очень-очень хороших вещей.Не зря они бывают разных размеров, а те, что находятся внутри микроконтроллеров, маленькие и могут делать только мелочи. Японский Английский Английский (Азиатско-Тихоокеанский регион) Китайский (упрощенный) Если реле управляется транзисторами, мы рекомендуем использовать реле на стороне коллектора. При этом наиболее распространенном соединении работа стабильна. Когда обстоятельства делают использование этого соединения неизбежным, если напряжение не полностью подается на реле, транзистор не работает полностью, и работа ненадежна. Когда мощность, потребляемая всей схемой, становится большой, необходимо учитывать напряжение реле. Если ток катушки внезапно прерывается, в катушке возникает внезапный импульс высокого напряжения.Если это напряжение превышает напряжение пробоя транзистора, транзистор выйдет из строя, и это приведет к повреждению. Абсолютно необходимо подключить диод в схему, чтобы предотвратить повреждение противоэдс.
В качестве подходящих номиналов для этого диода ток должен быть эквивалентен среднему выпрямленному току в катушке, а обратное напряжение блокировки должно быть примерно в 3 раза больше значения напряжения источника питания. Подключение диода — отличный способ предотвратить скачки напряжения, но при размыкании реле будет значительная задержка по времени.Если вам нужно уменьшить эту временную задержку, вы можете подключить между коллектором транзистора и эмиттером стабилитрон, который сделает напряжение стабилитрона несколько выше, чем напряжение питания. В отличие от характеристики, когда напряжение медленно подается на катушку реле, это тот случай, когда необходимо достичь номинального напряжения за короткое время, а также за короткое время понизить напряжение. Неимпульсный сигнал (не работает) Без мгновенного действия Импульсный сигнал (прямоугольная волна) (Хорошо) Мгновенное действие (Схема выпрямления волны) (Высокое усиление) • Из-за чрезмерного потребления энергии выделяется тепло. Tr2 полностью проводит ток. В коммутационных приложениях, где полупроводник (транзистор, UJT и т. Д.) Подключен к катушке, на катушке реле сохраняется остаточное напряжение, что может вызвать неполное восстановление и неправильную работу. Использование катушек постоянного тока может снизить; опасность неполного восстановления, контактное давление и вибростойкость.Это связано с тем, что падение напряжения составляет 10% или более от номинального напряжения, что является низким значением по сравнению с катушкой переменного тока, а также существует тенденция к увеличению срока службы за счет снижения напряжения падения. Когда сигнал с коллектора транзистора берется и используется для управления другой схемой, как показано на рисунке справа, через реле проходит минутный темновой ток, даже если транзистор выключен. Это может вызвать проблемы, описанные выше. Вернуться к началу Для привода SCR необходимо уделять особое внимание чувствительности затвора и ошибочной работе из-за шума. Когда контакты реле замыкаются одновременно с однофазным источником питания переменного тока, необходимо соблюдать осторожность, поскольку электрический срок службы контактов сильно сокращается. Вернуться к началу для использования на печатных платах обладают высокой чувствительностью и быстродействием, и, поскольку они в достаточной степени реагируют на дребезжание и дребезжание, необходимо соблюдать осторожность при их приводе. Вернуться к началу Потребляемая мощность: Потребляемая мощность: Вернуться к началу Несмотря на то, что бесшумная характеристика является особенностью реле, это в полной мере бесшумная электрическая цепь, почти такая же, как ртутное реле.
Для удовлетворения требований, предъявляемых к таким схемам, как вход двоичного счетчика, существует электронный метод без вибрации, в котором дребезжание абсолютно недопустимо.Даже если болтовня развивается с одной стороны, либо N.O. боковые контакты или нормально замкнутые боковые контакты, триггер не реверсируется, и цепь счетчика может быть запитана в импульсном режиме без промаха.
(Однако следует категорически избегать прыжков со стороны N.O. на сторону N.C.) Когда в электронной схеме используется прямой привод от симистора, электронная схема не будет изолирована от цепи питания, и из-за этого могут возникнуть проблемы из-за неправильной работы и повреждения. Внедрение релейного привода — наиболее экономичное и эффективное решение. (Схемы фотоэлемента и импульсного трансформатора сложны.) Вернуться к началу В целом электронные схемы чрезвычайно уязвимы для таких явлений, как пульсации источника питания и колебания напряжения.Хотя источники питания реле не так уязвимы, как электронные схемы, пожалуйста, сохраняйте пульсации и регулировку в пределах спецификации. В схеме, показанной на рис. 3, от лампы или конденсатора протекает бросок тока.
Как только контакты замыкаются, напряжение падает, и реле срабатывает или дребезжит.
В этом случае необходимо увеличить мощность трансформатора или добавить сглаживающий контур. На рис. 4 показан пример модифицированной схемы. Вернуться к началу Токи катушек реле и токи электронных схем протекают вместе через A и B. • Токи катушки реле состоят только из A 1 и B 1 . Диаметр отверстия и контактная площадка сделаны так, чтобы отверстие было немного больше, чем выводной провод, чтобы компонент можно было легко вставить.
Кроме того, при пайке припой будет образовывать проушины, увеличивая прочность крепления.Стандартные размеры диаметра отверстия и фаски показаны в таблице ниже. Стандартные размеры для диаметра отверстия и площадки мм дюйм Замечания Поскольку плакированные медью ламинаты имеют продольное и поперечное направление, необходимо с осторожностью соблюдать способ изготовления и компоновки перфорации.
Расширение и усадка в продольном направлении из-за тепла составляет от 1/15 до 1/2, что в поперечном направлении, и, соответственно,
после изготовления штамповки деформация в продольном направлении будет составлять от 1/15 до 1/2 деформации в поперечном направлении.Механическая прочность в продольном направлении на 10-15% больше, чем в поперечном направлении.
Из-за этой разницы между продольным и поперечным направлениями, когда должны изготавливаться изделия с длинной конфигурацией,
продольное направление конфигурации должно быть выполнено в продольном направлении,
а печатные платы, имеющие секцию соединителя, должны быть выполнены с соединителем вдоль продольной стороны. Пример: как показано на рисунке ниже, 150 мм 5.За продольное направление принимается направление 906 дюймов. Кроме того, как показано на рисунке ниже, когда узор имеет участок соединителя, направление выбирается, как показано стрелкой в продольном направлении Обеспечивая узкую прорезь в круглой части рисунка фольги, прорезь предотвращает закупорку отверстия припоем. Эти данные получены на основе образцов продукции этой компании. Используйте эти данные в качестве справочной информации при проектировании печатных плат. Допустимый ток для проводника был определен с точки зрения безопасности и влияния на характеристики проводника из-за повышения температуры насыщения при протекании тока.(Чем уже ширина проводника и тоньше медная фольга, тем больше повышение температуры.)
Например, слишком сильное повышение температуры вызывает ухудшение характеристик и изменение цвета ламината.
Обычно допустимый ток проводника определяется таким образом, чтобы превышение температуры было менее 10 ° C.
Необходимо рассчитать ширину проводника исходя из этого допустимого тока проводника. На рис. 6 показано соотношение между расстоянием между проводниками и разрушающим напряжением.
Это напряжение разрушения не является напряжением разрушения печатной платы; это импульсное перенапряжение (напряжение пробоя изоляции пространства между цепями.)
Покрытие поверхности проводника изолирующей смолой, такой как припой, увеличивает импульсное перенапряжение, но из-за штыревых отверстий в припойном резисте,
необходимо учитывать напряжение разрушения проводника без припоя резиста. Фактически, необходимо добавить достаточный запас прочности при определении расстояния между проводниками.
В таблице 1 показан пример расчета расстояния между проводниками. (Взято из стандартов JIS C5010.) Однако, когда продукт подпадает под действие закона о контроле за электротехнической продукцией,
Стандарты UL или другие стандарты безопасности, необходимо соблюдать правила. Пример расчета расстояния между проводниками Вернуться к началу Скачать каталог 各種 リ レ ー 共通 (パ ワ ー, 安全, シ グ ナ ル, 高周波, 制 御, 容量, 90 Реле питания (более 2 А), реле безопасности, сигнальные реле (2 А или меньше), микроволновые устройства, реле панели управления, реле отключения постоянного тока большой емкости и интерфейсный терминал. Вернуться к началу Технология реле включает: Реле, в том числе герконовые реле, очень просты в использовании, однако при их использовании можно принять несколько простых мер предосторожности, чтобы обеспечить наилучшую производительность и максимальную надежность. Понимание некоторых схемотехник, необходимых для реле, может иметь большое значение, особенно при сопряжении реле с другими электронными схемами. Рассмотрение схем реле можно разделить на две основные области: схемы драйверов и коммутируемые схемы. Применение правильных компонентов и защиты для обоих может существенно повлиять на работу схемы, а также на надежность реле. В релейных схемах, используемых для управления реле, часто используются полупроводниковые устройства.Хотя в простейших релейных схемах просто включается переключатель, замыкающий цепь, для применения реле часто требуется слабый сигнал, возможно, от какой-либо схемы микроконтроллера или другого устройства для приведения в действие реле. При такой работе необходим полупроводниковый драйвер. Самый простой — биполярный транзистор, хотя полевые транзисторы работают одинаково хорошо. Цепь реле с общим эмиттером NPN Уровень генерируемой обратной ЭДС будет равен -L di / dt — другими словами, чем выше скорость изменения, тем больше генерируемое напряжение обратной ЭДС.Даже при низких значениях питающей шины генерируемые противо-ЭДС могут возрасти до нескольких сотен вольт, если переключение происходит достаточно быстро. Этого более чем достаточно, чтобы разрушить полупроводниковый прибор. Для подавления этой обратной ЭДС поперек катушки обычно размещается диод. Поскольку обратная ЭДС будет иметь полярность, противоположную нормальному напряжению на катушке, диод, который при нормальной работе имеет обратное смещение, перейдет в прямую проводимость, и весь ток, вызванный, кроме обратной ЭДС, рассеется, тем самым подавляя обратную ЭДС. .Используя схему диодной защиты для драйвера реле, он будет подвергаться воздействию только максимального напряжения питания плюс напряжение прямой проводимости диода, которое составляет 0,6 или 0,7 вольт. В идеале ограничивающий диод должен располагаться как можно ближе к катушке реле. В случае схем герконового реле код можно даже поместить внутри мю-металлического экрана — это помогает снизить уровень генерируемых радиочастотных помех и может улучшить характеристики ЭМС. Когда это устройство используется в типичной схеме драйвера с общим эмиттером, которая, вероятно, является наиболее обычной формой, можно видеть, что диод подключается непосредственно к катушке реле. Когда на вход подается высокое напряжение, это приводит к тому, что ток течет в цепи базы, включая транзистор, заставляя ток течь через катушку реле и приводя в действие переключатель. В этой конкретной схеме резистор последовательной базы выбран равным 2 кОм. Это обеспечивает достаточный базовый ток для включения транзистора реле. В схеме требуется ограничить базовый ток. Резистор от базы до 0В выбран равным 22 кОм. Это должно быть примерно в десять раз больше, чем у последовательного резистора, и это необходимо для обеспечения возврата базы к нулевому напряжению, если база разомкнута или напряжение возбуждения снято. Значения следует выбирать для конкретных условий схемы, коэффициента усиления транзистора, рабочего тока реле и т. Д. Также возможно использовать транзисторы PNP вместо показанной версии NPN. При этом, очевидно, необходимо поменять местами источники питания, но также необходимо поменять полярность диодов. Релейная схема эмиттерного повторителя NPN Эта схема реле просто заменяет резистор эмиттера катушкой реле. Снова диод включен в цепь реле, чтобы предотвратить повреждение от обратной ЭДС, индуцированной при выключении. Базовый резистор помещается в цепь для ограничения тока базы, хотя во многих случаях это может не требоваться. Как и в схеме с общим эмиттером, эта схема также может использовать PNP-транзистор, но с обратной полярностью диода и питанием. В некоторых случаях может потребоваться более высокий уровень усиления по току. Эту проблему можно решить с помощью транзистора Дарлингтона. Однако имейте в виду, что падение напряжения на базе эмиттера в два раза больше, чем у одиночного транзистора, то есть 1,2 В вместо 0,6 В для кремниевого транзистора и Дарлингтона. Несмотря на то, что важно правильно спроектировать цепи для управления реле, есть также моменты, которые следует отметить в отношении цепей, которые также переключаются реле.Это особенно важно для герконовых реле, контакты которых более подвержены повреждению. Одной из ключевых областей важности является текущее состояние после закрытия контактов. Даже при управлении цепями с низким током пусковой ток, вызванный конденсаторами, используемыми для развязки и т. Д., Может привести к сильным скачкам тока переключения. Это может значительно сократить срок службы герконового реле, поскольку пусковой ток может во много раз превышать номинальный максимальный ток. Даже относительно небольшие конденсаторы могут использовать пики тока на многих ампер, и это может значительно сократить срок службы контактов реле, особенно герконов. Этот факт можно уменьшить, сбалансировав степень развязки и выбрав минимальное значение, совместимое с применением хорошей развязки на шинах напряжения или линиях, которые переключаются. Также можно использовать резисторы малой серии для уменьшения перенапряжения. Здесь необходимо рассчитать падение напряжения на последовательном резисторе, и если какой-либо ток проходит, его необходимо удерживать в допустимых пределах. Есть много разных схем, которые можно использовать с реле. Фактическая схема реле, которая лучше всего, будет зависеть от многих факторов и часто возникает из-за окружающих цепей, которые добавляют общие требования. Другие электронные компоненты: ИС драйвера реле ИС драйвера реле — это электромагнитный переключатель, который будет использоваться всякий раз, когда мы хотим использовать цепь низкого напряжения для включения и выключения лампочки, подключенной к сети 220 В. Требуемый ток для работы катушки реле больше, чем может быть обеспечен различными интегральными схемами, такими как операционные усилители и т. Д. Реле обладают уникальными свойствами и заменяются твердотельными переключателями, которые сильнее, чем твердотельные устройства.Высокая токовая нагрузка, способность выдерживать электростатические разряды и изоляция приводных цепей — уникальные свойства реле. Существуют различные способы управления реле. Ниже приведены некоторые из микросхем драйвера реле. — это компоненты, которые позволяют цепи с низким энергопотреблением управлять сигналами или включать и выключать большой ток, которые должны быть электрически изолированы от цепи управления. Необходимые компоненты Схема ИС драйвера реле Для управления реле мы используем транзистор, и только меньшая мощность может быть использована для управления реле. Поскольку транзистор является усилителем, на вывод базы подается ток, достаточный для протекания большего тока от эмиттера транзистора к коллектору.Если база однажды получает достаточную мощность, то транзистор проводит от эмиттера к коллектору и запитывает реле. Канал эмиттер-коллектор транзистора будет открыт, даже если на вывод базы транзистора не подается входной ток или напряжение. Следовательно, через катушку реле протекает ток блокировки. Канал эмиттер-коллектор будет открыт и позволит току течь через катушку реле, если на базовый вывод подается достаточный ток или напряжение.Переменный или постоянный ток может использоваться для питания реле и схемы. Реле представляют собой электромагнитные устройства, которые позволяют маломощной схеме включать и выключать переключающие устройства с высоким током с помощью якоря, который перемещается с помощью электромагнита. используется для усиления или усиления сигналов от микроконтроллеров для управления переключателями мощности в полупроводниковых устройствах. Цепи драйвера выполняют функции, которые включают в себя изоляцию цепи управления и цепи питания, обнаружение неисправностей, хранение и передачу отчетов о неисправностях в систему управления, служащие в качестве меры предосторожности против неисправности, анализ сигналов датчиков и создание вспомогательных напряжений. Типичный вывод цифрового логического выхода обеспечивает ток в несколько десятков мА. Для внешних устройств, таких как мощные светодиоды, двигатели, динамики, лампочки, зуммеры, соленоиды и реле, могут потребоваться сотни мА и одинаковое напряжение. Для управления небольшими устройствами, использующими постоянный ток, используется транзисторная схема драйвера для усиления тока до требуемых уровней. Если уровни напряжения и тока находятся в идеальном диапазоне, транзистор действует как сильноточный переключатель, управляемый более низким током цифрового логического сигнала.Дискретный BJT иногда используется вместо MOSFET-транзистора, особенно в старых или низковольтных схемах, как показано ниже. Схема драйвера PNP, NPN или MOS. Транзистор обеспечивает усиление по току. Резистор, используемый на базе транзистора, составляет 1 кОм. На индуктивных нагрузках (например, двигателях, соленоидах, реле) диод часто подключается к нагрузке в обратном направлении для подавления скачков напряжения (обратной ЭДС), возникающих при выключении устройств. Катушка индуктивности V = L * di / dt При выключении устройства возникает отрицательный всплеск напряжения. Иногда вместо нагрузки к транзистору подключают диод, чтобы защитить транзистор. 2N3904, показанный ниже, представляет собой небольшой дискретный BJT-транзистор, используемый для схемы драйвера, требующей менее 200 мА. В этой схеме с BJT, Vcc — источник более высокого напряжения, чем источник питания логики, и для двигателей или реле требуется 6 или 12 В постоянного тока. Нагрузка напрямую подключена к аккумулятору и не может проходить через регулятор напряжения в устройствах с аккумуляторным питанием.Многие устройства, такие как двигатели, при первом включении имеют больше скачков входящего тока. Будьте осторожны с максимальными значениями тока. Схемы управления реле Доступны дополнительные варианты интерфейса, включая популярный драйвер ULN2003. ULN2003 имеет внутренние фиксирующие диоды. Хотя они работают нормально в некритичных приложениях, и это приводит к увеличению количества сбоев. Зажимной, импульсный или коммутирующий диод обеспечивает путь для индуктивного тока разряда при размыкании переключателя драйвера.Если не предусмотрено, это вызовет дугу в переключателе — хотя дуга, как правило, не повредит контакт переключателя, со временем она вызовет деградацию контактов — и да, это приведет к разрушению транзисторов — если бы это было сделано, это было сделано. Требования к диодам некритичны, и сигнальный диод 1N4148 обычно работает нормально в маломощных приложениях. Избегайте драйверов повторителя эмиттера. Если реле выключено, диод 4007 устраняет обратную ЭДС и защищает транзистор. Состояние ВКЛ реле отображается светодиодом. Рассмотрим конструкцию схемы драйвера реле для реле, работающих от постоянного тока. Чтобы управлять реле постоянного тока, необходимо постоянное напряжение в количестве, необходимом для оценки реле и стабилитрона. Напряжение требуется для срабатывания реле и для размыкания или замыкания его переключателя в цепи. Существуют реле с номинальным напряжением. Это известно как техническое описание реле, чтобы оценить напряжение его катушки. Для работы реле оно должно получать это напряжение на клеммах катушки.Таким образом, если реле имеет номинальное напряжение 9 В постоянного тока, оно должно получать для своей работы 9 В постоянного тока. Чтобы исключить скачки напряжения в цепи реле, необходим диод для его правильного функционирования. Катушка реле действует как индуктор. Цепь драйвера реле постоянного тока Катушки индуктивности представляют собой электронные компоненты, которые выдерживают изменения тока, а также индукторы представляют собой катушки проводов, намотанных вокруг проводящего сердечника. Скачки напряжения повреждают все компоненты в цепи, а также повреждают контакты переключателя реле.Чтобы предотвратить эти всплески напряжения, диод удерживается с обратным смещением параллельно с реле, которое действует как ограничитель переходных процессов (всплесков), устраняет всплески напряжения, переходя в проводимость до того, как напряжение образуется на катушке. Подавитель переходных процессов подавляет эти всплески. Диод проводит обратный ток смещения, если напряжение достигает определенного порога. Диод шунтирует избыточную мощность на землю, а диоды проводят, если напряжение достигает напряжения пробоя. Стабилитрон размещен с обратным смещением параллельно реле. Реле, используемое выше, рассчитано на 9 Вольт. В этом случае на резистор подается напряжение 9 В постоянного тока. Стабилитрон с обратным смещением установлен для подавления переходных процессов, вызванных размыканием и замыканием реле. Это шунтирует всю избыточную мощность на землю, если она достигает определенного порога. Это процесс управления реле. Управляя нагрузками, которые были подключены к выходу с необходимой мощностью, реле замыкается. Эта микросхема драйвера реле переменного тока представляет собой реле, работающее от источника переменного тока и не способное работать от источника постоянного тока. Для работы реле переменного тока требуется достаточное напряжение переменного тока для номинала реле и ограничителя переходных процессов. В релейной цепи переменного тока мы не можем использовать диод для устранения скачков напряжения. Этот диод проводит чередующиеся полупериоды с питанием переменного тока. Мы используем последовательную цепь RC, помещая ее параллельно катушке, чтобы сформировать рабочий ограничитель переходного напряжения с цепью переменного тока.Конденсатор поглощает избыточный заряд, а резистор помогает контролировать переполнение. Компоненты, необходимые для формирования цепи, следующие Цепь драйвера реле переменного тока ПРИМЕЧАНИЕ. Источник переменного напряжения может выходить из вилки, вставленной в розетку для США. Будьте осторожны с источником переменного тока, который исходит непосредственно из розетки, так как это вызывает шок.Проконсультируйтесь со специалистом, прежде чем включать вилку в розетку. Когда мы используем реле с номинальным напряжением 110 В переменного тока, мы должны питать его напряжением 110 В от источника переменного тока. Для подавления скачков напряжения последовательно соединенные резистор и конденсатор действуют как ограничитель переходного напряжения. Драйвер реле uln2003 ic представляет собой микросхему Дарлингтона высокого напряжения и тока, состоящую из 7 пар Дарлингтона с открытыми коллекторами и общими эмиттерами.Пара Дарлингтона — это комбинация двух биполярных транзисторов. Эта ИС принадлежит к семейству ИС ULN200x и различным типам этого семейства обеспечивает интерфейс с различными семействами логики. Эта микросхема ULN2003 предназначена для логических устройств 5V TTL и CMOS. Эти ИС используются в качестве драйверов реле, а также для управления широким диапазоном нагрузок, линейных драйверов, драйверов дисплея и т. Д. Эта ИС также обычно используется при управлении шаговыми двигателями. Пары Дарлингтона в ULN2003 рассчитаны на ток 500 мА и выдерживают пиковый ток 600 мА.В схеме контактов i / ps и o / ps расположены в обратном порядке. У каждого драйвера также есть подавляющий диод для рассеивания скачков напряжения при возбуждении индуктивных нагрузок Микросхема драйвера реле ULN2003 Данный проект разработан для системы трехфазного твердотельного реле. Он включает в себя три однофазных блока, в которых каждая фаза управляется индивидуально силовым TRIAC с RC-демпферной цепью для переключения при нулевом напряжении (ZVS). Оптоизоляторы используются в каждой фазе для приема сигналов переключения от микроконтроллера семейства 8051, нагрузки подключаются последовательно с помощью набора TRIACS, управляемых оптоизолятором.Микроконтроллер предназначен для генерации выходных импульсов после импульса нулевого напряжения, чтобы обеспечить включение нагрузки при пересечении нулевого уровня сигнала питания. Функция перехода через нуль драйвера TRIAC (оптоизолятор) обеспечивает низкий уровень шума, что позволяет избежать внезапных скачков тока на резистивных и индуктивных нагрузках. В этом проекте две кнопки используются для генерации выходных импульсов микроконтроллера случайным образом, вдали от ZVS, т.е. не совпадающих с нулевым напряжением питания сигнала. Полупроводниковое реле с комплектом ZVS Project Kit от Edgefxkits.com Таким образом, лампа, которая используется в качестве нагрузки, принудительно включается и выключается в точках, отличных от ZVS, но последнее включение происходит только на следующем ZVS. Используя CRO или DSO, мы можем увидеть форму волны напряжения, подаваемого на нагрузку, для проверки включения / выключения нагрузки в точке нулевого напряжения. Кроме того, этот проект может быть расширен за счет использования двух последовательно подключенных тиристоров на каждой фазе для переключения тяжелых нагрузок, используемых в промышленности.Также может быть включена защита от перегрузки и короткого замыкания для повышения надежности. Речь идет о работе микросхемы драйвера реле и ее прикладном проекте. Надеюсь, вы получили более полное представление об этом проекте. Кроме того, с любыми вопросами по этой статье или проектам в области электротехники и электроники обращайтесь на сайт www. edgefxkits.com. Фото: Реле управляют цепями путем размыкания и замыкания контактов в другой цепи.Для работы катушки требуется относительно небольшое количество энергии, но оно само может использоваться для управления двигателями, нагревателями, лампами или цепями переменного тока, которые сами могут потреблять намного больше электроэнергии. Эти переключатели используются для электромеханического или электронного размыкания и замыкания цепей. Когда контакт разомкнут, он не запитан. Когда он замкнут, есть замкнутый контакт, когда он не запитан. В любом случае подача электрического тока на контакты изменит их состояние. Они обычно используются для переключения меньших токов в цепи управления и обычно не управляют устройствами, потребляющими мощность, за исключением небольших двигателей и соленоидов, потребляющих низкий ток. Тем не менее, он может «контролировать» большие напряжения и амперы, оказывая усиливающий эффект, потому что небольшое напряжение, приложенное к катушке, может привести к коммутации большого напряжения контактами. Защитные реле могут предотвратить повреждение оборудования путем обнаружения электрических аномалий, включая перегрузки по току, минимальный ток, перегрузки и обратные токи.Кроме того, они также широко используются для включения пусковых катушек, нагревательных элементов, контрольных ламп и звуковой сигнализации. В электромеханических реле (ЭМР) контакты размыкаются или замыкаются с помощью магнитов. Твердотельные реле (SSR) не имеют контактов, а переключение полностью электронное. Функции, выполняемые тяжелым оборудованием, часто требуют коммутационных возможностей электромеханических реле. SSR переключает ток с помощью неподвижных электронных устройств, таких как кремниевые выпрямители. SSR не должен возбуждать катушку или размыкать контакты. Им требуется меньшее напряжение для переключения, они включаются и выключаются быстрее, потому что в них нет движущихся физических частей. Хотя отсутствие контактов и движущихся частей означает, что SSR не подвержены искрению и не изнашиваются. Контакты на электромеханических реле можно заменить, тогда как весь SSR должен быть заменен, когда какая-либо часть выходит из строя. Из-за конструкции SSR существует остаточное электрическое сопротивление и / или утечка тока независимо от того, разомкнуты или замкнуты переключатели. Существует много типов релейных переключателей, но часто транзисторы и полевые МОП-транзисторы используются в качестве основного переключающего устройства. Транзисторы обеспечивают быстрое переключение катушки от различных источников. Типичная схема релейного переключателя имеет катушку, управляемую транзисторным переключателем NPN, TR1, как показано, в зависимости от уровня входного напряжения. Когда базовое напряжение транзистора равно нулю (или отрицательно), транзистор отключен и действует как разомкнутый переключатель. В этом состоянии ток коллектора не течет и он обесточивается, потому что, будучи токовыми устройствами, если ток не течет в базу, то ток не будет проходить через катушку. Когда базовое напряжение транзистора равно нулю (или отрицательно), транзистор отключен и действует как разомкнутый переключатель. В этом состоянии ток коллектора не течет и он обесточивается, потому что, будучи токовыми устройствами, если ток не течет в базу, то ток не будет проходить через катушку. Два NPN-транзистора соединены так, что ток коллектора первого транзистора TR1 становится током базы второго транзистора TR2.Приложение положительного базового тока к TR1 автоматически включает переключающий транзистор TR2. с общим коллектором или эмиттерным повторителем очень полезна для приложений согласования импеданса из-за очень высокого входного импеданса (~ сотни тысяч Ом) при относительно низком выходном сопротивлении для переключения катушки. Очень небольшой положительный базовый ток, приложенный к TR1, вызывает гораздо больший ток коллектора, протекающий через TR2 из-за умножения двух значений Beta. Эта схема требует разной полярности рабочего напряжения. Ток нагрузки течет от эмиттера к коллектору, когда база смещена в прямом направлении с напряжением, которое более отрицательно, чем на эмиттере. Чтобы ток нагрузки реле протекал через эмиттер к коллектору, и база, и коллектор должны быть отрицательными по отношению к эмиттеру. Релейная нагрузка подключена к коллектору транзисторов PNP.Переключение транзистора и катушки в положение ВКЛ-ВЫКЛ происходит, когда Vin имеет низкий уровень, транзистор «включен», а когда Vin имеет высокий уровень, транзистор «выключен». Схема релейного переключателя MOSFET подключена в конфигурации с общим источником. При нулевом входном напряжении, состоянии LOW, значении V GS , привода затвора недостаточно для открытия канала, и транзистор находится в состоянии «ВЫКЛ». Когда на затвор подается ВЫСОКИЙ уровень напряжения, P-канальный полевой МОП-транзистор будет выключен.Выключенный E-MOSFET имеет очень высокое сопротивление канала и действует почти как разомкнутая цепь. Когда на затвор подается НИЗКИЙ уровень напряжения, P-канальный MOSFET будет включен. Относительно небольшое положительное напряжение, превышающее пороговое напряжение V T , на его высокоимпедансном затворе заставляет его начать проводить ток от своего вывода стока к выводу истока. В отличие от биполярного переходного транзистора, который требует тока базы для его включения, e-MOSFET требует только напряжения на затворе, поскольку из-за его изолированной конструкции затвора нулевой ток течет в затвор. BJT — это хорошие и дешевые схемы переключения реле, но они являются устройствами, управляемыми током. Они преобразуют небольшой ток базы в больший ток нагрузки, чтобы запитать катушку. Однако переключатель MOSFET работает лучше как электрический переключатель, поскольку для его включения практически не требуется ток затвора, преобразуя напряжение затвора в ток нагрузки. Следовательно, полевой МОП-транзистор может работать как переключатель, управляемый напряжением. Дополнительные основные статьи доступны в учебном уголке. Чтобы хорошо выполнять любую работу, вам нужны инструменты для ее выполнения. Но в жизни этот правильный инструмент или компонент не всегда очевиден. Например, если вам нужно забить гвоздь, достаточно хорошо подойдет молоток. Но чтобы вырезать кусок дерева, вы можете использовать настольную пилу, торцовочную пилу, лобзик, пилу, маршрутизатор, нож, лазерный резак или любое количество других устройств.Все они рубят дерево, но некоторые из них могут работать лучше, чем другие для конкретных задач. Мир инженерии хорошо знает эту борьбу, и транзисторы и реле являются прекрасным примером. Номинально оба устройства выполняют одну и ту же работу — они включают и выключают ток, но они используют очень разные методы. В зависимости от вашего опыта и отрасли, вы можете по умолчанию выбрать одно или другое, но у каждого устройства есть свои преимущества и недостатки. Чтобы оценить, какое из них лучше всего подойдет для вашего приложения, важно понимать детали характеристик каждого устройства. — это проверенная временем технология, и они физически переключают контакты, как если бы вы сами включали выключатель. Как правило, они используют герконовый переключатель электромагнита, чтобы позволить небольшому электрическому сигналу переключать гораздо более высокие напряжения. отличаются от транзисторов несколькими ключевыми особенностями. Вот пять их самых больших отличий: — Реле выдерживают гораздо более высокие нагрузки по току и напряжению. — Реле могут переключать нагрузки независимо от внутренней схемы устройства. — Реле могут работать с нагрузками переменного (AC) или постоянного (DC) тока. — Реле не пропускают ток. Реле полностью включено или выключено. — Реле имеют очень низкое сопротивление. С электрической точки зрения замкнутое реле практически идентично неразрывному проводу. Большинство реле имеют контакты NO (нормально разомкнутые) и NC (нормально замкнутые), что позволяет либо замкнуть цепь при подаче питания (NO), либо разомкнуть цепь (NC). При необходимости вы можете использовать одновременно NO и NC. Реле издают слышимый щелкающий звук при включении или выключении. Это имеет свои преимущества, но может представлять собой недостаток, когда шум является проблемой. Некоторые реле позволяют визуально наблюдать за их состоянием. Другие оснащены кнопкой байпаса / тестирования или переключателем для включения реле вручную. Переключение происходит намного медленнее, чем с транзисторами, и контакты могут «дергаться», что приводит к сигналу, который на мгновение включается и выключается, когда вы нажимаете переключатель. также потребляют относительно большой ток во включенном состоянии.Доступны фиксирующие реле, которым требуется питание только для включения и выключения. Наконец, реле обычно намного больше транзисторов, и они являются электромагнитными устройствами, поэтому они могут вызывать помехи из-за электромагнитного потока (ЭМП). Транзисторы позволяют току течь между коллектором и эмиттером, в отличие от переключателя включения / выключения. В них нет движущихся частей. Вместо этого, когда присутствует положительное напряжение, транзистор изменяет проводимость материала транзистора.Вот восемь конкретных характеристик транзисторов в отличие от реле: — Они намного быстрее реле. Диапазоны переключения обычно находятся в наносекундном диапазоне (10 — 9 9 1484 секунды), что на много порядков быстрее, чем у эквивалентного реле. — Транзисторы могут вести себя как аналоговые устройства, что позволяет усиливать сигнал. — Они намного меньше аналогичного реле. — Транзисторы молчат и не показывают, активированы ли они. — Вы можете использовать транзистор, чтобы позволить одному сигналу переключать большую нагрузку, но это не совсем независимо. Разработчикам необходимо знать о коммутируемом устройстве больше, чем при использовании реле. — Вам необходимо правильно указать свой транзистор, тогда как реле могут выдерживать широкий диапазон типов мощности. — Они недорогие. — Вы не можете использовать транзистор с переменным током. Типичные транзисторы и реле имеют практически безграничное применение, но эти специализированные решения выполняют схожие задачи. — Твердотельное реле: Это своего рода гибрид между обычным реле и транзистором, эти реле переключают нагрузку с помощью светодиода, активируемого схемой управления. Светодиод активирует активированный светом МОП-транзистор, который управляет нагрузкой. Эти устройства бесшумны, переключаются за миллисекунду или меньше и более надежны, чем обычные реле. — Контактор: Реле контактора оптимизированы для коммутации больших токов, таких как запуск электродвигателей.Эти устройства обычно имеют только замыкающие контакты. — TRIAC: Сокращение от «триод для переменного тока». TRIAC — это твердотельное устройство, которое позволяет току течь в любом направлении через две основные клеммы. Штифт ворот активирует эти устройства. — Компьютерный чип: Возможно, вы не захотите разрабатывать собственное вычислительное устройство с нуля, но стоит отметить, что эти чипы содержат миллиарды транзисторов в корпусе, который легко поместится у вас на ладони.Это чудо миниатюризации. Для очень высоких или неизвестных нагрузок реле — лучший и наиболее практичный вариант. GET UPDATE 903 9000
arduino — зачем управлять реле с транзисторным переключателем?
Применение реле в электронных схемах | Средства автоматизации | Промышленные устройства
1. Релейное управление через транзистор
1.Способ подключения
Напряжение, подаваемое на реле, всегда соответствует номинальному напряжению катушки, а во время выключения напряжение полностью равно нулю во избежание неполадок при использовании. (Хорошо) Присоединение коллектора (Уход) Подключение эмиттера (Уход) Параллельное соединение 2. Противодействие импульсным перенапряжениям транзистора управления реле
Позаботьтесь о «Зоне безопасной эксплуатации (ASO)». 3. мгновенное действие (характеристика реле при повышении и падении напряжения)
4.Цепь Шмитта (Цепь мгновенного действия)
Когда входной сигнал не вызывает мгновенного действия, обычно используется триггерная схема Шмитта для обеспечения безопасного мгновенного действия. Очки характеристик
5. Избегайте подключений к цепи Дарлингтона.
Эта схема представляет собой ловушку, в которую легко попасть при работе с высокотехнологичными схемами.Это не означает, что это напрямую связано с дефектом, но это связано с проблемами, которые возникают после длительных периодов использования и при работе многих устройств. (Плохо) Соединение Дарлингтона
• Необходим сильный Tr1. (Хорошее) Соединение эмиттера
Tr1 достаточно для использования сигнала. 6. Остаточное напряжение катушки
Подключение к следующей ступени через коллектор
2.Релейный привод от SCR
1. Метод обычного привода
IGT : Нет проблем даже с током, превышающим номинальный ток более чем в 3 раза. RGK : Необходимо подключить 1 кОм. RC : Предназначен для предотвращения ошибки зажигания из-за внезапного повышения напряжения источника питания или шума. (Противодействие dv / dt) 2. Меры предосторожности в отношении цепей управления ВКЛ / ВЫКЛ
(при использовании для цепей управления температурой или аналогичных цепей управления) 3. Релейный привод от внешних контактов
Реле
Когда частота использования низкая, с задержкой во времени отклика, вызванной конденсатором, можно поглотить дребезжание и подпрыгивание.
(Однако нельзя использовать только конденсатор. Резистор также следует использовать с конденсатором.) 4. Последовательное и параллельное подключение светодиодов
1) Последовательно с реле
Совместно с реле (Хорошо)
Неисправный светодиод:
Реле не работает (Плохо)
Цепь низкого напряжения:
Со светодиодом, 1.5 В ниже (не работает)
Количество деталей: (хорошо) 2) R параллельно со светодиодом
Совместно с реле (хорошо)
Неисправный светодиод:
Реле работает (хорошо)
Цепь низкого напряжения:
Со светодиодом, 1,5 V вниз (не работает)
Количество деталей: R 1 (уход) ( Хорошо)
No.частей: R 2 (Уход) 5. Электронная схема привода с помощью реле
1. Бесшаттерная электронная схема
Примечания: 1. Линии A, B и C должны быть как можно короче.
2. Необходимо, чтобы в контактной части не было шума от секции катушки. 2.Triac Drive
Если необходима характеристика переключения через нуль, следует использовать твердотельное реле (SSR). 6. Цепь источника питания
1. Цепь постоянного напряжения
Если колебания напряжения источника питания большие, подключите стабилизированную цепь или цепь постоянного напряжения, как показано на рис. 1.
Если потребляемая мощность реле велика, удовлетворительные результаты могут быть достигнуты путем реализации конфигурации схемы, показанной на рис. 2. 2.Предотвращение падения напряжения из-за броскового тока
На рис. 5 показан вариант с батарейным питанием. 7. Рекомендации по проектированию печатной платы
1. компоновка образца реле
(Плохо) (хорошее)
• Токи электронных схем состоят только из A 2 и B 2 . Простое рассмотрение конструкции может изменить безопасность операции. Диаметр отверстия и площадки
Стандартный диаметр отверстия Допуск Диаметр земли 0,8 0,031 ± 0,1 ± 0,039 от 2,0 до 3,0 от 0,079 до 0,118 1.0 .039 1.2 0,047 от 3,5 до 4,5 от .138 до .177 1,6 0,063 Расширение и усадка ламинатов с медной оболочкой
2. Когда необходимо использовать ручную пайку для одной части компонента после пайки погружением
3.При использовании самой печатной платы в качестве соединителя
4. Справочные данные платы ПК
Ширина проводника
На рис. 1, 2 и 3 показано соотношение между током и шириной проводника для каждого повышения температуры для различных медных фольг.Также необходимо принять во внимание предотвращение превышения аномальными токами тока разрушения проводника.
На рис. 4 показано соотношение между шириной проводника и током разрушения. Пространство между проводниками
Максимальное напряжение постоянного и переменного тока между проводниками (В) Минимальное расстояние между проводниками
(мм-дюйм) от 0 до 50 0,381 0,015 51 до 150 0,635 0,025 151 до 300 1.27 0,050 301 до 500 2,54. 100 500 или более Рассчитано при 0,00508 мм / В Название Язык Размер файла Обновление 子 回路 に お る ー 使用 上 の 注意 事項 JP 1.5 МБ 31 января 2019 Применение реле в электронных схемах EN 96.0 КБ 28 февраля 2014 г. 子 线路 中 使用 继电器 的 注意 事项 CN-упрощенный 718.4 КБ 9 августа 2019 Релейные схемы »Электроника
При использовании реле, электромеханических реле или герконовых реле необходимо соблюдать некоторые меры предосторожности для обеспечения максимальной надежности цепей и работы
Основы реле
Герконовое реле
Характеристики герконового реле
Релейные схемы
Твердотельное реле Цепи управления реле
Реле приводится в действие катушкой. Это создает магнитное поле, которое используется для приведения в действие реле, будь то герконовое реле или электромеханическое реле.Может означает, что когда полупроводниковый переключатель находится во включенном состоянии, ток начнет течь. Оно будет постепенно увеличиваться в результате индуктивности, и это будет означать, что до срабатывания реле пройдет определенное время. Однако, когда переключатель внезапно открывается, возникает большая обратная ЭДС. Он может быть достаточно большим, чтобы повредить драйвер.
Хотя схема реле с общим эмиттером будет самой популярной, иногда полезно использовать конфигурацию с общим коллектором или эмиттерным повторителем для схемы реле. Реле коммутируемых цепей
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».. . с использованием микросхемы ULN2003 и ее рабочей схемы
Схема ИС драйвера реле
Реле Схемы драйверов
Базовая схема драйвера с использованием BJT-транзистора
Также можно использовать транзисторы Преимущества нижнего привода
Зажимной диод
Схема ИС драйвера реле постоянного тока
Необходимые компоненты
Схема ИС драйвера реле переменного тока
Что такое реле? | Схема контактов релейного переключателя
Схема выводов
Релейный переключатель DPDT Релейный переключатель DPDT Типы:
Цепи релейного переключателя
Цепь релейного переключателя NPN
Цепь релейного переключателя NPN Дарлингтона
Цепь переключателя реле повторителя эмиттера
Конфигурация Цепь переключателя реле Дарлингтона эмиттера
Релейного переключателя PNP цепи
Цепь релейного переключателя коллектора PNP
Цепь переключателя реле N-канального полевого МОП-транзистора
Схема переключателя реле P-канального полевого МОП-транзистора
Схема переключателя с логическим управлением
Эта статья была впервые опубликована 5 июня 2017 г. и обновлена до 18 августа 2020 г.
Реле против транзисторов: выбор лучшего компонента для работы
Надежные реле
Реле Транзисторы: скорость и простота
Подобные электронные компоненты
Когда использовать реле и транзисторы