Site Loader

Содержание

схема подключения и способы соединения обмоток

На чтение 5 мин Просмотров 1.6к. Опубликовано Обновлено

Любой современный трехфазный трансформатор – это особое электротехническое устройство, обеспечивающее потребителя электроэнергией нужного вида и качества. Подобно всякому трансформаторному преобразователю, он содержит первичные и вторичные обмотки, которых в этом случае насчитывается три пары. На высоковольтных подстанциях благодаря этому устройству удается получить напряжение нужной величины, а затем передать его по линии с глухозаземленной нейтралью.

Назначение и виды

Трехфазный трансформатор

Классический станционный трехфазный силовой трансформатор используется для преобразования высоковольтной энергии в удобную для потребителя форму. На его первичные обмотки подается высокое напряжение (6,3-10 киловольт), а на выходе получают более удобные для использования в быту 220 Вольт. Эта величина измеряется между фазами и нулевой жилой трансформатора, называемой нейтралью. Ее принято обозначать как фазное напряжение, в отличие от линейных 380 Вольт, отсчитываемых между каждой из фаз.

Трехфазные понижающие трансформаторы этого класса обеспечивают передачу тока от местной подстанции по подземному кабелю или линии электропередач непосредственно до конечного потребителя. Для этих целей используется специальный 4-хжильный кабель в бронированном сердечнике, либо воздушный провод марки СИП. По ним электрическая энергия доставляет прямо по назначению — на вводно-распределительные устройства обслуживаемых территорий и объектов.

По своему функциональному назначению 3 фазные трансформаторы подразделяются на следующие классы:

  • линейные (станционные) устройства;
  • специальные преобразовательные агрегаты.

Особо выделяются трехфазные разделительные трансформаторы, используемые для развязки электрических схем и силовых цепей.Испытательный трансформатор

Специальные устройства делятся на следующие виды:

  • Испытательные трансформаторы. К ним принято относить трехфазные автотрансформаторные системы.
  • Устройства, используемые для питания специальной аппаратуры: сварочных агрегатов, в частности.
  • Симметрирующие трансформаторные агрегаты.

Первые два типа применяются в исследовательских целях. Трансформаторы симметрирующие трехфазные используются для устранения перекоса фаз, возникающего в электрических сетях из-за неравномерности распределения нагрузок.

В электротехнике также встречаются варианты двухфазных трансформаторов, нередко применяемых в электронных схемах и устройствах автоматики. Они устроены так, что два выходных напряжения сдвинуты одно относительно другого на 90 электрических градусов. Чаще всего такие электротехнические решения используются в сварочном оборудовании.

Устройство трансформатора

Устройство трехфазного силового трансформатора

По своему устройству трехфазные трансформаторы представляют сборную конструкцию, состоящую из следующих узлов:

  • основание, изготавливаемое в виде прочного пластикового каркаса;
  • магнитопровода, размещенные в каркасных секциях;
  • набор первичных и вторичных катушек с проволочными обмотками;
  • распределительная (распаечная) панель с контактными колодками;
  • система охлаждения, необходимая для отвода тепла от рабочей зоны.

Каждое из известных исполнений таких устройств в том или ином виде содержит все обозначенные узлы. При этом они различаются способом соединения обмоток, а также типом используемого в них магнитопровода. Конструктивные особенности отдельных моделей отражаются на их рабочих характеристиках, в частности на величине потерь в магнитопроводе и коэффициенте полезного действия.

Исключение составляет панель распайки отводов обмоток трансформатора, благодаря которой удается комбинировать группы подключений для получения нужной конфигурации.

Способы соединения обмоток

Схемы соединения обмоток трехфазных трансформаторов

Основное отличие различных трансформаторных схем состоит в используемых при их включении конфигурациях (способах соединения обмоток). При организации централизованного энергоснабжения традиционно применяются две классические схемы, называемые «треугольник» и «звезда». Первый вариант предполагает последовательное включение первичных и вторичных фазных обмоток: конец одной катушки подсоединяется к началу следующей).

При использовании схемы «звезда» начала всех фазных жил первичной и вторичной обмоток объединяются в одной точке, называемой нейтралью, а их концы подсоединяются к 3-хпроводной нагрузочной линии. В этом случае для передачи электроэнергии потребуется кабель, содержащий четыре жилы. При подключении в линию вторичных трансформаторных обмоток, соединенных в «треугольник», используется только три жилы. Возможен еще один вариант их включения, который называется «взаимосвязанная звезда». Однако из-за редкости его применения он не рассматривается.

Варианты конфигураций

Варианты обмоток

При организации систем энергоснабжения возможно несколько комбинаций включения первичных и вторичных обмоток трехфазного трансформатора. Набор производимых при этом коммутационных действий:

  • Первичная обмотка выполняется как «звезда», а вторичная – в виде «треугольника».
  • При втором подходе используется обратный порядок включения.
  • В третьем случае применяется уже рассмотренная комбинация типа «звезда»-«звезда» или же вариант с двумя треугольниками (другое название – дельта-дельта).

Для учета всех способов включения первичных и вторичных обмоток и последующего расчета параметров трансформатора в электротехнике используются специальные идентификационные таблицы. В них приводятся возможные сочетания и комбинации, используемые, если требуется подключить трансформатор в линию и получить от него максимальную отдачу. От правильности выбора этого сочетания в каждом конкретном случае зависит эффективность работы всей системы энергоснабжения.

Параллельное включение

Соединение вторичных обмоток

Параллельное включение одинаковых вторичных обмоток позволяет увеличить мощность (ток) на выходе устройства. Этим путем удается увеличить КПД и нагрузочную способность обслуживаемой линии.

При использовании данного подхода потребуется учесть одну важную деталь, связанную с порядком соединения вторичных обмоток. Для получения ожидаемых результатов обмотки должны включаться синфазно, что означает соединение однотипных концов всех трех катушек в одной точке. При нарушении этого правила напряжение на выходе двух соединенных не синфазно обмоток будет близко к нулю (действует принцип замещения). Когда эту ошибку допускают при включении трансформатора, его мощность и КПД существенно снижаются. Если при вторичной проверке обнаружится, что напряжение не изменилось по сравнению с одиночным включением, значит катушки включены синфазно.

Преобразовательное устройство, определяемое как трансформатор 220 на 380 Вольт 3 фазы, удается получить, если применить специальную схему с повышением выходного напряжения. Ее особенностью является наличие одной первичной и трех вторичных обмоток, включенных по схеме «звезда» или «треугольник».

схема подключения и способы соединения обмоток

Что такое трехфазный трансформатор тока, схема подключения, конструкция и типы

В данной статье вы узнаете что такое трехфазный трансформатор тока, какие бывают его соединения, подробно опишем его конструкцию.

Описание трехфазного трансформатора

До сих пор мы рассматривали конструкцию и работу однофазного двухобмоточного трансформатора напряжения, который можно использовать для увеличения или уменьшения его вторичного напряжения по отношению к первичному напряжению питания. Но трансформаторы напряжения также могут быть сконструированы для подключения не только к одной однофазной, но и для двухфазных, трехфазных, шестифазных и даже сложных комбинаций до 24 фаз для некоторых выпрямительных трансформаторов постоянного тока.

Если мы возьмем три однофазных трансформатора и соединим их первичные обмотки друг с другом и их вторичные обмотки друг с другом в фиксированной конфигурации, мы можем использовать трансформаторы от трехфазного источника питания.

Трехфазные, также записанные как 3-фазные или 3φ источники питания, используются для выработки, передачи и распределения электроэнергии, а также для всех промышленных применений. Трехфазные источники питания имеют много электрических преимуществ по сравнению с однофазными, и при рассмотрении трехфазных трансформаторов нам приходится иметь дело с тремя переменными напряжениями и токами, различающимися по фазе на 120 градусов, как показано ниже.

Трехфазные напряжения и токи

Трансформатор не может действовать как устройство для изменения фазы и превращать однофазное в трехфазное или трехфазное в однофазное. Чтобы обеспечить совместимость трансформаторных соединений с трехфазными источниками питания, нам необходимо соединить их особым образом, чтобы сформировать конфигурацию трехфазного трансформатора.

Трехфазный трансформатор или 3φ трансформатор может быть сконструирован либо путем соединения вместе три однофазных трансформатора, тем самого образуя так называемый трехфазный трансформаторный блок, или с помощью одного предварительно собранного и сбалансированного трехфазного трансформатора, который состоит из трех пар однофазных обмоток, установленные на одном ламинированном сердечнике.

Преимущества создания одного трехфазного трансформатора в том, что при одинаковой номинальной мощности кВА он будет меньше, дешевле и легче, чем три отдельных однофазных трансформатора, соединенных вместе, поскольку медный и железный сердечник используются более эффективно. Способы подключения первичной и вторичной обмоток одинаковы, будь то использование только одного трехфазного трансформатора или трех отдельных однофазных трансформаторов. Рассмотрим схему ниже:

Трехфазные трансформаторные соединения

Первичная и вторичная обмотки трансформатора могут быть подключены в различной конфигурации, как показано выше, для удовлетворения практически любых требований. В случае трехфазных обмоток трансформатора возможны три формы подключения: «звезда», «треугольник» и «взаимосвязанная звезда».

Комбинации трех обмоток могут быть с первичным соединенным треугольником и вторичной соединенной звездой, или звезда-треугольник, звезда-звезда или треугольник, в зависимости от использования трансформаторов. Когда трансформаторы используются для обеспечения трех или более фаз, их обычно называют многофазным трансформатором .

Трехфазный трансформатор звезда и треугольник

Но что мы подразумеваем под «звездой» (также известной как тройник) и «треугольником» (также известной как сетка) при работе с трехфазными трансформаторными соединениями. Трехфазный трансформатор имеет три комплекта первичной и вторичной обмоток. В зависимости от того, как эти наборы обмоток связаны между собой, определяется, является ли соединение звездой или треугольником.

Три доступных напряжения, каждое из которых смещено друг от друга на 120 электрических градусов, не только определяют тип электрических соединений, используемых на первичной и вторичной сторонах, но и определяют поток токов трансформатора.

При подключении трех однофазных трансформаторов магнитный поток в трех трансформаторах различается по фазе на 120 градусов. С одним трехфазным трансформатором в сердечнике есть три магнитных потока, различающихся по фазе времени на 120 градусов.

Стандартный метод маркировки трехфазных обмоток трансформатора заключается в маркировке трех первичных обмоток заглавными (заглавными буквами) буквами A, B и C , которые используются для обозначения трех отдельных фаз КРАСНОГО, ЖЕЛТОГО и СИНЕГО (см. картинку ниже). Вторичные обмотки помечены маленькими (строчными буквами) буквами a, b и c. Каждая обмотка имеет два конца, обычно обозначенные 1 и 2, так что, например, вторая обмотка первичной обмотки имеет концы, которые будут обозначены как В1 и В2, в то время как третья обмотка вторичной обмотки будет обозначена с1 и с2, как показано ниже.

Символы обычно используются на трехфазном трансформаторе для обозначения типа или типов соединений, используемых в верхнем регистре Y для подключения звездой, D для подключения треугольником, звезды и Z для взаимосвязанных первичных обмоток звезды, со строчными буквами y, d и z для их соответствующих вторичных. Тогда звезда-звезда будет обозначаться как Yy, дельта-дельта будет обозначаться как Dd, а взаимосвязанная звезда и взаимосвязанная звезда будут Zz для однотипных подключенных трансформаторов.

Таблица идентификация обмотки трансформатора
СоединениеПервичная обмоткаВторичная обмотка
Треугольник (дельта)Dd
ЗвездаYy
ВзаимосвязанноеZz

Теперь мы знаем, что существует четыре различных способа соединения трех однофазных трансформаторов между их первичной и вторичной трехфазными цепями. Эти четыре стандартные конфигурации представлены как: Дельта-Дельта (Dd), Звезда-Звезда (Yy), Звезда-Дельта (Yd) и Дельта-Звезда (Dy).

Трансформаторы для работы под высоким напряжением со звездообразными соединениями имеют то преимущество, что снижают напряжение на отдельном трансформаторе, уменьшают необходимое количество витков и увеличивают размер проводников, делая обмотки катушек легче и дешевле для изолирования, чем дельта-трансформаторы.

Тем не менее, соединение треугольник-треугольник имеет одно большое преимущество перед конфигурацией звезда-треугольник, заключающееся в том, что если один трансформатор из группы трех должен выйти из строя или отключиться, два оставшихся будут продолжать выдавать трехфазную мощность с мощностью, равной приблизительно две трети первоначальной мощности трансформаторного блока.

Трансформатор дельта-дельта соединения

В дельта подключении ( Dd ) группа трансформаторов, напряжение линии V L равно напряжению питания V L= V S . Но ток в каждой фазной обмотке задается как: 1 / √ 3 × I L тока линии, где I L — ток линии.

Один из недостатков трехфазных трансформаторов, соединенных треугольником, состоит в том, что каждый трансформатор должен быть намотан для напряжения полной линии (в нашем примере выше 100 В) и для 57,7% линейного тока. Большее число витков в обмотке, вместе с изоляцией между витками, требует большей и более дорогой катушки, чем звездное соединение. Другим недостатком трехфазных трансформаторов, соединенных треугольником, является отсутствие «нейтрального» или общего подключения.

В схеме «звезда-звезда» ( Yy ) каждый трансформатор имеет одну клемму, соединенную с общим соединением, или нейтральную точку с тремя оставшимися концами первичных обмоток, подключенными к трехфазному сетевому питанию. Число витков в обмотке трансформатора для соединения «звезда» составляет 57,7% от требуемого для соединения треугольником.

Соединение звездой требует использования трех трансформаторов, и если какой-либо один трансформатор выйдет из строя или отключится, вся группа может быть отключена. Тем не менее трехфазный трансформатор со звездообразным соединением особенно удобен и экономичен в системах распределения электроэнергии, поскольку четвертый провод может быть подключен в качестве нейтральной точки ( n ) из трех вторичных проводов, как показано на рисунке.

Трансформатор звезда-звезда соединения

Напряжение между любой линии трехфазного трансформатора называется «линейное напряжение» V L , в то время как напряжение между линией и нейтральной точкой трансформатора с соединением звезда называется «фаза напряжения» V P . Это фазовое напряжение между нейтральной точкой и любым из подключений к линии составляет 1 / √ 3 × V L от напряжения сети. Тогда выше, напряжение фазы первичной стороны V P задается как:

Вторичный ток в каждой фазе группы трансформаторов соединенных «звездой» такое же, что и для линии тока питания, то I L= I S .

Тогда соотношение между линейными и фазовыми напряжениями и токами в трехфазной системе можно суммировать как:

СоединениеФазовое напряжениеЛинейное напряжениеФазный токЛиния тока
ЗвездаV P = V L ÷ √ 3V L = √ 3 × V PI P = I LI L = I P
ДельтаV P = V LV L = V PI P = I L ÷√ 3I L = √ 3 × I P

Где, опять же, V L — это напряжение между линиями, а V P — это напряжение между фазами и нейтралью на первичной или вторичной стороне.

Другими возможными соединениями для трехфазных трансформаторов являются звезда-треугольник Yd, где первичная обмотка соединена звездой, а вторичная обмотка соединена треугольником или треугольником Dy с первичным соединением первичной обмотки и вторичной обмоткой со звездой.

Трансформаторы с соединением треугольником и звездой широко используются при низком распределении мощности, при этом первичные обмотки обеспечивают трехпроводную сбалансированную нагрузку для коммунального предприятия, а вторичные обмотки обеспечивают требуемое нейтральное или заземляющее 4-проводное соединение.

Когда первичная и вторичная обмотки имеют разные типы соединений обмотки, звезда или треугольник, общее отношение витков трансформатора становится более сложным. Если трехфазный трансформатор подключен как дельта-дельта ( Dd ) или звезда-звезда ( Yy ), то трансформатор может иметь отношение витков 1: 1. То есть входные и выходные напряжения для обмоток одинаковы.

Однако, если 3-фазный трансформатор соединен звезда-треугольник, ( Yd ) каждое звездообразное соединение первичной обмотки будет получать напряжение фазы V P от источника, который равен 1 / √ 3 × V L .

Тогда каждая соответствующая вторичная обмотка будет иметь то же самое напряжение, индуцированное в ней, и, поскольку эти обмотки соединены треугольником, напряжение 1 / √ 3 × V L станет напряжением вторичной линии. Затем при соотношении витков 1: 1 трансформатор, подключенный по схеме звезда-треугольник, будет обеспечивать коэффициент линейного напряжения с понижением √ 3 : 1 .

Тогда для трансформатора, подключенного звезда-треугольник ( Yd ), отношение витков становится равным:

Аналогично, для дельта-звезда ( Dy ) соединенный трансформатор, с 1: 1 соотношением витков, трансформатор будет обеспечивать 1: √ 3 соотношение повышающего линейного напряжения. Тогда для трансформатора, соединенного треугольником-звезда, отношение витков становится равным:

Затем для четырех основных конфигураций трехфазного трансформатора мы можем перечислить вторичные напряжения и токи трансформатора по отношению к напряжению первичной линии, V L и его току первичной линии I L, как показано в следующей таблице.

Где: n равно числу витков трансформатора числа вторичных обмоток N S, деленной на число первичных обмоток N P . ( N S / N P ) и V L — линейное напряжение, при этом V P — это напряжение между фазой и нейтралью.

Пример трехфазного трансформатора

К первичной обмотке трансформатора 50 ВА, подключенного к треугольнику ( Dy ), подключено трехфазное питание 100 В, 50 Гц. Если трансформатор имеет 500 витков на первичной обмотке и 100 витков на вторичной обмотке, рассчитайте вторичные стороны напряжений и токов.

Приведенные данные: номинальный трансформатор, 50 ВА, напряжение питания, 100 В, первичные витки 500 , вторичные витки, 100.

Получается, что на вторичную сторону трансформатора подается линейное напряжение, V Lоколо 35 В, дающее фазное напряжение, V P 20 В при 0,834 Ампер.

Конструкция трехфазного трансформатора

Ранее мы уже говорили, что трехфазный трансформатор представляет собой три взаимосвязанных однофазных трансформатора на одном многослойном сердечнике, и можно достичь значительной экономии в стоимости, размере и весе, объединив три обмотки в одну магнитную цепь, как показано на рисунке.

Трехфазный трансформатор обычно имеет три магнитных цепи, которые чередуются, чтобы обеспечить равномерное распределение диэлектрического потока между обмотками высокого и низкого напряжения. Исключением из этого правила является трехфазный трансформатор типа корпусной. В конструкции типа корпусной, даже несмотря на то, что три ядра находятся вместе, они не переплетены.

Трехфазный трансформатор с сердечником является наиболее распространенным методом построения трехфазного трансформатора, позволяя фазам быть магнитно связанными. Поток каждой конечности использует две другие ветви для своего обратного пути с тремя магнитными потоками в сердечнике, создаваемыми линейными напряжениями, различающимися по фазе времени на 120 градусов. Таким образом, поток в сердечнике остается почти синусоидальным, создавая синусоидальное вторичное напряжение питания.

Конструкция трехфазного трансформатора с кожухом пятиступенчатого типа тяжелее и дороже в сборке, чем сердечник. Пятиконтактные сердечники обычно используются для очень больших силовых трансформаторов, так как они могут быть выполнены с уменьшенной высотой. Материалы сердечника трансформаторов типа корпусной, электрические обмотки, стальной корпус и охлаждение практически такие же, как и для более крупных однофазных типов.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Трехфазные трансформаторы

Электрическая энергия в промышленных масштабах не может передаваться в виде однофазного переменного тока. С этой целью успешно применяется трехфазный ток, а для его передачи используются трехфазные трансформаторы. Одним из способов трансформации трехфазного тока служит применение трех однофазных трансформаторов.

Соединение первичных и вторичных обмоток в этих устройствах осуществляется в одну из трехфазных систем – звезду или треугольник. Именно по этому принципу происходит работа мощных однофазных трансформаторов, которыми оборудуются крупные электростанции. Их первичные обмотки соединяются с соответствующими фазами генераторов, а вторичные обмотки, соединенные звездой, подключаются к соответствующим фазам линий электропередачи.

Принцип действия трехфазного трансформатора

Как видно из приведенной схемы, вместо трех однофазных устройств может быть использован один трехфазный трансформатор. В состав его магнитопровода входят три стержня, которые замыкаются ярмами сверху и снизу. На каждый стержень наматывается первичная и вторичная обмотка, соединяемые затем звездой или треугольником. Каждый стержень с обмотками по своей сути является однофазным трансформатором. Одновременно, он выполняет функцию отдельной фазы трехфазного трансформатора.

Под действием тока первичной обмотки во всех стержнях происходит появление магнитного потока. Следует учитывать принадлежность каждой такой обмотки к одной из фаз, входящих в трехфазную систему. Поэтому токи, протекающие по этим обмоткам, а также приложенные напряжения, относятся к трехфазным. Поэтому сформированные магнитные потоки тоже являются трехфазными.

Ранее считалось, что движение магнитного потока осуществляется по замкнутой траектории, то есть, проходя по стержню, он возвращается к его началу. В трехфазных трансформаторах такой обратный путь отсутствует, в нем просто нет необходимости, при условии одинаковой нагрузки фаз. Кроме того, отсутствует и необходимость нейтрального соединения в звезду.

Циркуляция каждого потока происходит лишь по собственному стержню. В конечном итоге все потоки сходятся в центральных частях верхнего и нижнего ярма. В этих точках получается геометрическое сложение этих потоков, сдвинутых между собой на величину угла 120 градусов. В результате, геометрическая сумма сложенных величин, окажется равной нулю. Следовательно, каждый магнитный поток проходит лишь по собственному стержню, обратного пути не имеет, а все три потока в сумме дают нулевое значение.

Движение потоков крайних фаз происходит не только по стержню. Оно захватывает половину каждого ярма. Поток в средней фазе будет проходить только по своему стержню. Поэтому значение токов холостого хода в фазах, расположенных по краям, всегда превышает аналогичное значение в средней фазе.

Как передается трехфазный ток

Первичным источником питания в большинстве случаев является электрическая сеть. Ее напряжение представлено в виде синусоиды с частотой 50 Гц. Однако в тех случаях, когда линии электропередачи обладают большой протяженностью, происходит излучение передаваемой энергии в окружающее пространство, что приводит к дополнительным потерям. Поэтому в цепях электропитания высокой мощности применяется трехфазное напряжение.

Для того чтобы уменьшить излучение, сумма напряжений на всех трех фазах в любое время должна быть равна нулю. С этой целью производится сдвиг синусоидального напряжения по фазе в каждом проводе относительно друг друга на 120 градусов. В таком состоянии передача электроэнергии может осуществляться в двух вариантах: с помощью четырех или трех проводов линии передачи. Условные схемы каждого варианта отображены на рисунке.

Четырехпроводная линия позволяет выдавать потребителю два вида напряжения: фазное (220 В) и линейное (380 В). Трехпроводная схема позволяет выдавать лишь линейные напряжения. Формирование линейного напряжения описывается с помощью векторной диаграммы напряжений фаз. При положительном чередовании фаз, они условно увеличиваются по часовой стрелке. Для соединения обмоток трехфазных трансформаторов используются два основных способа – звезда и треугольник.

Соединение звездой

Данный вид соединения рекомендуется рассматривать на примере схемы «звезда-звезда». В этом случае источник тока и нагрузка соединяются методом звезды.

На рисунке обозначение фазных напряжений, вырабатываемых вторичными обмотками трансформатора, выполнено символами UA, UB, и UC. От фазных обмоток до нагрузки идут проводники, выполняющие функцию линейных проводов. Следует учитывать наличие напряжения не только между нулевым и линейным проводами, но и между двумя линейными проводниками. Такое напряжение называется линейным и обозначается UAC или UCA.

Значение линейного напряжения всегда превышает фазное. Разница между ними составляет √3 раза, поскольку представляет собой векторную разность фазных напряжений. Таким образом, трехфазная линия электропередачи позволяет получить не только 380 В, но и 220 В, в зависимости от того по какой схеме включена нагрузка.

Соединение треугольником

Соединение вторичных обмоток в трехфазном трансформаторе треугольником будет выдавать одинаковое линейное и фазное напряжение, как и при соединении звездой, если напряжение составит 220 В. При одинаковом значении потребляемой мощности, линейные токи будут превышать фазные в √3 раза.

Трехфазная система напряжений представляет собой симметричную схему. Это означает, что и магнитная система, которую имеют все трехфазные трансформаторы, будет симметричной. Такая система очень сложная в изготовлении, поэтому широкое распространение получила плоская конструкция, в которой отсутствует центральный стержень. Необходимость в нем отпадает, поскольку сумма магнитных потоков здесь равна нулю.

Плоский вариант конструкции считается более технологичным и удобным при компоновке, хотя она и является несимметричной. Токи в крайних фазах заметно превышают ток в средней фазе, из-за чего нарушаются фазовые углы. Для ликвидации такой асимметрии сечение в верхнем и нижнем ярме увеличивается примерно на 10-15% по сравнению со стержнем. Однако, несмотря на принятые меры, некоторая асимметрия все равно остается.

Схема подключения трехфазного счетчика через трансформаторы тока

Понятие группы соединения обмоток трансформаторов, таблицы и схемы

Любой трансформатор, за исключением автотрансформатора, имеет минимум две обмотки: высокого и низкого напряжений. Также у трехфазных устройств каждая из обмоток состоит из трех частей (по числу фаз). Большое количество частей дает возможность множества вариантов включения. Чтобы избежать путаницы, все группы соединения обмоток трансформатора для трехфазных устройств стандартизированы и приведены к единой системе для безошибочного подключения устройств и возможности параллельной работы.

Понятие группы соединение обмоток трехфазного трансформатора

В трехфазных сетях используется два вида соединений: звезда и треугольник. При изготовлении конструкций может показаться, что существует всего четыре вида расположения обмоток:

  1. Звезда-звезда.
  2. Звезда-треугольник.
  3. Треугольник-звезда.
  4. Треугольник-треугольник.

На деле все обстоит сложнее, поскольку в каждом виде соединений (звезде или треугольники) части обмоток могут быть соединены по-разному. В качестве примера можно привести обычных двухобмоточный трансформатор. Если у такого устройства совпадают начала и концы обмоток, то сдвиг фаз будет равен 0. Разворот одной из обмоток даст сдвиг фаз 180 .

Также встречаются z-образные соединения обмоток (зигзаг). В таких конструкциях каждая из обмоток состоит из двух частей, расположенных на различных стержнях магнитопровода трансформатора.

Трехфазная сеть характеризуется сдвигом фаз одна относительно другой на 120 . Поэтому всего насчитывается 12 групп соединения. Каждая группа характеризуется определенным сдвигом одноименных фаз на входе и выходе трансформатора.

Условные обозначения и расшифровка

Группы маркируются числами от 0 до 11. Для удобства и стандартизации принято следующее:

  • однотипные соединения (∆/∆, Y/Y) имеют четные номера;
  • разнотипные соединения (∆/Y, Y/∆) – нечетные.

Трехфазные трансформаторы выполняются на стержневых магнитопроводах. Каждая из фаз располагается на отдельном стержне. Это во многом упрощает дальнейшую работу и согласование устройств между собой.

Если у трансформатора одинаковые фазы намотаны на одних стержнях, то группы соединений при этом называются основными (0, 6, 11, 5). Остальные группы – производные.

Так как минимальный сдвиг фаз может составлять 30 , то количество вариантов равно 12, что соответствует положениям стрелок часов. 0-е и 12-е положения совпадают. На основании этого говорят, что номер группы совпадает с положением часовой и минутной стрелок. Сдвиг фаз вычисляется просто:

Приняты следующие обозначения на электросхемах и устройствах:

  • Y, У – звезда;
  • Yн, Ун – звезда на стороне низкого напряжения;
  • Yо, Уо – звезда с нулевой точкой;
  • ∆, Д, D – треугольник;
  • ∆н, Дн, Dн – треугольник на стороне низкого напряжения.

Пример маркировки двухобмоточного трансформатора:

  • ∆/Yн – 11. Первичная обмотка треугольник, вторичная (понижающая) звезда. Сдвиг фаз 330 ;
  • Y/Yо -0. Обе обмотки соединены звездой, вторичная с выведенной нулевой точкой. Сдвиг фаз отсутствует.

Также на электрических схемах обмотки высокого напряжения (ВН) обозначают символами:

  • A,B, C – начало обмотки;
  • X, Y, Z – конец обмотки.

Аналогично для стороны низкого напряжения:

Подобным образом маркируются многообмоточные устройства, например:

Вместо нулевой группы может указываться двенадцатая, что совершенно равнозначно.

Как строятся векторные диаграммы

При построении векторных диаграмм надо запомнить правило, что сдвиг фаз меду фазами равняется 120 , то есть, при равенстве напряжений, концы векторов всегда будут образовывать равносторонний треугольник.

Наиболее просто составляется диаграмм для соединения звезда. В центре диаграммы ставится точка, которая соответствует объединенным концам обмоток. Из центра под углами 120 0 проводятся векторы фаз. Вертикально проводят вектор средней фазы.

Для треугольника начерно проводят линию, параллельную соответствующей фазы звезды, а от ее концов, соответственно, подсоединенные к ней оставшиеся две фазы. Должно соблюдаться условие – все стороны треугольника должны быть параллельны соответствующим фазам звезды. Искомыми векторами будут проведенные линии из центра треугольника к его вершинам.

Векторные диаграммы рисуются для высокой и низкой сторон, а затем совмещаются с единым центром. Угол между одинаковыми фазами будет показывать номер группы соединения, выраженный в часах.

Отсчет нужно брать от вектора высокого напряжения к низкому.

Таблица групп соединений

В таблице ниже представлены обозначения групп соединения и чередование фаз низкой и высокой сторон.

Группа соединенияОбозначениеЧередование фаз
Y/Y-0C, B, Ac, b, a∆/∆-0C, B, Ac, b, a1Y/∆-1C, B, Ac, b, a∆/Y-1C, B, Ac, b, a2Y/Y-2C, B, Ac, b, a∆/∆-2C, B, Aа, c, b3Y/∆-3C, B, Ab, a, с∆/Y-3C, B, Ab, a, с4Y/Y-4C, B, Ab, a, с∆/∆-4C, B, Ab, a, с5Y/∆-5C, B, Ac, b, a∆/Y-5C, B, Ac, b, a6Y/Y-6C, B, Ac, b, a∆/∆-6C, B, Ac, b, a7Y/∆-7C, B, Ac, b, a∆/Y-7C, B, Ac, b, a8Y/Y-8C, B, Aа, c, b∆/∆-8C, B, Ac, b, a9Y/∆-9C, B, Ab, a, с∆/Y-9C, B, Ab, a, с10Y/Y-10C, B, Ac, b, a∆/∆-10C, B, Ab, a, с11Y/∆-11C, B, Ac, b, a∆/Y-11C, B, Ac, b, a

Определение методом гальванометра

Существует несколько способов определить правильность подсоединения обмоток. Самый простой способ – использование вольтметра магнитоэлектрической системы. Его еще называют методом постоянного тока.

Для этого к концам проверяемой обмотки подключают измерительный прибор, а на другую обмотку подают постоянное напряжение. Отклонение стрелки в момент замыкания ключа покажет полярность подключения обмотки. Такие действия производятся для каждой обмотки.

Также можно воспользоваться простым вольтметром при подключении переменного напряжения. Для этого на одну из обмоток подают пониженное переменное напряжение, а остальные две обмотки соединяют последовательно и подключают к вольтметру. Отсутствие или слишком малые показания говорят о том, что обмотки включены встречно.

Проверка

Если известен коэффициент трансформации, то при помощи вольтметра можно определить номер основной группы соединения. Для этой цели подают напряжение на концы А и а или x и y и измеряют напряжения на выводах В-в и С-с при соединении звездой или B-y и C-z при соединении треугольником. Для проверки используют следующие соотношения:

Для исключения повреждения оборудования, возникновения аварийных ситуаций и травмирования, все измерения следует производить при низком напряжении, не включая оборудование в основную сеть предприятия.

Примеры групповых соединений обмоток

Государственным стандартом предусмотрены только две группы соединения обмоток:

Жесткая стандартизация позволяет исключить аварии и повреждения в результате неправильных подключений. К тому же, для трансформаторов одинаковой мощности и коэффициента трансформации становится возможным параллельное включение устройств.

Остальное количество соединений используется крайне редко в отдельных случаях при невозможности использования стандартного варианта.

Тип подключения должен быть оговорен в сопроводительной документации и продублирован на шильдике устройства.

Ошибочные обозначения

Ошибочные включения возникают при несоблюдении правил подключения концов. Это происходит в результате неправильной намотки или неправильном обозначении. В результате при включении устройства в трехфазную сеть, обмотки, включенные встречно, компенсируют магнитные потоки друг у друга, поэтому через них начинает протекать ток, ограниченный лишь активным сопротивлением обмоточного провода, что равносильно короткому замыканию.

Чтобы исключить случаи неправильного включения, рекомендуется после ремонта оборудования или перед включением неизвестных устройств тщательно проверить фазировку каждой обмотки несколькими методами для исключения возможных ошибок.

Уменьшить вероятность ошибки поможет предварительный расчет напряжений для измерений по методу вольтметра. Полученные данные служат ориентировочными значениями, на которые нужно обращать внимание при проведении последующих измерений.

Трехфазный трансформатор

Устройство 3 фазного трансформатора

Устроен трехфазный трансформатор преимущественно с стержневыми сердечниками. Если использовать три однофазных трансформатора, где каждый трансформатор имеет свою обмотку, а затем их объединить, как показано на рисунке где у них есть общий стержень, не имеющий обмоток то получится устройство трехфазного трансформатора. Принцип действия в том, что три стержня здесь объединены в общий «нуль». Через этот общий «0» будут проходить общие магнитные потоки, которые равные по величине, но по фазе сдвинутые на 1/3 периода, то сумма потоков будет равна «нулю» в произвольный момент времени. Если магнитный поток (Фа + Фb + Фс= 0), то общий стержень становиться ненужным.

Конструкция трехфазного трансформатора имеет всего три стержня расположенных в одной плоскости.

Принцип работы трёхфазного трансформатора, как и однофазного, базируется на законе электромагнитной индукции. При подключении к сети первичной обмотки, в ней начинает протекать переменный ток. Из-за него в сердечнике магнитопровода из стали появляется основной магнитный поток, который охватывает обмотки в каждой фазе. Ф — максимальное значение основного магнитного потока, Вб; W 1, W 2 — количество витков в первичной и вторичной обмотках соответственно.

Обмотки трехфазного трансформатора располагаются на каждом из стержней и включают для каждой фазы свои обмотки высшего и низшего напряжения. Ярмо сверху и снизу объединяет стержни трансформаторов.

Обмотки однофазных трансформаторов не чем не отличаются конструктивно от трех фазных.

Первичные обмотки трансформатора называются обмотками высшего напряжения (ВН) и обозначаются заглавными буквами, а вторичные обмотки называются обмтками низшего напряжения (НН) и обозначаются малыми буквами.

Детальный принцип работы 3- фазного трансформатора

Трехфазный ток можно трансформировать тремя совершенно отдельными однофазными трансформаторами. В этом случае обмотки всех трех фаз магнитно не связаны друг с другом: каждая фаза имеет свою магнитную цепь. Но тот же трехфазный ток можно трансформировать и одним трехфазным трансформатором, у которого обмотки всех трех фаз магнитно связаны между собою, так как имеют общую магнитную цепь.

Чтобы уяснить себе принцип действия и устройства трехфазного трансформатора, представим себе три однофазных трансформатора, приставленных один к другому так, что три стержня их образуют один общий центральный стержень (рис. 1). На каждом из остальных трех стержней наложены первичные и вторичные обмотки (на рис. 1 вторичные обмотки не изображены).

Предположим, что первичные катушки всех стержней трансформатора совершенно одинаковы и намотаны в одном направлении (на рис. 1 первичные катушки намотаны по часовой стрелке, если смотреть на них сверху). Соединим все верхние концы катушек в нейтраль О, а нижние концы катушек подведем к трем зажимам трехфазной сети.

Токи в катушках трансформатора создадут переменные во времени магнитные потоки, которые будут замыкаться каждый в своей магнитной цепи. В центральном составном стержне магнитные потоки сложатся и в сумме дадут ноль, ибо эти потоки создаются симметричными трехфазными токами, относительно которых мы знаем, что сумма мгновенных значений их равна нулю в любой момент времени.

Например, если бы в катушке АХ ток I, был наибольший и проходил в указанном на рис. 1 направлении, то магнитный поток был бы равен наибольшему своему значению Ф и был направлен в центральном составном стержне сверху вниз. В двух других катушках BY и CZтоки I2 и I3 в тот же момент времени равны половине наибольшего тока и имеют обратное направление по отношению к току в катушке АХ (таково свойство трехфазных токов). По этой причине в стержнях катушек BY и CZ магнитные по токи будут равны половине наибольшего потока и в центральном составном стержне будут иметь обратное направление по отношению к потоку катушки АХ. Сумма потоков в рассматриваемый момент равна нулю. То же самое имеет место и для любого другого момента.

Отсутствие потока в центральном стержне не означает отсутствия потоков в остальных стержнях. Если бы мы уничтожили центральный стержень, а верхние и нижние ярма соединили в общие ярма (см. рис. 2), то поток катушки АХ нашел бы себе путь через сердечники катушек BY и CZ, причем магнитодвижущие силы этих катушек сложились бы с магнитодвижущей силой катушки АХ. В таком случае мы получили бы трехфазный трансформатор с общей магнитною цепью всех трех фаз.

Так как токи в катушках смещены по фазе на 1/3 периода, то и создаваемые ими магнитные потоки также смещены во времени на 1/3 периода, т. е. наибольшие значения магнитных потоков в стержнях катушек следуют друг за другом через 1/3 периода.

Следствием сдвига по фазе магнитных потоков в сердечниках на 1/3 периода является такой же сдвиг по фазе и электродвижущих сил, индуктируемых как в первичных, так и во вторичных катушках, наложенных на стержнях. Электродвижущие силы первичных катушек почти уравновешивают приложенное трехфазное напряжение. Электродвижущие силы вторичных катушек при правильном соединении концов катушек дают трехфазное вторичное напряжение, которое подается во вторичную цепь.

Как обозначаются начала первичной обмотки трехфазного трансформатора

Все начала первичных обмоток трехфазного трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток — малыми буквами: а, Ь, с. Концы обмоток обозначаются соответственно: X, У, Z и х, у, z. Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.

А, В, С – обозначают начало обмоток высшего напряжения, а буквы X, Y и Z означают конец этих обмоток.

Трансформаторы с «нулевой точкой» имеют выведенный конце под клемму обозначенный большой буквой О.

Аналогично обозначают концы обмоток низшего напряжения, но используют для этого строчные буквы х, у, z – это конец фазных обмоток, а, в, с их начало.

Соединение 3 — фазного трансформатора «звезда» и «треугольник»

Звезда и треугольник – это основные способы соединения обмоток 3 -х фазного трансформатора.

Соединяя свободные выводы трех обмоток между собой их начала, или концы образуют нейтральную точку. Остальные свободные зажимы подключаются к трехфазной нагрузке или входному напряжению, идущему на трансформатор от линии электропередач.

Соединение обмоток трансформатора в звезду

Соединение обмоток в треугольник происходит по принципу последовательного подключения, когда конец одной обмотки соединяется с началом другой, а конец второй обмотки соединяется с началом третей обмотки.

соединение в треугольник

Точки соединения обмоток подключаются внешние устройства. Обозначение выводов трехфазного трансформатора и их схемы подключения.

∆ — соединение обмоток трансформатора треугольником.

Y – соединение обмоток трансформатора звездой.

обозначение трехфазных трансформаторов

Соединение обмоток под чертой указывает на обмотки низшего напряжения, а над чертой высшего напряжения.

Цифра – указывает на угол между векторами ЭДС с 30° градусами угловых единиц.

Расшифровка обозначение указывает, что обмотки высшего в первом случае соединены звездой, низшего напряжения так же звездой. При этом обмотки низшего напряжения имеют подключенную «0» точку.

Сколько стержней должен иметь магнитопровод трехфазного трансформатора?

Трехфазные трансформаторы используются для питания трехфазных или двухфазных сетей, имеющих либо общий трехфазный магнитопровод , либо два или три отдельных магнитопровода стержневого типа.

По способу сборки в современных конструкциях как для однофазных, так и для трехфазных магнитопроводов преимущественное распространение получили шихтованные типы, как более надежные в эксплуатации, удобные в производстве, требующие менее сложного оборудования и приспособлений для сборки.

Где применяется трехфазный трансформатор

Трёхфазный трансформатор используется для преобразования напряжения и применяется как устройство в сфере электрификации промышленных предприятий и жилых помещений. Кроме того, 3 фазные трансформаторы незаменимы на судах, так как с их помощью осуществляется питание приборов различного номинала.

Видео: Принцип работы трансформатора

Трансформаторы могут получать переменный ток с одним напряжением и выдавать его с другим. Таким образом, они служат для повышения эффективности передачи электроэнергии на большие расстояния. В данном видео мы рассмотрим принцип работы и конструкцию простейшего устройства трехфазного трансформатора.

Видео: Что такое звезда и треугольник в трансформаторе

Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов

Рис. 1.20. Трансформаторная группа (а) и трехфазный трансформатор (б)

Трансформирование трехфазной системы напряжений можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу (рис. 1.20, а). Однако относительная громоздкость, большой вес и повышенная стоимость — недостаток трансформаторной группы, поэтому она применяется только в установках большой мощности с целью уменьшения веса и габаритов единицы оборудования, что важно при монтаже и транспортировке трансформаторов.

Рис. 1.21. Трехстержневой магнитопровод и векторные диаграммы

В установках мощностью примерно до 60000 кВ-А обычно применяют трехфазные трансформаторы (рис. 1.20, б), у которых обмотки расположены на трех стержнях, объединенных в общий магнитопровод двумя ярмами (см. рис. 1.2). Но полученный таким образом магнитопровод является несимметричным: магнитное сопротивление потоку средней фазы ФВменьше магнитного сопротивления потокам крайних фаз ФАи Фс (рис. 1.21, а).

Так как к первичным обмоткам трехфазного трансформатора подводится симметричная система напряжений и то в магнитопроводе трансформатора возникают магнитные потоки и , образующие также симметричную систему (рис. 1.21, 6). Однако вследствие магнитной несимметрии магнитопровода намагничивающие токи отдельных фазовых обмоток не равны: намагничивающие токи обмоток крайних фаз ( и ) больше намагничивающего тока обмотки средней фазы . Кроме того, токи и оказываются сдвинутыми по фазе относительно соответствующих потоков и на угол α. Таким образом, при симметричной системе трехфазного напряжения, подведенного к трансформатору, токи х.х. образуют несимметричную систему (рис. 1.21, в).

Для уменьшения магнитной несимметрии трехстержневого магнитопровода, т.е. уменьшения магнитного сопротивления потокам крайних фаз, сечение ярм делают на 10—15% больше сечения стержней, что уменьшает их магнитное сопротивление. Несимметрия токов х.х.трехстержневого трансформатора практически не отражается на работе трансформатора, так как даже при небольшой нагрузке различие в значениях токов , и становится незаметным.

Таким образом, при симметричном питающем напряжении и равномерной трехфазной нагрузке все фазы трехфазного трансформатора, выполненного на трехстержневом магнитопроводе, практически находятся в одинаковых условиях. Поэтому рассмотренные выше уравнения напряжений, МДС и токов, а также схема замещения и векторные диаграммы могут быть использованы для исследования работы каждой фазы трехфазного трансформатора.

Обмотки трехфазных трансформаторов принято соединять по следующим схемам: звезда; звезда с нулевым выводом; треугольник; зигзаг с нулевым выводом. Схемы соединения обмоток трансформатора обозначают дробью, в числителе которой указана схема соединения обмоток ВН, а в знаменателе — обмоток НН. Например, Y/A означает, что обмотки ВН соединены в звезду, а обмотки НН — в треугольник.

Рис. 1.22. Соединение обмоток в зигзаг

Соединение в зигзаг применяют только в трансформаторах специального назначения, например в трансформаторах для выпрямителей (см. § 5.2). Для выполнения соединения каждую фазу обмотки НН делят на две части, располагая их на разных стерж­нях. Указанные части обмоток соединяют так, чтобы конец одной части фазной обмотки был присоединен к концу другой части этой же обмотки, расположенной на другом стержне (рис. 1.22, а). Зигзаг называют равноплечным, если части обмоток, располагаемые на разных стержнях и соединяемые последовательно, одинаковы, и неравноплечными, если эти части неодинаковы. При соединении в зигзаг ЭДС отдельных частей обмоток геометрически вычитаются (рис. 1.22, б).

Выводы обмоток трансформаторов принято обозначать следующим образом: обмотки ВН — начало обмоток А, В, С, соответствующие концы X, Y, Z; обмотки НН — начала обмоток а, Ь, с, соответствующие концы х, у, z.

При соединении обмоток звездой линейное напряжение больше фазного ( ), а при соединении обмоток треугольником линейное напряжение равно фазному (Uл = Uф ).

Отношение линейных напряжений трехфазного трансформатора определяется следующим образом:

Схема соединения обмотокY/Y∆/Y∆/∆Y/∆
Отношение линейных напряжений

Таким образом, отношение линейных напряжений в трехфазном трансформаторе определяется не только отношением чисел витков фазных обмоток, но и схемой их соединений.

Пример1.3. Трехфазный трансформатор номинальной мощностью Sном =100 кВ-А включен по схеме Y/∆. При этом номинальные линейные напряжения на входе и выходе трансформатора соответственно равны: U1ном= 3,0 кВ, U2ном = 0,4 кВ. Определить соотношение витков wllw2и номинальные значения фазных токов в первичной I и вторичной I обмотках.

Решение. Фазные напряжения первичных и вторичных обмоток

Номинальный фазный ток в первичной обмотке (соединенной в звезду)

Номинальный фазный ток во вторичной обмотке (соединенной в треугольник)

Таким образом, соотношение фазных токов I/ I =83,3/19,3 = 4,32 равно соотношению витков в обмотках трансформатора.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома – страшная бессонница, которая потом кажется страшным сном. 9051 – | 7305 – или читать все.

Схемы и группы соединений обмоток трансформаторов

Схемы соединений обмоток трехфазных трансформаторов

Трехфазный трансформатор имеет две трехфазные обмотки – высшего (ВН) и низшего (НН) напряжения, в каждую из которых входят по три фазные обмотки, или фазы. Таким образом, трехфазный трансформатор имеет шесть независимых фазных обмоток и 12 выводов с соответствующими зажимами, причем начальные выводы фаз обмотки высшего напряжения обозначают буквами A , B , С, конечные выводы – X , Y , Z , а для аналогичных выводов фаз обмотки низшего напряжения применяют такие обозначения: a, b, c, x, y, z.

Каждая из обмоток трехфазного трансформатора — первичная и вторичная — может быть соединена тремя различными способами, а именно:

В большинстве случаев обмотки трехфазных трансформаторов соединяют либо в звезду, либо в треугольник (рис. 1).

Осветительные сети выгодно строить на высокое напряжение, но лампы накаливания с большим номинальным напряжением имеют малую световую отдачу. Поэтому их целесообразно питать от пониженного напряжения. В этих случаях обмотки трансформатора также выгодно соединять в звезду (Y), включая лампы на фазное напряжение.

С другой стороны, с точки зрения условий работы самого трансформатора, одну из его обмоток целесообразно включать в треугольник.

Фазный коэффициент трансформации трехфазного трансформатора находят, как соотношение фазных напряжений при холостом ходе:

n ф = U фвнх / U фннх,

а линейный коэффициент трансформации, зависящий от фазного коэффициента трансформации и типа соединения фазных обмоток высшего и низшего напряжений трансформатора, по формуле:

n л = U лвнх / U лннх.

Если соединений фазных обмоток выполнено по схемам “звезда-звезда” или “треугольник-треугольник”, то оба коэффициента трансформации одинаковы, т.е. n ф = n л.

При соединении фаз обмоток трансформатора по схеме “звезда – треугольник” – n л = n фV 3 , а по схеме “треугольник-звезда” – n л = n ф / V 3

Группы соединений обмоток трансформатора

Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток. Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток.

Стандартные обозначения начал и концов обмоток высокого и низкого напряжения показаны на рис.1.

Рассмотрим вначале влияние маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 2 а).

Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние – концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°.

Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° – группе 6 (рис. 3).

В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров.

Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой.

Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y – О.

Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу Y/Y – б.

На рис. 6 представлена схема, в которой по сравнению со схемой рис 4 выполнена круговая перемаркировка зажимов вторичной обмотки. При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.

Схемы соединений Y/Y позволяют получить четные номера групп, при соединении обмоток по схеме “звезда-треугольник” номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 7.

В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11.

Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: “звезда-звезда” – 0 и “звезда-треугольник” – 11. Они, как правило, и применяются на практике.

Схемы “звезда-звезда с нулевой точкой” используют в основном для трансформаторов потребителей напряжением 6 – 10/0,4 кВ. Нулевая точка дает возможность получить напряжение 380/220 или 220/127 В, что удобно для одновременного подключения как трехфазных, так и однофазных приемников электроэнергии (электродвигателей и ламп накаливания).

Схемы “звезда-треугольник” применяют для высоковольтных трансформаторов, соединяя обмотку 35 кВ в звезду, а 6 или 10 кВ в треугольник. Схема “звезда с нулевой точкой” используется в высоковольтных системах, работающих с заземленной нейтралью.

Группы соединения обмоток трехфазных трансформаторов:

Схемы соединений обмоток трехфазных трансформаторов

При соединении обмоток трехфазных трансформаторов как двухобмоточных, так и трехобмоточных применяют различные схемы соединения. Однако в силовых трансформаторах как повышающих, так и понижающих, главных образом применяются схемы соединения в звезду, треугольник и зигзаг—звезду. Для практических целей в энергосистемах не требуется большого количества схем соединений обмоток. Так, для мощных трансформаторов применяется одно соединение обмоток ВН и СН— в звезду с выведенной нейтралью (Y0), а для обмоток НН — в треугольник (А).
ГОСТ 12022-66 предусматривает для трансформаторов мощностью 25, 40, 63 и 100 кВА с ПБВ (с переключением ответвлений обмотки трансформатора без возбуждения — т. е. после отключения всех обмоток трансформатора от сети) и для трансформаторов мощностью 63, 100, 160 и 250 кВА с ПБВ и РПН (с регулированием напряжения путем переключения ответвлений обмотки трансформатора под нагрузкой при следующем сочетании напряжений па стороне ВН и НН (кВ)  на стороне обмотки низшего напряжения соединение в зигзаг—звезду.

Соединение в зигзаг — звезду дает возможность при несимметрии нагрузки на стороне НН сглаживать на стороне ВН эту неравномерность. Кроме того, схема зигзага допускает иметь три напряжения, например 127, 220 и 380 е.
Другие схемы соединений обмоток для силовых трансформаторов применяются крайне редко. Область применения таких схем ограничивается трансформаторами специального назначения (электропечными, для питания ртутных выпрямительных установок, для преобразования частоты, числа фаз переменного тока, электросварочными и др.).
а) Соединение обмоток в звезду
Если соединить концы или начала обмоток трех фаз вместе, то получится соединение в звезду. На рис. 3,а показаны обмотки НН, соединенные в звезду. В нулевой точке соединены все концы обмоток у, z, а к началам а, Ьу с— подводится напряжение от трехфазной сети или генератора. На рис. 3,6 показано то же соединение обмоток НН в звезду, но только в нулевую точку соединены другие концы обмоток, которые прежде присоединялись к сети. При независимой друг от друга работе трансформаторов подобное «переворачивание» одной из обмоток, соединенной в звезду, не имеет значения, по параллельная работа таких трансформаторов, как это будет доказано далее, невозможна. В звезду могут быть соединены различные обмотки трансформатора как ВН и СН, так и НН. Нулевая точка звезды может быть выведена на крышку трансформатора (рис. 3,б).
По схеме звезда или звезда с выведенной нулевой точкой соединяются обычно обмотки ВН как повышающих, так и понижающих трансформаторов различной мощности.

Рис. 3. Соединение обмотки НН в звезду.
а — одна схема соединения; б — другая схема соединения; в — соединение в звезду с выведенной нулевой точкой; г — векторная диаграмма линейных э. д с.
Обмотки ВН при напряжениях 110 кВ и выше предпочтительно соединять в звезду с выведенной нулевой точкой, что дает возможность заземления нейтрали. При этом можно выполнить один конец каждой из фаз, прилегающий к нейтрали, с пониженной изоляцией.
Обмотки СН соединяются большей частью по схеме Y0.
Обмотки НН соединяются в звезду с выведенной нулевой точкой у понижающих трансформаторов тогда, когда напряжение этой обмотки 230 или 400 в при мощностях до 560 кВА. В звезду без выведения нулевой точки обмотки НН соединяются крайне редко, например, у понижающих трансформаторов мощностью 1 000—5 600 кВА при сочетании напряжений обмоток ВН и НН 10 000/6 300 е.
Обычно обмотки НН повышающих трансформаторов, а также большей части понижающих мощных соединяются в треугольник.
Векторная диаграмма линейных э. д. с. для соединения обмоток в звезду строится следующим образом. Откладываем в масштабе вектор ах (рис. 3,г). Так как мы знаем, что концы обмоток л*, //, г электрически соединены, то из точки х под углом 120° к ах откладываем в том же масштабе вектор by. Далее из точки у под углом 120° к вектору by откладываем вектор сг.
При соединении обмотки в звезду с выведенной пулевой точкой можно получить два напряжения (фазное и лилейное). Если измерять напряжение между нулем и какой-либо фазой, то получим напряжения, называемые фазными ((Уф). На рис. 3,г они изображены векторами ха, yb и гс.
Напряжения, измеренные между фазами а и ft, b и с, с и а, называются линейными (междуфазными) напряжениями (U). Эти напряжения па рис. 5-3,г изображены в масштабе ab, be и са. Так как в треугольнике abx угол между векторами ха и yb равен 120°, то зависимость между линейным и фазным напряжениям  будет U = = Uфv3 , т. е. линейное напряжение в v3 раз больше фазного. Если трансформатор, обмотки НН которого включены в звезду, имеет линейное напряжение 220 в, то фазное напряжение будет:

б) Соединение обмоток в треугольник
Если соединить конец фазы а (точку х) с началом фазы с, конец фазы с (точка z) с началом фазы b и конец фазы b (точка у) с началом фазы а, то получится соединение в треугольник (рис. 4,а). Соединение в треугольник можно осуществить (рис. 4,6) иначе, соединяя конец фазы а с началом фазы b, конец фазы b с началом фазы с и конец фазы с с началом фазы а.
Векторная диаграмма линейных э. д. с. при соединении обмоток в треугольник по схеме рис. 4,а будет равносторонним треугольником рис. 4,в и г. При соединении в треугольник фазные напряжения будут равны линейным.
В мощных трансформаторах принято одну из обмоток всегда соединять в треугольник. Делается это по следующим соображениям:
Как известно, намагничивающий ток трансформатора имеет несинусоидальную форму, т. е. содержит высшие гармонические. Наибольший удельный вес имеет третья гармоническая. Если все обмотки трансформатора соединить в звезду, то третья гармоническая в намагничивающем токе образоваться не может, так как она будет направлена во всех фазах одинаково: (3 • 120° = 360° = = 0°) и поэтому форма кривой фазного напряжения исказится, что может привести к нежелательным явлениям в эксплуатации. По этим соображениям принято одну из обмоток обязательно соединять в треугольник. Если же почему-либо требуется построить мощный двухобмоточный трансформатор или автотрансформатор с соединением обмоток звезда — звезда (например, трехфазный автотрансформатор), то он снабжается дополнительной третьей обмоткой, соединенной в треугольник, которая в некоторых случаях может даже не иметь внешних выводов.

Рис. 4. Соединение обмоток НН в треугольник.
а — первая схема соединения обмоток в треугольник, б — вторая схема соединения обмоток в треугольник; в — вектора линейных э. д. с фаз a, b и с; г —векторная диаграмма линейных э д с

Обычно в треугольник соединяется обмотка низшего напряжения.

В мощных трансформаторах номинальный ток обмотки НН часто составляет несколько тысяч ампер и конструктивно бывает легче выполнить соединение обмотки в треугольник, так как фазный ток при той же мощности получается в v 3 раз меньшим, чем при соединении в звезду.
В треугольник соединяются обмотки НН всех повышающих и понижающих двухобмоточных и трехобмоточных трехфазных трансформаторов мощностью 5 600 кВА и больше, понижающих трансформаторов мощностью до 5 600 кВА, имеющих на стороне НН напряжения 38,5; 11; 10,5; 6,6; 6,3; 3,3; 3,15 и 0,525 кВ, а также обмотки НН всех мощных однофазных двухобмоточных и трехобмоточных трансформаторов, предназначающихся для соединения в трехфазные группы. Обмотки ВН и СН силовых повышающих и понижающих трансформаторов обычно в треугольник не соединяются.
в) Соединение обмоток в зигзаг — звезду (равноплечий и неравноплечий зигзаг)
Равноплечий зигзаг может быть получен, если соединить по одной из трех схем рис. 5,а, бив концы и начала шести полуобмоток с одинаковыми числами витков (а следовательно, и э. д. е.), расположенных по две полуобмотки на каждой фазе трансформатора.

Рис. 5. Соединение обмотки НН в равноплечий зигзаг.
а —первая схема соединения; б — вторая схема соединения; в — третья схема соединения; г — векторная диаграмма э. д. с. звезды нижних полукатушек; д — векторная диаграмма линейных э. д. с.
Построим векторную диаграмму соединений обмоток в зигзаг согласно схеме рис. 5,а. Начнем построение с нижних полуобмоток, соединенных в звезду. Векторная диаграмма для этих полуобмоток представлена на рис. 5,г. Согласно схеме рис. 5,а начало а’ нижней полуобмотки электрически соединено с концом zr верхней.
Вектор г’с должен пойти в направлении, противоположном вектору zc’, а потому из точки а’г’ (рис. 5,д) откладываем вектор zrc в направлении, противоположном вектору zc’.

Аналогичным образом строим векторы остальных частей обмоток. Обмотка при соединении в зигзаг обычно выполняется двухслойной, причем каждый слой имеет свободные начала и концы.
Один из слоев обмотки наматывают правой намоткой, другой — левой. Делается это для удобства выполнения соединений в зигзаг. При соединении обмотки в зигзаг мы можем получить три различных напряжения.

Схема равноплечего зигзага применяется для нормальных силовых понижающих трансформаторов, для мощностей 25, 40, 63, 100, 160 и 250 кВА в случае, когда при большой несимметрии нагрузок фаз необходимо на стороне питания иметь схему звезды.
Неравноплечий зигзаг получается, если по схемам а, б и в (рпс. 5-5) соединить концы и начала полуобмоток с неодинаковым числом витков. На рис. 6,а и б даны две схемы соединения в неравноплечий зигзаг при отношении числа витков в полуобмотках 1 : 2.
Схема неравноплечего зигзага применяется иногда иностранными фирмами для трансформаторов специального назначения. В нормальных силовых трансформаторах наши заводы эту схему не применяют.

г) Соединение обмоток по схеме А
Если соединить обмотки трансформатора, как показано на рис. 7,а, то получится соединение по схеме А. Схему, как это видно из векторной диаграммы

Рис. 7. Соединение обмотки по схеме А.
а — схема соединений обмоток; б — векторная диаграмма.
(рис. 7,6), можно представить как треугольник а’Ьс’, у которого две стороны а’b и cfb имеют дополнительные витки (а’а и с’с).
Для того чтобы получить соединения обмоток, отвечающих векторной диаграмме рис. 7,6, принимают соотношения числа витков на фазах трансформатора, которые должны удовлетворять следующим трем условиям:

т. е. обмотка фазы с должна иметь 2/3 числа витков обмоток фаз а и b.
Нулевой вывод берется от середины обмотки фазы с, и, кроме того, число витков дополнительных участков фаз а и b должно быть одинаково и составлять Уз общего числа витков этих фаз.

Рис. 8. Соединение обмоток в скользящий треугольник.
а — схема соединений обмоток; б—векторная диаграмма.
Эта схема не имеет применения в нормальных силовых трансформаторах и применяется только там, где необходимо иметь соединение обмоток в треугольник и в то же время требуется иметь нулевую точку.
д) Соединение обмоток в скользящий треугольник
На рис. 8 даны схема соединения обмотки и векторная диаграмма скользящего треугольника. Из рассмотрения схемы видно, что изменяя положение концов
а’b’с’ (рис. 8,а) и «скользя» ими по обмотке из крайнего верхнего положения к нижнему, можно перейти от треугольника к звезде. При этом могут быть получены все промежуточные положения. Это дает возможность, так же как в схеме неравноплечего зигзага, иметь различные углы сдвига фаз (ф).
Схема скользящего треугольника применяется иногда для трансформаторов, питающих электрические печи. В силовых трансформаторах эта схема не применяется.

Схемы и группы соединения обмоток трансформаторов | Справка

Стандартами установлены условное графическое изображение обмоток, схем их соединения между собой и буквенные обозначения (рис. 1, а, б, в).
Начала фазных обмоток ВН трехфазных трансформаторов обозначают прописными латинскими буквами А, В, С, концы — буквами X, Y, Z. Чередование фаз А, В, С принято считать слева направо, если смотреть на трансформатор со стороны отводов ВН. Начала обмоток НН обозначают строчными латинскими буквами. a, b, с, концы — буквами, х, у, z.
Для трехобмоточных трансформаторов начала обмоток среднего напряжения СН обозначают буквами Ат, Вт, Ст, концы — буквами Хт,
Начала и концы обмоток однофазных трансформаторов обозначают так же, как обмотки первых фаз трехфазных трансформаторов: А—X, Ат—Хт, а—х.
Обмотки, размещенные на стержнях двухстержневой магнитной системы однофазного трансформатора, могут быть соединены параллельно или последовательно. Однако при этом учитывают направление намотки витков обмоток и магнитного поля, которое в стержнях возбужденной магнитной системы направлено противоположно. Если, например, первичной обмоткой является обмотка ВН и подведенным к ней напряжением возбуждена магнитная система, то для получения удвоенной эдс (напряжения) на зажимах а—х последовательно соединенных обмоток направление намотки витков в каждой обмотке должно быть одинаковым и они должны быть соединены по схеме, изображенной на рис. 1, а, а при обмотках с разным направлением намотки витков — по схеме рис. 1,6. При параллельном соединении обмоток с разнонаправленными витками для получения на зажимах а—х эдс (напряжения), индуцированной в одной обмотке, соединение должно быть выполнено по схеме рис. 1, в, а с одинаковым направлением намотки — по схеме рис. 2, г.


Рис. 1. Графическое изображение и буквенное обозначение начал и концов фазных обмоток трехфазного трансформатора: а — обмоток ВН, б — обмоток СН, в — обмоток НН

Если при указанных направлениях намотки витков обмоток схемы с последовательным или параллельным соединением (ошибочно) поменять местами, то результирующее напряжение (эдс) на зажимах а—х будет равно нулю. Такой же результат получится, если схемы соединения оставить без изменения, а на одном из стержней в обмотке изменить направление намотки витков на противоположное. Отсюда следует, что при сборке схемы трансформатора следует внимательно проверять правильность намотки витков обмоток и соответствие их стержням.

Рис. 2. Возможные схемы соединения обмоток    Рис. 3. Обмотки левой (а) одного из напряжений однофазного трансформатора  и правой (б) намоток (а, б, в, г)

Для исключения ошибок обмотки трансформаторов подразделяют по направлению на левые и правые.
Левыми называют обмотки, у которых обход витков от начала обмотки идет против часовой стрелки, если смотреть на нее сверху, правыми — по часовой стрелке (рис. 3).
При сборке схем обмоток трансформатора большое значение придается не только получению результирующего напряжения
на его зажимах, но и направлению векторов напряжений первичной и вторичной обмоток, определяющих группу соединения трансформатора, которая является одним из условий возможности включения трансформатора на параллельную работу с другим трансформатором.
Стандартом предусмотрены группы соединений обмоток трансформаторов: нулевая (0) и 11-я.

Таблица  1 Схема и группа соединения обмоток однофазного двухобмоточного трансформатора

За единицу группы принят угол смещения вектора линейного напряжения обмотки НН относительно соответствующего вектора линейного напряжения обмотки ВН, равный 30°. Смещение отсчитывают от вектора линейного напряжения ВН по часовой стрелке. Группа 0 обозначает совпадение векторов линейных напряжений обмоток НН и ВН, а группа 11 —смещение их на 330° (11X30°). В однофазных трансформаторах группу определяет смещение векторов фазных напряжений.
Получение той или иной группы зависит от направления намотки и схемы соединения обмоток, последовательности соединения фазных обмоток и чередования фаз при сборке схем. При этом большое значение придается направлению намотки обмоток, так как от этого зависит направление эдс, индуцированной в обмотке.
В табл. 1 показано обозначение схемы стандартной — нулевой группы соединения обмоток однофазных двухобмоточных трансформаторов.
Ранее применяемую группу 6 в трансформаторах пересоединяют в нулевую; для этого достаточно обмотки одного из напряжений одного направления заменить на обмотки другого направления, например правые на левые, или перемаркировать их — начало обмотки считать концом, конец — началом.
Фазные обмотки трехфазных трансформаторов (рис. 8) могут быть соединены в звезду — Y , треугольник — А, или зигзаг — эти схемы в тексте обозначают соответственно буквами Y, Д и Z.
Схема соединения в звезду получается, если концы фазных обмоток, например ВН, X, Y, Z трехфазной системы токов, соединить гальванически между собой (рис. 3).
Фазные напряжения Uao, Ubo и UCo обмоток возбужденной магнитной системы (диаграмма справа) определяются разностью
потенциалов между их началами и концами. На векторной диаграмме рисунка они изображены тремя отрезками ЛО, 50 и СО под углом 120° друг к другу, основываясь на том, что в трехфазной симметричной системе токов переменные эдс, токи и напряжения сдвинуты по фазе (времени) на угол 120°. Потенциал точки гальванического соединения концов фазных обмоток равен нулю; ее принято называть нейтралью и обозначать буквой н или 0. Исходящие из нейтрали векторы фазных напряжений (эдс) как бы образуют трехлучевую звезду, отсюда и название схемы — «звезда». Если от нейтрали сделано ответвление проводником, имеющим наружный зажим, то на векторных диаграммах ее обозначают кружком, а на схемах — буквой О (см. рис. 4).


Рис.  3,   Соединение   фазных обмоток в звезду и векторная диаграмма их напряжений

Рис. 4. Соединение фазных обмоток в треугольник и векторная диаграмма их напряжений: а — а—у, b—2, с—х; b — a—z, b—x, с—у
Линейные (междуфазные) напряжения UA, UB и Uc обмоток (рис. 3) определяются разностью потенциалов между началами соответствующих фазных обмоток или, что то же самое, геометрической разностью векторов фазных напряжений; они в ѵ3 раза больше фазных — это легко доказывается математически и геометрическим построением.
Схему соединения в треугольник можно получить двумя способами: соединением фазных обмоток, например НН, в последовательности а—у, b—z, с—х (рис. 4, а) или а—г9. b—х, с—у (рис. 4,6). Как видно на диаграммах, разница в соединениях приводит к изменению направлений векторов линейных напряжений (в треугольнике они же и фазные) на 180°. Это обстоятельство имеет существенное значение для получения требуемой группы в трехфазных трансформаторах.
Получение нулевой группы при соединении первичных и вторичных обмоток трансформатора в звезду, показано на рис. 4, а, при этом имеется в виду, что обмотки ВН и НН одного направления.
На векторных диаграммах стрелками обозначены векторы фазных и линейных напряжений, обмоток ВН и НН, на третьей диаграмме (рисунок справа)—векторы линейных напряжений, для примера, фаз В и b при условном совмещении точек А и а диаграмм «звезд». Совпадение их направлений указывает на нулевую группу.

Рис. 5. Схемы и группы соединений обмоток трехфазного двухобмоточного трансформатора: а — соединение звезда — звезда в нулевую   группу;   б — соединение   звезда — треугольник в одиннадцатую группу

Получение группы 11 при соединении обмоток ВН в звезду, а НН в треугольник показано на рис. 5, б. На диаграммах видно, что векторы линейных напряжений обмоток ВН и НН сдвинуты друг относительно друга по фазе на 330°, это указывает на то, что трансформатор имеет группу 11. В условном обозначении схемы (рис. 5, а) индекс «Н» указывает на то, что от нейтрали сделано ответвление (отвод проводником) на внешний зажим. Построением векторных диаграмм по аналогии можно показать получение групп и схем при соединении фазных обмоток в зигзаг (табл. 2).
Исходя из приведенных пояснений и рисунков следует, что при одних и тех же схемах соединения обмоток можно получать разные группы: при схеме звезда — звезда с нулевой группой легко образуется группа 6; для этого достаточно у обмоток ВН или НН сделать перемаркировку начал и концов, или скажем для примера, обмотки левого направления поменять на правые; при схеме звезда — треугольник с группой 11 получается группа
5, если соединение фазных обмоток треугольника в последовательности а—у; b—z\ с—х заменить соединением а—z\ b—х; с—у, а концы х, yf z перемаркировать в «начала» — а, b, с.

Аналогичным пересоединением обмоток можно перейти с группы 5 на 11. Заметим, что группы 6 и 5 устарели, однако часть трансформаторов с этими группами еще имеется в эксплуатации, и при ремонтах их следует пересоединять в стандартные группы.

Таблица 2. Схемы соединения обмоток, векторные диаграммы напряжений и условные обозначения трехфазных двухобмоточных силовых трансформаторов общего назначения (ГОСТ 11677-85)


Комбинирование направления намотки обмоток, чередования фаз, последовательности соединения начала и концов обмоток при сборке схем позволяет получить двенадцать групп соединения. Чтобы исключить ошибки, соединению обмоток для получения требуемых схем и групп уделяют особое внимание.
Группы соединения обмоток параллельно работающих трансформаторов должны быть одинаковыми. Включение на параллельную работу трансформаторов с разными группами недопустимо, так как это приводит к большим уравнительным токам.
Приведенные выкладки в равной степени относятся к трехобмоточным трансформаторам, автотрансформаторам и трансформаторам специального назначения.

Соединение обмоток трансформатора в треугольник, звезду и зигзаг

  1. Главная
  2. Электрические машины
  3. Соединение обмоток трансформатора — треугольник, звезда

Перед рассмотрением вопросов о группах соединений трансформаторов рассмотрим основные виды соединения обмоток силовых трансформаторов.

Соединение обмоток трансформатора в звезду

При соединении в звезду действуют следующие соотношения –

  • линейные токи равны фазным,
  • линейные напряжения больше фазных в √3 раз

Возможно множество вариантов соединения обмоток трансформатора в звезду, некоторые из них приведены на рисунке ниже. И, как говорится, не все из них одинаково полезны, а точнее, для разных случаев необходима разная схема соединений.

Следует отметить, что в звезду можно соединить как один трехфазный трансформатор, так и три однофазных. На рисунке обозначаются:

  • А, В, С – начала обмоток высшего напряжения
  • Х, Y, Z – окончания обмоток высшего напряжения
  • a, b, c – начала обмоток низкого напряжения
  • x, y, z – окончания обмоток низкого напряжения

Соединение обмоток трансформатора в треугольник

Соединение в треугольник так называется из-за внешнего сходства с треугольником (видно на рисунке).

При соединении в треугольник действуют следующие соотношения –

  • линейные токи больше фазных в √3 раз
  • линейные напряжения равны фазным

Три вторичные обмотки, при соединении в треугольник соединены последовательно, образуя тем самым замкнутую цепь. В этой цепи отсутствует ток, так-как ЭДС фаз сдвинуты на 120 градусов и их сумма в каждый момент времени равна нулю. Так же ток равен нулю при соблюдении тотчасно следующих условий – ЭДС имеют синусоидальную форму, обмотки имеют одинаковые числа витков.

Звезда и треугольник в вопросе о третьих гармониках трансформаторов

В трансформаторах схему треугольник используют кроме прочего для получения токов третьих гармоник, которые необходимы для создания синусоидальной ЭДС вторичных обмоток. Другими словами, для исключения третьей гармонической составляющей в магнитном потоке.

Чтобы ввести третьи гармоники при соединении в звезду — соединяют нейтраль звезды с нейтралью генератора, по этому пути и начинают пробегать третьи гармоники.

Соединение обмоток трансформатора в зигзаг

Соединение в зигзаг используется в случае, если на вторичных нагрузках неравномерная нагрузка. После соединения в зигзаг нагрузка распределяется более равномерно по фазам и магнитный поток трансформатора сохраняет равновесие, несмотря на неравномерную нагрузку.

Рассмотрим соединение в зигзаг-звезду трехфазного силового трансформатора. Схематично изображение приведено на рисунке.

Первичные обмотки соединяются в звезду. Далее разделяем каждую вторичную обмотку напополам. И далее соединяем, как показано на рисунке.

При соединении в зигзаг-звезду потребуется большее число витков, чем при простой звезде. Также при таком соединении возможно получение трех классов напряжения, например 380-220-127В.

Схемы и группы соединений обмоток трехфазных трансформаторов

Для электрификации сельского хозяйства применяют трехфазные трехстержневые трансформаторы. Трехфаз­ный трансформатор, образованный из трех однофазных, называется групповым. Групповые трансформаторы до­роже, занимают больше места, имеют более низкий к. п. д., но их применяют при боль­ших мощностях, так как трансформатор, собранный из трех однофазных, более удобен для перевозки, резерв стоит де­шевле (для резерва достаточно иметь одну фазу трансформатора). В групповом транс­форматоре токи холостого хода я магнит­ные потоки во всех фазах одинаковы, а в трехстержневом намагничивающие токи крайних фаз больше, чем в средней фазе, так как сопротивление участка магнитной цепи для магнитных потоков, создаваемых обмотками крайних фаз, больше, чем для средней. Эта несимметрия незначитель­ная и существенного значения не имеет, так как уже при небольшой нагрузке она сглажи­вается.

В советских трансформаторах обмотки соединяют в звезду или в треугольник. За границей, кроме того, при­меняют соединение обмоток в зигзаг, при котором ка­ждую фазу вторичной обмотки делят пополам и распо­лагают на двух различных стержнях (рис. 124). При сое­динении обмоток в зигзаг сглаживается несимметрия намагничивающих токов, но провода расходуется больше. В СССР «соединение обмоток в зигзаг не применяют, но в последнее время выпущена опытная партия трансформа­торов с соединением обмоток в зигзаг.

Схемы соединений обмоток трехфазных трансформа­торов, принятые в СССР, приведены на рисунке 125. В условном обозначении над чертой показано соединение обмоток высшего напряжения, под чертой — низшего напряжения, индекс 0 обозначает выведенную нулевую точку, а цифра показывает группу соединений обмоток. При соединении обмоток в звезду, которое обозначают знаком Y, концы обмоток соединяют вместе, а начала присоединяют к выводам. При соединении обмоток в треу­гольник, которое обозначают знаком Δ, начало первой фазной обмотки соединяют с концом второй, начало второй — с концом третьей и начало третьей — с концом первой. Точки обмоток а, в, с присоединяют к выводам.

Начала фазных обмоток высшего напряжения обо­значают буквами А, В, С, а концы их — буквами X, У, Z. Начала и концы обмоток низшего напряжения обозна­чают соответственно буквами а, в, с и х, у, z.

При включении трансформаторов на параллельную работу большое значение имеет способ соединения обмоток трансформатора, который определяется группой соеди­нения. Цифрой обозначают угол между векторами линей­ных напряжений обмоток высшего и низшего напряжений, отсчитанный в единицах углового смещения по часовой стрелке от вектора линейного напряжения обмотки высшего напряжения. За единицу углового смещения принят угол в 30°.

Необходимо отметить, что понятия начала и конца обмоток условны, но они необходимы для правильного соединения обмоток.

Первичная и вторичная обмотки намотаны на одном стержне и пронизываются одним и тем же магнитным потоком. Если обе обмотки намотаны в одну и ту же сто­рону и верхние зажимы обмоток принять за их начала, а нижние — за концы, то э. д. с, индуктируемые в обмотках, будут одинаково направлены, допустим, в данный момент от конца к началу (рис. 126, а), т. е э. д. с. направ­лены согласно и совпадают по фазе.

Если обмотки намотать в разные стороны, сохранив то же обозначение зажимов, то векторы э. д. с. будут направ­лены встречно (рис. 126, б). Встречно будут направлены векторы э д. с. и в том случае, когда поменять местами обозначения зажимов, верхний зажим вторичной обмотки обозначить буквой х, а нижний — буквой а (рис. 126, в).

Рассмотрим методику построения векторных диаграмм для определения группы соединения обмоток трансфор­маторов. При построении векторных диаграмм исходят из следующих соображений:

а) векторы фазных напряжений обмоток высшего и низшего напряжений одной фазы всегда параллельны, так как индуктируются одним и тем же магнитным потоком и могут быть направлены согласно или встречно в зави­симости от способа выполнения обмотки и обозначения зажимов;

б) если на схеме концы обмоток соединены в одной точке, то и на векторной диаграмме соответствующие точки векторов фазных напряжений, обозначенных теми же бук­вами, также соединены вместе.

Построим векторную диаграмму напряжений для группы соединения обмоток Y/Y0 — 12.

Векторная диаграмма фазных и линейных напряжений обмотки высшего напряжения, подключенной в данном случае к сети, определяется напряжением сети (рис. 127, а). Построим векторную диаграмму напряжений для обмотки низшего напряжения и определим группу соединений обмоток.

Так как векторы .фазных напряжений обмоток парал­лельны и направлены согласно, то вектор ха фазного напряжения фазы а проводим параллельно вектору фаз­ного напряжения ХА фазы А (рис. 127, а).

Так как на схеме точки х, у, z соединены вместе, то и соответствующие точки векторов будут соединены в одной точке.

Проводим из точки х вектор фазного напряжения ув, параллельно вектору УВ и далее проводим из той же точки вектор zc, параллельный вектору ZC. Соединяя точки а, в, с, получаем векторы линейных напряжений вторичной обмотки.

Для определения группы соединения обмоток перене­сем параллельно самому себе вектор линейного напряже­ния ав к вектору линейного напряжения АВ так, чтобы точки А и а совпали. Как видно из рисунка 127, а, угол между векторами равен 360°, или 360 : 30 = 12 единиц углового смещения, т. е. группа соединений обмоток 12. При встречном направлении векторов э. д. с. получим группу Y/Y0 — 6 (рис. 127, б).

Построим векторную диаграмму для группы Y/Δ — 11.

Векторная диаграмма напряжений обмотки высшего напряжения определяется напряжением сети (рис. 127, в). Строим векторную диаграмму для обмотки низшего напряжения. Вектор ха проводим параллельно вектору ХА. Так как на схеме точки а и у соединены вместе, то и на векторной диаграмме точки векторов a и y соеди­няем вместе. Из точки а проводим вектор ув параллельно вектору УВ. Так как на схеме точки в и z соединены вме­сте, то из точки в проводим вектор zc параллельно век­тору ZC.

В результате построения мы получили треугольник фазных и линейных напряжений обмотки низшего напря­жения авс. Для определения группы соединения пере­носим параллельно самому себе вектор линейного напря­жения ав к вектору линейного напряжения АВ так, чтобы точки А и а совпали. Угол между векторами линейных напряжений, отсчитанный по часовой стрелке от вектора линейного напряжения обмотки высшего напряжения, равен 330°, или 330 : 30 = 11 единиц углового смещения, т. е. группа соединения обмоток 11.

Если векторы э. д. с. обеих обмоток направлены встреч­но, то мы получим 5 группу (рис. 127, г).

Для выражения угла сдвига между векторами линей­ных напряжений используют циферблат часов. Вектор линейного напряжения обмотки высшего напряжения принимают за минутную стрелку и устанавливают на цифру 12, а вектор линейного напряжения обмотки низ­шего напряжения принимают за часовую стрелку и уста­навливают на цифру, соответствующую положению этого вектора на векторной диаграмме. Цифра, на которую ука­зывает часовая стрелка, определяет группу соединений обмоток трансформатора. В первом случае при соедине­нии обмоток Y/Y0 — 12 обе стрелки будут установлены на цифре 12, а при соединении обмоток Y/Δ — 11 — минутная стрелка на цифре 12, а часовая на цифре 11.

Группу соединений Y/Y0 — 12 применяют для транс­форматоров небольшой мощности напряжением 10/0,4 кв или 6/0,4 кв с выведенной нулевой точкой при смешанной осветительной и силовой нагрузке и напряжении с низ­кой стороны до 400 в.

Группу соединений Y/ Δ -11 применяют для транс­форматоров при напряжении больше 400 в на обмотке низшего напряжения, например в трансформаторах 6/0,525 кв; 10/0,525 кв; 35/10 кв; 35/6 кв.

Группу соединений Y0/ Δ — 11 применяют при напря­жении обмоток с высшей стороны 110 кв и выше.

Соединять обмотки в звезду выгодно при высших на­пряжениях, так как тогда на фазу подводится фазное напряжение, которое в раза меньше линейного, что дает возможность удешевить изоляцию обмотки.

Соединение треугольником обычно применяют при низких напряжениях и больших токах, что дает возмож­ность уменьшить сечение проводов обмоток, так как в этом случае фазный ток в проводах обмотки меньше раза линейного тока (рис. 128).

Если при соединении обмоток Y/Y отношение линей­ных напряжений на первичной и вторичной обмотках при холостом ходе равно коэффициенту трансформации k, то при соединении обмоток Y/Δ отношение линейных

напряжений равно — k, а при соединении обмоток Δ /Y это отношение равно , где k-отношение фазных напряжений на первичной и вторичной обмотках трансфор­матора при холостом ходе.

На щитке трансформатора всегда указывают линейные напряжения и токи.

В современных трансформаторах сталь сердечника насыщена вследствие того, что допускают большие значе­ния магнитной индукции (свыше 1,4 тл), поэтому форма кривой тока холостого хода несинусоидальна (см § 1, гл. XII). Как известно из теоретической электротехники, несинусоидальную кривую тока можно разложить на ряд синусоидальных кривых — основную, третью гармони­ческую, пятую гармоническую и т. д. Значительную

величину имеет третья гармоническая тока, которую необходимо учитывать, рассматривая работу трансфор­матора. Например, при индукции в стали трансформа­тора 1,4 тл третья гармоника равна примерно 30% основ­ной составляющей намагничивающего тока (рис. 129). Из теоретической электротехника известно, что токи третьей гармоники во всех фазах одинаково направлены, т. е. во всех фазах они текут или от конца к началу обмотки фазы, или наоборот (рис. 129, б, в). Так как при соедине­нии обмотки трансформатора в звезду токи третьей гар­моники взаимно уравновешиваются, то отсутствие тока третьей гармоники в кривой тока

холостого хода делает ее синусоидальной, что приводит к искажению кривой магнитного потока: магнитный поток в магнитопроводе становится несинусоидальным и содержит третью гармо­нику. На рисунке 130, а показано построение кривой маг­нитного потока при синусоидальной форме намагничиваю­щего тока. В IV квадранте изображена синусоидальная кривая тока, а в I квадранте кривая зависимости маг­нитного потока Ф от величины намагничивающего тока с учетом насыщения стали. Построенная с помощью этой кривой кривая магнитного потока во II квадранте неси­нусоидальна, но ее можно разложить на две синусои­дальные гармонические составляющие — первую (основ­ную) Ф1 и третью Ф3.

Отсюда видно, что в трехстержневых трансформаторах, кроме основной составляющей магнитного потока Ф1, соз­даются третьи гармонические составляющие магнитных потоков, направленные во всех трех стержнях в одну и ту же сторону, поэтому они должны замыкаться по маслу, воздуху и стали бака трансформатора (рис. 130, б). Этот путь магнитного потока обладает очень малой магнитной приводимостью, вследствие чего третья гармоническая потока выражена слабо и практически не искажает кривой э. д. с. Но магнитные потоки третьей гармоники, замыкаясь по стали бака, стяжным болтам и другим стальным дета­лям, создают в стали вихревые токи, что повышает нагрев этих деталей и понижает к. п. д. трансформатора.

При магнитной индукции около 1,4 тл эти добавочные потери составляют около 10% основных потерь холостого хода, но при увеличении индукции эти потери быстро растут. Вследствие этого соединение обмоток Y/Y имеет ограниченное применение. Его применяют в трансформа­торах мощностью не более 1800 ква.

При соединении обмоток трансформатора по схеме Y/Δ или Δ/Y токи третьей гармоники, протекая во всех обмотках в одном направлении, замыкаются по контуру, образуемому обмотками, соединенными в треугольник (рис. 129, в). При наличии токов третьей гармоники в токе холостого хода кривая тока холостого хода будет пико-образной, форма кривой магнитного потока и э. д. б. — синусоидальны, поэтому магнитных потоков третьей гар­моники не будет и не будет тех вредных воздействий маг­нитных потоков третьей гармоники, как при соединении обмоток Y/Y- Поэтому предпочтение отдается схемам соединения обмоток Y/Δ и Δ/Y-

Пример. Дан трехфазный трансформатор мощностью SH = 240 ква, напряжением U1 = 6000 в, U20 = 400 в, Iн1 = 23,1 а, Iн2 = 347 а, соединение обмоток Y/Y0, Р0 = 1400 вт, Рk = 4900 вm, UK = 330 в, r1 = r’2, х1 = х’2.

Определить для этого трансформатора r1\, r2, х1, х2 и к. п. д. при номинальной нагрузке и cos ф2 = 0,8. Найти ΔU% при номинальной нагрузке и cosф2 = 0,8. Вычис­лить наивыгоднейший kнг.

Решение. При решении задач с трехфазными транс­форматорами сопротивления обмоток определяем для одной фазы. Находим zK:

Здесь UK делится на для того, чтобы найти UK фазное. Находим rк:

Здесь Рк делится на 3 для того, чтобы узнать мощность короткого замыкания на одну фазу. Находим хк:

Но так как rк = r1 + r’2, а xк = x1 + x’2 и по условию r1 = r’2 и х1 = х’2, находим сопротивления обмоток:

Найдены действительные сопротивления первичной обмотки r1 и х1, а для вторичной обмотки подсчитаны при­веденные сопротивления. Для того чтобы определить действительные сопротивления вторичной обмотки, находим коэффициент трансформации k:

Находим действительные сопротивления вторичной обмотки:

]

Находим изменение напряжения ΔU% при номинальной нагрузке трансформатора и cosф2=0,8:

Находим Ua%:

Определяем Uр%:

БИЛЕТ 26

Условное обозначение соединения обмоток трехфазного трансформатора звездой. Обозначение трансформатора на схеме

При построении векторных диаграмм трансформатора считалось, что ЭДС фазы обмотки ВН Ė АХ и обмотки НН Ė ах совпадают по фазе. Но это справедливо лишь при условии намотки первич­ной и вторичной обмоток трансформатора в одном направлении и одноименной маркировке выводов этих обмоток, рис. 46, а. Если же в трансформаторе изменить направление обмотки НН или же переставить обозначения ее выводов, то ЭДС Ė ах окажется сдвинутой по фазе относительно ЭДС Ė АХ на 180° (рис. 46, б). Сдвиг фаз между ЭДС Ė АХ и Ė ах принято выражать группой соединения. Так как этот сдвиг фаз может изменяться от 0 до 360°, а кратность сдвига составляет 30°, то для обозначения группы соединения принят ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 0.

Угол смещения вектора линейной ЭДС обмотки НН по отношению к вектору линейной ЭДС обмотки ВН определяют умножением числа, обозначающего группу соединения, на 30°. Угол смещения отсчиты­вают от вектора ЭДС обмотки ВН по часовой стрел­ке до вектора ЭДС обмотки НН. Например, группа соединения 5 указывает, что вектор ЭДС НН отстает по фазе от вектора ЭДС ВН на угол 5×30° = 150°.

Для лучшего понимания принятого обозначения групп соединения пользуются сравнением с часами. При этом вектор ЭДС обмотки ВН соответствует минутной стрелке, установленной на цифре 12, а вектор ЭДС обмотки НН – часовой стрелке (рис. 47). Так же необходимо иметь в виду, что совпадение по фазе векторов ЭДС Ė АХ и Ė ах эквивалентное сов­падению стрелок часов на циферблате, обозначается группой 0 (а не 12). Кроме того, следует помнить, что за положительное направление вращения векто­ров ЭДС принято их вращение против часовой стрелки.

Таким образом, в однофазном трансформаторе возможны лишь две группы соединения: группа 0, соответствующая совпа­дению по фазе Ė АХ и Ė ах ,и группа 6, соответствующая сдвигу фаз между Ė АХ и Ė ах на 180°. Из этих групп ГОСТ предусматри­вает лишь группу 0, она обозначается I/I — 0.

Применением разных способов соединения обмоток в трех­фазных трансформаторах можно создать 12 различных групп со­единения. Рассмотрим в качестве примера схему соединений «звезда–звезда» (рис. 48, а ). Векторные диаграммы ЭДС показы­вают, что сдвиг между линейными ЭДС Ė АВ и Ė ab в данном слу­чае равен нулю. В этом можно убедиться, совместив точки А и а при наложении векторных диаграмм ЭДС обмоток ВН и НН. Сле­довательно, при указанных схемах соединения обмоток имеет ме­сто группа 0; обозначается Y/Y — 0. Если же на стороне НН в ну­левую точку соединить зажимы а , b и с , а снимать ЭДС с зажимов х , у и z , то ЭДС Ė ab изменит фазу на 180° и трансформатор будет принадлежать группе 6 (Y/Y — 6) (рис. 48, б ).

Рис. 46. Группы соединения обмоток однофазных транс­форматоров:

а – группа I/I – 0; б – группа I/I – 6


Рис. 47. Сравнение положения стрелок часов с обозначением групп соединения

При соединении обмоток «звезда–треугольник», показанном на рис. 49, а , имеет место группа 11 (Y/D — 11). Если же поменять местами начала и концы фазных обмоток НН, то вектор Ė ab по­вернется на 180° и трансформатор будет относиться к группе 5 (Y/D — 5) (рис. 49, б).


Рис. 48. Схемы соединения обмоток и векторные диаграммы:

а – для группы Y/Y – 0; б – для группы Y/Y – 6


Рис. 49. Схемы соединения обмоток и векторные диаграммы:

а – для группы Y/D – 11; б – для группы Y/D – 5

При одинаковых схемах соединения обмоток ВН и НН, на­пример Y/Y и D/D, получают четные группы соединения, а при неодинаковых схемах, например Y/D или D/Y, – нечетные.

Рассмотренные четыре группы соединения (0, 6, 11 и 5) назы­вают основными . Из каждой основной группы соединения мето­дом круговой перемаркировки выводов на одной стороне транс­форматора, например на стороне НН (без изменения схемы соединения), можно получить по две производные группы. На­пример, если в трансформаторе с группой соединения Y/Y – 0 (рис. 48, а ) выводы обмотки НН перемаркировать и вместо после­довательности abc принять последовательность cab , то вектор ЭДС Ė ab повернется на 120°, при этом получим группу соедине­ния Y/Y – 4. Если же выводы обмоток НН перемаркировать в по­следовательность bca , то вектор Ė ab повернется еще на 120°, а всего на 240°; получим группу Y/Y — 8.

Рис. 50. Схемы и группы соединения обмоток трехфазных

двухобмоточных трансформаторов

Аналогично от основной группы 6 путем круговой перемаркировки получают производные группы 10 и 2, от основной группы 11 – производные группы 3 и 7, от основной группы 5 – произ­водные группы 9 и 1.

ГОСТ определяет схемы и группы соединения, применяемые для силовых двухобмоточных транса форматоров общепромышленного назначения (рис. 50).

Содержание:

В электрических схемах очень часто возникает необходимость в повышении или понижении напряжения. Для выполнения таких преобразований существуют специальные устройства — трансформаторы. В конструкцию прибора входят обмотки в количестве две и более, намотанные на ферромагнитный сердечник. Поэтому обозначение трансформатора на схеме осуществляется, исходя из конкретной модели и конструктивных особенностей.

Основные типы и принцип действия трансформаторов

Существуют различные типы трансформаторов, отображаемые соответственно на электрических схемах. Например, при наличии только одной обмотки, такие устройства относятся к категории автотрансформаторов. Основные конструкции этих приборов, в зависимости от сердечника, бывают стержневые, броневые и . Они имеют практически одинаковые технические характеристики и различаются лишь по способу изготовления. Каждое устройство, независимо от типа, состоит из трех основных функциональных частей — магнитопровода, обмоток и системы охлаждения.

Схематическое изображение трансформатора тесно связано с принципом его работы. Все особенности конструкции отражаются в электрической схеме. Очень хорошо просматривается первичная и вторичная обмотка. К первичной обмотке поступает ток от внешнего источника, а с вторичной обмотки снимается уже готовое выпрямленное напряжение. Преобразование тока происходит за счет переменного магнитного поля, возникающего в магнитопроводе.

Схематическое обозначение трансформаторов

Изображение трансформаторов на схемах определяется ГОСТами, разработанными еще при СССР. С незначительными изменениями и дополнениями они продолжают действовать и в настоящее время. В этом документе определены все известные виды трансформаторов, автотрансформаторов и их условные графические изображения, которые могут выполняться ручным способом или с помощью специальных компьютерных программ.


Условные графические изображения трансформаторов и автотрансформаторов могут быть построены тремя основными способами:

  • Упрощенная однолинейная схема (чертеж 1) отображает трансформаторные обмотки в виде двух окружностей. Их выводы показываются одной линией, на которую черточками наносится количество этих выводов.
  • Для автотрансформаторов предусмотрена развернутая дуга (чертеж 2), отображающая сторону более высокого напряжения.
  • Упрощенные многолинейные обозначения обмоток трансформаторов и автотрансформаторов (чертежи 3 и 4) такие же, как и на однолинейных схемах.

Исключения составляют обозначения выводов обмоток, представленные в виде отдельных линий. Кроме того, существуют развернутые обозначения обмоток, изображаемые в виде полуокружностей, соединенных в цепочку (). В данной схеме не устанавливается число полуокружностей и направление выводов обмотки. Начало обмотки обозначается точкой .

В зависимости от конструкции, трансформаторы отображаются на схемах следующим образом: трансформатор без магнитопровода с постоянной связью (рисунок 1) и с переменной связью (рисунок 2). Полярность мгновенных значение напряжения (рисунок 3) представлена на примере трансформатора с двумя обмотками и указателями полярности. Трансформаторы с магнитодиэлектрическими магнитопроводами обозначаются как обычный (рисунок 4) и подстраиваемый (рисунок 5).

Существуют и другие схематические обозначения, отображающие количество фаз, расположение отводов, тип соединения (звезда или треугольник) и другие параметры.


  • Чертеж 1 — ступенчатое регулирование трансформатора.
  • Чертеж 2 — однофазный трансформатор с ферромагнитным сердечником. Между обмотками имеется экран.
  • Чертеж 3 — дифференциальный трансформатор. Местом отвода служит средняя точка одной из обмоток.


  • Чертеж 4 — однофазный трансформатор с тремя обмотками и ферромагнитным сердечником.
  • Чертеж 5 — трехфазный трансформатор с ферромагнитным сердечником. Соединение обмоток выполнено звездой. В одном из вариантов может быть вывод средней нейтральной точки.
  • Чертеж 6 — трехфазное устройство с ферромагнитным магнитопроводом (сердечником). Соединение обмоток выполнено по схеме звезда-треугольник с выводом средней нейтральной точки.


  • Чертеж 7 — трансформатор, рассчитанный на три фазы. Обмотки соединяются комбинированно методом звезды и зигзага с выводом средней точки.
  • Чертеж 8 — тип устройства такой же, как и на предыдущих чертежах. Основное соединение — звезда, при необходимости регулировки под нагрузкой используется треугольник-звезда с выводом нейтральной точки.


  • Чертеж 9 — три фазы, три обмотки, соединенные по схеме звезда-звезда.
  • Чертеж 10 — схема вращающегося трансформатора. Таким способом обозначаются обмотки статора и ротора, соединенные между собой. Схема может меняться, в зависимости от конструкции и назначения машины.
  • Чертеж 11 — типовое устройство, в котором одна обмотка соединена звездой, а две другие обмотки — обратными звездами. Из двух обмоток выведены нейтральные точки, соединенные с уравнительным дросселем.


  • Чертеж 12 — группа трансформаторов, состоящая из трех однофазных устройств с двумя обмотками, соединенными по схеме звезда-треугольник.
  • Чертеж 13 — схема однофазного автотрансформатора с ферромагнитным сердечником.
  • Чертеж 14 — однофазный автотрансформатор с функцией регулировки напряжения.


  • Чертеж 15 — трехфазный автотрансформатор с ферромагнитным сердечником и обмотками, соединенные звездой.
  • Чертеж 16 — автотрансформатор на девять выводов.
  • Чертеж 17 — однофазный автотрансформатор с третичной обмоткой.


Существуют и другие конструкции трансформаторных устройств, которые отображаются на электрических схемах:

  • С одной вторичной обмоткой (рисунок 18).
  • Две вторичные обмотки и один магнитопровод (рисунок 19).
  • Два магнитопровода и две вторичные обмотки. Если магнитопроводов более двух, их можно не изображать (рисунок 20).
  • Шинный трансформатор тока с нулевой последовательностью и катушкой подмагничивания (рисунок 21).

Кроме приведенных примеров, обозначение трансформатора на схеме существует и в других вариантах. Более подробно с ними можно ознакомиться в специальных справочниках по электротехнике.

Группой соединения обмоток трансформатора называется угол сдвига между векторами одноименных линейных ЭДС первичной (ВН) и вторичной (НН) обмоток трансформатора.

1. Для характеристики относительного сдвига фаз линейных ЭДС обмоток ВН и НН вводится понятие группы соединения обмоток трансформатора.

2. Фазовый сдвиг между одноименными линейными ЭДС обмоток ВН и НН зависит от обозначения их выводов (концов), от направления намотки и от схемы соединения. Этот угол, как будет показано далее, кратен 30°.

Группа соединения обозначается целым положительным числом, получающимся от деления на 30° угла сдвига между линейными ЭДС одноименных обмоток ВН и НН трансформатора. Отсчет угла производят от вектора ЭДС ВН по направлению вращения часовой стрелки.

Трансформаторы, имеющие одинаковый сдвиг фаз между линейными ЭДС обмоток ВН и НН, относятся к одной и той же группе соединения.

В трехфазных трансформаторах схемы соединения Y, D, Z («звезда», «треугольник», «зигзаг») могут образовывать 12 различных групп со сдвигом фаз линейных ЭДС через 30°. В связи с этим на практике принято определять группу соединения с помощью стрелок на часовом циферблате (угол между любыми двумя цифрами кратен 30°). Это так называемый «часовой метод» определения группы соединения трансформатора.

Для определения группы соединения трансформатора по «часовому методу» необходимо совместить минутную стрелку вектором линейной ЭДС обмотки ВН, а часовую – с вектором линейной ЭДС обмотки НН. Далее обе стрелки поворачиваются так, чтобы минутная стрелка показывала на цифру 12, тогда часовая стрелка укажет час, соответствующий группе соединения трансформатора.

Рассмотрим определение группы соединения при помощи топографической векторной диаграммы на примере соединения обмоток трансформатора по схеме Y/ Y – 0.

Задавшись произвольной маркировкой выводов обмоток ВН и НН, и соединив электрически два одноименных зажима (например, A и a , рис.7), измеряют ЭДС .


Выбрав масштаб, строят векторную диаграмму линейных ЭДС первичной обмотки (ВН). Так как выводы A и а совпадают, то на диаграмме эти точки должны быть совмещены. Точка b строится следующим образом. Строится окружность радиусом, равным с центром в точке B . Далее строится еще одна окружность радиусом, равным с центром в точке С . Точкой пересечения этих окружностей и является точка b , которая находится на расстоянии от точки a . Аналогичным образом строится точка c , которая находиться на расстоянии от точки а . По углу сдвига между одноименными линейными ЭДС определяется группа соединения (в рассматриваемом случае Y/ Y – 0).

Схемы соединения обмоток трехфазных трансформаторов могут образовывать группы:

· Y/Y, D/D, D/Z образуют четные группы: 0, 2, 4, 6, 8, 10;

· Y/D, D/Y, Y/Z образуют нечетные группы: 1, 3, 5, 7, 9, 11.

При построении векторных диаграмм необходимо руководствоваться следующими правилами. Направление намотки всех обмоток считается одинаковым; векторы ЭДС обмоток ВН и НН, расположенные на одном стержне, совпадают по фазе, если в рассматриваемый момент времени ЭДС этих обмоток направлены к одноименным выводам, а если наоборот, то сдвинуты на 180°.

Трехфазные трансформаторы с соединением обмоток Y/Y, D/D, D/Z образуют группы 0 и 6, с соединением обмоток Y/D, D/Y, Y/Z – группы 11 и 5, если на каждом стержне магнитопровода размещены одноименные фазы.

Если у одной из стороны, например НН, сделать перемаркировку (не изменяя самих соединений) обозначений выводов (без изменения самих соединений): вместо a – b – c сделать с – a – b и затем b– c – a , то можно получить из группы 0 соответственно группы 4 и 8, из группы 6 – группы 10 и 2; из группы 11 – группы 3 и 7, из группы 5 – группы 9 и 1.

В России стандартизованы трехфазные трансформаторы Y/Y н – 0, Y н /D — 11 и Y/Z н – 11; однофазные 1/1 – 0.

Убедившись, что оба трансформатора принадлежат к одной группе, делается заключение о возможности включения их на параллельную работу.

Предположим, что два трансформатора, одинаковые по своим параметрам, но имеющие разные группы соединения обмоток включены на параллельную работу. Пусть первый трансформатор имеет группу соединения Y/Y – 0, а второй Y/D — 11. Тогда векторы линейных ЭДС вторичных обмоток будут сдвинуты на угол 30°, геометрическая сумма линейных ЭДС вторичных обмоток , уравнительный ток будет очень большим:

,

трансформаторы могут выйти из строя.

Параллельная работа трансформаторов

Собирается схема по рис.8. Следует опытным путем проверить соответствие маркировки. Для этого необходимо измерить напряжение между одноименными зажимами вторичных обмоток трансформаторов: . Одну пару одноименных выводов, например a – a 1 соединить перемычкой. Если маркировка определена правильно, то напряжение между одноименными зажимами будет равно нулю, а между разноименными, например между a и b 1 — .После этого рубильник «П» можно замкнуть.

Простое понимание соединений трехфазного трансформатора (треугольник – треугольник, звезда – звезда, треугольник – звезда и звезда – треугольник)

Преобразование трехфазного напряжения

Преобразование трехфазного напряжения может быть выполнено с помощью трехфазных трансформаторов, которые представляют собой одиночные устройства, все обмотки которых построены на одном железном сердечнике. Они также могут быть выполнены с помощью трех однофазных трансформаторов, которые подключены извне, чтобы сформировать трехфазную батарею.

Простое понимание подключения трехфазного трансформатора — треугольник-треугольник, звезда-звезда, треугольник-звезда и звезда-треугольник (на фото: Jefferson Electric трансформатор)

В то время как трехфазные устройства обычно являются более экономичным вариантом, одиночные Опция -phase обеспечивает большую универсальность и может быть привлекательной с точки зрения надежности и обслуживания .Если в одном месте требуется несколько идентичных трансформаторов, однофазный вариант может включать покупку запасного блока, чтобы сократить время простоя в случае отказа.

Такая практика часто наблюдается с критическими батареями автотрансформаторов и повышающими трансформаторами генератора, поскольку потеря трансформатора в течение длительного периода имеет очень серьезные последствия.

Соединения, описанные в этой статье , будут реализованы с использованием однофазных блоков .

При соединении однофазных трансформаторов в трехфазную батарею необходимо тщательно соблюдать полярность обмоток. Полярность обозначается точками. Ток, протекающий через точку на первичной обмотке, вызовет ток, исходящий из точки на соответствующей вторичной обмотке.

В зависимости от того, как обмотки подключены к вводам, полярности могут быть добавочными или вычитающими.

Две наиболее часто используемые конфигурации трехфазной обмотки — треугольник и звезда , названные в честь греческой и английской буквы, каждая из которых имеет сходство. В конфигурации треугольником три обмотки соединены встык, образуя замкнутый путь.Фаза подключена к каждому углу дельты.

Хотя обмотки треугольника часто работают без заземления, участок треугольника может быть заземлен по центру или угол треугольника может быть заземлен. В звездообразной конфигурации один конец каждой из трех обмоток соединен с нейтралью. К другому концу трех обмоток подключена фаза. Нейтраль обычно заземлена.

В следующих параграфах описываются трехфазные трансформаторы, в которых используются соединения треугольником и звездой.

  1. Delta-Delta
  2. Wye-Wye
  3. Delta-Wye
  4. Wye-Delta

В следующей части этой статьи будут обсуждаться трехфазные трансформаторы, использующие соединения по схеме «открытый треугольник» и «звезда», где один из Однофазные трансформаторы, составляющие трехфазную батарею, не используются. Ножка трансформатора с отсутствующим трансформатором называется фантомной ногой.


1. Delta – Delta

Delta – delta трансформаторы, как показано на рисунке 1, часто используются для питания нагрузок, которые в основном являются трехфазными, но могут иметь небольшой однофазный компонент .

Рисунок 1 — Трансформатор треугольник-треугольник

Трехфазная нагрузка обычно представляет собой нагрузку двигателя, в то время как однофазный компонент часто представляет собой освещение и низковольтное питание. Однофазная нагрузка может быть запитана путем заземления центрального ответвления на одном из выводов вторичной обмотки треугольником, а затем подключения однофазной нагрузки между одной из фаз на заземленном плече и этой заземленной нейтралью.

На Рисунке 2 показано соединение трансформатора треугольником.

Рисунок 2 — Подключение трансформатора треугольник-треугольник (щелкните, чтобы развернуть диаграмму)

На схеме подключения слева показано, как может быть выполнено подключение дельта-треугольник, либо с тремя однофазными трансформаторами, либо с одним трехфазным трансформатором .

Пунктирными линиями обозначены контуры трансформатора. Реализацию трех однофазных трансформаторов можно увидеть, не обращая внимания на внешний пунктирный контур и метки вводов, показанные на этом контуре, и сосредоточив внимание на трех меньших (однофазный трансформатор) контурах.

Проходные изоляторы однофазных трансформаторов подключаются внешними перемычками, как показано, для выполнения соединения треугольник-треугольник. В случае реализации с одним трехфазным трансформатором три внутренних контура не принимаются во внимание, а перемычки между обмотками выполняются внутри бака трансформатора.Для подключения доступны шесть вводов на контуре трехфазного трансформатора.

Схематическую диаграмму в правом верхнем углу, возможно, легче анализировать, поскольку четко видны дельта-соединения.

Векторная диаграмма в правом нижнем углу показывает геометрические соотношения между токами цепи высокого напряжения и токами цепи низкого напряжения , а уравнения внизу в центре показывают эти отношения математически.

Когда нагрузка на трансформатор треугольник-треугольник становится несбалансированной, в обмотках треугольника могут циркулировать большие токи, что приводит к дисбалансу напряжений.Сбалансированная нагрузка требует выбора трех трансформаторов с равными отношениями напряжения и одинаковыми импедансами .

Кроме того, величина однофазной нагрузки должна быть низкой, поскольку трансформатор с центральным ответвлением должен обеспечивать большую часть однофазной нагрузки. По мере увеличения однофазной нагрузки трансформатор с центральным ответвлением будет увеличивать свою нагрузку больше, чем два других трансформатора, и в конечном итоге приведет к перегрузке.

В случае отказа одного из однофазных трансформаторов в группе треугольник-треугольник, эта группа может работать только с двумя трансформаторами, образующими конфигурацию открытого треугольника.Номинальная мощность банка в кВА снижается, но трехфазное питание по-прежнему подается на нагрузку.

Вернуться к содержанию ↑


2. Трансформаторы звезда-звезда

Трансформаторы звезда-звезда, как показано на Рисунке 3, могут обслуживать как трехфазные, так и однофазные нагрузки. Однофазная нагрузка должна распределяться как можно более равномерно между каждой из трех фаз и нейтралью.

Рисунок 3 — Трансформатор звезда-звезда

На рисунке 4 показано соединение звезда-звезда, либо в виде трех однофазных трансформаторов, либо в виде одного трехфазного блока.Показаны метки вводов и точки полярности.

Рисунок 4 — Схема соединений трансформатора звезда-звезда (щелкните, чтобы развернуть диаграмму)

Одной из проблем, присущих трансформаторам звезда-звезда, является распространение токов и напряжений третьей гармоники . Эти гармоники могут вызывать помехи в близлежащих цепях связи, а также другие проблемы с качеством электроэнергии.

Другая проблема заключается в том, что существует возможность возникновения резонанса между шунтирующей емкостью цепей, подключенных к трансформатору, и намагничивающей способностью трансформатора, особенно если цепи включают изолированный кабель.Из-за этих проблем трансформаторы типа «звезда-звезда» должны быть тщательно определены и реализованы.

Добавление третьей (третичной) обмотки, соединенной треугольником, снимает многие из упомянутых проблем.

Вернуться к содержанию ↑


3. Соединение треугольником-звездой

Соединение треугольником-звездой является наиболее часто используемым соединением трехфазного трансформатора . Вторичная обмотка, соединенная звездой, позволяет распределить однофазную нагрузку между тремя фазами и нейтралью вместо того, чтобы размещать все на одной обмотке, как в случае четырехпроводной вторичной обмотки треугольником.

Это помогает поддерживать сбалансированную фазную нагрузку на трансформатор и особенно важно, когда величина однофазной нагрузки становится большой . Устойчивая нейтральная точка также обеспечивает хорошее заземление, чтобы обеспечить критическое демпфирование системы и предотвратить колебания напряжения.

При выходе из строя одного из однофазных трансформаторов в группе треугольник-звезда, вся батарея выходит из строя.

Кроме того, поскольку трансформатор треугольник-звезда вводит сдвиг фазы на 30 ° от первичной к вторичной, как видно из символов фазировки на Рисунке 5, его нельзя проводить параллельно с трансформаторами треугольник-звезда и звезда-звезда, которые не производят фазового сдвига. .

Рисунок 5 — Трансформатор треугольник-звезда

На рисунке 6 показано соединение треугольник-звезда, либо в виде трех однофазных трансформаторов, либо в виде одного трехфазного блока. Показаны метки вводов и точки полярности.

Рисунок 6 — Соединения трансформатора треугольник-звезда

Анализ трансформатора треугольник-звезда иллюстрирует многие важные концепции, касающиеся работы многофазных трансформаторов. Анализ может проводиться как по напряжению, так и по току. Поскольку напряжение (разность потенциалов или вычитание двух векторных величин) довольно абстрактно и трудно визуализировать, ток (или поток заряда) будет использоваться в качестве основы для анализа, поскольку ток легко концептуализировать.

Токи, возникающие в обмотках трансформатора треугольник-звезда, показаны на рисунке 7. Обратите внимание, что стрелки указывают мгновенные направления переменного тока и соответствуют условным обозначениям точек.

Рисунок 7 — Обмотки, соединенные треугольником и звездой

Анализ должен начинаться в одной из двух электрических цепей, либо в цепи высокого напряжения, соединенной треугольником, либо в цепи низкого напряжения, соединенной звездой.

Поскольку в качестве основы для анализа используется ток, схема, соединенная звездой, выбирается в качестве отправной точки, поскольку в схеме соединения звездой линейные токи (выходящие из трансформатора) и фазные токи (возникающие в трансформаторе) обмотки) равны.Эта взаимосвязь между линейным и фазным токами упрощает анализ.

Анализ начинается с маркировки всех линейных и фазных токов. Это показано на рисунке 8.

Рисунок 8 — Трансформатор треугольник-звезда с токами, обозначенными

Обратите внимание, что нижние индексы в нижнем регистре указывают линейные токи в цепи низкого напряжения, а нижние индексы в верхнем регистре указывают линейные токи в цепи высокого напряжения. В цепи низкого напряжения фазные токи идентичны соответствующим линейным токам, поэтому они также имеют обозначения I a , I b и I c .Когда обмотки трансформатора нарисованы, конкретная обмотка высокого напряжения соответствует обмотке низкого напряжения, нарисованной параллельно ей.

Другими словами, обмотка высокого напряжения и обмотка низкого напряжения, проведенные параллельно друг другу, составляют однофазный трансформатор или две обмотки на одном плече магнитопровода трехфазного трансформатора .

Фазовый ток высокого напряжения, соответствующий I a , обозначен как I a ‘ .Направление I a ′ относительно направления I a должно соответствовать условным обозначениям точек. Величина I a ′ относительно I a является обратной величиной отношения витков трансформатора «n» или

При анализе трансформатора с использованием единицы измерения n = 1 , поэтому получается:

I a ′ = I a

Итак,

I a ′ = I a (на единицу)
I b ′ = I b (на единицу)
I c ′ = I c (на единицу)
(Ур.1)

Далее, текущий закон Кирхгофа может быть применен к каждому узлу дельты:

I A = I a ′ — I b ′ = I a — I b
I B = I b ′ — I c ′ = I b — I c
I C = I c ′ — I a ′ = I c — I a
(Уравнения 2)

Уравнения, приведенные выше, выражают токи линии высокого напряжения через линейные токи цепи низкого напряжения .На этом этапе числовые значения могут быть заменены на I a , I b и I c . Принимая во внимание, что I a , I b и I c представляют сбалансированный набор векторов , произвольные значения на единицу выбраны для представления последовательности фаз a-b-c :

Eqs. 3

Необходимо использовать положительную последовательность фаз (a-b-c) , поскольку стандарты IEEE для силовых трансформаторов (серия IEEE C57) основаны на положительной последовательности фаз.

Подставляя уравнения. 3 в уравнения. 2:

Ур. 4

При сравнении I a с I A , разница величин √3 и угловая разница 30 ° очевидны .

IEEE Std. C57.12.00 определяет направление, в котором углы вектора должны изменяться от одной электрической цепи к другой. В стандартном трансформаторе треугольник-звезда (или звезда-треугольник) токи прямой последовательности и напряжения на стороне высокого напряжения опережают токи прямой последовательности и напряжения на стороне низкого напряжения на 30 °.

Когда векторы высокого напряжения отстают от векторов низкого напряжения, соединение считается нестандартным. Иногда нестандартные соединения необходимы для согласования фаз в двух разных системах, которые должны быть электрически связаны, но обычно указываются стандартные соединения.

Обратите внимание, что соглашение для определения стандартного соединения требует, чтобы векторы высокого напряжения опережали векторы низкого напряжения на 30 ° . Нет ссылок на первичный или вторичный.Первичные обмотки трансформатора — это те обмотки, на которые подается напряжение. На вторичные обмотки прикладывается наведенное напряжение.

Обычно первичными обмотками являются обмотки высокого напряжения, но это не всегда так. Хорошим примером исключения является повышающий трансформатор генератора.

Вернуться к содержанию ↑


4. Звезда – треугольник

Трансформатор звезда – треугольник, показанный на рисунке 9, иногда используется для обеспечения нейтрали в трехпроводной системе, но также может обслуживать нагрузку от вторичной обмотки .

Рисунок 9 — Трансформатор звезда-треугольник

Первичная обмотка звезды обычно заземляется. Если вторичная обмотка представляет собой четырехпроводной треугольник, четвертый провод, идущий от центрального ответвления на одном из ответвлений треугольника, заземляется.

На рисунке 10 показано соединение звезда-треугольник, либо в виде трех однофазных трансформаторов, либо в виде одного трехфазного блока. Обе метки вводов и точки полярности показаны .

Рисунок 10 — Подключение трансформатора звезда-треугольник (щелкните, чтобы развернуть диаграмму)

Вернуться к содержанию ↑

Продолжение будет продолжено…

Ссылка // Промышленное распределение электроэнергии от Ralph E.Fehr

Схема, принцип работы и преимущества

В эту индустриальную эпоху трансформатор стал решающим изобретением, поскольку он служит требованиям и потребностям многих отраслей промышленности. Суть трансформатора полностью заключается в его преобразовании энергии. Основываясь на принципе электромагнитной индукции, Фарадей расширил эту концепцию до трансформатора, и даже это устройство работает почти по тому же принципу. Итак, первичный вид трансформатора, который был изобретен в индукционной катушке.Принимая во внимание, что первые трансформаторы переменного тока эволюционировали в 1870 году, а затем изобретение расширилось, чтобы выпустить несколько типов трансформаторов, таких как однофазные, двухфазные, трехфазные трансформаторы и многие другие. Эта статья в основном посвящена объяснению трехфазного трансформатора.

Что такое трехфазный трансформатор?

Определение: Это своего рода трехногий трансформатор с жестким сердечником. Каждая из ветвей имеет свои собственные соединения первичной и вторичной обмоток.Здесь большая часть мощности рассеивается в виде трехфазного переменного тока. Как правило, генераторы с силовой структурой вырабатывают электричество за счет вращения трех обмоток или катушек при поддержке магнитного поля. Все три обмотки расположены под углом 120 градусов между каждой. При вращении катушки мощность будет рассеиваться и передаваться на три линии. Должно быть правильное расположение обмоток, чтобы синхронизироваться с принимающей мощностью и, таким образом, обеспечивать точные уровни полярности и фазировку.В основном он используется для передачи электроэнергии. Они используются либо для минимизации, либо для максимизации уровней напряжения, необходимых для передачи энергии. Схема трехфазного трансформатора имеет вид:

трехфазный трансформатор

Конструкция трехфазного трансформатора

Конструкция трехфазных трансформаторов может выполняться как сердечником, так и оболочкой. Как правило, он создается с использованием магнитного сердечника как для первичной, так и для вторичной обмотки. А в трансформаторе с сердечником подключены три однофазных трансформатора с сердечником.А также в трансформаторе корпусного типа подключаются три однофазных трансформатора, которые являются корпусными.

В трехфазном трансформаторе с сердечником часть сердечника состоит из трех ветвей и двух частей ярма, которые создают между ними магнитный путь. Для каждой части конечности обе обмотки намотаны концентрически. Чаще всего в качестве обмоток используются цилиндрические катушки, и каждая из обмоток однофазной обмотки намотана на каждую ногу. В состоянии равновесия магнитный поток в каждой фазе ветви достигает нуля.Таким образом, в общих сценариях возвратный этап не требуется. В то время как в нестабильном сценарии будет движение расширенного тока, и поэтому лучше всего использовать три однофазных трансформатора.

рабочий

Работа трехфазных трансформаторов может быть объяснена как сценарий, в котором взаимная индукция между первичной и вторичной обмотками связана через магнитный поток. Обычно трансформатор состоит из двух индуктивных катушек и двух обмоток.Эти индуктивные катушки разделены электрически, а соединены магнитным способом. Когда источник питания переменного тока пропускается через первичную обмотку, происходит создание магнитного потока через обмотку. Чтобы установить соединение с вторичной обмоткой, часть сердечника показывает магнитный путь для магнитного потока. Количество магнитного потока, связанного со вторичной обмоткой, называется основным потоком или полезным потоком, в то время как количество потока, которое не связано, называется потоком рассеяния.Поскольку будет альтернативный вид генерации потока, ЭДС будет создаваться во вторичной обмотке в соответствии с законом Фарадея. И эта наведенная ЭДС определяется как взаимно развивающаяся ЭДС.

Когда вторичная обмотка представляет собой замкнутый контур, через нее будет протекать взаимно индуцированный ток, и таким образом происходит передача энергии от одной к другой. Это объясняет поток преобразования энергии от одного контура к другому.

Подключение трехфазного трансформатора

Подключения трехфазного трансформатора будут различаться в зависимости от способа подключения первичной и вторичной обмоток.В зависимости от типа подключения уровни напряжения и тока будут различаться. Возможные способы соединения этих двух обмоток:

  • Звезда-Дельта
  • Дельта-Дельта
  • Дельта-Стар
  • Звезда-Звезда
Звезда-треугольник

Этот тип подключения в основном используется для минимизации уровней напряжения и применяется в основном на оконечных радиовещательных подстанциях. Здесь первичная обмотка соединена звездой, а вторичная обмотка — треугольником.Центральная точка со стороны первичной обмотки в основном заземлена. Линейное напряжение первичной и вторичной обмоток в √3 раза больше коэффициента трансформации. В этом типе подключения стабильное трехфазное напряжение получается либо на низковольтном, либо на вторичном уровне, а в случае нестабильности ток протекает на высоковольтной или первичной стороне. Схема подключения следующая:

соединение звезда-треугольник

Дельта-Дельта

Здесь источник питания соединен треугольником вместе с первичной и вторичной обмотками, а вторичная сторона требует максимального тока с одним напряжением.В основном это реализовано для трехфазных двигателей. Между напряжениями обеих обмоток существует 0 0 разность фаз. Здесь трехфазные напряжения поддерживают хорошую стабильность даже в условиях несбалансированной нагрузки, что обеспечивает сбалансированную нагрузку. Здесь ни один из вышедших из строя трансформаторов не окажет влияния на другой. Схема подключения следующая:

соединение дельта-треугольник

Дельта-Стар

Этот тип подключения в основном используется для максимизации уровней напряжения и применяется в основном в высоковольтных радиовещательных системах.Здесь первичная обмотка соединена треугольником, а вторичная обмотка — звездой, что позволяет использовать 3 четырехфазных провода на вторичной обмотке. Уровни напряжения между первичной и вторичной обмотками находятся в соотношении 1: √3. В связи с этим также могут быть получены двойные уровни напряжения. Можно достичь минимальных уровней однофазного напряжения, если прокладка проводки проходит между землей и фазой. В то время как максимальные уровни однофазного напряжения достигаются, когда проводка выполняется между двумя фазами.Между напряжениями обеих обмоток существует разница фаз в 30 градусов. Схема подключена, как показано ниже:

треугольник-звезда в трехфазном трансформаторе

Звезда-Звезда

Здесь обе обмотки соединены звездой, и на выходе 30 0 разность фаз между обмотками. Точные результаты в этой связи можно получить только тогда, когда нагрузка находится в сбалансированном состоянии. В то время как в нестабильном состоянии изменение нейтральной точки приводит к разным уровням фазного напряжения.Недостатком этого является то, что способ подключения создает помехи в линиях связи и, следовательно, потому, что телефонные линии не могут работать параллельно. Итак, звезда-звезда не получила широкого распространения в приложениях. Схема подключена, как показано ниже:

звезда-звезда в трехфазном трансформаторе

Преимущества / недостатки трехфазного трансформатора

Некоторые из преимуществ этого типа трансформатора следующие:

  • Конструкция проста и удобна в обращении
  • Обеспечивает максимальную эффективность
  • Чтобы обеспечить такие же номинальные значения кВА, потребуется минимум материала сердечника, чем у трех однофазных трансформаторов
  • Это настолько экономично, что можно реализовать любой вид бизнеса

Недостатки

  • Совместное использование материала сердечника приводит к тому, что выход из строя одной фазы приводит к выходу из строя всех остальных фаз
  • Металлические детали легко нагреваются, что может привести к повреждению всего устройства, а при попытке охлаждения произойдет уменьшение емкости.
  • Требуемая стоимость ремонта устройства высока

Часто задаваемые вопросы

1).Какие самые передовые виды трансформаторов?

Трансформаторы повышающие и понижающие

2). Каковы основные области применения трехфазного трансформатора?

В основном они используются в электрических сетях, распределительных сетях и силовых трансформаторах.

3). В чем разница между однофазным и трехфазным?

Один провод необходим для соединения всей цепи в одной фазе, тогда как для трех фаз требуется три провода, и уровни выходного напряжения будут колебаться.

4). Что определяет RYB в трехфазном?

RYB соответствует красному, желтому и синему, где каждая фаза имеет угловое изменение 120 0 .

5). Что происходит при обрыве нулевого провода?

Произойдет утечка электричества и вызовет поражение электрическим током.

Наконец, это все о концепции трехфазного трансформатора. Помимо этого, существует несколько видов трансформаторов в зависимости от потребности в отрасли, типа питания, требований к использованию и уровней напряжения.Итак, все зависит от собственных мыслей, чтобы выбрать соответствующий вид и добиться успеха за счет его преимуществ. Знаете, какие еще виды трехфазных трансформаторов?

Подключение трехфазного трансформатора

| Electrical Academia

В этом разделе мы рассмотрим рабочие характеристики основных соединений трансформатора по схеме треугольник-треугольник, звезда-звезда, треугольник-звезда и звезда-треугольник.

Конструкция трехфазного трансформатора может быть представлена, как показано на Рисунок 1 .Сердечник оболочечного типа имеет три набора первичной и вторичной обмоток. Способ соединения этих обмоток определяет конфигурацию трансформатора (треугольник, звезда и т. Д.).

Рисунок 1: Конструкция трехфазного трансформатора

Соединенный трансформатор типа звезда-звезда (Y-Y)

Трансформатор на рисунке 1 может быть представлен так, как показано на рисунке , рисунок 2 . T 1, T 2, и T 3 представляют те же три пары первичной / вторичной катушек, показанные на сердечнике кожухового типа.Линии, обозначенные ΦA 1 , ΦB 1 и ΦC 1 , представляют собой проводники первичной линии, которые подключаются к первичным катушкам, а линия, обозначенная N 1 , представляет собой нейтральный провод. Аналогичным образом, линии с обозначениями ΦA 2 , ΦB 2 и ΦC 2 представляют собой вторичные линейные проводники, а N 2 представляет собой нейтральный проводник.

Рисунок 2: Элементы электрической схемы трансформатора.

При подключении, как показано на Рисунок 3 , трансформатор кожухового типа образует схему Y-Y (звезда-первичная-звезда-вторичная).Таким образом, соотношение первичного и вторичного тока и напряжения трансформатора выглядит следующим образом:

$ \ begin {matrix} {{E} _ {L}} = \ sqrt {3} \ times {{E} _ {P}} = 1,732 \ times {{E} _ {P}} & {} & {{I} _ {L}} = {{I} _ {P}} \\\ end {matrix} $

$ \ begin { матрица} {{E} _ {P}} = \ frac {{{E} _ {L}}} {\ sqrt {3}} = \ frac {{{E} _ {L}}} {1.732} и {} & {{I} _ {N}} = {{I} _ {A}} + {{I} _ {B}} + {{I} _ {C}} = 0 \\\ end {матрица } $

Где E L и I L — значения строки, а E P и I P — значения фазы.Эти отношения предполагают, что схема Y-Y сбалансирована (перед чтением найдите время, чтобы проследить соединения схемы на рисунке 3, чтобы убедиться, что схема представляет ту же схему).

Рисунок 3: Схема трансформатора YY и схема подключения

Необходимо сделать два момента:

• Схема подключения на Рисунок 3a может быть реализована с использованием банка (группы) из трех однофазные (1Ф) трансформаторы.

• Y-Y трансформаторы используются в промышленности и предпочтительнее трансформаторов ∆-∆, когда критически важно иметь нейтральное соединение во вторичной цепи.

Трансформатор, подключенный по схеме треугольник-треугольник (∆-∆)

При подключении, как показано на рис. 4 , трансформатор образует схему ∆-∆ (первичный треугольник — вторичный треугольник). Обратите внимание, что на схеме подключения нет нейтральной линии. Трансформатор, первичный и вторичный ток и напряжение имеют следующие соотношения:

$ \ begin {matrix} {{E} _ {L}} = {{E} _ {P}} & {} & {{I} _ {L}} = \ sqrt {3} \ times {{I} _ {P}} = 1.732 \ times {{I} _ {P}} \\\ end {matrix} $

$ \ begin {matrix} {{I} _ {P}} = \ frac {{{I} _ {L}} } {\ sqrt {3}} = \ frac {{{I} _ {L}}} {1.732} & {} & {{I} _ {N}} = {{I} _ {A}} + { {I} _ {B}} + {{I} _ {C}} = 0 \\\ end {matrix} A $

Где E L и I L — строчные значения, а E P и I P — значения фазы. Эти отношения предполагают, что ∆-∆ схема сбалансирована (прежде чем читать дальше, найдите время, чтобы проследить соединения схемы на Рисунке 4, чтобы убедиться, что диаграммы представляют одну и ту же схему).

Рисунок 4: Схема трансформатора треугольник-треугольник (∆-∆) и электрические схемы.

Как и в случае схемы Y-Y, электрическая схема на рис. 4a может быть реализована с использованием группы однофазных трансформаторов. Обратите внимание, что трансформаторы ∆-∆ чаще всего используются в промышленности.

Соединенный трансформатор звезда-треугольник (Y-∆) Подключенный трансформатор

При подключении, как показано на рис. 5 , трансформатор образует схему Y-∆ (звезда-треугольник, вторичная).Обратите внимание, что в первичной цепи есть нейтраль, а во вторичной — нет. (Прежде чем читать дальше, найдите время, чтобы отследить соединения схемы на рисунке 5, чтобы убедиться, что схемы представляют одну и ту же схему).

Рисунок 5 Схема трансформатора звезда-треугольник (Y-∆) и электрические схемы.

Как и в случае с предыдущими схемами, проводка на схеме , рис. 5a может быть (и часто реализуется) с использованием блока однофазных (1Ф) трансформаторов.Обратите внимание, что трансформаторы, подключенные по схеме Y-∆, чаще всего используются в системах передачи высокого напряжения.

Delta-Wye (∆ Y) Подключенный трансформатор

При подключении, как показано на Рисунок 6 , трансформатор кожухового типа образует ∆-Y (треугольник первичная — звезда вторичная) цепь. Обратите внимание, что во вторичной цепи есть нейтраль, а в первичной — нет. (Прежде чем читать дальше, найдите время, чтобы отследить соединения цепи на рисунке 6, чтобы убедиться, что схема представляет ту же цепь).

Рисунок 6 Схема трансформатора ∆-Y (треугольник-звезда) и электрическая схема

Как и в случае с предыдущими схемами, схема на рис. 6a может быть реализована с использованием одной фазы (1Φ ) трансформаторы. Обратите внимание, что трансформаторы с соединением ∆-Y чаще всего используются в коммерческих и промышленных приложениях.

Зачем нужны блоки однофазных трансформаторов?

Как упоминалось ранее, каждый трансформатор, представленный в этом разделе, может быть сконструирован с использованием группы (группы) однофазных трансформаторов.Такой блок трансформаторов показан на рис. 7 .

Рисунок 7 Три однофазных трансформатора, подключенных как трехфазный трансформатор

Зачем использовать три однофазных трансформатора вместо одного трехфазного трансформатора? Две причины : удобство и практичность.

Самым частым отказом в любой трехфазной системе является замыкание на землю, когда одна фаза выходит из строя (короткое замыкание) на землю. Когда используется один трехфазный трансформатор, выход из строя одной фазы требует замены всего трансформатора. Однако , когда используется группа однофазных трансформаторов, отказ любой фазы требует замены только этого фазного трансформатора; и проще и дешевле заменить однофазный трансформатор, чем трехфазный трансформатор.

Кроме того, группа из трех однофазных трансформаторов может быть подключена как любое из соединений, которые были представлены в этом разделе. Трехфазные трансформаторы изготавливаются в определенных конфигурациях и поэтому не обладают такой гибкостью.

Обрыв фаз в трехфазных трансформаторах

Когда одна из фаз индуктивности в цепи , соединенной звездой , размыкается, вся цепь фактически сводится к однофазной цепи. Этот принцип проиллюстрирован на рис. 8а . Когда L 1 открывается, ΦA изолирован от цепи. Когда это происходит, ток через L 1 отсутствует, и только E BC остается неизменным. Фактически трехфазная цепь была уменьшена до однофазной.

Рисунок 8 Напряжения в цепи звезды (Y) и треугольника (∆).

Когда один из фазных дросселей в цепи , соединенной треугольником, размыкается, цепь по-прежнему работает как трехфазная цепь (с пониженной мощностью). Этот принцип проиллюстрирован на рис. 8b . При размыкании L 1 ни один из фазных входов не изолирован от цепи, поэтому трехфазная работа продолжается. Однако , ток через L 1 отсутствует, что влияет на общую работу схемы треугольника.Номинальная мощность трансформатора в кВА снижается, поскольку допустимая мощность L 1 снижается до 0 Вт. Даже в этом случае схема может продолжать трехфазную работу с пониженной непрозрачностью.

Открытое соединение треугольником

Как было сказано ранее, трансформатор, подключенный треугольником, может работать с пониженной мощностью, если одна из его фаз размыкается. Этот принцип позволяет создать трехфазную схему, используя всего два однофазных трансформатора. Это открытое дельта-соединение, которое теперь встречается редко, показано на рис. .

Обратите внимание, что номинальная мощность в кВА при подключении по схеме открытого треугольника ограничена приблизительно 87% от суммы номинальных значений , указанных на паспортной табличке, двух однофазных трансформаторов. Например, если каждый трансформатор имеет номинальную мощность 100 кВА, то номинальная мощность сети открытого треугольника составляет 200 кВА × 87% = 174 кВА. Это связано с тем, что только два трансформатора несут нагрузку трех.

Рисунок 9 Схема трансформатора с разомкнутым треугольником и электрическая схема

Соединения обмоток трехфазного трансформатора

Первичная и вторичная обмотки трехфазного трансформатора могут быть подключены в различной конфигурации, чтобы удовлетворить практически любые требования к напряжению.

Трехфазный трансформатор может быть сконструирован либо путем соединения трех однофазных трансформаторов вместе (образующих батарею трехфазных трансформаторов), либо путем использования одного трехфазного трансформатора, состоящего из трех однофазных обмоток, установленных на одном пластинчатом сердечнике.

Первичная и вторичная обмотки трансформатора могут быть подключены в различных конфигурациях, чтобы удовлетворить практически любые требования к напряжению. В зависимости от того, как эти наборы обмоток соединены между собой, определяется, является ли соединение конфигурацией треугольника или звезды (звезды).

Соединение треугольником

  1. Угловое смещение: 30 °
  2. Самое популярное трансформаторное подключение в мире.
  3. Вторичный обеспечивает нейтральную точку для подачи питания между фазой и нейтралью.
  4. Подходит как для незаземленных, так и для эффективно заземленных источников.
  5. Подходит для трехпроводной сети или четырехпроводной заземленной сети с заземленным XO.
  6. При заземлении XO трансформатор действует как источник заземления для вторичной системы.
  7. Токи нулевой последовательности основной и гармонической частот во вторичных линиях, питаемые трансформатором, не протекают в первичных линиях. Вместо этого в первичных обмотках замкнутого треугольника циркулируют токи нулевой последовательности.
  8. Если вторичная обмотка трансформатора питает большое количество несимметричных нагрузок, треугольник первичной обмотки обеспечивает лучший баланс тока для первичного источника.

Соединение WYE-DELTA

  1. Угловое смещение: 30 °
  2. Подходит как для незаземленных, так и для эффективно заземленных источников.
  3. Подходит для трехпроводной сети или четырехпроводной схемы «треугольник» с заземлением между ответвлениями.
  4. Заземление нейтрали первичной обмотки этого соединения создаст источник заземления для первичной системы. Это может привести к серьезной перегрузке трансформатора во время нарушения в первичной системе или несимметрии нагрузки.
  5. Часто устанавливается с заземлением посередине ответвления на одной ноге при питании комбинированной трехфазной и однофазной нагрузки, когда трехфазная нагрузка намного больше, чем однофазная нагрузка.
  6. При использовании в трехфазных четырехпроводных системах первичной обмотки 25 кВ и 35 кВ может возникнуть феррорезонанс при включении или выключении трансформатора с помощью однополюсных переключателей, расположенных на выводах первичной обмотки. С трансформаторами меньшей кВА вероятность феррорезонанса выше.

Соединение ТРЕУГОЛЬНИК-ТРЕУГОЛЬНИК

  1. Угловое смещение: 0 °
  2. Подходит как для незаземленных, так и для эффективно заземленных источников.
  3. Подходит для трех- или четырехпроводной сети с заземлением между ответвлениями.

Соединение треугольником с ответвителем

  1. Угловое смещение: 0 °
  2. Подходит как для незаземленных, так и для эффективно заземленных источников.
  3. Подходит для трех- или четырехпроводной сети с заземлением между ответвлениями.
  4. При использовании ответвителя для однофазных цепей однофазная нагрузка, кВА, не должна превышать 5% от трехфазной мощности трансформатора.Трехфазный номинал трансформатора также существенно снижен.

Соединение WYE-WYE

  1. Угловое смещение: 0 °
  2. Подходит как для незаземленных, так и для эффективно заземленных источников.
  3. Подходит только для трехпроводного подключения, даже если XO заземлен.
  4. Это соединение не может обеспечить стабилизированную нейтраль, и его использование может привести к перенапряжению между фазой и нейтралью (смещению нейтрали) в результате несимметричной нагрузки между фазой и нейтралью.
  5. Если трехфазный блок построен на трехполюсном сердечнике, нейтральная точка первичных обмоток практически заблокирована потенциалом земли.

ЗАЗЕМЛЕННОЕ соединение WYE-WYE

  1. Угловое смещение: 0 °
  2. Подходит только для четырехпроводного источника с эффективным заземлением.
  3. Подходит для трехпроводной сети или четырехпроводной заземленной сети с заземленным XO.
  4. Трехфазные трансформаторы с этим подключением могут испытывать паразитный нагрев резервуара флюса во время определенных внешних дисбалансов системы, если только используемая конфигурация сердечника (четырех- или пятиполюсная) не обеспечивает обратный путь для флюса.
  5. Токи нулевой последовательности основной и гармонической частот во вторичных линиях, питаемые трансформатором, также протекают в первичных линиях (и в нейтральном проводе первичной обмотки).
  6. Реле заземления для первичной системы может обнаруживать дисбаланс нагрузки и замыкания на землю во вторичной системе. Это необходимо учитывать при согласовании устройств защиты от сверхтоков.
  7. Трехфазные трансформаторы с нейтральными точками обмоток высокого и низкого напряжения, соединенными внутри вместе и выведенными через ввод HOXO, не должны эксплуатироваться с незаземленным вводом HOXO (плавающим).Это может привести к очень высоким напряжениям во вторичных системах.

Примечания по подключению трехфазного трансформатора

  • Когда обмотки соединены звездой, напряжение между любыми двумя линиями будет в 1,732 раза больше фазного напряжения, а линейный ток будет таким же, как фазный ток.
  • Когда трансформаторы соединены треугольником, линейный ток будет в 1,732 раза больше фазного тока, а напряжение между любыми двумя будет таким же, как и фазное напряжение.
  • Для соединений треугольник-звезда и звезда-звезда соответствующие напряжения на стороне высокого и низкого напряжения совпадают по фазе. Это известно как смещение нулевой фазы (угловое). Поскольку смещение одинаковое, их можно проводить параллельно.
  • Для соединений треугольник-звезда и звезда-треугольник каждая фаза низкого напряжения отстает от соответствующей фазы высокого напряжения на 30 градусов. Поскольку задержка одинакова для обоих трансформаторов, их можно подключать параллельно.
  • Трансформатор треугольник-звезда, звезда-звезда или банк (оба с нулевым смещением) не могут быть соединены параллельно с треугольником-треугольником или звездой-треугольником с 30-градусным смещением.Это приведет к опасному короткому замыканию.

Список литературы

Подключение трехфазного трансформатора

— Circuit Globe

Трехфазный трансформатор состоит из трех трансформаторов, отдельных или объединенных одним сердечником. Первичная и вторичная обмотки трансформатора могут быть независимо соединены звездой или треугольником. Существует четыре возможных варианта подключения 3-фазной трансформаторной батареи.

  1. Подключение Δ — Δ (треугольник — треугольник)
  2. Υ — Υ (звезда — звезда) Подключение
  3. Δ — Υ (треугольник — звезда) соединение
  4. Υ — Δ (звезда — треугольник) соединение

Выбор подключения трехфазного трансформатора зависит от различных факторов, таких как наличие нейтрали для защиты заземления или подключения нагрузки, изоляция от земли и напряжения, наличие пути для прохождения третьей гармоники и т. Д.Ниже подробно описаны различные типы подключений.

1. Соединение треугольник-треугольник (Δ-Δ)

Соединение треугольником трех одинаковых однофазных трансформаторов показано на рисунке ниже. Вторичная обмотка a 1 a 2 соответствует первичной обмотке A 1 A 2 , и они имеют одинаковую полярность. Полярность клеммы a , соединяющей a 1 и c 2 , такая же, как и при соединении A 1 и C 2 .На рисунке ниже показана векторная диаграмма для отстающего коэффициента мощности cosφ .

Ток намагничивания и падение напряжения на импедансах не учитывались. В сбалансированном состоянии линейный ток в √3 раз больше тока фазной обмотки. В этой конфигурации соответствующие линейное и фазное напряжение идентичны по величине как на первичной, так и на вторичной стороне.

Линейное напряжение вторичной обмотки находится в фазе с линейным напряжением первичной обмотки с отношением напряжений, равным отношению витков.

Если соединение фазных обмоток поменять местами с обеих сторон, между первичной и вторичной системами получается разность фаз 180 °. Такое соединение известно как соединение 180º.

Соединение треугольником со сдвигом фазы 180 ° показано на рисунке ниже. На векторной диаграмме трехфазного трансформатора показано, что вторичное напряжение находится в противофазе с первичным напряжением.

Трансформатор дельта-треугольник не имеет связанного с ним сдвига фазы и проблем с несимметричными нагрузками или гармониками.

Преимущества подключения трансформатора треугольник-треугольник

Ниже приведены преимущества конфигурации трансформаторов треугольником.

  1. Трансформатор дельта-треугольник подходит для сбалансированной и несимметричной нагрузки.
  2. В случае отказа одного трансформатора оставшиеся два трансформатора продолжат подавать трехфазное питание. Это называется открытым дельта-соединением.
  3. Если присутствует третья гармоника, то она циркулирует по замкнутому пути и, следовательно, не появляется в волне выходного напряжения.

Единственный недостаток соединения треугольник-треугольник — отсутствие нейтрали. Это соединение полезно, когда ни первичная, ни вторичная обмотка не требуют нейтрали, а напряжение низкое или умеренное.

2. Звезда-звезда (Υ-Υ) Подключение трансформатора

Соединение звездой-звездой трех идентичных однофазных трансформаторов на каждой из первичной и вторичной обмоток трансформатора показано на рисунке ниже. Векторная диаграмма аналогична схеме соединения треугольником.

Фазный ток равен линейному току, и они синфазны. Напряжение сети в три раза превышает фазное напряжение. Между линией и фазным напряжением существует разделение фаз на 30º. Сдвиг фазы на 180º между первичной и вторичной обмотками трансформатора показан на рисунке выше.

Проблемы, связанные с соединением звезда-звезда

Соединение звезда-звезда имеет две очень серьезные проблемы. Их

  1. Соединение Y-Y не подходит для несимметричной нагрузки при отсутствии нейтрального соединения.Если нейтраль не предусмотрена, тогда фазные напряжения становятся несимметричными при несимметричной нагрузке.
  2. Соединение Y-Y содержит третью гармонику, и в сбалансированных условиях эти гармоники равны по величине и фазе с током намагничивания. Их сумма в нейтрали звездного соединения не равна нулю, и, следовательно, это будет искажать волну магнитного потока, которая будет создавать напряжение, имеющее гармоники в каждом из трансформаторов
  3. .

Проблемы несимметрии и третьей гармоники соединения Y-Y могут быть решены путем использования сплошного заземления нейтрали и использования третичных обмоток.

3. Соединение Delta-Star (Δ-Υ)

Соединение ∆-Y трехобмоточного трансформатора показано на рисунке ниже. Напряжение первичной линии равно напряжению вторичной фазы. Соотношение между вторичными напряжениями V LS = √3 V PS .

Векторная диаграмма соединения ∆-Y трехфазного трансформатора показана на рисунке ниже. Из векторной диаграммы видно, что напряжение вторичной фазы V и опережает напряжение первичной фазы V AN на 30 °.Аналогично, V bn выводит V BN на 30º и V cn выводит V CN на 30º. Это соединение также называется соединением + 30º.

Путем изменения направления подключения с любой стороны можно сделать так, чтобы напряжение вторичной системы отставало от первичной системы на 30 °. Таким образом, соединение называется соединением -30 °.

4. Соединение звезда-треугольник (Υ-Δ)

Схема подключения трехфазного трансформатора звезда-треугольник показана на рисунке выше. Напряжение первичной линии в √3 раз больше напряжения первичной фазы.Напряжение вторичной линии равно напряжению вторичной фазы. Коэффициент напряжения каждой фазы составляет

Следовательно, линейное напряжение соединения Y-∆ равно

.

Векторная диаграмма конфигурации показана на рисунке выше. Между соответствующими фазными напряжениями существует фазовый сдвиг на 30 выводов. Точно так же между соответствующими фазными напряжениями существуют выводы под углом 30 °. Таким образом, соединение называется соединением + 30º.

Фаза показывает соединение трансформатора звезда-треугольник для фазового сдвига 30 °.Это соединение называется — соединение 30 °. Это соединение не имеет проблем с несимметричной нагрузкой и гармониками третей. Соединение треугольником обеспечивает сбалансированную фазу на стороне Y и обеспечивает сбалансированный путь для циркуляции третьих гармоник без использования нейтрального провода.

Открытое соединение треугольником или V-V

Если один трансформатор соединения треугольник поврежден или случайно разомкнут, то неисправный трансформатор удаляется, а оставшийся трансформатор продолжает работать как трехфазный блок.Рейтинг трансформаторного банка снижен до 58% от рейтинга реального банка. Это известно как открытая дельта или дельта V-V. Таким образом, в трансформаторе с открытой обмоткой используются два трансформатора вместо трех при трехфазной работе.

Пусть V ab , V bc и V ca будет напряжением, приложенным к первичной обмотке трансформатора. Напряжение, индуцируемое во вторичной обмотке трансформатора или на его обмотке, составляет V ab . Напряжение, индуцированное на второй обмотке низкого напряжения, составляет V bc .Между точками а и с нет обмотки. Напряжение можно найти, применив KVL вокруг замкнутого пути, состоящего из точек a, b и c. Таким образом,

Лет,

Где V p — величина линии на первичной стороне.

Подставляя значения V ab и V bc в уравнение, мы получаем

V ca равно по величине от напряжения на вторичной клемме и на 120º по времени от них обоих.Сбалансированное трехфазное линейное напряжение создает сбалансированное трехфазное напряжение на вторичной стороне.

Если три трансформатора соединены по схеме треугольник-треугольник и обеспечивают номинальную нагрузку, и если соединение становится трансформатором V-V, ток в каждой фазной обмотке увеличивается в √3 раза. Полный линейный ток протекает в каждой из двух фазных обмоток трансформатора. Таким образом, каждый трансформатор в системе V-V перегружен на 73,2%.

Следует отметить, что нагрузка должна быть уменьшена в √3 раза в случае трансформатора с открытым треугольником.В противном случае может произойти серьезный перегрев и поломка двух трансформаторов.

Простая схема эквивалентной схемы трехфазного трансформатора — Wira Electrical

Трехфазный трансформатор в основном используется для передачи большой мощности.

Для удовлетворения спроса на трехфазную передачу электроэнергии необходимы трансформаторные соединения, совместимые с трехфазным режимом.

Трансформаторное соединение можно осуществить двумя способами: путем соединения трех однофазных трансформаторов, образуя так называемую группу трансформаторов , или с помощью специального трехфазного трансформатора.

После того, как мы узнаем о линейном трансформаторе, у нас будет несколько важных объяснений, таких как:

  1. Взаимная индуктивность и условное обозначение точек
  2. Что такое идеальный трансформатор
  3. Трехфазный трансформатор
  4. Трансформатор как изолирующее устройство
  5. Трансформатор как согласующее устройство

Для одного и того же номинала кВА трехфазный трансформатор всегда меньше и дешевле трех однофазных трансформаторов. При использовании однофазных трансформаторов необходимо убедиться, что они имеют одинаковое отношение витков n , чтобы получить сбалансированную трехфазную систему.

Трехфазный трансформатор

Существует четыре стандартных способа подключения трех однофазных трансформаторов или трехфазного трансформатора для трехфазного режима: YY, Δ-Δ , Y- Δ и Δ -Y .

Для любого из четырех подключений полная полная мощность S T , активная мощность P T и реактивная мощность Q T получаются как

(1a) (1b) (1c )

, где В L и I L , соответственно, равны линейному напряжению В Lp и линейному току I 906 Lp для 906 первичная сторона, или линейное напряжение В Ls и линейный ток I Ls для вторичной стороны.

Обратите внимание на уравнение (1), что для каждого из четырех подключений V Ls I Ls = V Lp I Lp Lp Lp , поскольку в идеальном трансформаторе мощность должна сохраняться.

Рисунок 1. Подключение трехфазного трансформатора Y-Y.

Для соединения YY на Рисунке. (1) линейное напряжение В Lp на первичной стороне, линейное напряжение В Ls на вторичной стороне, линейный ток I Lp на первичной стороне, а линейный ток I Ls на вторичной стороне связан с соотношением витков трансформатора на фазу n как

(2a) (2b)

Для Δ -Δ соединение на рис.(2), Уравнение (2) также применяется для линейных напряжений и линейных токов.

Рисунок 2. Подключение трехфазного трансформатора Δ-Δ.

Это соединение уникально в том смысле, что если один из трансформаторов снимается для ремонта или технического обслуживания, два других образуют разомкнутый треугольник , который может обеспечивать трехфазное напряжение на пониженном уровне по сравнению с исходным трехфазным трансформатором. Этот трехфазный трансформатор используется в системе распределения питания трансформатора.

Рисунок 3. Подключение трехфазного трансформатора Y-Δ.

Для соединения Y-Δ на рисунке (3) существует коэффициент √3, возникающий из значений фазы линии в дополнение к соотношению числа витков трансформатора на фазу n . Таким образом,

(3a) (3b)

Аналогично, для соединения Δ-Y на рисунке. (4),

Рисунок 4. Подключение трехфазного трансформатора Δ-Y.

Таким образом,

(4a) (4b)

Пример эквивалентной схемы трехфазного трансформатора

Сбалансированная нагрузка 42 кВА, показанная на рисунке (5), питается от трехфазного трансформатора.(а) Определите тип подключения трансформатора. (b) Найдите линейное напряжение и ток на первичной стороне. (c) Определите номинальную мощность в кВА каждого трансформатора, используемого в блоке трансформаторов. Считаем трансформаторы идеальными.

Рисунок 5

Решение:
(a) Внимательное рассмотрение рисунка (5) показывает, что первичная сторона подключена по схеме Y, а вторичная сторона — по схеме Δ. Таким образом, трехфазный трансформатор имеет вид Y-Δ, аналогичный показанному на рисунке (2).

(b) Для нагрузки с полной полной мощностью S T = 42 кВА, передаточным числом n = 5 и напряжением вторичной линии В Ls = 240 В, мы можем найти вторичный линейный ток, используя уравнение.(1a), на

Из уравнения. (3)

(c) Поскольку нагрузка сбалансирована, каждый трансформатор в равной степени разделяет общую нагрузку, и, поскольку отсутствуют потери (при условии идеальных трансформаторов), номинальная мощность каждого трансформатора в кВА трансформатор S = S T / 3 = 14 кВА.

В качестве альтернативы номинал трансформатора может быть определен как произведение фазного тока и фазного напряжения первичной или вторичной стороны.

Для первичной стороны, например, у нас есть соединение треугольником, так что фазное напряжение такое же, как линейное напряжение 240 В, а фазный ток равен I Lp / √3 = 58 . 34 A. Следовательно, S = 240 × 58 . 34 = 14 кВА.

Трехфазный трансформатор

Трехфазный трансформатор более экономичен для питания больших нагрузок и распределения большой мощности. Несмотря на то, что большая часть используемого оборудования подключена к однофазным трансформаторам, они не являются предпочтительными для распределения большой мощности с точки зрения экономии.

Трехфазное питание используется почти во всех областях электроэнергетической системы, таких как производство, передача и распределение электроэнергии, а также все промышленные секторы снабжены или подключены к трехфазной системе.Поэтому для повышения (или увеличения) или понижения (или уменьшения) напряжений в трехфазных системах используются трехфазные трансформаторы. По сравнению с однофазным трансформатором, у трехфазного трансформатора есть множество преимуществ, таких как меньший размер и меньший вес для той же мощности, лучшие рабочие характеристики и т. Д.

Трехфазный трансформатор

Трехфазный трансформатор

Трехфазные трансформаторы используется для повышения или понижения высокого напряжения на различных ступенях системы передачи энергии.Электроэнергия, вырабатываемая на различных генерирующих станциях, имеет трехфазный характер, а напряжения находятся в диапазоне от 13,2 кВ или 22 кВ. Чтобы уменьшить потери мощности на стороне распределения, мощность передается при несколько более высоких напряжениях, например 132 или 400 кВ. Следовательно, для передачи энергии при более высоких напряжениях используется трехфазный повышающий трансформатор для увеличения напряжения. Также в конце передачи или распределения эти высокие напряжения понижаются до уровней 6600, 400, 230 вольт и т. Д.Для этого используется трехфазный понижающий трансформатор.

Трехфазный трансформатор может быть построен двумя способами; блок из трех однофазных трансформаторов или один блок из трехфазного трансформатора.

Первый построен путем подходящего соединения трех однофазных трансформаторов, имеющих одинаковые номинальные характеристики и рабочие характеристики. В этом случае, если неисправность происходит в одном из трансформаторов, система по-прежнему сохраняет пониженную мощность за счет двух других трансформаторов с разомкнутым треугольником.Следовательно, благодаря этому типу подключения обеспечивается бесперебойная подача электроэнергии. Они используются в шахтах, потому что легче транспортировать отдельные однофазные трансформаторы.

Вместо использования трех однофазных трансформаторов можно построить трехфазный блок с одним трехфазным трансформатором, состоящим из шести обмоток на общем многопоточном сердечнике. Благодаря этому единому блоку вес, а также стоимость уменьшаются по сравнению с тремя блоками того же номинала, а также обмотками, сохраняется количество железа в сердечнике и изоляционных материалах.Пространство, необходимое для установки одного блока, меньше по сравнению с блоком из трех блоков. Но единственным недостатком трехфазного трансформатора с одним блоком является то, что если неисправность происходит в любой из фаз, то весь блок должен быть выведен из эксплуатации.

Трехфазный трансформатор

В начало

Конструкция трехфазных трансформаторов

Трехфазный трансформатор может быть сконструирован с использованием общего магнитного сердечника как для первичной, так и для вторичной обмотки. Как мы уже говорили в случае однофазных трансформаторов, конструкция может быть с сердечником или оболочкой.Таким образом, для блока трехфазных трансформаторов с сердечником объединены три однофазных трансформатора с сердечником. Точно так же банк трехфазного трансформатора кожухового типа получается путем правильного объединения трех однофазных трансформаторов кожухового типа. В трансформаторе с оболочкой многослойный сердечник EI окружает катушки, тогда как в трансформаторе с сердечником катушка окружает сердечник.

Конструкция сердечника

В трехфазном трансформаторе сердечника сердечник состоит из трех ветвей или плеч и двух ярм. Между этими ярмами и конечностями образуется магнитный путь.На каждом плече концентрически намотаны первичная и вторичная обмотки. В качестве обмоток этого типа трансформатора используются круглые цилиндрические катушки. На одной ноге ранены первичная и вторичная обмотки одной фазы. В сбалансированном состоянии магнитный поток в каждой фазе ветви в сумме равен нулю. Следовательно, в нормальных условиях обратный ход не требуется. Но в случае несимметричных нагрузок протекает большой циркулирующий ток, и, следовательно, может быть лучше использовать три однофазных трансформатора.

Конструкция корпуса типа

В корпусе типа три фазы более независимы, поскольку каждая фаза имеет независимую магнитную цепь по сравнению с трансформатором с сердечником. Конструкция аналогична однофазному трансформатору оболочечного типа, построенному поверх другого. Магнитные цепи этого типа трансформатора параллельны. Благодаря этому не учитываются эффекты насыщения в обычных магнитных путях. Однако трансформаторы корпусного типа на практике используются редко.

Тип оболочки

В начало

Работа трехфазных трансформаторов

Рассмотрим рисунок ниже, на котором первичная обмотка трансформатора соединена звездой на сердечниках. Для простоты на рисунке показана только первичная обмотка, подключенная к трехфазному источнику переменного тока. Три жилы расположены под углом 120 градусов друг к другу. Пустая полка каждой жилы объединяется таким образом, что они образуют центральную полку, как показано на рисунке.

Работа трансформатора

Когда первичная обмотка возбуждается трехфазным источником питания, токи IR, IY и IB начинают течь через отдельные фазные обмотки.Эти токи создают магнитные потоки ΦR, ΦY и ΦB в соответствующих сердечниках. Поскольку центральная ветвь является общей для всех сердечников, сумма всех трех потоков переносится ею. В трехфазной системе в любой момент времени векторная сумма всех токов равна нулю. В свою очередь, в данный момент сумма всех потоков одинакова. Следовательно, центральная ножка не несет потока в любой момент. Таким образом, даже если центральная ножка будет удалена, это не повлияет на другие состояния трансформатора.

Аналогично, в трехфазной системе, где любые два проводника действуют как возврат для тока в третьем проводнике, любые две ветви действуют как обратный путь потока для третьей ветви, если центральная ветвь удалена в случае трехфазного трансформатора.Поэтому при проектировании трехфазного трансформатора используется этот принцип.

Эти потоки индуцируют вторичные ЭДС в соответствующей фазе, так что они поддерживают свой фазовый угол между ними. Эти ЭДС управляют токами во вторичной обмотке и, следовательно, в нагрузке. В зависимости от типа используемого соединения и количества витков на каждой фазе индуцированное напряжение будет изменяться для получения повышения или понижения напряжений.

В начало

Подключение трехфазного трансформатора

Как обсуждалось выше, с помощью одного трехфазного трансформатора или комбинации трех однофазных трансформаторов можно выполнять трехфазные преобразования.Способ соединения обмоток для трехфазного преобразования одинаков независимо от того, используются ли три обмотки трехфазного трансформатора или три обмотки трех однофазных трансформаторов. Первичная и вторичная обмотки подключаются по-разному, например, по схеме треугольник, звезда или их комбинация. Номинальные значения напряжения и тока трехфазного трансформатора зависят от подходящего подключения. Наиболее часто используемые соединения:

  • Звезда-треугольник
  • Дельта-звезда
  • Дельта-треугольник
  • Звезда-звезда

Соединение звезда-треугольник

Этот тип соединения обычно используется для понижения напряжения до более низкого значения на конечных подстанциях.Коммунальные предприятия используют это подключение для снижения уровней напряжения в распределительных сетях.

  • В этом случае первичная обмотка трансформатора соединена звездой, а вторичная — треугольником.
  • Нейтральная точка на первичной стороне или на стороне высокого напряжения может быть заземлена, что желательно в большинстве случаев.
  • Отношение линейных напряжений между вторичной и первичной обмотками составляет 1/3 кратного коэффициента трансформации каждого трансформатора.
  • Существует разница фаз в 30 градусов между напряжениями первичной и вторичной линии.
  • Поскольку фактическое напряжение первичной обмотки составляет 58% от напряжения первичной линии, требования к изоляции обмоток ВН снижаются при использовании этой обмотки.
  • В этом случае сбалансированное трехфазное напряжение получается на вторичной или низковольтной стороне, даже когда несимметричные токи протекают в первичной или высоковольтной стороне из-за нейтрального провода. Заземление нейтрального провода также обеспечивает защиту от грозовых перенапряжений.

Соединение треугольником и звездой

  • Это соединение используется для повышения уровня напряжения и обычно используется для отправки конца или запуска системы передачи высокого напряжения.
  • В этом случае первичная обмотка соединена треугольником, а вторичная — звездой, так что возможна трехфазная 4-проводная система на вторичной обмотке.
  • Вторичное напряжение нагрузки в √3 раз больше первичного напряжения, подключенного по схеме треугольника. Кроме того, токи нагрузки и вторичные токи будут одинаковыми из-за одной и той же последовательной цепи.
  • Это соединение обеспечивает три однофазных цепи как при более низком, так и при более высоком напряжении и одну трехфазную цепь при более высоком напряжении, так что можно питать однофазные и трехфазные нагрузки.
  • Двойное напряжение получается треугольником-звездой. Низкое однофазное напряжение достигается за счет подключения любой фазы к земле. Более высокие однофазные напряжения получаются при подключении проводов между любыми двумя фазами. А подключив к нагрузке все три фазы, получается трехфазное напряжение.
  • Требования к изоляции на стороне высокого напряжения снижаются благодаря подключению вторичной обмотки звездой (меньшее количество витков на фазу).
  • Подобно схеме звезда-треугольник, это соединение вызывает разность фаз в 30 градусов между напряжениями первичной и вторичной линии.
  • При использовании этого соединения невозможно подключить его параллельно с трансформаторами треугольник-треугольник и звезда-звезда из-за разности фаз первичного и вторичного напряжения.

Дельта-треугольник

  • Этот тип подключения используется, когда источник питания подключен по схеме треугольник, а вторичной нагрузке требуется одно напряжение с высоким током. Обычно это используется для трехфазных силовых нагрузок (например, трехфазного двигателя).
  • При этом первичная и вторичная обмотки соединены треугольником.
  • Напряжение на нагрузке равно вторичному напряжению, а напряжение на первичной обмотке равно напряжению источника. В этом случае ток, протекающий через нагрузку, будет в 1,732 раза больше вторичного тока, а ток фидера будет равен 1,732-кратному току через первичную обмотку. Из-за этих высоких токов питания и нагрузки рекомендуется размещать трансформатор намного ближе как к цепям источника, так и к цепям нагрузки.
  • При этом отсутствует разность фаз между первичным и вторичным напряжениями.
  • Трехфазные напряжения остаются постоянными даже при несимметричной нагрузке, что допускает несбалансированную нагрузку.
  • Основным преимуществом этого подключения является то, что если один трансформатор неисправен или снят для обслуживания (соединение разомкнутым треугольником), тогда оставшиеся два трансформатора продолжают подавать трехфазную мощность при пониженной нагрузочной способности.

Соединение «звезда — звезда»

  • При этом первичная и вторичная обмотки соединены звездой, а также отсутствует разность фаз между первичным и вторичным напряжениями.
  • В этом случае ток, протекающий через первичную и вторичную обмотки, равен токам линий, к которым они подключены (источника питания и нагрузки). И напряжения между фазами линии на обоих концах в 1,732 раза больше соответствующих напряжений обмоток.
  • Благодаря наличию нейтрали он хорошо подходит для трехфазной четырехпроводной системы.
  • Этот тип подключения удовлетворительно работает при сбалансированной нагрузке. Но если нагрузка несимметрична, смещение нейтральной точки вызывает неравные фазные напряжения.
  • Большие напряжения третьей гармоники могут появиться как в первичной, так и во вторичной обмотках без нейтрали. Это может привести к нарушению изоляции.
  • Это соединение создает значительные помехи для линий связи, и, следовательно, при такой конфигурации подключения телефонные линии не могут работать параллельно.
  • Из-за этих недостатков соединение звезда-звезда используется редко и не применяется на практике.

В начало

Соединение Скотта

  • Это соединение используется для преобразования трехфазной мощности в двухфазную с использованием двух однофазных трансформаторов.
  • Один трансформатор, называемый главным трансформатором с центральным или 50-процентным ответвлением, подключается между двумя линиями трехфазных проводов. Другой трансформатор называется тизерным трансформатором с отводом 86,6 и подключается между третьим фазным проводом и 50-процентным отводом главного трансформатора.
  • Вторичная обмотка каждого трансформатора обеспечивает фазы двухфазных систем.
  • Вторичные напряжения в двух трансформаторах будут равны по величине, если оба трансформатора намотаны на одинаковое количество витков вторичной обмотки.А создаваемые напряжения сдвинуты по фазе на 90 градусов.
  • Это соединение в основном используется для питания двухфазного двигателя.

В начало

Преимущества трехфазных трансформаторов

  • Будучи предварительно подключенными и готовыми к установке, они могут быть проще в установке.
  • Чтобы обеспечить такую ​​же кВА, требуется гораздо меньше материала сердечника по сравнению с группой из трех однофазных трансформаторов.
  • Он легче и меньше.
  • Требуется меньше места для установки.
  • Более высокий КПД
  • Низкая стоимость по сравнению с тремя единицами однофазных трансформаторов.
  • Транспортировка проста, а транспортные расходы меньше.
  • Конструкция сборных шин и установка распределительного устройства для однофазного трехфазного блока проще.
  • В случае трехфазного трансформатора требуется вывести только три клеммы по сравнению с шестью клеммами от трех однофазных трансформаторов.

В начало

Недостатки трехфазных трансформаторов

В случае отказа или потери одной фазы происходит отключение всего блока.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *