Site Loader

Программируемый таймер на микроконтроллере | Компьютер и жизнь

Приветствую, друзья.

Хочу представить вам мою конструкцию программируемого таймера.

Данный таймер предназначен для отсчета заданных промежутков времени.

Он может иметь как непрерывно-циклический режим работы (бесконечный цикл «включение-пауза»), так и ограниченно-циклический (заданное количество циклов «включение-пауза»), либо однократное включение — на заданное время включения.

Время включения, время паузы и количество рабочих циклов задаются независимо.

Характеристики таймера

Квант времени может быть выбран равным одной секунде или одной минуте, соответственно, время включения и время паузы могут находиться в диапазоне от 1 до 255 секунд или минут, количество рабочих циклов может быть в диапазоне от 1 до 255.

Таким образом, минимальный промежуток времени может быть равным 1 секунде, максимальный – 4 часам и 15 минутам.

Отсчет времени начинается после нажатия кнопки старта (кнопку надо нажимать менее двух секунд).

Блок-схема программы таймера изображена на рис. 1.

Все константы – время включения, время паузы, количество рабочих циклов, величина кванта времени, режим работы также хранятся в энергонезависимой памяти, и могут быть изменены в любую сторону (перепрограммированы) посредством DIP-переключателей и отдельной кнопки программирования.

Для удобства таймер оснащен световой и звуковой сигнализацией.

Питаться таймер может как от сетевого адаптера с выходным постоянным напряжением 15-20 В, так и от аккумулятора напряжением 12 В.

Описание работы схемы таймера

Схема устройства изображена ниже. Его основа – микроконтроллер ATMega8L.

В качестве источника тактового сигнала используется внутренний RC-генератор микроконтроллера частотой 1 МГц. Для повышения точности отсчета временных интервалов используется синхронизация внутреннего таймера-счетчика Т/С2, (далее – таймера Т2) микроконтроллера от внешнего кварцевого резонатора BQ1 на частоту 32768 Гц. При коэффициенте деления 128 8-разрядный таймер Т2 переполняется каждую секунду, генерируя прерывание.

Исполнительным устройством служит реле К1, которое управляется посредством ключа на транзисторе VT1 с вывода РС5 микроконтроллера. Его контакты выведены на внешние клеммы разъема X2 и могут быть использованы для управления внешними цепями, в том числе и сетевым напряжением 220 В.

Звуковые сигналы подает пьезокерамический излучатель BQ2 (со встроенным звуковым генератором), который управляется выводом  РС4 микроконтроллера. Питание на микроконтроллер (+5 В) подается с выхода интегрального стабилизатора DA1. Напряжение на вход DA1 подается либо с выхода интегрального стабилизатора DA2 (+12 В), либо с аккумулятора, выбор осуществляется с помощью перемычки J1.

Светодиод HL1 зеленого цвета индицирует наличие питающего напряжения. Светодиод HL2 красного цвета служит для индикации режима работы и количества включений реле в предыдущем цикле работы. При срабатывании реле (на время включения) светодиод HL2 загорается на 1,5 с и на 0,25 с гаснет, если реле обесточено (время паузы) светодиод загорается на 0,25 с и на 1,5 с гаснет.

После окончания отсчета времени светодиод HL2 гаснет. Таким образом, по характеру свечения HL2 видно, в каком состоянии находится таймер.

Конденсаторы С2 – С6 блокировочные. Диоды VD2, VD3 служат защитой от ошибочной полярности источников напряжения, диод VD1 – защита от ЭДС самоиндукции, возникающей при коммутации реле.

Движковые DIP-переключатели SA1 — SA8 служат для задания величины времени включения, времени паузы и количества рабочих циклов. Такие же переключатели SB1 – SB4 служат для выбора программируемой величины — времени включения, времени паузы, режима работы, количества рабочих циклов  и величины кванта времени. Соответствие переключателей программируемой величине приведено в табл. 1.

Задавать время включения/паузы и количества рабочих циклов надо в двоичном виде, что является некоторым неудобством. Но для перевода десятичных величин в двоичные можно использовать калькулятор, встроенный в Windows. При программировании следует помнить, что нулю двоичной величины соответствует положение ON переключателей, единице – положение OFF. Программирование производится с помощью кнопки программирования S1. Старт таймера осуществляется посредством стартовой кнопки S2.

Программировать таймер нужно перед стартом отсчета времени (сразу после включения) или после окончания рабочего цикла.

В процессе отсчета времени программирование невозможно. Если начался отсчет времени, таймер нечувствителен к нажатию кнопок и изменению положения DIP-переключателей. Таймер остановится после окончания отсчета времени или исчезновении напряжения питания.

Звуковая сигнализация таймера

Звуковая индикация таймера работает следующим образом. При нажатии на кнопку старта в течение менее 2 с (переход в рабочий режим) раздается короткий звуковой сигнал длительностью 0,1 с, свидетельствующий о начале отсчета времени. Если используется ограниченно-циклический режим, то сразу по окончании отсчета времени раздается звуковой сигнал длительностью 2 с. Если кнопка старта нажата более 2 с, раздается 5 звуковых сигналов длительностью 0,1 с  — и таймер возвращается в исходный режим.

При программировании таймера процедура успешного программирования необходимой величины сопровождается двумя сигналами по 0,1 с. Если произошла ошибка (например, ошибочно задан нулевой интервал времени включения, чего быть не должно) раздается звуковой сигнал длительностью 1 с. При ошибке надо проверить положение DIP-переключателей SB1 – SB4.

При программировании микроконтроллера должны быть запрограммированы следующие фьюзы — SUT0, SUT1, CKSEL1, CKSEL2, CKSEL3, BODEN, BODLEVEL. Так как производится запись в энергонезависимую память (данные в которой могут искажаться при медленном снижении напряжения питания), то используется встроенная схема BOD (Brown-Out Detection) микроконтроллера, которая отслеживает питающее напряжение и производит сброс микроконтроллера при снижении его ниже 4 В.

Конструкция таймера

Конструктивно таймер собран на плате из фольгированного стеклотекстолита толщиной 1,5 мм размерами 83×52 мм. Топология печатной платы изображена на рис. 3, расположение деталей на ней – на рис. 4. В исходном состоянии в EEPROM запрограммированы следующие значения констант: время включения – 10 с, время паузы – 10 с, количество циклов включения – 3, квант времени – одна секунда, режим работы – циклически-ограниченный.

Транзистор VT1 можно заменить на КТ3102 с любым буквенным индексом или аналогичным. В качестве светодиодов можно использовать любые современные высокоэффективные светодиоды с заметным свечением при токе 2-3 мА. Реле К1 – постоянного тока, типа JZC-22F, но можно использовать и другое с катушкой на 12 В, подходящее по току контактов и типоразмеру.

Программирование таймера

Рассмотрим примеры перепрограммирования таймера. Отметим, что при программировании следует учитывать внутреннюю логику встроенной в микроконтроллер программы. Рабочий цикл – это время включения плюс время паузы. Количество рабочих циклов может быть и нулевым – это означает, что реле включается однократно на время включения. Таким образом, чтобы включить реле N раз, надо задать N – 1 рабочих циклов, соответственно, если задать N рабочих циклов, реле включится N + 1 раз.

Пример 1. Время включения – 10 сек, время выключения – 8 сек, режим работы – циклически-ограниченный, количество рабочих циклов — 5.

Для начала запишем все числа в двоичном виде: число 10 – это 00001010, 8 – 00001000, 5 – 00000101. Включаем таймер, ставим переключатель SB3 – ON (квант времени – секунда), SB4 — ON (циклически-ограниченный режим), SB2/SB1 – ON/OFF (время включения), на переключателях SA1 – SA8 набираем число 00001010 (SA2, SA4 – OFF, все остальные – ON) и нажимаем кнопку программирования. Слышим два коротких сигнала.

Далее ставим SB2/SB1 – OFF/ON (время паузы), набираем на SA1 – SA8 число 00001000 (SA4 – OFF, остальные – ON), вновь нажимаем кнопку программирования, вновь слышим два коротких сигнала. Теперь ставим SB2/SB1 – OFF/OFF (количество рабочих циклов), набираем на SA1 – SA8 число 00000101 (SA1, SA3 – OFF, остальные – ON), вновь нажимаем кнопку программирования, слышим два коротких сигнала. Выключаем и вновь включаем питание – и таймер с новыми значениями констант готов к работе.

Пример 2. Время включения – 4 сек, время выключения – 3 сек, режим работы – циклически-непрерывный.

Число 4 – 00000100, число 3 – 00000011. Включаем таймер, ставим SB3 –ON (квант времени – секунда), SB4 – OFF (циклически-непрерывный режим), SB2/SB1 – ON/OFF (время включения), на переключателях SA1 – SA8 набираем число 00000100 (SA3 – OFF, все остальные — ON), нажимаем кнопку программирования, слышим два сигнала. Далее ставим SB2/SB1 – OFF/ON ( время паузы), набираем на SA1 – SA8 число 00000011 (SA1, SA2 – OFF, остальные – ON), нажимаем кнопку программирования, слышим два коротких сигнала. Выключаем и вновь включаем питания – и таймер с новыми значениями констант готов к работе.

Пример 3. Время включения – 20 мин однократно.

Число 20 – 00010100. Включаем таймер, ставим SB3 – OFF (квант времени — минута), SB4 – ON (циклически ограниченный режим), SB2/SB1 – ON/OFF (время включения), на переключателях SA1 – SA8 набираем 00010100 (SA3, SA5 – OFF, остальные – ON), нажимаем кнопку программирования, слышим два коротких сигнала. Ставим SB2/SB1 – OFF/OFF (количество рабочих циклов), набираем на SA1 – SA8 число 00000000 (все переключатели – ON), нажимаем кнопку программирования, слышим два коротких сигнала. Выключаем и вновь включаем питание – таймер с новыми значениями констант готов к работе.

Архив с описанием, топологией платы, программой и прошивкой можно скачать здесь.

До встречи на блоге!


Схема таймера на микроконтроллере ATINY2313 для тепловых пушек

Рассмотрена принципиальная схема реле времени для управления тепловыми пушками, она выполнена на базе микроконтроллера AVR. Описан принцип работы схемыреле времени, алгоритм его работы, а также рассмотрен программный код для микроконтроллера.

Конструкция тепловой пушки (тепловентиляторы) предусматривает наличие электронагревателя (нагревательного элемента) и вентилятора. У мощных тепловых пушек при выключении электронагревателя и во избежание его перегрева, а так же нагрева корпуса, и выхода из строя находящихся на нем конструктивных элементов, необходимо, сначала выключить электронагреватель, а потом с некоторой задержкой вентилятор.

То есть после выключения электронагревателя производится его обдув, до тех пор пока температура на выходе тепловой пушки не достигнет, например, комнатной (если тепловая пушка эксплуатируется в помещении с комнатной температурой). Понятно, что требуемая задержка по времени при выключении вентилятора зависит от технических характеристик тепловой пушки (мощность, производительность, габаритные размеры и т. д.). Предлагаемый вариант реле времени реализует задержку от 1 до 999 секунд. Устройство имеет следующие функции:

  • задание временного интервала на выключение вентилятора с помощью кнопок с контролем по цифровому дисплею;
  • управление (включение/выключение) с клавиатуры устройства или дистанционно;
  • светодиодная индикация выходных каналов;
  • декремент заданного временного интервала во время обратного отсчета при выключении тепловой пушки.

Принципиальная схема реле времени для управления тепловых пушек на базе микроконтроллера ATINY2313 представлена на рис.

1.

Канал управления нагревателем (канал управления № 1) собран на твердотельном реле VS1. Данный канал управляется с вывода 8 микроконтроллера DD1. Канал управления вентилятором (канал управления № 2) собран на твердотельном реле VS2. Канал управляется с вывода 9 микроконтроллера DD1.

Включение / выключение тепловой пушки осуществляется кнопкой S3 (С). Дистанционно устройство управляется кнопкой S4. Данная кнопка по схеме (рис. 1) для наглядности подключается через соединитель X3 (контакты 1, 2) и подключает вывод 11 микроконтроллера DD1 к общему проводнику.

В интерфейс реле времени входят клавиатура (кнопки S1…S3), и блок индикации (дисплей) из трех цифровых семисегментных индикаторах HG1…HG3. Кнопки клавиатуры имеют следующее назначение:

  • S1 ( А ) — увеличение на единицу значения при установки времени в секундах), при удержании данной кнопки в нажатом состоянии более 3 секунд, значение времени индицируемое на дисплее увеличивается на 5 единиц за 1 секунду;
  • S2 ( V ) — уменьшение на единицу значения каждого при установки времени в секундах, соответственно при удержании данной кнопки в нажатом состоянии более 3 секунд, значение времени индицируемое на дисплее уменьшается на 5 единиц за 1 секунду;
  • S3 ( С ) — кнопка включения/выключения реле времени (алгоритм работы в рабочем цикле приведен ниже).
  • S4 — внешняя кнопка (по отношению к реле времени) дистанционного управления, по функциональному назначению данная кнопка аналогична кнопке S3.

Разряды индикации интерфейса имеют следующее назначение:

  • 1 разряд (индикатор HG3) отображает «единицы секунд»;
  • 2 разряд (индикатор HG2) отображает «десятки секунд»;
  • 3 разряд (индикатор HG1) отображает «сотни секунд».

Сразу после подачи питания на выводе 1 микроконтроллера DD1 через RC-цепь (резистор R2, конденсатор Сб) формируется сигнал системного аппаратного сброса микроконтроллера DD1.

В микроконтроллере инициализируются регистры, счетчики, стек, таймер T/C1, сторожевой таймер, порты ввода/вывода, на дисплее индицируется число 001, Временные диаграммы, поясняющие алгоритм работы приведены на рис. 2

Рис. 1. Принципиальная схема таймера (реле времени) для управления тепловой пушкой.

Алгоритм работы реле времени в рабочем цикле следующий. После инициализации на выводах 8, 9 микроконтроллера устанавливаются сигналы уровня лог.1 (каналы № 1 и №2 отключены). Далее кнопками SI, S2 необходимо задать временную задержку на выключение АТ канала № 2, заданное значение индицируется на дисплее.

При включении реле времени кнопкой S3 в момент времени tl, сразу включается каналы управления № 1 и № 2 (устанавливается лог. 0 на выводах 8 и 9 микроконтроллера DD1). То есть электронагреватель вентилятор в тепловой пушке включаются одновременно.

При выключении реле времени кнопкой S3 в момент времени t2, сразу выключается канал управления № 1 (устанавливается лог. 1 на выводе 8 микроконтроллера DD1), на дисплее индицируется временная задержка АТ. Заданное время АТ декрементируется с каждой секундой. И как только оно станет равным нулю, выключается канал управления № 2 (устанавливается лог. 1 на выводе 9 микроконтроллера DD1). На дисплее снова индицируется заданное значение АТ. Цикл завершен.

АТ задается в диапазоне от 1 до 999 с, с дискретностью задания 1 секунда.

С порта РВ микроконтроллер DD1 управляет клавиатурой (кнопки S1…S3) и динамической индикацией. Динамическая индикация собрана на транзисторах VT1…VT3, цифровых семисегментных индикаторах HG1…HG3. Резисторы R3…R10 — токоограничительные для сегментов индикаторов HG1…HG3.

Коды для включения индикаторов HG1…HG3 при функционировании динамической индикации поступают на вход РВ микроконтроллера DD1. Для функционирования клавиатуры задействован вывод 7 микроконтроллера DD1. Рабочая частота микроконтроллера DD1 задается генератором с внешним резонатором ZQ1 на 10 МГц.

При инициализации микроконтроллера DD1 все выводы порта В сконфигурированы как выходы. Выводы PD3, PD6 порта D сконфигурированы как входы, остальные как выходы. Как видно из принципиальной схемы аппаратная часть микроконтроллера DD1 задействована полностью.

Рис. 2. Временные диаграммы, поясняющие алгоритм работы.

Для перевода устройства в рабочий режим необходимо кнопками S1 ( Д ), S2 ( v ) установить необходимый интервал времени ДТ. Для включения устройства как указывалось выше необходимо нажать на кнопку S3 (С) или кнопку S4. Установленное время при этом заносится в ОЗУ микроконтроллера DD1. Если необходимо изменить заданное время, то для этого необходимо нажать на кнопку S3 (С). Потом кнопками S1 ( Д ), S2 ( v ) установить необходимый интервал времени ДТ и снова нажать на кнопку S3 (С).

Совсем коротко о программе. Программа состоит из трех основных частей; инициализации, основной программы, работающей в замкнутом цикле и подпрограммы обработки прерывания от таймера Т/C1 (соответственно метки INIT, SE1, ТІМ0). В основной программе происходит инкремент, декремент заданного значения времени и запись заданного интервала времени ДТ из буфера хранения в буфер отображения.

В памяти данных микроконтроллера с адреса $060 по $062 организован буфер отображения для динамической индикации. С адреса $064 по $66, организован буфер для хранения заданного интервала времени ДТ. В подпрограмме обработки прерывания осуществляется счет одной секунды, опрос клавиатуры, включение световых и звуковых сигналов и перекодировка двоичного числа значений времени в код для отображения информации на семисегментнных индикаторах.

Сразу при включении (после нажатия кнопки S3) происходит запись заданного интервала времени ДТ из буфера отображения в буфер хранения. При выключении устройства после того как ДТ станет равным нулю происходит перезапись из буфера хранения в буфер отображения. Таким образом, заданный интервал времени ДТ никуда «не теряется». И каждый раз после выключения,, ДТ индицируется на дисплее устройства.

Задача по формирование временных интервалов длительностью 1 с, решена с помощью прерываний от таймера Т/Cl, и счетчика на регистре R25. Счетчик на регистре R21 формирует интервал в одну минуту. Таймер Т/C1 формирует запрос на прерывание через каждые ~ 3900 мкс.

Счетчики на данных регистрах, подсчитывают количество прерываний и через каждую минуту, устанавливается флаг (PUSK), и текущее время декрементируется. Через каждые « 3900 мкс происходит отображения разрядов в динамической индикации устройства. Назначение флагов в регистрах flo и flo1 приведено в программе.

Алгоритм работы кнопки для быстрого увеличения задаваемого значения следующий. При нажатии на кнопку S1 текущее значение времени на дисплее увеличивается на единицу и устанавливается флаг, разрешающий увеличивать текущее значение времени, индицируемого на дисплее. Одновременно запускается счетчик, выполненный на R1, формирующий интервал 5 сек.

Если кнопка удерживается более 3 секунд, значение времени, индицируемое на дисплее увеличивается на 5 единиц за 1 секунду. (То есть, максимальное значение индицируемое на дисплее — 999 можно задать через я 200 секунд). Интервал времени в течении которого происходит увеличение времени организован на регистре R0. При отпускании кнопки 51 все вышеуказанные счетчики обнуляются. Совершенно аналогичным образом организована работа кнопки S2 для быстрого уменьшения текущего значения времени, индицируемого на дисплее.

При нажатии на кнопку S2 текущее значение времени на дисплее уменьшается на единицу. Если кнопка удерживается более 3 секунд, значение времени, индицируемое на дисплее уменьшается на 5 единиц за 1 секунду. Счетчики приведенного алгоритма для кнопки 52 организованы соответственно на регистрах R3 и R2. Кнопки 53 и S4 имеют одинаковое функциональное назначение в устройстве, но аппаратно-программная реализация механизма функционирования данных кнопок — разная.

Далее приведены фрагменты программ для кнопок S3 и S4.

Рис. 3. Фрагменты программ микроконтроллера для кнопок S3 и S4.

Разработанная программа на ассемблере занимает порядка 0,7 Кбайт памяти программ микроконтроллера. Для получения питающего напряжение +5В в устройстве задействован AC/DC преобразователь U1. Потребление тока по каналу напряжения:+5 В, не более 500 мА. В принципиальной схеме (рис.

1) применены следующие элементы. Конденсаторы С1, C3 типа К15-5 — ЗкВ, конденсатор С2 типа К73-11. Конденсаторы С4…С6 типа К10-17а. В схеме применены резисторы типа С2-ЗЗН-0.125. Индикаторы HG1…HG3 зеленого цвета типа HDSP-F501. Максимальный ток нагрузки для твердотельных реле D2425 (позиционные обозначения в принципиальной схеме VS1, VS2) — 25А.

Данный ток определяет мощность, подключаемых к устройству электронагревателя и вентилятора.

Шишкин С.

Литература: А. В. Белов Создаем устройства на микроконтроллерах.

Программируемый цифровой таймер с использованием микроконтроллера PIC

Цифровые таймеры используются для управления работой электрических устройств по запрограммированному расписанию. В этом проекте описывается программируемый цифровой таймер на базе микроконтроллера PIC16F628A, который можно запрограммировать на включение и выключение электроприбора по расписанию. Прибор управляется с помощью релейного переключателя. Этот переключатель таймера позволяет установить время включения и выключения. Это означает, что вы можете запрограммировать, когда вы хотите включить устройство и как долго вы хотите, чтобы оно оставалось включенным. Максимальный временной интервал, который можно установить для включения и выключения, составляет 99 часов 59 минут. Проект предоставляет интерактивный пользовательский интерфейс с использованием ЖК-дисплея 16×2 символов и 4 кнопок.

Программируемый цифровой таймер

Примечание: (30 июня 2016 г. ) Пересмотренная версия этого проекта с добавленными новыми функциями размещена здесь .

Схема

Принципиальная схема этого проекта показана ниже. Реле 5В управляется транзистором PN2222, который управляется выводом RB3 PIC16F628A. Цифровые входы от 4 кнопок считываются через контакты порта RA2, RA3, RA4 и RB0. Функции этих кнопок обсуждаются в разделе операций ниже. В проекте используется стандартный ЖК-дисплей 16×2 символов для отображения состояния устройства, меню программ и времени. ЖК-дисплей работает в 4-битном режиме, поэтому для его управления требуется всего 6 контактов ввода-вывода PIC16F628A. Пьезоэлектрический зуммер издает звуковой сигнал при запуске и остановке таймера. Он также издает звуковой сигнал при включении или выключении устройства. Источник питания + 5 В для схемы получен от микросхемы стабилизатора LM7805. Вход на регулятор подается с 9Настенный адаптер постоянного тока В.

На принципиальной схеме контакты 15 и 16 ЖК-дисплея показаны разомкнутыми. Эти контакты доступны только в тех ЖК-дисплеях, которые имеют светодиодную подсветку. Контакты 15 и 16 являются анодом и катодом светодиода. Если ваш ЖК-дисплей оснащен светодиодной подсветкой, вы можете последовательно подключить эти контакты к клеммам источника питания с резистором 39 Ом. Светодиодная подсветка улучшает читаемость ЖК-дисплея в условиях низкой освещенности.

Полная схема, припаянная к макетной плате общего назначения, показана ниже.

Работа таймера

Таймер получает сигналы от 4 кнопок. Их функции описаны следующим образом:

  • ВРЕМЯ ВКЛЮЧЕНИЯ/ВЫКЛЮЧЕНИЯ: Этот таймер позволяет установить время включения и выключения. Когда таймер первоначально включен, устройство находится в выключенном состоянии, а время включения и выключения равно 0. Нажимая эту кнопку, вы можете переключаться между временем включения и выключения на дисплее.
  • ВЫБОР: Это позволяет вам выбирать между настройками времени включения и выключения, а также часами и минутами. Выбранная цифра увеличивается при нажатии кнопки ON/OFF TIME.
  • ENTER : Когда выбраны соответствующие часы и минуты, нажатие ENTER завершает установку соответствующего времени включения или выключения.
  • ПУСК/СТОП для запуска или остановки таймера. Если таймер уже включен, вы можете остановить его в любой момент во время его работы, нажав эту кнопку.

Теперь посмотрим, как это работает. Допустим, устройство, подключенное к релейному выключателю, необходимо включить через 2 минуты. Кроме того, после включения он должен быть включен в течение следующих 20 минут. В этом случае время выключения — 00:02, а время включения — 00:20 в формате чч:мм. После запуска таймера устройство включится через 2 минуты и останется включенным в течение 20 минут. После этого он снова будет выключен. В следующем видео показано, как это сделать.

cab#version=6,0,40,0″>

Программное обеспечение

Прошивка разработана с использованием компилятора MikroC Pro for PIC.
Загрузите исходный код

Загрузите файл HEX

Цифровой таймер

Обновление (12.04.2013)
Марк Вейр из Австралии прислал нам свою версию нашего Программируемого цифрового таймера . Он модифицировал исходный код, написанный для PIC16F628A, чтобы объединить его с микроконтроллером PIC18F4620, при этом аппаратное обеспечение и общая функциональность остались прежними.

Цифровой таймер на PIC18F4620

Вот ссылка на скачивание его модифицированной версии прошивки, написанной на компиляторе MikroC.

Скачать прошивку

Похожие сообщения

Представляем нашу ИС таймера пробуждения, идеально подходящую для прерывистой работы системы

ИС таймера / ASSP

Микросхема таймера пробуждения | Интервальный таймер IC

ИС таймера пробуждения представляет собой ИС, которая обеспечивает прерывистую работу системы путем периодического пробуждения системы. Микросхема таймера пробуждения
ABLIC потребляет мало энергии и позволяет гибко настраивать время.
Эти возможности поддерживают разработку устройств связи IoT, устройств мониторинга, устройств безопасности и множества других систем с батарейным питанием или систем сбора энергии, требующих низкого энергопотребления.

  1. Сверхнизкое потребление тока 0,2 мкА тип.
  2. Гибкие настройки времени пробуждения
  3. Настройки простой команды (S-35710)
  4. Встроенный кварцевый резонатор (S-35710M)

1. Сверхнизкое потребление тока 0,2 мкА тип.

Сверхнизкое потребление тока 0,2 мкА намного ниже, чем потребление тока встроенным таймером микроконтроллера. Использование микросхемы таймера пробуждения вместо таймера микроконтроллера значительно снизит энергопотребление системы, увеличит срок службы батареи и позволит использовать более компактные батареи.
Даже в сочетании с S-1318 LDO, потребление тока которого составляет сверхнизкие 0,095 мкА, потребление тока все равно будет сверхнизким 0,295 мкА.

Пример подключения схемы таймера пробуждения IC S-35710C01 Пример прерывистой работы с использованием таймера пробуждения IC

2. Гибкие настройки времени пробуждения

  • Время пробуждения может быть установлено в широком диапазоне времени от 1 секунды до 194 дней.
  • Время пробуждения можно задавать с шагом в 1 секунду.
  • Для создания очень гибких систем наша линейка продуктов включает S-35710, который через интерфейс программирует программные настройки времени, и S-35720, который предоставляет контакты установки времени для аппаратного выбора времени.

Диапазон настройки времени таймера пробуждения IC
(* Чтобы установить время, превышающее 194 дня, используйте команду «Чтение регистра времени», чтобы прочитать прошедшее время и добавить его в микроконтроллер.) Программные настройки времени (S-35710) и настройки аппаратного времени (S-35720)

3. Простые настройки команды (S-35710)

Три команды обеспечивают правильное управление настройками времени пробуждения.

  • Запись регистра времени пробуждения (Wwtr)
    Команда, используемая для установки времени пробуждения. Программа предоставляет гибкие настройки.
  • Чтение регистра времени пробуждения (Rwtr)
    Команда, используемая для подтверждения установленного времени пробуждения.
    Использование этой команды с регистром записи времени пробуждения упрощает правильную установку времени пробуждения.
  • Чтение регистра времени (Rtr)
    Команда, используемая для подтверждения прошедшего времени.
    Использование этой команды с регистром записи времени пробуждения упрощает правильное подтверждение установки времени пробуждения.
    Его также можно использовать для подтверждения прошедшего времени в спящем режиме.
Пример программы таймера пробуждения IC

4. Встроенный кристалл кварца (S-35710M)

Благодаря встроенному кристаллу кварца:

  • Нет необходимости оценивать соответствие ИС и кварцевого кристалла.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *